MADIPM

Alexis Montoison

Francois Pacaud, Sungho Shin, Mihai Anitescu

Argonneé

NATIONAL LABORATORY

November, 17th 2025
JuMP-dev
Auckland

1/18

Who are we?

https://madsuite.org/

Alexis Montoison @ Argonne National Laboratory
Francois Pacaud @ MINES Paris-PSL (an ANL alumnus)
Sungho Shin @ MIT (ANL alumnus)

Mihai Anitescu @ Argonne National Laboratory

and friends... Michael Saunders, Dominique Orban, Armin Nurkanovi¢, Anton
Pozharskiy, Jean-Baptiste Caillau, ...

2/18

https://madsuite.org/

What is MadSuite ?

MadSuite is a suite of open-source optimization software in Julia encompassing :
o algebraic modeling systems (ExaModels.jl)

@ optimization solvers (MadIPM.jl, MadNLP.jl, MadNCL.jl)

direct sparse linear solvers (CUDSS jl)

o domain-specific modeling libraries (ExaModelsPower jl)

We employ the latest advancements in GPU computing, to provide high-performance
solutions for large-scale linear and nonlinear optimization problems.

3/18

What is MadSuite ?

o MadNLP.jl: A nonlinear programming solver based on the
filter line-search interior point method (as in Ipopt) that can handle/exploit
diverse classes of data structures, either on host or device memories.

o MadIPM.jl: It solves linear and convex quadratic programming. It implements
the Mehrotra predictor-corrector method, leading to faster convergence than the
default filter line-search algorithm used in MadNLP.

o MadNCL.jl: MadNCL.jl is another extension of MadNLP.jl. It combines
Augmented Lagrangian method with IPM. It is particularly good at solving
infeasible or degenerate nonlinear optimization problems.

4/18

MadIPM : Problem Formulation

minc' x s.t. Ax=b, £L<x<u

X

Lagrangian :

Llx,y,2) =c x+y (Ax—b) =z (x =) + 2] (x — v)

o KKT conditions define optimality.

o IPM reformulates complementarity constraints via barrier parameter p > 0.

5/18

MadIPM

For a given barrier parameter . > 0, IPM solves the system of nonlinear equations for
{<x<wuandz>0,

c+ATy —z + 2z,
Ax — b
FM(X,_)/,Z) = XZZZ_Me :07

Xuzy — pe

where X; := diag(x — ¢) and X, := diag(uv — x).

6/18

MadIPM : Primal-dual steps

For a given primal-dual iterate (x,y, z), define the current barrier parameter (average

complementarity) as :
_ z;(x—f)—l—z;r(u—x)

2n
Affine step: Compute A by solving
0 AT —1 17 [Axf cH+ATy —z +z,
A 0 0 of [ayf Ax — b
Zg 0 Xg 0 Azsz - XgZe
-Z, 0 0 Xu| [LAzf Xuzu
Corrector step : Compute A" using
0 AT -1 Axcor 0
A 0 0 0 Ayer| 0
Z, 0 X, © AzeT| T ope — AZZFAXMe
-Z, 0 0 X, [LAazer ope+ AZ2FAXMe

7/18

MadIPM

The affine step and the corrector step are both solving the unsymmetric linear

system :
0o AT —1 1 Ax r
A 0 0 0 Ay | |nr
Z[0 X[0 AZ[- r
-Z, 0 0 Xy Az, ra

The unsymmetric system reduces to the symmetric augmented KKT system :

)

Y AT [AX] _ |n+ X' - X "n
A 0 | |Ay] ™ r

with the diagonal matrix ¥ := XZ_IZZ + X1z,

We can also eliminate Ay to recover the positive-definite normal KKT system :

AT TIATAYy = ASH(n+ X s = X) —

u

8/18

MadIPM : challenges with sparse linear systems

The performance of the interior-point method depends on efficient linear solves. Key
issues :

Free variables (¢; = —oo, uj = +00) — (X);i = 0, singular matrix — treat
separately.

o Rank-deficient Jacobian A (redundant constraints) — augmented/normal systems
become singular.

o Dense rows in A — AZ"IAT becomes dense — require special treatment (e.g.,
Sherman-Morrison).

o GPU-specific challenge : only augmented system handled; Schur complement is
hard with dense columns and graph-based kernels.

