
MathOptAI.jl
Robert Parker
Oscar Dowson, Nicole LoGiudice, Manuel Garcia, Kaarthik Sundar, Russell Bent

JuMP-dev 2025

MathOptAI.jl
https://lanl-ansi.github.io/MathOptAI.jl/stable/

Problem class

min f
0
(x, y)

 f
i
(x, y) ϵ S

i
 ∀i

 y = F(x)

where F is a neural network/decision
tree/logistic regression/…

Mission

Embed machine learning
predictors into a JuMP model.

Similar to

● OMLT
● gurobi-machinelearning
● PySCIPOpt-ML
● GAMSPy
● …

https://lanl-ansi.github.io/MathOptAI.jl/stable/

Application Example
Security Constrained Optimal Power Flow. Parker et al. (2025)

We cannot embed G directly, but we
can train a surrogate, G(x) ≈ F(x),
and then add

min f
0
(x)

 f
i
(x) ϵ S

i
 ∀i

 y = F(x)
 y ≥ 0.95

Take a nonlinear program
representing Optimal Power Flow

min f
0
(x)

 f
i
(x) ϵ S

i
 ∀i

We want to add G(x) = 1, where G is
a classifier that returns 1 if a
non-differentiable simulation shows
that x is stable and 0 otherwise.

Take a two-stage stochastic program

min f
0
(x) + E[V

2
(x)]

 f
i
(x) ϵ S

i
 ∀i

Replace the expected value function by a learned predictor

min f
0
(x) + y

 f
i
(x) ϵ S

i
 ∀i

 y = F(x)

Application Example
Two-stage stochastic programming. Dumouchelle et al (2022).

Take a bilevel program

min f
0
(x, y)

 f
i
(x, y) ϵ S

i
 ∀i

 y ϵ argmin V(x)

Replace the inner optimization problem by a learned predictor

min f
0
(x, y)

 f
i
(x, y) ϵ S

i
 ∀i

 y = F(x)

Application Example
Bilevel optimization. Moreno-Palancas et al. (2025)

#!/usr/bin/python3
import torch
from torch import nn
model = nn.Sequential(nn.Linear(10, 16), nn.ReLU(), nn.Linear(16, 2))
torch.save(model, "model.pt")

#!/usr/bin/julia
using JuMP, Ipopt, MathOptAI, PythonCall
model = Model(Ipopt.Optimizer)
@variable(model, 0 <= x[1:10] <= 1)
predictor = MathOptAI.PytorchModel("model.pt")
y, formulation = MathOptAI.add_predictor(model, predictor, x)
@constraint(model, y .>= 0.9)

Code Example
Embed a NN from Pytorch in JuMP

#!/usr/bin/python3
import torch
from torch import nn
model = nn.Sequential(nn.Linear(10, 16), nn.ReLU(), nn.Linear(16, 2))
torch.save(model, "model.pt")

#!/usr/bin/julia
using JuMP, HiGHS, MathOptAI, PythonCall
model = Model(HiGHS.Optimizer)
@variable(model, 0 <= x[1:10] <= 1)
predictor = MathOptAI.PytorchModel("model.pt")
config = Dict(:ReLU => MathOptAI.ReLUSOS1())
y, formulation = MathOptAI.add_predictor(model, predictor, x; config)
@constraint(model, y .>= 0.9)

Code Example
Embed a NN from Pytorch in JuMP

MathOptAI/ext

MathOptAI sits on top of JuMP
We implement many package extensions

JuMP

MathOptAI/src

Affine

Scale

GrayBox

Sigmoid

Pipeline

SoftMax

ReLU

Tanh

ReLUBigM

…

Lux.jl Flux.jl PythonCall.jl DecisionTree.jl …

src/predictors/Affine.jl
struct Affine{T} <: AbstractPredictor
 A::Matrix{T}
 b::Vector{T}
end

function add_predictor(model::JuMP.AbstractModel, predictor::Affine, x::Vector)
 m = size(predictor.A, 1)
 y = JuMP.@variable(model, [1:m], base_name = "moai_Affine")
 cons = JuMP.@constraint(model, predictor.A * x .+ predictor.b .== y)
 return y, Formulation(predictor, y, cons)
end

AbstractPredictors and package extensions
The Affine predictor

AbstractPredictors and package extensions
The GLM package extension

ext/MathOptAIGLMExt.jl
function MathOptAI.build_predictor(predictor::GLM.LinearModel)
 return MathOptAI.Affine(GLM.coef(predictor))
end

src/MathOptAI.jl
function add_predictor(
 model::JuMP.AbstractModel,
 predictor::Any,
 x::Vector;
 kwargs...,
)
 inner_predictor = build_predictor(predictor; kwargs...)
 return add_predictor(model, inner_predictor, x)
end

Full-space Reduced-space Gray-box

Pros Sparsity

Solvers can exploit linearity

Fewer variables and
constraints

Can use external evaluation for
oracles.

