
MathOptInterface: a comprehensive overview

Oscar Dowson

JuMP-dev 2025

MathOptInterface.jl
The interface between modeling languages and the solvers

JuMP Convex.jl Optimization.jl

MathOptInterface.jl

HiGHS SCS Ipopt …

HiGHS.jl SCS.jl Ipopt.jl …

…

The purpose of this talk

Why is this talk needed:

● MathOptInterface.jl (MOI) is one of the
largest packages in all of Julia

● It is the connection between JuMP and
solvers

● It uses a novel abstraction
● It has a loooooot of stuff in it

We haven’t publicly talked about it much

By the end of this talk you will:

1. Understand the problem we are trying to
solve and why we wrote MOI

2. Understand the MOI abstraction
3. Understand what a bridge is and why they

are necessary
4. Have an overview of the components in

MathOptInterface.jl

By the end of this talk you will not:

● Be able to write a solver wrapper
● Know how to write code that uses MOI

2013-2019: MathProgBase.jl
MPB divided the world into three problem classes

MathProgBase.jl

HiGHS SCS Ipopt

HiGHS.jl SCS.jl Ipopt.jl

LinearQuadratic Conic Nonlinear

LinearQuadratic to NonlinearLinearQuadratic to ConicThere were also two “bridges”

JuMP Convex.jl

Standard forms are not standard

● ECOS and SCS use different orderings for
the exponential cone

● Gurobi does not support Ax in Interval
● CSDP does not support free variables

Some solvers mix problem classes

● KNITRO supported nonlinear, but also
SecondOrderCone and Complements

● Gurobi was linear quadratic, but now also
supports nonlinear

2013-2019: Problems with MathProgBase
There were many. Here are four.

Extending the classes is hard

● No indicator constraints
● No complementarity constraints

In-place problem modification was limited

● No support for deleting variables or
constraints

● Support for modifying RHS but not LHS

The 2017 JuMP-dev workshop
Release JuMP as 1.0 or rewrite from scratch?

The MathOptInterface standard form
MOI defines a very regular standard form

minimize: f0(𝓍)

subject to: fi(𝓍) ∈ 𝒮i ∀ i ∈
{1,...,m}

Function Set

x, Binary VariableIndex(x) ZeroOne()

x >= 0 VariableIndex(x) GreaterThan(0.0)

2x + 1 == y ScalarAffineFunction(2x - y + 0) EqualTo(-1.0)

Ax >= b VectorAffineFunction(Ax - b) Nonnegatives()

X ⪰ 0, PSD VectorOfVariables(vec(X)) PositiveSemidefiniteConeSquare()

Objective

ScalarAffineFunction
ScalarQuadraticFunction

Constraints

ScalarAffineFunction in {
 EqualTo, GreaterThan, Interval, LessThan
}

VariableIndex in {
 EqualTo, GreaterThan, Interval, LessThan,
 Integer, ZeroOne, Semicontinuous,
 Semiinteger,
}

Solvers support a subset of functions and sets
HiGHS

Objective

ScalarAffineFunction
ScalarQuadraticFunction

Solvers support a subset of functions and sets
SCS

Constraints

VectorAffineFunction in {
 Nonnegatives, Zeros, SecondOrderCone,
 ExponentialCone, DualExponentialCone,
 PowerCone, DualPowerCone, ScaledPSDCone,
 NormNuclearCone, ScaledComplexPSDCone,
 ScaledLogDetConeTriangle,
}

Constraints continued…

ScalarNonlinearFunction in {
 GreaterThan, LessThan, EqualTo, Interval,
}

VectorOfVariables in VectorNonlinearOracle

Objective

VariableIndex
ScalarAffineFunction
ScalarQuadraticFunction
ScalarNonlinearFunction

Constraints

VariableIndex in {
 GreaterThan, LessThan, EqualTo, Interval,
 Parameter,
}

ScalarAffineFunction in {
 GreaterThan, LessThan, EqualTo, Interval,
}

ScalarQuadraticFunction in {
 GreaterThan, LessThan, EqualTo, Interval,
}

Solvers support a subset of functions and sets
Ipopt

User and solver might speak different formulations
This is a problem. Should users rewrite their model for every solver?

