

The life and times of SDDP.jl

https://sddp.dev

Oscar Dowson

JuMP-dev 2025

The purpose of this talk

Why is this talk needed:

- SDDP.jl is a somewhat popular (if niche)
 JuMP extension
- It has been in continuous development for 10 years
- It has a lot of ideas that might be useful for other extensions

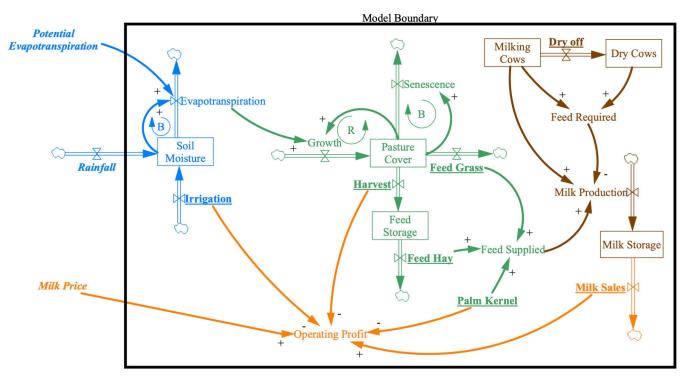
I've never given a talk about it at JuMP-dev (or on YouTube)

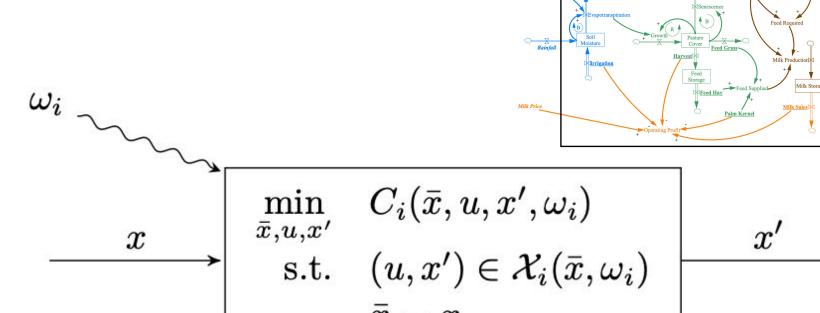
By the end of this talk you will:

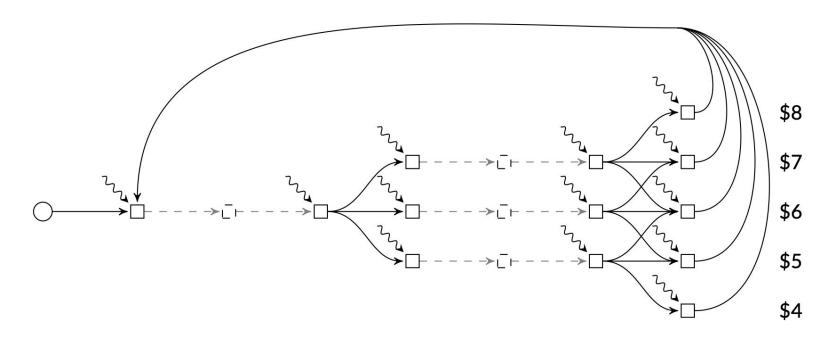
- Have some knowledge of the New Zealand dairy and electricity industries
- Understand the policy graph decomposition for modeling sequential decision problems
- Know how SDDP.jl implements a JuMP extension, uses multiple dispatch, and supports multithreading

By the end of this talk you will not:

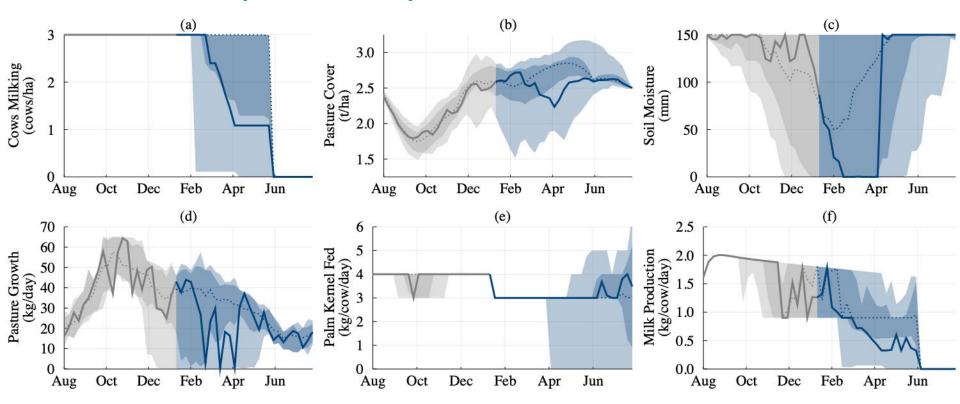
• Know the details of the SDDP algorithm







