REVISITING SPARSE MATRIX COLORING AND BICOLORING

Alexis Montoison, Guillaume Dalle

Argonne

NATIONAL LABORATORY

November, 17th 2025
JuMP-dev
Auckland

1/31

Introduction

= Automatic Differentiation (AD) is at the core of modern scientific computing and
nonlinear optimization.

m Solvers such as Ipopt, Knitro, Uno, and MadNLP require Jacobians and
Lagrangian Hessians at every iteration in order to compute search directions.

m These derivative matrices are large but sparse, and exploiting this sparsity is key
to efficient AD and linear algebra.

m Coloring and bicoloring provides an elegant way to reduce the number of AD
passes needed to recover sparse Jacobians and Hessians.

2/31

Jacobian computation via automatic differentiation

= Consider ¢ : R"” — R™ with Jacobian Jc(x) = 9c(x).

= Forward-mode AD computes Jacobian-vector products: u — Jc(x)u.

= Reverse-mode AD computes vector-Jacobian products: v — v Je(x).

m The full Jacobian can be reconstructed column-wise or row-wise.

3/31

Exploiting sparsity

m If columns have disjoint non-zeros, they can be recovered together.

e —
! I
. . .
1 | -
' 1
1 ! =
I : -0.58
1
|—1.51 I -1.91
——_—_—_—I 1.0 S
e
! 1
: 1
' 1
' 1
' 1
1
1
|-1.91 I
1

Figure — Materializing a Jacobian with forward-mode AD : (left) compressed evaluation of orthogonal columns (right)
decompression to Jacobian matrix.

4/31

Exploiting sparsity

m If rows have disjoint non-zeros, they can be recovered together.

|
| — | o

Figure — Materializing a Jacobian with reverse-mode AD : (left) compressed evaluation of orthogonal rows (right)
decompression to Jacobian matrix.

5/31

Automatic sparse differentiation

(b) Standard AD Jacobian computation

VIP(x,e;) = @l)

f(x) N VIP(x,v) VIP(x,e;) = (I
% % VIP(x,e;) = @ M) —

VIP(x,es)= (1 [1B

VIP(x,e; +e;) = (1D
—
VIP(x,e; +e3) = (D

® Decompression

(a) AD code transformation

® Matrix-vector products

@ Pattern detection @ Coloring

6/31

Graph coloring

m This grouping problem can be reformulated as graph coloring.

The goal is to minimize the number of AD evaluations.

= Graph coloring determines independent sets of columns (or rows).

m Complexity scales with the number of colors instead of n or m.

7/31

Graph coloring

Figure — Infeasible graph coloring (vertices 2 and 4 are adjacent on the graph, but share a color)

8/31

Hessian computation via automatic differentiation

m Consider f : R" — R with Hessian H¢(x) = OV f(x).

= Forward-over-reverse mode AD computes Hessian-vector products: w — Hr(x)w.

m We can exploit symmetry to recover non-zeros from the lower or upper triangle.

m Star coloring and acyclic coloring are the most common symmetric colorings.

9/31

Some Jacobians contain dense substructures.

= Standard unidirectional coloring can become inefficient.

m Bicoloring jointly colors rows and columns.

m This combines forward- and reverse-mode AD for better performance.

10/31

Unidirectional coloring versus bicoloring

= Row (left) and column (right) coloring of an arrowhead matrix (center), both
requiring the same number of colors as the matrix dimension (50 in this case).

11/31

Unidirectional coloring versus bicoloring

= Bicoloring of an arrowhead matrix, requiring 10 colors for the rows (left) and 10
colors for the columns (right).

12/31

Coloring and bicoloring on a rectangle matrix

I Y Y [EECORNEECCOO N
| O | | |
O O | ||
| 5] | | |
| | | |
A T Y I I EEORNEECOODNN

Figure — Row coloring (left) and column coloring (right) of a rectangle matrix, requiring the same number of colors
as the matrix dimensions (respectively 6 and 12 in this case).

000000000000 NOOOOOOOnonE mOO00000000E
| OoN | |

| 0N | |
| ON | |

| 0N | |
DNNNEEEEEEEE NAMMMMMMMMNE EO0O0O00000O0O008

Figure — Bicoloring of a rectangle matrix, requiring only 2 colors for the rows (left) and 2 colors for the columns
(right). In the central figure, each nonzero coefficient is colored using its row’s color and its column’s color.

