o

The life and times of SDDP.jl

https://sddp.dev

Oscar Dowson

JuMP-dev 2025

https://sddp.dev

The purpose of this talk

Why is this talk needed:

e SDDP,jl is a somewhat popular (if niche)
JuMP extension

e |t has been in continuous development for
10 years

e |t has a lot of ideas that might be useful for
other extensions

I've never given a talk about it at JuMP-dev (or
on YouTube)

“/

By the end of this talk you will:

1. Have some knowledge of the New
Zealand dairy and electricity industries

2. Understand the policy graph
decomposition for modeling sequential
decision problems

3. Know how SDDP.jl implements a JuMP
extension, uses multiple dispatch, and
supports multithreading

By the end of this talk you will not:

e Know the details of the SDDP algorithm

The New Zealand dairy industry

It’'s a stochastic optimal control problem

)pu ating Pm[lt

Model Boundary
Potential
Evapotranspiration ~~] g g Milking D Off
<3 C ——<X—{ Dry Cows
ows
\ Senescence
+
vapotranspiration
* + B Feed Required
D) @
a Soil - Growth Pasture
% Moisture (=== Cover =
Rainfall Feed Grass)
Harvest
i Milk Productior)
Irrigation
Feed
Storage
»F eed Supphc Milk Storage
D Feed Hay ‘
Milk Price ¥ Milk Sales [
Palm Kernel ‘

The New Zealand dairy industry

It’'s a stochastic optimal control problem

: = /
min C;(Z,u, 7', w;) ,
T T, U,T T

> st (u,2’) € (T, w;)
T=2x

The New Zealand dairy industry

It’'s a stochastic optimal control problem

SRR TR TR

$8
$7
$6
$5
$4

The New Zealand dairy industry

It’s a stochastic optimal control problem

b
5 (@) (b) 150 o ©
30 \
) 5 | iR o | e
g9 2t 2 E o} '
r e of\z.s .21‘\
Ew 0“ OE
ge 1 *%' 20 + E 50 +
O ¥ %]
13 |
0 : ' ' ' ; ' ' 0 ' '
Aug Oct Dec Feb Apr Jun Aug Oct Aug Oct Dec Feb Apr Jun
d

70 @ 6 r 23 ®

60 | % o 1 -
= -
£ sof s, £
2> TT =) s
5 T \ $3 19
B30 25 510
2 20 | ER27 ;g"
A 10 L b a1} . 05

00

0 A
Aug Oct Dec Feb 'Apr Jun Aug Oct Dec Feb Apr Jun Aug Oct Dec Feb Apr Jun

The New Zealand energy system
It’s a stochastic optimal control problem

-
=

P

“/

State variables

e \olume of water in each reservoir
Control variables

e Hydro generation

e Thermal generation
Random variables

e Inflow
Constraints

e water in = water out

e supply =demand
Objective function

e Minimize cost

THE UNIVERSITY OF
AUCKL AN

llllllllll

Cows, Lakes, and a JuMP
extension for multi-stage
stochastic programming

JuliaCon 2017

Oscar Dowson
The University of Auckland
odow003@auckland

. g B s
Z q 1 B

Cows, Lakes, and a JuMP extension... | Oscar Dowson | JuliaCon 2017

>

)

SDDP - Power system operation modeling

» Physical parameters

* Hydro (detailed topology (cascades), hydro production, reservoirs modeling,

operative constraints etc)

Thermal (efficiency curves, combined cycle plants, multiple fuel plants, fuel

availability constraints, GHG emission factors, unit commitment decisions etc.)

Renewables (Wind, biomass, solar etc. represented scenarios)

Transmission Network (Lineanzed power flow model with quadratic losses,

securnty constraints etc)

» Stochastic parameters

6:42 / 35:31 » Help us add time stamps or captions to this video! See the description for details. >

Stochastic Optimization Models on Power Systems | Camila Metello and Joaquim Garcia | JuliaCon 2017

JADE: Just Another DOASA Environment

Contributions from the Electric Power Optimization Centre

e@e M+ < =] emi.ea.govt.nz (¢] (©] [TJ + O

Logon Register (7) FORUM APIs

. . ELECTRICITY
2008: Philpott & Guan wrote the first AMPL > EM | | AUk o
VerSlon Of NZ mOdel Ca"ed DOASA HOME RETAIL v WHOLESALE v FORWARD MARKETS v ENVIRONMENT ~ * MY DASHBOARDS ~

wholesale category > Tools » JADE

1991: SDDP introduced by Pereira and Pinto

2012-16: Philpott and de Matos wrote a C++ .
JADE overview

Ve rSIO n Of D OASA JADE is a modelling package that implements a multistage stochastic optimization representing the New Zealand electricity
generation sector, with a rich treatment of the hydrological aspects of the sector. Key outputs of the model include a water
value surface for each stage or week of the modelled time horizon, typically a year, and corresponding marginal water

. H values for each reservoir represented in the model.
2016-18: | wrote SDDP.jI (for cows), Lea
One of the difficulties with planning and operational decision making in a hydro-dominated electricity system such as New
H Zealand's is the uncertainty and variability associated with inflows into hydro storage reservoirs. JADE is an ideal tool to aid
KapeleVICh WrOte a NZ energy mOdeI Ca I Ied decision making in the presence of such uncertainty.