$$t=1$$
 \cdots $t=25$ $t=26$ \cdots $t=51$ $t=52$



The New Zealand energy system

It's a stochastic optimal control problem

State variables

Volume of water in each reservoir

Control variables

- Hydro generation
- Thermal generation

Random variables

Inflow

Constraints

- water in = water out
- supply = demand

Objective function

Minimize cost

Cows, Lakes, and a JuMP extension for multi-stage stochastic programming

Oscar Dowson
The University of Auckland
odow003@aucklanduni.ac.nz

Cows, Lakes, and a JuMP Extension for Multi-stage Stochastic Opeir≡ization □ □ □

Joaquim Garcia

JuliaCon 2017

SDDP - Power system operation modeling

- Physical parameters
 - Hydro (detailed topology (cascades), hydro production, reservoirs modeling, operative constraints etc.)
 - Thermal (efficiency curves, combined cycle plants, multiple fuel plants, fuel availability constraints, GHG emission factors, unit commitment decisions etc.)
 - Renewables (Wind, biomass, solar etc. represented scenarios)
 - Transmission Network (Linearized power flow model with quadratic losses, security constraints etc.)
- ▶ Stochastic parameters
 - Hydro inflows and renewable generation Multivariate stochastic model
 - Uncertainty on fuel costs Markov chains (hybrid SDDP/SDP model)
 - Wholesale energy market prices Markov chains
 - Generation & transmission equipment outages Monte Carlo

Stochastic Optimization Models on Power Systems.

JADE: Just Another DOASA Environment

Contributions from the Electric Power Optimization Centre

1991: SDDP introduced by Pereira and Pinto

2008: Philpott & Guan wrote the first AMPL version of NZ model called DOASA

2012-16: Philpott and de Matos wrote a C++ version of DOASA

2016-18: I wrote SDDP.jl (for cows), Lea Kapelevich wrote a NZ energy model called JADE

2022: JADE was adopted by New Zealand electricity authority

JADE overview

JADE is a modelling package that implements a multistage stochastic optimization representing the New Zealand electricity generation sector, with a rich treatment of the hydrological aspects of the sector. Key outputs of the model include a water value surface for each stage or week of the modelled time horizon, typically a year, and corresponding marginal water values for each reservoir represented in the model.

One of the difficulties with planning and operational decision making in a hydro-dominated electricity system such as New Zealand's is the uncertainty and variability associated with inflows into hydro storage reservoirs. JADE is an ideal tool to aid decision making in the presence of such uncertainty.

Some high-level characteristics of JADE:

- The EPOC team at Auckland University created and maintain the JADE modelling package. Significant contributions
 over the years have come from A Philipott, G Pritchard, A Downward, O Dowson, and L Kapelevich.
- · JADE supersedes DOASA, another EPOC model that the Authority has used for several years.
- JADE is formulated using the JuMP package, an algebraic modelling language for mathematical optimization written in the Julia programming language.
- · At the heart of JADE is the Julia package for stochastic dual dynamic programming by Oscar Dowson, SDDP,il.
- JADE can be solved with open-source solvers, although a commercial solver requiring a paid license, e.g. Gurobi or Cplex, is recommended for large-scale models.
- · JADE is open source and available from GitHub.