13/31

Bicoloring in nonlinear least-squares problems

= Gauss-Newton subproblem : dm%g IJ(xk)d + F(xk)||? with J € R™Xn,
E n

m Column coloring + forward-mode AD is efficient when m > n.

m Dense rows (e.g., normalization constraints) make column coloring inefficient :
entire row must be recovered.

m Row coloring + reverse-mode AD is inefficient if m > n (many row colors).

m Bicoloring : recover sparse columns with forward-mode, few dense rows with
reverse-mode — improved performance.

14/31

Bicoloring in equality-constrained optimization

m Consider min f(x) subjectto c¢(x) =0
xERN

m f:R" 5 R, c:R” — R™, and the Jacobian J.(x) € R™*"

m Row coloring + reverse-mode AD is efficient when n > m.

Dense columns (variables affecting many constraints) make row coloring
inefficient.

m Column coloring + forward-mode AD is an alternative but may be suboptimal.

m Bicoloring : recover sparse rows with reverse-mode, dense columns with
forward-mode — better overall efficiency.

15/31

How to perform a bidirectional coloring ?

m Bicoloring and symmetric coloring share similarities.

Bicoloring : Recover coefficients from rows or columns.

m Symmetric coloring : Recover coefficients from upper or lower triangle.

m Can we use star and acyclic symmetric colorings for bicoloring?

16/31

How to perform a bidirectional coloring ?

Co . . . o JT
m Bicoloring on a Jacobian J can be seen as a symmetric coloring on H = {]

J 0

= We can easily derive both direct (star) and substitution (acyclic) bicoloring.

m m
g H ENEEEEEEEEED
5 E B
g] 5]
0 u (]
H H EEEEEEREEE
£ E Qoooooooooog
u 1 o o] B
o]] u u
o o u
H H H sEEEEEEEES
EEEEEEEEEEED DEEEEEEEEEEE
Figure — Symmetric coloring on H. Nonzeros are colored Figure — Bicoloring on J. Nonzeros are colored accor-
by the color of their columns on the left panel ding to their column colors in the top panel
and by the color of their rows on the right pa- and according to their row colors in the bot-
nel. tom panel.

17/31

Relation between neutral color and two-colored structures

toote ol

Figure — Variants of two-colored structures with trivial stars and trees (left), normal star (center) and normal tree
(right).

m Diagonal entries take the color of their column, but are always zero under
bicoloring.

m Normal trees require both colors for decompression.
m In normal stars, spoke colors are irrelevant for decompression.

m For trivial structures, the decompression color may be chosen arbitrarily from
either vertex.

18/31

Content of SparseMatrixColorings.jl

SparseMatrixColorings.jl is a registered Julia package dedicated to coloring sparse
Jacobians and Hessians.

pkg> add SparseMatrixColorings
julia> using SparseMatrixColorings

SparseMatrixColorings.jl implements algorithms from our research and the following
articles:

o What Color Is Your Jacobian? Graph Coloring for Computing Derivatives,
Gebremedhin et al. (2005)

o New Acyclic and Star Coloring Algorithms with Application to Computing
Hessians, Gebremedhin et al. (2007)

o Efficient Computation of Sparse Hessians Using Coloring and Automatic
Differentiation, Gebremedhin et al. (2009)

e ColPack : Software for graph coloring and related problems in scientific
computing, Gebremedhin et al. (2013)

e Revisiting sparse matrix coloring and bicoloring, Montoison et al. (2025)

19/31

Content of SparseMatrixColorings.jl

The three main functions to perform a coloring are coloring, ColoringProblem
and GreedyColoringAlgorithm.

using SparseMatrixColorings, SparseArrays

S = sparse ([
1111111111
100000O0O0CO0T1
10000O0O0O0CO0T1
10000O0O0O0CO0T1
1111111111

1)

problem = ColoringProblem(; structure=:nonsymmetric,
partition=:bidirectional)

order = RandomOrder ()

algo = GreedyColoringAlgorithm(order;
decompression=:direct,
postprocessing=true)

result = coloring(S, problem, algo)

20/31

Content of SparseMatrixColorings.jl

Based on the result of coloring, you can easily recover a vector of integer colors
with row_colors, column_colors, as well as the groups of colors with
row_groups and column_groups.

julia> column_colors (result)
1

N O OO OO o oo

julia> column_groups (result)
[1]
[10]

21/31

Content of SparseMatrixColorings.jl

julia> row_colors (result)
2

P O O O

julia> row_groups (result)
[5]
[1]

julia> ncolors (result)
4

22/31

Content of SparseMatrixColorings.jl

The functions compress and decompress efficiently store and retrieve compressed
representations of colorings for sparse matrices.

