
MadIPM

Alexis Montoison

François Pacaud, Sungho Shin, Mihai Anitescu

November, 17th 2025
JuMP-dev
Auckland

1 / 18

Who are we ?

https://madsuite.org/

Alexis Montoison @ Argonne National Laboratory
François Pacaud @ MINES Paris-PSL (an ANL alumnus)
Sungho Shin @ MIT (ANL alumnus)
Mihai Anitescu @ Argonne National Laboratory
and friends... Michael Saunders, Dominique Orban, Armin Nurkanović, Anton
Pozharskiy, Jean-Baptiste Caillau, ...

2 / 18

https://madsuite.org/

What is MadSuite ?

MadSuite is a suite of open-source optimization software in Julia encompassing :

algebraic modeling systems (ExaModels.jl)

optimization solvers (MadIPM.jl, MadNLP.jl, MadNCL.jl)

direct sparse linear solvers (CUDSS.jl)

domain-specific modeling libraries (ExaModelsPower.jl)

We employ the latest advancements in GPU computing, to provide high-performance
solutions for large-scale linear and nonlinear optimization problems.

3 / 18

What is MadSuite ?

MadNLP.jl : A nonlinear programming solver based on the
filter line-search interior point method (as in Ipopt) that can handle/exploit
diverse classes of data structures, either on host or device memories.

MadIPM.jl : It solves linear and convex quadratic programming. It implements
the Mehrotra predictor-corrector method, leading to faster convergence than the
default filter line-search algorithm used in MadNLP.

MadNCL.jl : MadNCL.jl is another extension of MadNLP.jl. It combines
Augmented Lagrangian method with IPM. It is particularly good at solving
infeasible or degenerate nonlinear optimization problems.

4 / 18

MadIPM : Problem Formulation

min
x

c⊤x s.t. Ax = b, ℓ ≤ x ≤ u

Lagrangian :

L(x , y , z) = c⊤x + y⊤(Ax − b) − z⊤
ℓ (x − ℓ) + z⊤

u (x − u)

KKT conditions define optimality.
IPM reformulates complementarity constraints via barrier parameter µ > 0.

5 / 18

MadIPM

For a given barrier parameter µ > 0, IPM solves the system of nonlinear equations for
ℓ < x < u and z > 0,

Fµ(x , y , z) :=

c + A⊤y − zℓ + zu
Ax − b

Xℓzℓ − µe
Xuzu − µe

 = 0 ,

where Xℓ := diag(x − ℓ) and Xu := diag(u − x).

6 / 18

MadIPM : Primal-dual steps

For a given primal-dual iterate (x , y , z), define the current barrier parameter (average
complementarity) as :

µ =
z⊤

ℓ (x − ℓ) + z⊤
u (u − x)

2n
.

Affine step : Compute ∆aff by solving 0 A⊤ −I I
A 0 0 0
Zℓ 0 Xℓ 0

−Zu 0 0 Xu

 ∆xaff

∆yaff

∆zaff
ℓ

∆zaff
u

 = −

c + A⊤y − zℓ + zu
Ax − b
Xℓzℓ

Xuzu

 .

Corrector step : Compute ∆corr using 0 A⊤ −I I
A 0 0 0
Zℓ 0 Xℓ 0

−Zu 0 0 Xu

 ∆xcorr

∆y corr

∆zcorr
ℓ

∆zcorr
u

 = −

 0
0

σµe − ∆Z aff
ℓ ∆X affe

σµe + ∆Z aff
u ∆X affe

 .

7 / 18

MadIPM

The affine step and the corrector step are both solving the unsymmetric linear
system :  0 A⊤ −I I

A 0 0 0
Zℓ 0 Xℓ 0

−Zu 0 0 Xu

  ∆x
∆y
∆zℓ

∆zu

 =

r1
r2
r3
r4

 .

The unsymmetric system reduces to the symmetric augmented KKT system :[Σ A⊤

A 0

] [∆x
∆y

]
=

[
r1 + X−1

ℓ
r3 − X−1

u r4
r2

]
,

with the diagonal matrix Σ := X−1
ℓ

Zℓ + X−1
u Zu .

