The FileFormats submodule
The FileFormats module provides functions for reading and writing MOI models using write_to_file and read_from_file.
Supported file types
You must read and write files to a FileFormats.Model object. Specific the file-type by passing a FileFormats.FileFormat enum. For example:
The Conic Benchmark Format
julia> model = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_CBF)
MOI.FileFormats.CBF.Model
├ ObjectiveSense: FEASIBILITY_SENSE
├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
├ NumberOfVariables: 0
└ NumberOfConstraints: 0The LP file format
julia> model = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_LP)
MOI.FileFormats.LP.Model
├ ObjectiveSense: FEASIBILITY_SENSE
├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
├ NumberOfVariables: 0
└ NumberOfConstraints: 0The MathOptFormat file format
julia> model = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_MOF)
MOI.FileFormats.MOF.Model
├ ObjectiveSense: FEASIBILITY_SENSE
├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
├ NumberOfVariables: 0
└ NumberOfConstraints: 0The MPS file format
julia> model = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_MPS)
MOI.FileFormats.MPS.Model
├ ObjectiveSense: FEASIBILITY_SENSE
├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
├ NumberOfVariables: 0
└ NumberOfConstraints: 0The NL file format
julia> model = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_NL)
MOI.FileFormats.NL.Model
├ ObjectiveSense: unknown
├ ObjectiveFunctionType: unknown
├ NumberOfVariables: unknown
└ NumberOfConstraints: unknownThe REW file format
julia> model = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_REW)
MOI.FileFormats.MPS.Model
├ ObjectiveSense: FEASIBILITY_SENSE
├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
├ NumberOfVariables: 0
└ NumberOfConstraints: 0Note that the REW format is identical to the MPS file format, except that all names are replaced with generic identifiers.
The SDPA file format
julia> model = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_SDPA)
MOI.FileFormats.SDPA.Model
├ ObjectiveSense: FEASIBILITY_SENSE
├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
├ NumberOfVariables: 0
└ NumberOfConstraints: 0Write to file
To write a model src to a MathOptFormat file, use:
julia> src = MOI.Utilities.Model{Float64}();
julia> MOI.add_variable(src);
julia> dest = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_MOF);
julia> MOI.copy_to(dest, src)
MathOptInterface.Utilities.IndexMap with 1 entry:
MOI.VariableIndex(1) => MOI.VariableIndex(1)
julia> MOI.write_to_file(dest, "file.mof.json")
julia> print(read("file.mof.json", String))
{"name":"MathOptFormat Model","version":{"major":1,"minor":7},"variables":[{"name":"x1"}],"objective":{"sense":"feasibility"},"constraints":[]}Read from file
To read a MathOptFormat file, use:
julia> dest = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_MOF);
julia> MOI.read_from_file(dest, "file.mof.json")
julia> MOI.get(dest, MOI.ListOfVariableIndices())
1-element Vector{MathOptInterface.VariableIndex}:
MOI.VariableIndex(1)
julia> rm("file.mof.json") # Clean up after ourselves.Detecting the file-type automatically
Instead of the format keyword, you can also use the filename keyword argument to FileFormats.Model. This will attempt to automatically guess the format from the file extension. For example:
julia> src = MOI.Utilities.Model{Float64}();
julia> dest = MOI.FileFormats.Model(filename = "file.cbf.gz");
julia> MOI.copy_to(dest, src)
MathOptInterface.Utilities.IndexMap()
julia> MOI.write_to_file(dest, "file.cbf.gz")
julia> src_2 = MOI.FileFormats.Model(filename = "file.cbf.gz");
julia> MOI.read_from_file(src_2, "file.cbf.gz")
julia> rm("file.cbf.gz") # Clean up after ourselves.Note how the compression format (GZip) is also automatically detected from the filename.
Unsupported constraints
In some cases src may contain constraints that are not supported by the file format (for example, the CBF format supports integer variables but not binary). If so, copy src to a bridged model using Bridges.full_bridge_optimizer:
julia> src = MOI.Utilities.Model{Float64}();
julia> x = MOI.add_variable(src);
julia> MOI.add_constraint(src, x, MOI.ZeroOne());
julia> dest = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_CBF);
julia> bridged = MOI.Bridges.full_bridge_optimizer(dest, Float64);
julia> MOI.copy_to(bridged, src);
julia> MOI.write_to_file(dest, "my_model.cbf")
julia> rm("my_model.cbf") # Clean up after ourselves.Even after bridging, it may still not be possible to write the model to file because of unsupported constraints (for example, PSD variables in the LP file format).
Read and write to io
In addition to write_to_file and read_from_file, you can read and write directly from IO streams using Base.write and Base.read!:
julia> src = MOI.Utilities.Model{Float64}();
julia> dest = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_MPS);
julia> MOI.copy_to(dest, src)
MathOptInterface.Utilities.IndexMap()
julia> io = IOBuffer();
julia> write(io, dest)
julia> seekstart(io);
julia> src_2 = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_MPS);
julia> read!(io, src_2);ScalarNonlinearFunction
By default, reading a .nl or .mof.json that contains nonlinear expressions will create an NLPBlock.
To instead read nonlinear expressions as ScalarNonlinearFunction, pass the use_nlp_block = false keyword argument to the Model constructor:
julia> model = MOI.FileFormats.Model(;
format = MOI.FileFormats.FORMAT_MOF,
use_nlp_block = false,
);
julia> model = MOI.FileFormats.Model(;
format = MOI.FileFormats.FORMAT_NL,
use_nlp_block = false,
);Validating MOF files
MathOptFormat files are governed by a schema. Use JSONSchema.jl to check if a .mof.json file satisfies the schema.
First, construct the schema object as follows:
julia> import JSON, JSONSchema
julia> schema = JSONSchema.Schema(JSON.parsefile(MOI.FileFormats.MOF.SCHEMA_PATH))
A JSONSchemaThen, check if a model file is valid using isvalid:
julia> good_model = JSON.parse("""
{
"version": {
"major": 1,
"minor": 5
},
"variables": [{"name": "x"}],
"objective": {"sense": "feasibility"},
"constraints": []
}
""");
julia> isvalid(schema, good_model)
trueIf we construct an invalid file, for example by mis-typing name as NaMe, the validation fails:
julia> bad_model = JSON.parse("""
{
"version": {
"major": 1,
"minor": 5
},
"variables": [{"NaMe": "x"}],
"objective": {"sense": "feasibility"},
"constraints": []
}
""");
julia> isvalid(schema, bad_model)
falseUse JSONSchema.validate to obtain more insight into why the validation failed:
julia> JSONSchema.validate(schema, bad_model)
Validation failed:
path: [variables][1]
instance: Dict{String, Any}("NaMe" => "x")
schema key: required
schema value: Any["name"]