9/18

MadIPM

We regularize the system using two small positive parameters (p,) > 0. Once the
primal-dual regularization is applied, the system becomes :

-1 —1
r1+Xe rn—X, n

Al

A -5l | |Ay

The matrix in the left-hand-side above is symmetric quasi-definite (SQD), meaning
that it is strongly factorizable using a signed Cholesky factorization.

It is the key to performance on GPU'!

10/18

MadIPM

1.00

o

N

a
T

Proportion of problems
=
ul
o

o

N

]
T

0.00

Benchmark MadIPM

HiGHS
Gurobi-1threads
Gurobi-16threads
——— MadIPM-cuDSS-A30
MadIPM-cuDSS-H100

20

22 24 26

28

Within this factor of the best (log scale)

Figure — Benchmarking MadIPM, Gurobi and HiGHS on 174 large-scale LP instances from MIPLIB.

11/18

MadIPM

Wall time (s)

Q

450

400

5l

[Gurobi 1-thread
I Gurobi 16-threads
I VadIPM-H100

Al k] 1 A6 A0 3> RINES B B, A%
.‘4‘(\‘“@’ 9\‘%535 91.\'_51 ‘05@(\) v;‘b‘\ n\en{\)({\ <a\\ N \}06 o P ﬁ\\(\?’
Ax o ﬁ\O

Figure — Benchmarking MadIPM and Gurobi.

12/18

MadIPM — CPU example

using JuMP
using MadIPM

c = rand(10)
model = Model (MadIPM.Optimizer)

start=0.5)

Qvariable (model, 0 <= x[1:10]
== 1.0)

@constraint (model, sum(x)
@objective (model, Min, c' % x

= =~

JuMP.optimize! (model)

13/18

MadIPM — GPU example

using JuMP, MadIPM
using CUDA, KernelAbstractions, MadNLPGPU

c = rand(10)
model = Model (MadIPM.Optimizer)

GPU settings

set_optimizer_ attribute (model, "array_type", CuVector{Float64})

set_optimizer_attribute (model, "linear_solver", MadNLPGPU.
CUDSSSolver)

@variable (model, 0 <= x[1:10], start=0.5)
Qconstraint (model, sum(x) == 1.0)

@Qobjective (model, Min, c' * x)

JuMP .optimize! (model)

14/18

MadIPM on GPU

@ Custom operators for sparse matrices in CSR format, optimized for GPU.
o Fraction-to-boundary linesearch redesigned for GPU efficiency.

o Preprocessing of the LPs / QPs (QuadraticModels. j1) still performed on
CPU.

15/18

MadIPM — challenges

o We currenctly only handles the augmented system in MadIPM. j1.

o Implementing a GPU version of the Schur complement is hard : dense columns,
graph-based kernels.

@ Exploring more stable KKT formulations (Ghannad, Orban, Saunders 2022).
Assuming bounds are x > 0, which leads to ¥ = X~1Z. By using Ax = X1/2Ax%,
we obtain a better-conditioned system:

z X12ATN (AX\ _ (A
AX1/? —3! Ay) " \n
o Is it relevant to derive a similar variant of the Schur complement?

16/18

Batch MadIPM

@ Goal: Solve multiple LPs simultaneously, assuming the same KKT sparsity
pattern.

o Efficiency : Reuse symbolic analysis across all sparse linear systems —
GPU-friendly and SIMD-efficient.

@ API: Through NLPModels.jl / MOLjl, returns vectors of objective values,
gradients, and non-zero entries of Jacobians and Hessians.

o Parameter handling: Smart management of JuMP / MOI parameters.
o Applications: DC Optimal Power Flow (DCOPF).

o Challenge: Different central paths — real-time rebalancing when some systems
converge earlier.

17/18

Conclusion /next steps

o Collaboration with Georgia Tech (Michael Klamkin, Andrew Rosenberg)
@ Batch MadIPM : faster multi-problem optimization
o Pave the way to batch MadNLP / MadNCL, require batch AD

@ Applications : ACOPF with multiple loads, optimal control with multiple XO, ...

18/18