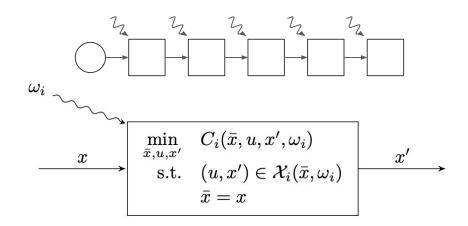
The ingredients

To model a policy graph we need

- A description of the graph
- A subproblem for each node

Each subproblem needs

- 1. Incoming and outgoing state variables
- 2. Control variables
- 3. Constraints
- 4. An objective function
- 5. A random variable



An example

```
model = SDDP.LinearPolicyGraph(;
    stages = 5, lower bound = 0,
) do sp::JuMP.Model, t::Int
    @variable(sp, 0 <= x reservoir <= 10, SDDP.State, initial value = 5)</pre>
    @variable(sp, u thermal >= 0)
    @variable(sp, u hydro >= 0)
    @constraint(sp, c_water, x_reservoir.out - x_reservoir.in + u_hydro <= 0)</pre>
    @constraint(sp, c_demand, u_thermal + u hydro == 1)
    SDDP.@stageobjective(sp, t * u thermal)
    \Omega, P = [0, 1, 2], [0.3, 0.5, 0.2]
    SDDP.parameterize(sp, \Omega, P) do \omega
        set normalized rhs(c water, \omega)
    end
end
SDDP.train(model)
simulations = SDDP.simulate(model, 100)
```


A description of the graph

```
model = SDDP.LinearPolicyGraph(;
    stages = 5, lower bound = 0,
) do sp::JuMP.Model, t::Int
end
```


State variables

```
@variable(sp, 0 <= x reservoir <= 10, SDDP.State, initial value = 5)</pre>
@constraint(sp, c water, x_reservoir.out - x_reservoir.in + u_hydro <= 0)</pre>
```


Control variables

```
@variable(sp, u thermal >= 0)
@variable(sp, u hydro >= 0)
```


Constraints

```
@constraint(sp, c_water, x_reservoir.out - x_reservoir.in + u_hydro <= 0)</pre>
@constraint(sp, c_demand, u_thermal + u_hydro == 1)
```

Objective function

```
) do sp::JuMP.Model, t::Int
   SDDP.@stageobjective(sp, t * u thermal)
```


Random variables

```
@constraint(sp, c_water, x_reservoir.out - x_reservoir.in + u hydro <= 0)</pre>
\Omega, P = [0, 1, 2], [0.3, 0.5, 0.2]
SDDP.parameterize(sp, \Omega, P) do \omega
    set normalized rhs(c water, \omega)
end
```

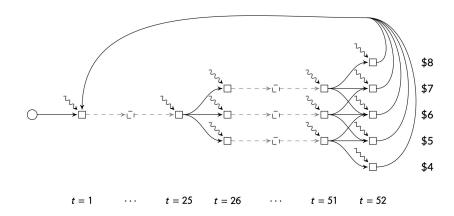

All of it together

```
model = SDDP.LinearPolicyGraph(;
    stages = 5, lower bound = 0,
) do sp::JuMP.Model, t::Int
    @variable(sp, 0 <= x reservoir <= 10, SDDP.State, initial value = 5)</pre>
    @variable(sp, u thermal >= 0)
    @variable(sp, u hydro >= 0)
    @constraint(sp, c_water, x_reservoir.out - x_reservoir.in + u_hydro <= 0)</pre>
    @constraint(sp, c_demand, u_thermal + u hydro == 1)
    SDDP.@stageobjective(sp, t * u thermal)
    \Omega, P = [0, 1, 2], [0.3, 0.5, 0.2]
    SDDP.parameterize(sp, \Omega, P) do \omega
        set normalized rhs(c water, \omega)
    end
end
SDDP.train(model)
simulations = SDDP.simulate(model, 100)
```


