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MathOptAI.jl
https://lanl-ansi.github.io/MathOptAI.jl/stable/

Problem class

min f
0
(x, y)

    f
i
(x, y) ϵ S

i
 ∀i

    y = F(x)

where F is a neural network/decision 
tree/logistic regression/…

Mission

Embed machine learning 
predictors into a JuMP model.

Similar to

● OMLT
● gurobi-machinelearning
● PySCIPOpt-ML
● GAMSPy
● …

https://lanl-ansi.github.io/MathOptAI.jl/stable/


Application Example
Security Constrained Optimal Power Flow. Parker et al. (2025)

We cannot embed G directly, but we 
can train a surrogate, G(x) ≈ F(x), 
and then add

min f
0
(x)

    f
i
(x) ϵ S

i
 ∀i

    y = F(x)
    y ≥ 0.95

Take a nonlinear program 
representing Optimal Power Flow

min f
0
(x)

    f
i
(x) ϵ S

i
 ∀i

We want to add G(x) = 1, where G is 
a classifier that returns 1 if a 
non-differentiable simulation shows 
that x is stable and 0 otherwise.



Take a two-stage stochastic program

min f
0
(x) + E[V

2
(x)]

    f
i
(x) ϵ S

i
 ∀i

Replace the expected value function by a learned predictor

min f
0
(x) + y

    f
i
(x) ϵ S

i
 ∀i

    y = F(x)

Application Example
Two-stage stochastic programming. Dumouchelle et al (2022).



Take a bilevel program

min f
0
(x, y)

    f
i
(x, y) ϵ S

i
 ∀i

    y ϵ argmin V(x)

Replace the inner optimization problem by a learned predictor

min f
0
(x, y)

    f
i
(x, y) ϵ S

i
 ∀i

    y = F(x)

Application Example
Bilevel optimization. Moreno-Palancas et al. (2025)



#!/usr/bin/python3
import torch
from torch import nn
model = nn.Sequential(nn.Linear(10, 16), nn.ReLU(), nn.Linear(16, 2))
torch.save(model, "model.pt")

#!/usr/bin/julia
using JuMP, Ipopt, MathOptAI, PythonCall
model = Model(Ipopt.Optimizer)
@variable(model, 0 <= x[1:10] <= 1)
predictor = MathOptAI.PytorchModel("model.pt")
y, formulation = MathOptAI.add_predictor(model, predictor, x)
@constraint(model, y .>= 0.9)

Code Example
Embed a NN from Pytorch in JuMP



#!/usr/bin/python3
import torch
from torch import nn
model = nn.Sequential(nn.Linear(10, 16), nn.ReLU(), nn.Linear(16, 2))
torch.save(model, "model.pt")

#!/usr/bin/julia
using JuMP, HiGHS, MathOptAI, PythonCall
model = Model(HiGHS.Optimizer)
@variable(model, 0 <= x[1:10] <= 1)
predictor = MathOptAI.PytorchModel("model.pt")
config = Dict(:ReLU => MathOptAI.ReLUSOS1())
y, formulation = MathOptAI.add_predictor(model, predictor, x; config)
@constraint(model, y .>= 0.9)

Code Example
Embed a NN from Pytorch in JuMP



MathOptAI/ext

MathOptAI sits on top of JuMP
We implement many package extensions

JuMP

MathOptAI/src

Affine

Scale

GrayBox

Sigmoid

Pipeline

SoftMax

ReLU

Tanh

ReLUBigM

…

Lux.jl Flux.jl PythonCall.jl DecisionTree.jl …



# src/predictors/Affine.jl
struct Affine{T} <: AbstractPredictor
   A::Matrix{T}
   b::Vector{T}
end

function add_predictor(model::JuMP.AbstractModel, predictor::Affine, x::Vector)
   m = size(predictor.A, 1)
   y = JuMP.@variable(model, [1:m], base_name = "moai_Affine")
   cons = JuMP.@constraint(model, predictor.A * x .+ predictor.b .== y)
   return y, Formulation(predictor, y, cons)
end

AbstractPredictors and package extensions
The Affine predictor



AbstractPredictors and package extensions
The GLM package extension

# ext/MathOptAIGLMExt.jl
function MathOptAI.build_predictor(predictor::GLM.LinearModel)
   return MathOptAI.Affine(GLM.coef(predictor))
end

# src/MathOptAI.jl
function add_predictor(
   model::JuMP.AbstractModel,
   predictor::Any,
   x::Vector;
   kwargs...,
)
   inner_predictor = build_predictor(predictor; kwargs...)
   return add_predictor(model, inner_predictor, x)
end



Full-space Reduced-space Gray-box

Pros Sparsity

Solvers can exploit linearity

Fewer variables and 
constraints

Can use external evaluation for 
oracles.

