MadIPM

Alexis Montoison

François Pacaud, Sungho Shin, Mihai Anitescu

November, 17th 2025 JuMP-dev *Auckland*

Who are we?

https://madsuite.org/

- Alexis Montoison @ Argonne National Laboratory
- François Pacaud @ MINES Paris-PSL (an ANL alumnus)
- Sungho Shin @ MIT (ANL alumnus)
- Mihai Anitescu @ Argonne National Laboratory
- and friends... Michael Saunders, Dominique Orban, Armin Nurkanović, Anton Pozharskiy, Jean-Baptiste Caillau, ...

What is MadSuite?

MadSuite is a suite of open-source optimization software in Julia encompassing :

- algebraic modeling systems (ExaModels.jl)
- optimization solvers (MadIPM.jl, MadNLP.jl, MadNCL.jl)
- direct sparse linear solvers (CUDSS.jl)
- domain-specific modeling libraries (ExaModelsPower.jl)

We employ the latest advancements in **GPU computing**, to provide high-performance solutions for large-scale linear and nonlinear optimization problems.

What is MadSuite?

 MadNLP.jl: A nonlinear programming solver based on the filter line-search interior point method (as in Ipopt) that can handle/exploit diverse classes of data structures, either on host or device memories.

MadIPM.jl: It solves linear and convex quadratic programming. It implements
the Mehrotra predictor-corrector method, leading to faster convergence than the
default filter line-search algorithm used in MadNLP.

MadNCL.jl: MadNCL.jl is another extension of MadNLP.jl. It combines
 Augmented Lagrangian method with <u>IPM</u>. It is particularly good at solving
 infeasible or degenerate nonlinear optimization problems.

MadIPM: Problem Formulation

$$\min_{x} c^{\top} x$$
 s.t. $Ax = b, \ \ell \le x \le u$

Lagrangian:

$$\mathcal{L}(x,y,z) = c^{\top}x + y^{\top}(Ax - b) - z_{\ell}^{\top}(x - \ell) + z_{u}^{\top}(x - u)$$

- KKT conditions define optimality.
- IPM reformulates complementarity constraints via barrier parameter $\mu > 0$.

For a given barrier parameter $\mu>0$, IPM solves the system of nonlinear equations for $\ell< x < u$ and z>0,

$$F_{\mu}(x,y,z) := \begin{bmatrix} c + A^{\top}y - z_{\ell} + z_{u} \\ Ax - b \\ X_{\ell}z_{\ell} - \mu e \\ X_{u}z_{u} - \mu e \end{bmatrix} = 0,$$

where $X_{\ell} := \operatorname{diag}(x - \ell)$ and $X_u := \operatorname{diag}(u - x)$.

MadIPM: Primal-dual steps

For a given primal-dual iterate (x, y, z), define the **current barrier parameter** (average complementarity) as:

$$\mu = \frac{z_\ell^\top(x-\ell) + z_u^\top(u-x)}{2n} \; .$$

Affine step: Compute Δ^{aff} by solving

$$\begin{bmatrix} 0 & A^\top & -I & I \\ A & 0 & 0 & 0 \\ Z_{\ell} & 0 & X_{\ell} & 0 \\ -Z_{u} & 0 & 0 & X_{u} \end{bmatrix} \begin{bmatrix} \Delta x^{aff} \\ \Delta y^{aff} \\ \Delta z^{aff}_{u} \\ \Delta z^{aff}_{u} \end{bmatrix} = -\begin{bmatrix} c + A^\top y - z_{\ell} + z_{u} \\ Ax - b \\ X_{\ell} z_{\ell} \\ X_{u} z_{u} \end{bmatrix} \ .$$

Corrector step: Compute Δ^{corr} using

$$\begin{bmatrix} 0 & A^\top & -I & I \\ A & 0 & 0 & 0 \\ Z_\ell & 0 & X_\ell & 0 \\ -Z_u & 0 & 0 & X_u \end{bmatrix} \begin{bmatrix} \Delta_X^{\text{corr}} \\ \Delta_y^{\text{corr}} \\ \Delta_z^{\text{corr}} \\ \Delta_z^{\text{corr}} \end{bmatrix} = - \begin{bmatrix} 0 \\ 0 \\ \sigma\mu e - \Delta Z_\ell^{\text{aff}} \Delta X^{\text{aff}} e \\ \sigma\mu e + \Delta Z_u^{\text{aff}} \Delta X^{\text{aff}} e \end{bmatrix} \,.$$

The affine step and the corrector step are both solving the **unsymmetric linear** system :

$$\begin{bmatrix} 0 & A^{\top} & -I & I \\ A & 0 & 0 & 0 \\ Z_{\ell} & 0 & X_{\ell} & 0 \\ -Z_{u} & 0 & 0 & X_{u} \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z_{\ell} \\ \Delta z_{u} \end{bmatrix} = \begin{bmatrix} r_{1} \\ r_{2} \\ r_{3} \\ r_{4} \end{bmatrix}.$$

The unsymmetric system reduces to the symmetric augmented KKT system :

$$\begin{bmatrix} \Sigma & A^{\top} \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} r_1 + X_{\ell}^{-1} r_3 - X_{u}^{-1} r_4 \\ r_2 \end{bmatrix} ,$$

with the diagonal matrix $\Sigma := X_\ell^{-1} Z_\ell + X_u^{-1} Z_u.$

We can also eliminate Δy to recover the positive-definite normal KKT system :

$$A \Sigma^{-1} A^\top \Delta y = A \Sigma^{-1} \big(r_1 + X_\ell^{-1} r_3 - X_u^{-1} r_4 \big) - r_2 \; .$$