Solution algorithm

SDDP a.k.a each node is Benders

```
julia> SDDP.train(model; time limit = 240)
       SDDP.jl (c) Oscar Dowson and contributors, 2017-25
problem
nodes
                : 108
 state variables: 5
                : Inf
 scenarios
options
                : SDDP.Threaded()
solver
                : SDDP.Expectation()
 risk measure
 iteration
             simulation
                             bound
                                         time (s)
                                                      solves pid
                         1.000000e+06
          -1.415148e+04
                                                        33013
                         1.0000000+06
                                       4.179685e+00
                                                        40286
           -1.893675e+04
          -1.033561e+04
                         1.0000000+06
                                       4.842130e+00
                                                        66687
          -2.486776e+04
                         7.881972e+05
                                       7.643921e+00
                                                       175091
          -2.831493e+05
                         7.588107e+05
                                       1.909121e+01
                                                       514620
           -3.021992e+05
                         7.588107e+05
                                       2.195494e+01
                                                       554152
           -1.556580e+05
                         7.308679e+05
                                                       554152
          -1.025802e+05 7.308679e+05
                                       2.195624e+01
                                                       554155
        21 -6.585407e+04
                         2.692613e+05 6.075782e+01
                                                      1568680
                                                      4539440
            3.115513e+05 1.272015e+05 2.112643e+02
```



We modify and solve 4.5e6 LPs in 200 seconds.

Multithreading

Non-deterministic concurrent

Each thread iterates independently

There is a lock at each node

Works great if # nodes >> # threads

Problems

Gurobi environments are not thread-safe. Need a separate license for each node (not each thread)

Limited tooling to detect race conditions

Trivial to implement

```
# Serial
while iteration(model, options)
end

# Parallel
interrupt = Threads.Atomic{Bool}(false)
@sync for _ in 1:Threads.nthreads()
    Threads.@spawn try
        while !interrupt[] && iteration(model, options)
        end
    finally
        interrupt[] = true
    end
end
```


Multiple dispatch

We use it. Perhaps too much

There are many "plug-ins" in SDDP.jl

Туре	Controls
AbstractRiskMeasure	How random variables are aggregated into a scalar
AbstractDualityHandler	How we compute the reduced of a fixed variable
AbstractSamplingScheme	How we sample trajectories in the graph
AbstractForwardPass	The forward pass
AbstractBackwardPass	The backward pass

Multiple dispatch

SDDP.AbstractRiskMeasure

```
struct Expectation <: SDDP.AbstractRiskMeasure</pre>
end
function SDDP.adjust probability(
    measure:: Expectation, q, p, \omega, X, is min,
    q = p
    return 0.0
end
SDDP.train(
    model;
    risk measure = SDDP.Expectation(),
```

```
struct Entropic <: SDDP.AbstractRiskMeasure</pre>
    v::Float64
end
function SDDP.adjust probability(
    measure::Entropic, q, p, \omega, X, is min,
    y = is min ? measure.y : -measure.y
    y = p .* exp.(big.(y .* X))
    q := y / sum(y)
    return -q' * log.(q ./ p) / y
end
SDDP.train(
    model;
    risk measure = SDDP.Entropic(10.0),
```


Multiple dispatch

SDDP.AbstractDualityHandler

```
struct ContinuousConicDuality <:</pre>
       SDDP.AbstractDualityHandler
end
function SDDP.get dual solution(
    node::SDDP.Node, ::ContinuousConicDuality,
   undo =
        relax integrality(node.subproblem)
    JuMP.optimize!(node.subproblem)
    ret = Dict(
        name => JuMP.dual(JuMP.FixRef(x.in))
        for (name, x) in node.states
    undo()
    return ret
end
duality handler = SDDP.ContinuousConicDuality()
SDDP.train(model; duality handler)
```

```
struct FixedDiscreteDuality <:</pre>
       SDDP.AbstractDualityHandler
end
function SDDP.get dual solution(
    node::SDDP.Node, ::FixedDiscreteDuality,
    undo =
        fix discrete variables(node.subproblem)
    JuMP.optimize!(node.subproblem)
    ret = Dict(
        name => JuMP.dual(JuMP.FixRef(x.in))
        for (name, x) in node.states
    undo()
    return ret
end
duality handler = SDDP.FixedDisreteDuality()
SDDP.train(model; duality handler)
```


Takeaways

If you remember nothing else, go to https://sddp.dev

For modelers

- Sequential decision making under uncertainty is pervasive
- One approach is to model them as a policy graph
- We have general purpose software for solving policy graphs

For JuMP developers

- JuMP extensions allow custom syntax for users
- Writing multithreaded algorithms is "easy"
- Multiple dispatch makes it trivial to provide plugins that change the algorithm

restricted modeling + high quality general purpose software

>>>

generic modeling that requires custom algorithms