There are multiple ways to write the same constraint

Scalar or vector constraints

● x in GreaterThan(0.0)
● [x] in Nonnegatives(1)

Affine transformations from one set to another

● [t, x, y] in SecondOrderCone(2)
● [t, t / 2, x, y] in RotatedSecondOrderCone(3)

More complicated transforms

● [t, X] in LogDetConeSquare()
● A set of constraints using PSD, ExponentialCone, and LessThan sets

● Ax .== b
● Ax - b in Zeros()

Constraint bridges
Map between equivalent formulations

Each bridge takes as input:

● a function-in-set constraint

and it may:

● add new constraints of a different type
● add new decision variables

Each bridge also implements:

● MOI.delete(model::MOI.ModelLike, bridge)

● MOI.get(model::MOI.ModelLike, ::MOI.ConstraintPrimal, bridge)

● MOI.set(model::MOI.ModelLike, ::MOI.ConstraintPrimalStart, bridge, value)

● MOI.get(model::MOI.ModelLike, ::MOI.ConstraintDual, bridge)

● MOI.set(model::MOI.ModelLike, ::MOI.ConstraintDualStart, bridge, value)

using JuMP, HiGHS

model = Model(HiGHS.Optimizer)

@variable(model, x)

@constraint(

 model,

 2 * x + 1 in MOI.Integer(),

)

Bridges let you model unique constraint types
“An affine expression is integer”

julia> print_active_bridges(model)

 * Unsupported constraint:

 | MOI.ScalarAffineFunction-in-MOI.Integer

 | bridged by:

 | MOIB.Constraint.ScalarSlackBridge

 | may introduce:

 | * Supported constraint:

 | MOI.ScalarAffineFunction-in-MOI.EqualTo

 | * Supported variable: MOI.Integer

julia> print(unsafe_backend(model))

Feasibility

Subject to:

VariableIndex-in-Integer

 v[2] ∈ ℤ

ScalarAffineFunction-in-EqualTo

 0.0 + 2.0 x - 1.0 v[2] == -1.0

Hypergraphs and shortest hyperpaths
In the ideal case, the solver supports the constraint

F-in-S F-in-S

User Solver

Hypergraphs and shortest hyperpaths
The solver may support the constraint via a single transformation

F-in-S

F-in-S

F-in-S

User Solver

Hypergraphs and shortest hyperpaths
A chain of bridges may be needed, that introduce more than one constraint

F-in-S

F-in-SF-in-S

F-in-S

F-in-S

User Solver

Hypergraphs and shortest hyperpaths
There may be many equivalent paths through the graph

F-in-S

F-in-SF-in-S

F-in-S

F-in-S

F-in-S

User Solver

Hypergraphs and shortest hyperpaths
In practice, the graph can be arbitrarily complicated

F-in-S

F-in-S

F-in-S

F-in-S

F-in-S

F-in-S

User Solver

Let the graph G = (N, E), where:

● N is the set of nodes
● E is the set of bridges

Let S = the set of nodes supported by the solver

Each edge e has:

● A source node s(e) in N
● A set of target nodes T(e) subset N
● A weight w(e)

Most bridges choose w(e) = 1. Some bridges
use w(e) = 10

Hypergraphs and shortest hyperpaths
The optimal bridge is the shortest hyperpath

Minimum hyperpath is the set of bridges e that
minimize:

function C(n)
 if n in S
 return 0
 end
 return minimum(
 w(e) + sum(C(m) for m in T(e))
 for e in E if s(e) == n
)
end

Hypergraphs and shortest hyperpaths
The optimal bridge is the shortest hyperpath

F-in-S

F-in-S

F-in-S

User Solver

F-in-S

F-in-S

F-in-S

Objective bridges reformulate objective functions

User writes

min x2

Bridges.Objective.ScalarSlackBridge

min t: t ≥ x2

Bridges.Constraint.QuadToSOC

min t: [t, 1/2, x] in RotatedSecondOrderCone()

There are other types of bridges
a.k.a. it’s even more complicated than it seems

min x2

[t,1/2,x]
in

RSOC

User Solver

t ≥ x2

min t

t in ℝ

Variable bridges reformulate variable domains

Seems simple. Take a variable -in-set and replace
by variable -in- different set with an affine
substitution rule.