Scales with input/output
dimension, not intermediate
dimension

Cons Many extra variables and
constraints

Complicated dense
expressions

Requires oracle-based NLP.
Cannot be used by global
MINLP solvers

Bottleneck Computing linear system
because of problem size

Computing derivatives
(JuMP’s AD does not do
well at dense problems)

Moving data between
Julia/Python/GPU

Three-ways to formulate a problem
Each with a different trade-off

Full-space
Add intermediate variables and constraints

using JuMP, MathOptAI
y = ReLU(x) = max.(0, A * x + b)
predictor = MathOptAI.Pipeline(
 MathOptAI.Affine(A, b),
 MathOptAI.ReLU(),
)
model = Model()
@variable(model, x[1:n])
y, _ = MathOptAI.add_predictor(
 model,
 predictor,
 x,
)

using JuMP
model = Model()
@variables(model, begin
 x[1:n]
 tmp[1:m]
 y[1:m]
end)
@constraints(model, begin
 tmp == A * x + b
 y .== max.(0, tmp)
end)

Full-space Reduced-space Gray-box

Pros Sparsity

Solvers can exploit linearity

Fewer variables and
constraints

Can use external evaluation for
oracles.

Scales with input/output
dimension, not intermediate
dimension

Cons Many extra variables and
constraints

Complicated dense
expressions

Requires oracle-based NLP.
Cannot be used by global
MINLP solvers

Bottleneck Computing linear system
because of problem size

Computing derivatives
(JuMP’s AD does not do
well at dense problems)

Moving data between
Julia/Python/GPU

Three-ways to formulate a problem
Each with a different trade-off

Reduced-space
Use nested expressions

using JuMP, MathOptAI
y = ReLU(x) = max.(0, A * x + b)
predictor = MathOptAI.Pipeline(
 MathOptAI.Affine(A, b),
 MathOptAI.ReLU(),
)
model = Model()
@variable(model, x[1:n])
y, _ = MathOptAI.add_predictor(
 model,
 predictor,
 x;
 reduced_space = true,
)

using JuMP
model = Model()
@variables(model, begin
 x[1:n]
end)
@expressions(model, begin
 tmp, A * x + b
 y, max.(0, tmp)
end)

Full-space Reduced-space Gray-box

Pros Sparsity

Solvers can exploit linearity

Fewer variables and
constraints

Can use external evaluation for
oracles.

Scales with input/output
dimension, not intermediate
dimension

Cons Many extra variables and
constraints

Complicated dense
expressions

Requires oracle-based NLP.
Cannot be used by global
MINLP solvers

Bottleneck Computing linear system
because of problem size

Computing derivatives
(JuMP’s AD does not do
well at dense problems)

Moving data between
Julia/Python/GPU

Three-ways to formulate a problem
Each with a different trade-off

Gray-box
Use external function evaluation

using JuMP, MathOptAI
y = ReLU(x) = max.(0, A * x + b)
predictor = MathOptAI.Pipeline(
 MathOptAI.Affine(A, b),
 MathOptAI.ReLU(),
)
model = Model()
@variable(model, x[1:n])
y, _ = MathOptAI.add_predictor(
 model,
 predictor,
 x;
 vector_nonlinear_oracle = true,

)

using JuMP
model = Model()
@variables(model, begin
 x[1:n]
 y[1:m]
end)
set = MOI.VectorNonlinearOracle(
 # g(x) := F(x) - y
 # evaluate g(x), ∇g(x)
)
@constraints(model, begin
 [x, y] in set
end)

#!/usr/bin/julia
using JuMP, Ipopt, MathOptAI, PythonCall
model = Model(Ipopt.Optimizer)
@variable(model, 0 <= x[1:10] <= 1)
predictor = MathOptAI.PytorchModel("model.pt")
y, _ = MathOptAI.add_predictor(
 model,
 predictor,
 x;
 vector_nonlinear_oracle = true,
 device = "cuda",
 hessian = true,
)

Gray box oracles are evaluated in Pytorch
MathOptAI automatically sets up the Julia-Python intercommunication

Gray-box: Julia, C, Python, working together
JuMP problems call Ipopt in C, which calls back to Julia for oracles,
which calls Python and PyTorch

Full-space Reduced-space Gray-box

Pros Sparsity

Solvers can exploit linearity

Fewer variables and
constraints

Can use external evaluation for
oracles.