JAD E Some high-level characteristics of JADE:

* The EPOC team at Auckland University created and maintain the JADE modelling package. Significant contributions
over the years have come from A Philpott, G Pritchard, A Downward, O Dowson, and L Kapelevich.

JADE supersedes DOASA, another EPOC model that the Authority has used for several years.

2022: JADE was adopted by New Zealand
.. . JADE is formulated using the JuMP package, an algebraic modelling language for mathematical optimization written
e I eCtn C|ty a uth (0] r|ty in the Julia programming language.

At the heart of JADE is the Julia package for stochastic dual dynamic programming by Oscar Dowson, SDDPjI.

JADE can be solved with open-source solvers, although a commercial solver requiring a paid license, e.g. Gurobi or
Cplex, is recommended for large-scale models.

JADE is open source and available from GitHub.

Modelling

The ingredients

To model a policy graph we need

e A description of the graph
e A subproblem for each node

Each subproblem needs

Incoming and outgoing state variables
Control variables

Constraints

An obijective function

A random variable

oD~

— | st (w,2)eX(@w)

min C;(Z, u,z’,w;)
z,u,x’

T=1

Modelling

An example

model = SDDP.LinearPolicyGraph(;
stages = 5, lower _bound = 9,
) do sp::JuMP.Model, t::Int
@variable(sp, © <= x_reservoir <= 10, SDDP.State, initial value = 5)
@variable(sp, u_thermal >= 0)
@variable(sp, u_hydro »>= 0)
@constraint(sp, c_water, x_reservoir.out - x_reservoir.in + u_hydro <= 0)
@constraint(sp, c_demand, u thermal + u_hydro == 1)
SDDP.@stageobjective(sp, t * u_thermal)
Q, P=1[0, 1, 2], [0.3, 0.5, 0.2]
SDDP.parameterize(sp, Q, P) do w
set _normalized rhs(c_water, w)
end
end
SDDP.train(model)
simulations = SDDP.simulate(model, 100)

Modelling
A description of the graph

model = SDDP.LinearPolicyGraph(; <:>—+ - s - -
stages = 5, lower_bound = 0,
) do sp::JuMP.Model, t::Int

end

Modelling

State variables

@variable(sp, © <= x_reservoir <= 10, SDDP.State, initial value = 5)

X_reservoir.out - x_reservoir.in

Modelling

Control variables

@variable(sp, u_thermal >= 0)
@variable(sp, u_hydro »>= 0)

Modelling

Constraints

@constraint(sp, c_water, x_reservoir.out - x_reservoir.in + u_hydro <= 0)
@constraint(sp, c_demand, u_thermal + u_hydro == 1)

Modelling

Objective function

) do sp::JuMP.Model, t::Int

SDDP.@stageobjective(sp, t * u_thermal)

Modelling V

Random variables

@constraint(sp, c_water, x_reservoir.out - x_reservoir.in + u_hydro <= 0)

Q, P=1[0, 1, 2], [0.3, 0.5, 0.2]
SDDP.parameterize(sp, Q, P) do w

set_normalized_rhs(c_water, w)
end

Modelling
All of it together

model = SDDP.LinearPolicyGraph(;
stages = 5, lower _bound = 9,
) do sp::JuMP.Model, t::Int
@variable(sp, © <= x_reservoir <= 10, SDDP.State, initial value = 5)
@variable(sp, u_thermal >= 0)
@variable(sp, u_hydro »>= 0)
@constraint(sp, c_water, x_reservoir.out - x_reservoir.in + u_hydro <= 0)
@constraint(sp, c_demand, u thermal + u_hydro == 1)
SDDP.@stageobjective(sp, t * u_thermal)
Q, P=1[0, 1, 2], [0.3, 0.5, 0.2]
SDDP.parameterize(sp, Q, P) do w
set _normalized rhs(c_water, w)
end
end
SDDP.train(model)
simulations = SDDP.simulate(model, 100)

