MathOptinterface: a comprehensive overview

Oscar Dowson

JuMP-dev 2025

MathOptinterface.jl

The interface between modeling languages and the solvers

JuMP Convex.j| Optimization.jl

MathOptinterface.jl

HIGHS.jl ScCs,j Ipopt.jl

HIGHS SCS lpopt

The purpose of this talk

Why is this talk needed:

e MathOptinterface.jl (MOI) is one of the
largest packages in all of Julia

e Itis the connection between JuMP and
solvers

e |t uses a novel abstraction

e It has aloooooot of stuff in it

We haven’t publicly talked about it much

By the end of this talk you will:

1.

Understand the problem we are trying to
solve and why we wrote MOI

Understand the MOI abstraction
Understand what a bridge is and why they
are necessary

Have an overview of the components in
MathOptInterface.||

By the end of this talk you will not:

Be able to write a solver wrapper
Know how to write code that uses MOI

2013-2019: MathProgBase.jl

MPB divided the world into three problem classes

JuMP Convex.jl

MathProgBase.jl

HIGHS jl SCS.jl Ipopt.jl

HIGHS SCS lpopt

There were also two “bridges” LinearQuadratic to Conic LinearQuadratic to Nonlinear

2013-2019: Problems with MathProgBase

There were many. Here are four.

Standard forms are not standard Extending the classes is hard
e ECOS and SCS use different orderings for e No indicator constraints
the exponential cone e No complementarity constraints

e Gurobi does not support Ax in Interval
CSDP does not support free variables

i In-pl roblem modification was limi
Some solvers mix problem classes place proble odification was ted

e No support for deleting variables or
constraints
e Support for modifying RHS but not LHS

e KNITRO supported nonlinear, but also
SecondOrderCone and Complements

e Gurobi was linear quadratic, but now also
supports nonlinear

The 2017 JuMP-dev workshop

Release JUMP as 1.0 or rewrite from scratch?

The MathOptinterface standard form

MOI defines a very regular standard form
minimize: f (x)

subjectto: f(x) € 4 Vi €E

{1,...,m}
Function Set
X, Binary VariableIndex(x) ZeroOne()
X >= 0 VariableIndex(x) GreaterThan(0.9)
2x + 1 ==y ScalarAffineFunction(2x - y + @) EqualTo(-1.9)
Ax >= b VectorAffineFunction(Ax - b) Nonnegatives()

X 2 0, PSD VectorOfVariables(vec(X)) PositiveSemidefiniteConeSquare()

Solvers support a subset of functions and sets
HIGHS

Constraints Objective
ScalarAffineFunction in { ScalarAffineFunction

EqualTo, GreaterThan, Interval, LessThan ScalarQuadraticFunction
}

Variablelndex in {
EqualTo, GreaterThan, Interval, LessThan,
Integer, ZeroOne, Semicontinuous,
Semiinteger,

}

Solvers support a subset of functions and sets
SCS

Constraints Objective
VectorAffineFunction in { ScalarAffineFunction
Nonnegatives, Zeros, SecondOrderCone, ScalarQuadraticFunction

ExponentialCone, DualExponentialCone,
PowerCone, DualPowerCone, ScaledPSDCone,
NormNuclearCone, ScaledComplexPSDCone,
ScaledLogDetConeTriangle,

[
Solvers support a subset of functions and sets

Ipopt

Constraints Constraints continued...
Variablelndex in { ScalarNonlinearFunction in {
GreaterThan, LessThan, EqualTo, Interval, GreaterThan, LessThan, EqualTo, Interval,
Parameter, }
}
VectorOfVariables in VectorNonlinearOracle
ScalarAffineFunction in { Objective
GreaterThan, LessThan, EqualTo, Interval,
} Variablelndex
ScalarAffineFunction
ScalarQuadraticFunction in { ScalarQuadraticFunction
GreaterThan, LessThan, EqualTo, Interval, ScalarNonlinearFunction

}

User and solver might speak different formulations
This is a problem. Should users rewrite their model for every solver?