We can also eliminate ∆y to recover the positive-definite normal KKT system :

AΣ−1A⊤∆y = AΣ−1(r1 + X−1
ℓ

r3 − X−1
u r4

)
− r2 .

8 / 18

MadIPM : challenges with sparse linear systems

The performance of the interior-point method depends on efficient linear solves. Key
issues :

Free variables (ℓi = −∞, ui = +∞) → (Σ)ii = 0, singular matrix → treat
separately.

Rank-deficient Jacobian A (redundant constraints) → augmented/normal systems
become singular.

Dense rows in A → AΣ−1A⊤ becomes dense → require special treatment (e.g.,
Sherman-Morrison).

GPU-specific challenge : only augmented system handled; Schur complement is
hard with dense columns and graph-based kernels.

9 / 18

MadIPM

We regularize the system using two small positive parameters (ρ, δ) > 0. Once the
primal-dual regularization is applied, the system becomes :

[
Σ + ρI A⊤

A −δI

] [∆x
∆y

]
=

[
r1 + X−1

ℓ
r3 − X−1

u r4
r2

]
.

The matrix in the left-hand-side above is symmetric quasi-definite (SQD), meaning
that it is strongly factorizable using a signed Cholesky factorization.

It is the key to performance on GPU !

10 / 18

MadIPM

Figure – Benchmarking MadIPM, Gurobi and HiGHS on 174 large-scale LP instances from MIPLIB.

11 / 18

MadIPM

Figure – Benchmarking MadIPM and Gurobi.

12 / 18

MadIPM — CPU example

� �
using JuMP
using MadIPM

c = rand(10)
model = Model(MadIPM.Optimizer)

@variable(model, 0 <= x[1:10], start=0.5)
@constraint(model, sum(x) == 1.0)
@objective(model, Min, c' * x)

JuMP.optimize!(model)� �

13 / 18

MadIPM — GPU example

� �
using JuMP, MadIPM
using CUDA, KernelAbstractions, MadNLPGPU

c = rand(10)
model = Model(MadIPM.Optimizer)

GPU settings
set_optimizer_attribute(model, "array_type", CuVector{Float64})
set_optimizer_attribute(model, "linear_solver", MadNLPGPU.

CUDSSSolver)

@variable(model, 0 <= x[1:10], start=0.5)
@constraint(model, sum(x) == 1.0)
@objective(model, Min, c' * x)

JuMP.optimize!(model)� �
14 / 18

MadIPM on GPU

Custom operators for sparse matrices in CSR format, optimized for GPU.

Fraction-to-boundary linesearch redesigned for GPU efficiency.

Preprocessing of the LPs / QPs (QuadraticModels.jl) still performed on
CPU.

15 / 18

MadIPM – challenges

We currenctly only handles the augmented system in MadIPM.jl.

Implementing a GPU version of the Schur complement is hard : dense columns,
graph-based kernels.

Exploring more stable KKT formulations (Ghannad, Orban, Saunders 2022).
Assuming bounds are x ≥ 0, which leads to Σ = X−1Z . By using ∆x = X1/2∆x̄ ,
we obtain a better-conditioned system :

(
Z X1/2AT

AX1/2 −δI

) (∆x̄
∆y

)
=

(
r̄1
r2

)

Is it relevant to derive a similar variant of the Schur complement ?

16 / 18

Batch MadIPM

Goal : Solve multiple LPs simultaneously, assuming the same KKT sparsity
pattern.

Efficiency : Reuse symbolic analysis across all sparse linear systems →
GPU-friendly and SIMD-efficient.

API : Through NLPModels.jl / MOI.jl, returns vectors of objective values,
gradients, and non-zero entries of Jacobians and Hessians.

Parameter handling : Smart management of JuMP / MOI parameters.

Applications : DC Optimal Power Flow (DCOPF).

Challenge : Different central paths → real-time rebalancing when some systems
converge earlier.

17 / 18

Conclusion /next steps

Collaboration with Georgia Tech (Michael Klamkin, Andrew Rosenberg)

Batch MadIPM : faster multi-problem optimization

Pave the way to batch MadNLP / MadNCL, require batch AD

Applications : ACOPF with multiple loads, optimal control with multiple X0, ...

18 / 18