MadIPM: challenges with sparse linear systems

The performance of the interior-point method depends on efficient linear solves. Key issues :

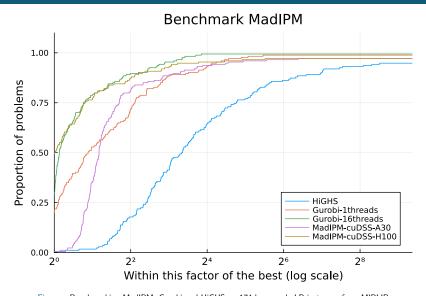
- Free variables $(\ell_i = -\infty, u_i = +\infty) \to (\Sigma)_{ii} = 0$, singular matrix \to treat separately.
- ullet Rank-deficient Jacobian A (redundant constraints) o augmented/normal systems become singular.
- Dense rows in $A \to A \Sigma^{-1} A^{\top}$ becomes dense \to require special treatment (e.g., Sherman-Morrison).
- GPU-specific challenge: only augmented system handled; Schur complement is hard with dense columns and graph-based kernels.

We regularize the system using two small positive parameters $(\rho, \delta) > 0$. Once the primal-dual regularization is applied, the system becomes :

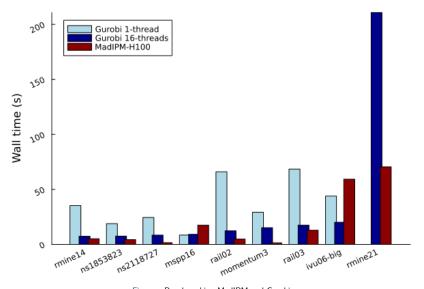
$$\begin{bmatrix} \Sigma + \rho I & A^{\top} \\ A & -\delta I \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} r_1 + X_{\ell}^{-1} r_3 - X_{u}^{-1} r_4 \\ r_2 \end{bmatrix}.$$

The matrix in the left-hand-side above is symmetric quasi-definite (SQD), meaning that it is strongly factorizable using a signed Cholesky factorization.

It is the key to performance on GPU!



 ${\sf Figure-Benchmarking\ MadIPM,\ Gurobi\ and\ HiGHS\ on\ 174\ large-scale\ LP\ instances\ from\ MIPLIB.}$



 $\label{eq:Figure-Benchmarking MadIPM} \textbf{Figure-Benchmarking MadIPM and Gurobi.}$

MadIPM — CPU example

```
using JuMP
using MadIPM

c = rand(10)
model = Model(MadIPM.Optimizer)

@variable(model, 0 <= x[1:10], start=0.5)
@constraint(model, sum(x) == 1.0)
@objective(model, Min, c' * x)

JuMP.optimize!(model)</pre>
```

MadIPM — GPU example

```
using JuMP, MadIPM
using CUDA, KernelAbstractions, MadNLPGPU
c = rand(10)
model = Model(MadIPM.Optimizer)
# GPU settings
set_optimizer_attribute(model, "array_type", CuVector(Float64))
set_optimizer_attribute(model, "linear_solver", MadNLPGPU.
    CUDSSSolver)
@variable(model, 0 \le x[1:10], start=0.5)
@constraint(model, sum(x) == 1.0)
@objective(model, Min, c' * x)
JuMP.optimize! (model)
```

MadIPM on GPU

• Fraction-to-boundary linesearch redesigned for GPU efficiency.

 \bullet Preprocessing of the LPs / QPs (QuadraticModels.jl) still performed on CPU.

MadIPM – challenges

- We currenctly only handles the augmented system in MadIPM.jl.
- Implementing a GPU version of the Schur complement is hard: dense columns, graph-based kernels.
- Exploring more stable KKT formulations (Ghannad, Orban, Saunders 2022). Assuming bounds are $x \geq 0$, which leads to $\Sigma = X^{-1}Z$. By using $\Delta x = X^{1/2}\Delta\bar{x}$, we obtain a better-conditioned system:

$$\begin{pmatrix} Z & X^{1/2}A^T \\ AX^{1/2} & -\delta I \end{pmatrix} \begin{pmatrix} \Delta \bar{x} \\ \Delta y \end{pmatrix} = \begin{pmatrix} \bar{r}_1 \\ r_2 \end{pmatrix}$$

• Is it relevant to derive a similar variant of the Schur complement?

Batch MadIPM

- Goal: Solve multiple LPs simultaneously, assuming the same KKT sparsity pattern.
- \bullet Efficiency : Reuse symbolic analysis across all sparse linear systems \to GPU-friendly and SIMD-efficient.
- API: Through NLPModels.jl / MOI.jl, returns vectors of objective values, gradients, and non-zero entries of Jacobians and Hessians.
- Parameter handling: Smart management of JuMP / MOI parameters.
- Applications: DC Optimal Power Flow (DCOPF).
- \bullet Challenge : Different central paths \to real-time rebalancing when some systems converge earlier.

Conclusion /next steps

• Collaboration with Georgia Tech (Michael Klamkin, Andrew Rosenberg)

• Batch MadIPM: faster multi-problem optimization

Pave the way to batch MadNLP / MadNCL, require batch AD

• Applications : ACOPF with multiple loads, optimal control with multiple X0, ...