There are multiple ways to write the same constraint
Scalar or vector constraints

e xin GreaterThan(0.0) o Ax.==
e [x]in Nonnegatives(1) e Ax-binZeros()

Affine transformations from one set to another

e [t x, y]in SecondOrderCone(2)
[t,t/ 2, X, y] in RotatedSecondOrderCone(3)

More complicated transforms

e [t, X] in LogDetConeSquare()
e A set of constraints using PSD, ExponentialCone, and LessThan sets

Constraint bridges
Map between equivalent formulations

Each bridge takes as input:
e a function-in-set constraint
and it may:

e add new constraints of a different type
e add new decision variables

Each bridge also implements:

MOI.delete(model: :MOI.ModellLike, bridge)

MOI.get(model: :MOI.ModelLike, ::MOI.ConstraintPrimal, bridge)
MOI.set(model: :MOI.ModellLike, ::MOI.ConstraintPrimalStart, bridge, value)
MOI.get(model: :MOI.ModellLike, ::MOI.ConstraintDual, bridge)
MOI.set(model: :MOI.ModellLike, ::MOI.ConstraintDualStart, bridge, value)

Bridges let you model unique constraint types
“An affine expression is integer”

using JuMP, HiGHS julia> print_active_bridges(model)
model = Model (HiGHS.Optimizer) * Unsupported constraint:
| MOI.ScalarAffineFunction-in-MOI.Integer

@variable(model, x)

it | bridged by:
@constraint(MOIB.Constraint.ScalarSlackBridge
model, may introduce:

|
|
2 * x + 1 in MOI.Integer(), | * Supported constraint:
| MOI.ScalarAffineFunction-in-MOI.EqualTo
| * Supported variable: MOI.Integer
julia> print(unsafe_backend(model))
Feasibility
Subject to:
VariableIndex-in-Integer
v[2] € z
ScalarAffineFunction-in-EqualTo
0.0 + 2.0 x - 1.0 v[2] == -1.0

Hypergraphs and shortest hyperpaths

In the ideal case, the solver supports the constraint

F-in-S

User

Solver

Hypergraphs and shortest hyperpaths

The solver may support the constraint via a single transformation

User Solver

Hypergraphs and shortest hyperpaths

A chain of bridges may be needed, that introduce more than one constraint

User Solver

Hypergraphs and shortest hyperpaths
There may be many equivalent paths through the graph

User

Solver

Hypergraphs and shortest hyperpaths

In practice, the graph can be arbitrarily complicated

oS
@<t <

User

Solver

Hypergraphs and shortest hyperpaths
The optimal bridge is the shortest hyperpath

Let the graph G = (N, E), where: Minimum hyperpath is the set of bridges e that
minimize:
e Nis the set of nodes
e E is the set of bridges function C(n)
if n in S
Let S = the set of nodes supported by the solver return 0
end
Each edge e has: return minimum(
e Asource node s(e)in N v%:(()ﬁ)e+izur£(;(cmi(:c))r‘=r: ;n T(e))
e Aset of target nodes T(e) subset N)
e Aweight w(e) end

Most bridges choose w(e) = 1. Some bridges
use w(e) =10

Hypergraphs and shortest hyperpaths
The optimal bridge is the shortest hyperpath

oS
<t <

User

Solver

There are other types of bridges
a.k.a. it’s even more complicated than it seems

Objective bridges reformulate objective functions

User

User writes
min x2
Bridges.Objective.ScalarSlackBridge
min t: t = x?
Bridges.Constraint. QuadToSOC

min t: [t, 1/2, x] in RotatedSecondOrderCone()

Solver

There are other types of bridges
a.k.a. it’s even more complicated than it seems

Variable bridges reformulate variable domains

U
Seems simple. Take a variable -in-set and replace ser
by variable -in- different set with an affine
substitution rule.
. X:=y, -
Every x in the model must be replaced by the . 1
. . XinR
substitution rule, and every solution y must be Y,

inverted back to the original model.