Every x in the model must be replaced by the
substitution rule, and every solution y must be
inverted back to the original model.

Keeping track of substitutions is THE most
complicated code in all of MOI.

There are other types of bridges
a.k.a. it’s even more complicated than it seems

x in ℝ
y in
(ℝ+,
ℝ+)

User Solver
(like CSDP)

x := y1 -
y2

Variable bridges reformulate variable domains

Seems simple. Take a variable -in-set and replace
by variable -in- different set with an affine
substitution rule.

Every x in the model must be replaced by the
substitution rule, and every solution y must be
inverted back to the original model.

Keeping track of substitutions is THE most
complicated code in all of MOI.

There are other types of bridges
a.k.a. It’s even more complicated than it seems

x in ℝ
y in
(ℝ+,
ℝ+)

User Solver

x := y1 -
y2

Benoît’s Bridge Bellman Bedlam

Hypergraphs and shortest hyperpaths
Complexity is hidden from the user

F-in-S

min F

x-in-S

User Solver

min F

x-in-S

F-in-S

Benoît’s Bridge Bellman Bedlam

Hypergraphs and shortest hyperpaths
In practice, the graph can be arbitrarily complicated

F-in-S

min F

x-in-S

User Solver

min F

x-in-S

F-in-S

/src 79,000 lines

/src/Bridges 19,800 lines

MathOptInterface.jl is a monolith
122,000 lines of code

/src/FileFormats 7,500 lines

/src/Nonlinear 6,100 lines

/src/Test 22,300 lines

/src/Utilities 14,800 lines

/test 43,000 lines

/test/Bridges 18,100 lines

/test/FileFormats 8,200 lines

/test/Utilities 11,200 lines

MOI uses multiple dispatch.

A lot.

Every solver is a new type.

Every function is a new type.

Every set is a new type.

There are a small number of public functions.

Testing takes a long time. Running the tests
creates 6000 methods and 378,411
MethodInstances.

abstract type ModelLike end
abstract type AbstractOptimizer <: ModelLike end
abstract type AbstractFunction end
abstract type AbstractSet end

empty!(::ModelLike)
is_empty(::ModelLike)

add_variable(::ModelLike)::VariableIndex

add_constraint(
 ::ModelLike,
 ::AbstractFunction,
 ::AbstractSet,
)::ConstraintIndex

optimize!(::ModelLike)

MOI.
The top-level API

MOI.
Functions

abstract type AbstractFunction <: MA.AbstractMutable end
abstract type AbstractScalarFunction <: AbstractFunction end
abstract type AbstractVectorFunction <: AbstractFunction end

struct VariableIndex <: AbstractScalarFunction
 value::Int64
end

struct ScalarAffineTerm{T}
 coefficient::T
 variable::VariableIndex
end

mutable struct ScalarAffineFunction{T} <: AbstractScalarFunction
 terms::Vector{ScalarAffineTerm{T}}
 constant::T
end

abstract type AbstractSet end
abstract type AbstractScalarSet <: AbstractSet end
abstract type AbstractVectorSet <: AbstractSet end

struct EqualTo{T<:Number} <: AbstractScalarSet
 value::T
end

struct SecondOrderCone <: AbstractVectorSet
 dimension::Int
end

struct SOS1{T<:Real} <: AbstractVectorSet
 weights::Vector{T}
end

struct Indicator{A,S<:AbstractScalarSet} <: AbstractVectorSet
 set::S
end

MOI.
Sets

Users don’t need to know the inner details

MOI.instantiate(
 HiGHS.Optimizer;
 with_bridge_type = Float64,
)