Solution algorithm
SDDP a.k.a each node is Benders

julia> SDDP.train(model; time_limit = 240)

C

problem
nodes : 108
state variables : 5
scenarios : Inf
options
solver : SDDP.Threaded()
risk measure : SDDP.Expectation()
iteration simulation bound
1 -1.415148e+04 1.000000e+06
2 -1.893675e+04 1.000000e+06
3 -1.033561e+04 1.000000e+06
T 4 -2.486776e+04 7.881972e+05
T 5 -2.831493e+05 7.588107e+05
6 -3.021992e+05 7.588107e+05
7 -1.556580e+05 7.308679e+05
8 -1.025802e+05 7.308679e+05
T 21 -6.585407e+04 2.692613e+05
83 3.115513e+05 1.272015e+05

NNNREND_W

.980785e+00
.179685e+00
.842130e+00
.643921e+00
.909121e+01
.195494e+01
.195530e+01
.195624e+01

.075782e+01

.112643e+02

66687
175091
514620
554152
554152
554155

1568680

4539440

n,
$8
, Y T,
O--->Cr----> $7
()—»Hmu————».:r———%: lL"D————»:r———E o $6
@ Y @
OH--->Cr----> $5
b
pid $4
3 t=1 t=25 t=26 t=51 t=52
1
1
1
4
2
3
1
3

_ We modify and solve 4.5e6 LPs in 200 seconds.

Multithreading

Non-deterministic concurrent

Each thread iterates independently
There is a lock at each node

Works great if # nodes >> # threads
Problems

Gurobi environments are not thread-safe.
Need a separate license for each node (not
each thread)

Limited tooling to detect race conditions

Trivial to implement

Serial
while iteration(model, options)
end

Parallel
interrupt = Threads.Atomic{Bool}(false)
@sync for _ in 1:Threads.nthreads()
Threads.@spawn try
while !interrupt[] && iteration(model, options)
end
finally
interrupt[] = true
end
end

“/

Multiple dispatch

We use it. Perhaps too much

There are many “plug-ins” in SDDP.,j|

Type Controls...

AbstractRiskMeasure How random variables are aggregated into a scalar
AbstractDualityHandler How we compute the reduced of a fixed variable
AbstractSamplingScheme How we sample trajectories in the graph
AbstractForwardPass The forward pass

AbstractBackwardPass The backward pass

Multiple dispatch
SDDP.AbstractRiskMeasure

struct Expectation <: SDDP.AbstractRiskMeasure
end

function SDDP.adjust_probability(

measure: :Expectation, q, p, w, X, is min,
)

q .=p

return 0.0
end

SDDP.train(
model;
risk_measure = SDDP.Expectation(),

struct Entropic <: SDDP.AbstractRiskMeasure
y::Float64
end

function SDDP.adjust probability(
measure: :Entropic, q, p, w, X, is min,

)
Y = is _min ? measure.y : -measure.y
y =p .* exp.(big.(y .* X))
q .=y / sum(y)
return -q' * log.(q ./ p) /Yy
end

SDDP.train(
model;
risk_measure = SDDP.Entropic(10.9),

Multiple dispatch
SDDP.AbstractDualityHandler

struct ContinuousConicDuality <:

end

SDDP.AbstractDualityHandler

function SDDP.get dual solution(

)

end

node: :SDDP.Node, ::ContinuousConicDuality,
undo =
relax_integrality(node.subproblem)
JuMP.optimize! (node.subproblem)
ret = Dict(
name => JuMP.dual(JuMP.FixRef(x.in))
for (name, x) in node.states
)
undo()
return ret

duality handler = SDDP.ContinuousConicDuality()
SDDP.train(model; duality_handler)

struct FixedDiscreteDuality <:

end

SDDP.AbstractDualityHandler

function SDDP.get dual solution(

)

end

node: :SDDP.Node, ::FixedDiscreteDuality,
undo =
fix_discrete variables(node.subproblem)
JuMP.optimize! (node.subproblem)
ret = Dict(
name => JuMP.dual(JuMP.FixRef(x.in))
for (name, x) in node.states
)
undo()
return ret

duality handler = SDDP.FixedDisreteDuality()
SDDP.train(model; duality_handler)

Takeaways v

If you remember nothing else, go to https://sddp.dev

For modelers For JUMP developers

e Sequential decision making under e JuMP extensions allow custom
uncertainty is pervasive syntax for users

e One approach is to model them as a e Writing multithreaded algorithms is
policy graph “easy”

e \We have general purpose software e Multiple dispatch makes it trivial to
for solving policy graphs provide plugins that change the

algorithm

restricted modeling + high quality general purpose software
>>>

generic modeling that requires custom algorithms