Keeping track of substitutions is THE most
complicated code in all of MOL.

Solver
(like CSDP)

= O jump-dev / MathOptinterface.jl Q Type (/]to search .

I here a<) Code () lIssues 14 i Pullrequests 4) Discussions (») Actions () Security |~ Insights 3 Settings

a.ka.lt'se Update bridge optimizers with variable bridges #816

IeR Ve blegat merged 2 commits into master from bl/bridge_opt_with_var ((Jon Aug 6, 2019

Variable bridg O Conversation 7 -0 Commits 2 [J Checks 0 Files changed 8

Seems simple @ blegat commented on Aug 6, 2019 Member | =« Solver
by variable -in Extracted from #759

substitution rul ©)

Every x in the o @ update bridge optimizers with variable bridges 831efds

substitution rul

. . G: & blegat force-pushed the b1/bridge opt_with_var branch from 9ccaé8c to 831efds 6 years ago Compare
inverted back - 7

. e ° mlubin approved these changes on Aug 6, 2019 View reviewed changes
Keeping tracl -
com pl |cated (mlubin left a comment Member

| don't have any substantive comments, so merge when ready.

(©)

Hypergraphs and shortest hyperpaths
Complexity is hidden from the user
User Solver

‘
Benoit’s Bridge Bellman Bedlam _>‘
‘

Hypergrap
In practice, the
User

v
)
o

Bafuy
| oo

Solver

BERU

MathOptinterface.jl is a monolith
122,000 lines of code

/src 79,000 lines

[test 43,000 lines

/src/Bridges 19,800 lines

/src/FileFormats 7,500 lines

MOI.
The top-level API

MOI uses multiple dispatch.
Alot.

Every solver is a new type.
Every function is a new type.

Every set is a new type.

There are a small number of public functions.

Testing takes a long time. Running the tests
creates 6000 methods and 378,411
MethodlInstances.

abstract type Modellike end

abstract type AbstractOptimizer <: ModellLike end
abstract type AbstractFunction end

abstract type AbstractSet end

empty!(::ModellLike)
is_empty(::ModellLike)

add_variable(::ModellLike)::VariableIndex

add_constraint(
: :Modellike,
::AbstractFunction,
::AbstractSet,

) ::ConstraintIndex

optimize!(::ModellLike)

MOIL.

Functions

abstract type AbstractFunction <: MA.AbstractMutable end
abstract type AbstractScalarFunction <: AbstractFunction end
abstract type AbstractVectorFunction <: AbstractFunction end

struct VariableIndex <: AbstractScalarFunction
value: :Int64
end

struct ScalarAffineTerm{T}
coefficient::T
variable::VariableIndex
end

mutable struct ScalarAffineFunction{T} <: AbstractScalarFunction
terms: :Vector{ScalarAffineTerm{T}}
constant::T

end

MOI.
Sets

abstract type AbstractSet end
abstract type AbstractScalarSet <: AbstractSet end
abstract type AbstractVectorSet <: AbstractSet end

struct EqualTo{T<:Number} <: AbstractScalarSet
value::T
end

struct SecondOrderCone <: AbstractVectorSet
dimension::Int
end

struct SOS1{T<:Real} <: AbstractVectorSet
weights::Vector{T}
end

struct Indicator{A,S<:AbstractScalarSet} <: AbstractVectorSet
set::S
end

MOI.Bridges

Benoit’s Bridge Bellman Bedlam

This submodule contains:

e Three submodules for the different types
of bridges: Bridges.Constraint,
Bridges.Objective, and
Bridges.Variable

e 76 bridges, each of which may cover many
function-in-set combinations

e Bridges.LazyBridgeOptimizer, with
Bellman-Ford and variable bridge
substitutions

e Some other stuff, like tests for bridges

Users don’t need to know the inner details

MOI.instantiate(
HiGHS.Optimizer;
with_bridge type = Float64,

MOI.Bridges.full bridge optimizer(
HiGHS.Optimizer(),
Floaté4,

MOI.Bridges

The logic is horrific, so we try to test a lot

Testing is hard because of the number of
possible permutations of supported variables,
constraints, and objectives.