MOI.Bridges.full_bridge_optimizer(
 HiGHS.Optimizer(),
 Float64,
)

MOI.Bridges
Benoît’s Bridge Bellman Bedlam

This submodule contains:

● Three submodules for the different types
of bridges: Bridges.Constraint,
Bridges.Objective, and
Bridges.Variable

● 76 bridges, each of which may cover many
function-in-set combinations

● Bridges.LazyBridgeOptimizer, with
Bellman-Ford and variable bridge
substitutions

● Some other stuff, like tests for bridges

Testing is hard because of the number of
possible permutations of supported variables,
constraints, and objectives.

We test:

● every bridge in isolation
● a very wide range of unit tests
● every solver before every release, and

sometimes with every PR

Sometimes this is still not enough. There are
many edges cases.

MOI.Bridges
The logic is horrific, so we try to test a lot

Each bridge runs a common suite of tests

MOI.Bridges.runtests(
 MOI.Bridges.Constraint.ZeroOneBridge,
 """
 variables: x
 x in ZeroOne()
 """,
 """
 variables: x
 x in Integer()
 1.0 * x in Interval(0.0, 1.0)
 """,
)

Test Summary: | Pass Total Time

Bridges.runtests | 32 32 0.0s

MOI.FileFormats
Read and write models to disk

This submodule contains six submodules:

● CBF: the .cbf format
● LP: the .lp format
● MOF: the .mof.json format
● MPS: the .mps format
● NL: the .nl format
● SDPA: the .sdpa format

Each submodule implements

● A new Model <: MOI.ModelLike
● Base.read!(io::IO, ::Model)

● Base.write(io::IO, ::Model)

Downside to this design

To read and write models from disk, JuMP does
a variation of:

function JuMP.write_to_file(
 model::Model, filename::String)
 dest = MOI.FileFormats.Model(; filename)
 MOI.copy_to(dest, model)
 MOI.write_to_file(dest, filename)
 return
end

We first have to create a copy of the entire
model. This is slower than writing from the
existing model object

MOI.FileFormats.MathOptFormat
https://jump.dev/MathOptFormat/

{
 "version": {"major": 1, "minor": 4},
 "variables": [{"name": "x"}],
 "objective": {
 "sense": "min",
 "function": {
 "type": "ScalarAffineFunction",
 "terms": [{"coefficient": 2, "variable": "x"}],
 "constant": 1
 }
 },
 "constraints": [{
 "function": {"type": "Variable", "name": "x"},
 "set": {"type": "GreaterThan", "lower": 1}
 }]
}

MathOptFormat supports
every model you can write in

MOI. And it has a schema.

https://jump.dev/MathOptFormat/

MOI.Nonlinear
A lot of complicated stuff

This submodule contains:

● Nonlinear.Model
○ A nonlinear modeling interface

● ReverseAD
○ A library for sparse reverse-mode automatic

differentiation
● SymbolicAD

○ A symbolic differentiation library

See my JuMP-dev 2022 and 2023 talks.

Solvers get access to thousands of
tests
using Test, HiGHS
import MathOptInterface as MOI
@testset "runtests" begin
 MOI.Test.runtests(
 MOI.instantiate(
 HiGHS.Optimizer;
 with_bridge_type = Float64,
),
 MOI.Test.Config(; atol = 1e-7),
)
end

Test Summary: | Pass Total Time
runtests | 3237 3237 4m23.8s

MOI.Test
Test-Driven-Development of solver wrappers

This submodule contains

● A suite of >500 solver-independent test
functions

● Accessible via MOI.Test.runtests
● Ability to include/exclude tests, adjust

tolerances, etc

Downsides

● This (c|sh)ould have been a separate
package

● Calling it `Test` was a mistake because it
conflicts with Base.Test

MOI.Utilities
A useful dumping ground for random stuff

This submodule contains a loooot of stuff

● Utilities for working with functions: comparing them, creating them, modifying them

● Utilities.MockOptimizer: a fake optimizer to mock tests in MOI and JuMP

● Utilities.CachingOptimizer: an abstraction across how solvers handle incremental modification

● Utillities.Model and Utilities.UniversalFalllback: model objects that support everything except
optimize!