Scales with input/output 
dimension, not intermediate 
dimension

Cons Many extra variables and 
constraints

Complicated dense 
expressions

Requires oracle-based NLP. 
Cannot be used by global 
MINLP solvers

Bottleneck Computing linear system 
because of problem size

Computing derivatives
(JuMP’s AD does not do 
well at dense problems)

Moving data between 
Julia/Python/GPU 

Three-ways to formulate a problem
Each with a different trade-off 



Full-space
Add intermediate variables and constraints

using JuMP, MathOptAI
# y = ReLU(x) = max.(0, A * x + b)
predictor = MathOptAI.Pipeline(
    MathOptAI.Affine(A, b),
    MathOptAI.ReLU(),
)
model = Model()
@variable(model, x[1:n])
y, _ = MathOptAI.add_predictor(
    model,
    predictor,
    x,
)

using JuMP
model = Model()
@variables(model, begin
    x[1:n]
    tmp[1:m]
    y[1:m]
end)
@constraints(model, begin
    tmp == A * x + b
    y .== max.(0, tmp)
end)



Full-space Reduced-space Gray-box
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expressions
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Reduced-space
Use nested expressions

using JuMP, MathOptAI
# y = ReLU(x) = max.(0, A * x + b)
predictor = MathOptAI.Pipeline(
    MathOptAI.Affine(A, b),
    MathOptAI.ReLU(),
)
model = Model()
@variable(model, x[1:n])
y, _ = MathOptAI.add_predictor(
    model,
    predictor,
    x;
    reduced_space = true,
)

using JuMP
model = Model()
@variables(model, begin
    x[1:n]
end)
@expressions(model, begin
    tmp, A * x + b
    y, max.(0, tmp)
end)
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Gray-box
Use external function evaluation

using JuMP, MathOptAI
# y = ReLU(x) = max.(0, A * x + b)
predictor = MathOptAI.Pipeline(
    MathOptAI.Affine(A, b),
    MathOptAI.ReLU(),
)
model = Model()
@variable(model, x[1:n])
y, _ = MathOptAI.add_predictor(
    model,
    predictor,
    x;
    vector_nonlinear_oracle = true,

)

using JuMP
model = Model()
@variables(model, begin
    x[1:n]
    y[1:m]
end)
set = MOI.VectorNonlinearOracle(
    # g(x) := F(x) - y
    # evaluate g(x), ∇g(x)
)
@constraints(model, begin
    [x, y] in set
end)



#!/usr/bin/julia
using JuMP, Ipopt, MathOptAI, PythonCall
model = Model(Ipopt.Optimizer)
@variable(model, 0 <= x[1:10] <= 1)
predictor = MathOptAI.PytorchModel("model.pt")
y, _ = MathOptAI.add_predictor(
    model,
    predictor,
    x;
    vector_nonlinear_oracle = true,
    device = "cuda",
    hessian = true,
)

Gray box oracles are evaluated in Pytorch
MathOptAI automatically sets up the Julia-Python intercommunication



Gray-box: Julia, C, Python, working together
JuMP problems call Ipopt in C, which calls back to Julia for oracles,
which calls Python and PyTorch



Full-space Reduced-space Gray-box
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Runtime against size of the neural network
Two examples: SCOPF (solid) and MNIST (dashed)



Comparison to alternative packages
The design space is under-explored

The space of predictors we could 
add is very large.

What predictors are relevant and 
useful in practice?

We don’t need to copy what other 
packages have done.



Leverage Python’s strengths

Support PyTorch. 

Use PythonCall.

Don’t try to write an ONNX parser in Julia.

Composition of predictors

Follow PyTorch “everything is a layer” not “a 
layer is affine + activation function.”

Logistic is Affine |> Sigmoid, not a separate 
layer.

Design principles
Err towards simplicity

Leverage Julia’s strengths

Multiple dispatch.

The package extension system is really great.

Inputs and outputs are Base.Vector

Strongly enforce the MethodError principle.

Broadcasting with different shapes is 
complicated. Julia and numpy have the opposite 
conventions.

Get user to reshape Array into Vector.



● Papers on MathOptAI

○ Parker et al. (2025). Nonlinear optimization with GPU-accelerated neural network constraints. 
https://arxiv.org/abs/2509.22462

○ Dowson et al. (2025). MathOptAI.jl: Embed trained machine learning predictors into JuMP 
models. https://arxiv.org/abs/2507.03159

● Source codes

○ https://github.com/lanl-ansi/MathOptAI.jl
○ https://github.com/Gurobi/gurobi-machinelearning
○ https://github.com/cog-imperial/OMLT
○ https://github.com/GAMS-dev/gamspy
○ https://github.com/Opt-Mucca/PySCIPOpt-ML
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https://github.com/Opt-Mucca/PySCIPOpt-ML


Bonus slides: Using MathOptAI to develop custom 
linear solvers for MadNLP
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Motivation: Full-space is slow

But…

● It supports ReLU via 
ReLUQuadratic

● It converges better for 
some problems (?!)

So we’d like to speed it up

CPU fu
ll-s

pa
ce



Idea: Exploit the structure of a surrogate model
In the linear solver of an optimization algorithm

Recall

y, formulation = 
MathOptAI.add_predictor(
model, predictor, x)

Use the formulation struct as an 
input to a new linear solver



We have implemented a prototype for MadNLP
Software interface is a work-in-progress

# example.jl
y, formulation = MathOptAI.add_predictor(

model, predictor, x)

nlp = NLPModelsJuMP.MathOptNLPModel(model)

indices = get_kkt_indices(model, formulation)

Madnlp = MadNLP.MadNLPSolver(
nlp;
linear_solver = BlockTriangularSolver,
block_triangular_indices = indices,

)

# solver.jl
struct BlockTriangularSolver    
<: MadNLP.AbstractLinearSolver
   csc::SparseMatrixCSC
   ...
end



Early performance results are promising
On ten KKT system solves
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