We test:

e every bridge in isolation

e a very wide range of unit tests

e every solver before every release, and
sometimes with every PR

Sometimes this is still not enough. There are
many edges cases.

Each bridge runs a common suite of tests

MOI.Bridges.runtests(
MOI.Bridges.Constraint.ZeroOneBridge,

variables: x
X in ZeroOne()

J

variables: x
X in Integer()
1.0 * x in Interval(0.0, 1.0)

J

)

Test Summary: | Pass Total Time
Bridges.runtests | 32 32 0.0s

MOL.FileFormats

Read and write models to disk

This submodule contains six submodules: Downside to this design
e CBF:the .cbf format To read and write models from disk, JuMP does
e L|P:the .1p format a variation of:
e MOF: the .mof.json format
) function JuMP.write to file(
e MPS: the .mps format model: :Model, filename::String)
e NL:the .nl format dest = MOI.FileFormats.Model(; filename)
e SDPA: the . sdpa format U Rl - kR S
MOI.write to file(dest, filename)
Each submodule implements nd return

e Anew Model <: MOI.ModellLike
e Base.read!(io::I0, ::Model)
e Base.write(io::IO0, ::Model)

We first have to create a copy of the entire
model. This is slower than writing from the
existing model object

MOILl.FileFormats.MathOptFormat
https://jump.dev/iMathOptFormat/

(Matho
"version": {"major": 1, "minor": 4}, e'/e/ym%‘gormatsup
"variables": [{"name": "x"}], MO/,A .e/you C 'OortS
"objective": { nd jt has an Writel-
"sense": "min", aschema h

"function": {
"type": "ScalarAffineFunction",
"terms": [{"coefficient": 2, "variable": "x"}],
"constant": 1

}

}s

"constraints": [{
"function": {"type": "Variable", "name": "x"},
"set": {"type": "GreaterThan", "lower™: 1}

3]

}

https://jump.dev/MathOptFormat/

MOI.Nonlinear
A lot of complicated stuff

This submodule contains:

e Nonlinear.Model

o Anonlinear modeling interface
e ReverseAD

o Alibrary for sparse reverse-mode automatic

differentiation
e SymbolicAD

o A symbolic differentiation library

See my JuMP-dev 2022 and 2023 talks.

Improving nonlinear programming support in JuMP
Oscar Dowson

JuMP-dev 2023

Improving Nonlinear Programming Support in JUMP | Oscar Dowson | JuliaCon 2023

&\

Improving nonlinear programming support in

o JUMP

Oscar Dowson
JuMP-dev 2022

Improving Nonlinear Programming Support in JuMP | Oscar Dowson | JuliaCon 2022

MOl.Test

Test-Driven-Development of solver wrappers

This submodule contains

e Asuite of >500 solver-independent test
functions
Accessible via MOI.Test.runtests

e Ability to include/exclude tests, adjust
tolerances, etc

Downsides

e This (c|sh)ould have been a separate
package

e Calling it ‘Test’ was a mistake because it
conflicts with Base.Test

Solvers get access to thousands of
tests

using Test, HiGHS

import MathOptInterface as MOI

@testset "runtests" begin
MOI.Test.runtests(

MOI.instantiate(
HiGHS.Optimizer;
with_bridge_type = Floaté64,

)

MOI.Test.Config(; atol = 1le-7),

)
end
Test Summary: | Pass Total Time
runtests | 3237 3237 4m23.8s

MOI.Utilities

A useful dumping ground for random stuff

This submodule contains a looooft of stuff

Utilities for working with functions: comparing them, creating them, modifying them
Utilities.MockOptimizer: a fake optimizer to mock tests in MOl and JuMP
Utilities.CachingOptimizer: an abstraction across how solvers handle incremental modification

Utillities.Model and Utilities.UniversalFalllback: model objects that support everything except
optimize!