● Utilities.CleverDicts: a dict that starts as a Base.Vector but switches to a Base.Dict on deletion

● Utilities.GenericModel: a modular system for defining matrix-based storage

Just sooooo much other stuff…

MOI.Utilities.CachingOptimizerMOI.Utilities.CachingOptimizer:

● maintains two copies of the model:
○ model_cache
○ optimizer

● is in one of three states
○ NO_OPTIMIZER
○ EMPTY_OPTIMIZER
○ ATTACHED_OPTIMIZER

MOI.Utilities.CachingOptimizer
Abstract over differences in incremental modification

model_cache::MOI.ModelLike

optimizer::MOI.AbstractOptimizer

state(model)

MOI.Utilities.CachingOptimizer
Flow for adding a constraint

add_constraint(model::CachingOptimizer, f::F, s::S)

add_constraint(model.cache, f, s)

supports_constraint(
model.cache,F,S)error()

supports_constraint(
model.optimizer,F,S) add_constraint(model.optimizer, f, s)error()

detach_optimizer(model.optimizer)

error?

Yes

Yes

No

No

ATTACHED

Yes

state(model)

MOI.Utilities.CachingOptimizer
Flow for deleting a variable

delete(model::CachingOptimizer, x::VariableIndex)

delete(model.cache, x)

delete(model.optimizer, x)

detach_optimizer(model)

error?

ATTACHED

Yes

state(model)

MOI.Utilities.CachingOptimizer
Flow for calling optimize!

optimize!(model::CachingOptimizer)

copy_to(model.optimizer, model.cache)

optimize!(model.optimizer)

EMPTY

ATTACHED

error()
NO_OPTIMIZER

Standard forms are not standard

● ECOS and SCS use different orderings for
the exponential cone

● Gurobi does not support Ax in Interval
● CSDP does not support free variables

Some solvers mix problem classes

● KNITRO supported nonlinear, but also
SecondOrderCone and Complements

● Gurobi was linear quadratic, but now also
supports nonlinear

2013-2019: Problems with MathProgBase
There were many. Here are four.

Extending the classes is hard

● No indicator constraints
● No complementarity constraints

In-place problem modification was limited

● No support for deleting variables or
constraints

● Support for modifying RHS but not LHS

Arbitrary Indices

Each variable and constraint has an associated
value::Int64. These do not need to be ordered and
do not need to be contiguous. Constraints of
different types can have the same value. Make
them ordered by creating and unique by
variable/constraint.

AbstractVectorFunction

Why didn’t we just make it
Base.Vector{<:AbstractScalarFunction}?

Problems with MathOptInterface
There are many. Here are four.

The 0.5 in ScalarQuadraticFunction

It’s so hard to remember whether to * or / the 0.5.
Just make the function a list of terms. Not a Q
matrix.

Variable bridges (and constrained variables)

We haven’t talked about add_constrained_variable.
Variable bridges are hard because variable sets
can overlap: @variable(model, x >= 0, Int)
Is the domain of x Real, Nonnegatives, or Integer?

These problems are too breaking for us to ever consider changing. There will not be a MathOptInterface 2.0. We don’t want Python 2->3.
But if you’re looking to re-implement MOI in a different language… don’t copy it blindly. Come talk to me.

The purpose of this talk

Why is this talk needed:

● MathOptInterface.jl (MOI) is one of the
largest packages in all of Julia

● It is the connection between JuMP and
solvers

● It uses a novel abstraction
● It has a loooooot of stuff in it

We haven’t publicly talked about it much

By the end of this talk you will:

1. Understand the problem we are trying to
solve and why we wrote MOI

2. Understand the MOI abstraction
3. Understand what a bridge is and why they

are necessary
4. Have an overview of the components in

MathOptInterface.jl

By the end of this talk you will not:

● Be able to write a solver wrapper
● Know how to write code that uses MOI