Scales with input/output
dimension, not intermediate
dimension

Cons Many extra variables and
constraints

Complicated dense
expressions

Requires oracle-based NLP.
Cannot be used by global
MINLP solvers

Bottleneck Computing linear system
because of problem size

Computing derivatives
(JuMP’s AD does not do
well at dense problems)

Moving data between
Julia/Python/GPU

Three-ways to formulate a problem
Each with a different trade-off

re
du

ce
d-

sp
ac

e CPU full-space

GPU oracle

CPU oracle

Runtime against size of the neural network
Two examples: SCOPF (solid) and MNIST (dashed)

Comparison to alternative packages
The design space is under-explored

The space of predictors we could
add is very large.

What predictors are relevant and
useful in practice?

We don’t need to copy what other
packages have done.

Leverage Python’s strengths

Support PyTorch.

Use PythonCall.

Don’t try to write an ONNX parser in Julia.

Composition of predictors

Follow PyTorch “everything is a layer” not “a
layer is affine + activation function.”

Logistic is Affine |> Sigmoid, not a separate
layer.

Design principles
Err towards simplicity

Leverage Julia’s strengths

Multiple dispatch.

The package extension system is really great.

Inputs and outputs are Base.Vector

Strongly enforce the MethodError principle.

Broadcasting with different shapes is
complicated. Julia and numpy have the opposite
conventions.

Get user to reshape Array into Vector.

● Papers on MathOptAI

○ Parker et al. (2025). Nonlinear optimization with GPU-accelerated neural network constraints.
https://arxiv.org/abs/2509.22462

○ Dowson et al. (2025). MathOptAI.jl: Embed trained machine learning predictors into JuMP
models. https://arxiv.org/abs/2507.03159

● Source codes

○ https://github.com/lanl-ansi/MathOptAI.jl
○ https://github.com/Gurobi/gurobi-machinelearning
○ https://github.com/cog-imperial/OMLT
○ https://github.com/GAMS-dev/gamspy
○ https://github.com/Opt-Mucca/PySCIPOpt-ML

References

https://arxiv.org/abs/2509.22462
https://arxiv.org/abs/2507.03159
https://github.com/lanl-ansi/MathOptAI.jl
https://github.com/Gurobi/gurobi-machinelearning
https://github.com/cog-imperial/OMLT
https://github.com/GAMS-dev/gamspy
https://github.com/Opt-Mucca/PySCIPOpt-ML

Bonus slides: Using MathOptAI to develop custom
linear solvers for MadNLP

re
du

ce
d-

sp
ac

e
Motivation: Full-space is slow

But…

● It supports ReLU via
ReLUQuadratic

● It converges better for
some problems (?!)

So we’d like to speed it up

CPU fu
ll-s

pa
ce

Idea: Exploit the structure of a surrogate model
In the linear solver of an optimization algorithm

Recall

y, formulation =
MathOptAI.add_predictor(
model, predictor, x)

Use the formulation struct as an
input to a new linear solver

We have implemented a prototype for MadNLP
Software interface is a work-in-progress

example.jl
y, formulation = MathOptAI.add_predictor(

model, predictor, x)

nlp = NLPModelsJuMP.MathOptNLPModel(model)

indices = get_kkt_indices(model, formulation)

Madnlp = MadNLP.MadNLPSolver(
nlp;
linear_solver = BlockTriangularSolver,
block_triangular_indices = indices,

)

solver.jl
struct BlockTriangularSolver
<: MadNLP.AbstractLinearSolver
 csc::SparseMatrixCSC
 ...
end

Early performance results are promising
On ten KKT system solves

LANL:

● Artimis project

● Center for Nonlinear Studies (CNLS)

● Information Science and Technology Institute (ISTI)

Funding