Utilities.CleverDicts: a dict that starts as a Base.Vector but switches to a Base.Dict on deletion

Utilities.GenericModel: a modular system for defining matrix-based storage

Just sooooo much other stuff...

MOI.Utilities.CachingOptimizer

Abstract over differences in incremental modification

MOI.Utilities.CachingOptimizer: MOI.Utilities.CachingOptimizer

e maintains two copies of the model:
o model_cache
o optimizer
model_cache::MOIl.ModelLike
e isin one of three states
o NO_OPTIMIZER
o EMPTY_OPTIMIZER
o ATTACHED_ OPTIMIZER

optimizer::MOI.AbstractOptimizer

MOI.Utilities.CachingOptimizer

Flow for adding a constraint

add_constraint(model::CachingOptimizer, f::F, s::S)

error()

supports_constraint(

model.cache,F,S)

add_constraint(model.cache, f, s)

detach_optimizer(model.optimizer)

state(model)

ATTACHED

error()

Yes

<>

supports_constraint(
model.optimizer,F,S)

add_constraint(model.optimizer, f, s)

MOI.Utilities.CachingOptimizer

Flow for deleting a variable

delete(model::CachingOptimizer, x::VariableIndex)

Y

delete(model.cache, x)

state(model)

ATTACHED

delete(model.optimizer, x)

<>

Yes

detach_optimizer(model)

MOI.Utilities.CachingOptimizer

Flow for calling optimize!

error()

optimize!(model::CachingOptimizer)

NO_OPTIMIZER

state(model)

ATTACHED

Y.

EMPTY

copy_to(model.optimizer, model.cache)

optimize!(model.optimizer)

2013-2019: Problems with MathProgBase

There were many. Here are four.

Standard forms are not standard Extending the classes is hard
e ECOS and SCS use different orderings for e No indicator constraints
the exponential cone e No complementarity constraints

e Gurobi does not support Ax in Interval
CSDP does not support free variables

i In-pl roblem modification was limi
Some solvers mix problem classes place proble odification was ted

e No support for deleting variables or
constraints
e Support for modifying RHS but not LHS

e KNITRO supported nonlinear, but also
SecondOrderCone and Complements

e Gurobi was linear quadratic, but now also
supports nonlinear

Problems with MathOptinterface

There are many. Here are four.

Arbitrary Indices The 0.5 in ScalarQuadraticFunction

Each variable and constraint has an associated It's so hard to remember whether to * or / the 0.5.
value::Int64. These do not need to be ordered and Just make the function a list of terms. Not a Q

do not need to be contiguous. Constraints of matrix.

different types can have the same value. Make
them ordered by creating and unique by
variable/constraint. We haven'’t talked about add_constrained_variable.
Variable bridges are hard because variable sets
can overlap: @variable(model, x >= 0, Int)
Why didn’t we just make it Is the domain of x Real, Nonnegatives, or Integer?
Base.Vector{<:AbstractScalarFunction}?

Variable bridges (and constrained variables)

AbstractVectorFunction

These problems are too breaking for us to ever consider changing. There will not be a MathOptInterface 2.0. We don’t want Python 2->3.
But if you're looking to re-implement MOI in a different language... don’t copy it blindly. Come talk to me.

The purpose of this talk

Why is this talk needed:

e MathOptinterface.jl (MOI) is one of the
largest packages in all of Julia

e Itis the connection between JuMP and
solvers

e |t uses a novel abstraction

e It has aloooooot of stuff in it

We haven’t publicly talked about it much

By the end of this talk you will:

1.

Understand the problem we are trying to
solve and why we wrote MOI

Understand the MOI abstraction
Understand what a bridge is and why they
are necessary

Have an overview of the components in
MathOptInterface.||

By the end of this talk you will not:

Be able to write a solver wrapper
Know how to write code that uses MOI