A = sparse ([
1 2 3 4 5 6 7 8 9 10
1170 0 0 O O O O 0 14
120 0 0 O O O O 0 15
130 0 0 O O O O 0 16
17 18 19 20 21 22 23 24 25 26

1)

Br, Bc = compress (A, result)

2x10 Matrix{Int64}:
17 18 19 20 21 22 23 24 25 26
1 2 3 4 5 6 7 8 9 10

5x2 Matrix{Into64}:

1 10
11 14
12 15
13 16
17 26

23/31

Content of SparseMatrixColorings.jl

julia> C = decompress (Br, Bc, result)
5x10 SparseMatrixCSC{Int64, Int64} with 26 stored entries:
1 2 3 4 5 6 7 8 9 10

1114
12 15
13 16

17 18 19 20 21 22 23 24 25 26

julia> decompress! (A, 2xBr, 3xBc, result)
5x10 SparseMatrixCSC{Int64, Int64} with 26 stored entries:
6 8 12 16 20 24 28 32 36 60

66 84
72 o 90
78 96

102 72 76 80 84 88 92 96 100 156

24 /31

What actually matters for JuMP and MOI ?

m Jacobian coloring is unnecessary : expression trees already enable very efficient
reverse-mode passes.

m But recent work on bicoloring introduces the idea of neutral colors in symmetric
colorings and post-processing.

m These neutral colors become directly useful in MOI if we stop assuming a fully
nonzero Hessian diagonal.

25/31

Ordering strategies matter

m MOI only supports the natural ordering of vertices.

= Many vertex orderings exist (random, largest first, smallest last, incidence degree,
dynamic largest first, ...) and produce different colorings.

m We can precompute multiple colorings with different orderings as a preprocessing
phase.

m Perfect elimination ordering is optimal for acyclic coloring on banded matrices or
matrices with chordal-like sparsity.

26/31

Acyclic vs. star coloring

m MOI currently relies on acyclic coloring.

m Only the colors are kept; tree structures are discarded, limiting efficient
preparation for decompression.

m Star coloring is cheaper to compute but yields more colors. We can alternate
decompression and directional derivatives without storing all compressed Hessian
columns.

m No need for DataStructures.IntDisjointSets: the forest structure in
SparseMatrixColorings. jl already captures everything, and could replace
the DataStructures. j1 dependency in MOI.

27/31

Towards integration in JuMP / MOI

m Neutral colors can be used in symmetric coloring for generic Hessian AD.
m Multiple-coloring preprocessing could improve robustness and reduce AD passes.

m Integration of SparseMatrixColorings.jl in MOI, potentially inside a new AD
backend ?

28/31

Optimal coloring with JuMP / MOI

We implemented an optimal column / row coloring algorithm based on constraint
programming in JuMP.

n = nb_vertices (bipartite_graph, Val (side))
model = Model (optimizer)

one variable per vertex to color, removing some renumbering
symmetries
@variable (model, 1 <= color[i=1l:n] <= i, Int)

one variable to count the number of distinct colors
@variable (model, ncolors, Int)
@Qconstraint (model, [ncolors; color] in MOI.CountDistinct(n + 1))

neighbors of the same vertex must have distinct colors
for i in vertices(bg, Val (other_side))
neigh = neighbors(bg, Val (other_side), 1)
@constraint (model, color[neigh] in
MOI.AllDifferent (length (neigh)))
end

minimize the number of distinct colors
Qobjective (model, Min, ncolors)
optimize! (model)
29/31

Optimal coloring with JuMP / MOI

Still need to add a JuMP formulation for symmetric colorings.

using SparseMatrixColorings, JuMP, MathOptInterface, MiniZinc

coloring_problem = ColoringProblem(;
structure=:nonsymmetric, partition=:column)

algo = OptimalColoringAlgorithm(
() —> MiniZinc.Optimizer{Float64} ("highs");
silent=false, assert_solved=false)

coloring (J, coloring_problem, algo)
num_colors = ncolors(result)

import ORTools_jll
path_cp_sat = joinpath(ORTools_jll.artifact_dir, "share",

"minizinc", "solvers", "cp-sat.msc")
algo = OptimalColoringAlgorithm(()—-> MiniZinc.Optimizer{Float64}
(path_cp_sat); silent=false, assert_solved=false)

coloring(J, coloring_problem, algo)
num_colors = ncolors (result)

30/31

Downloading SparseMatrixColorings.jl

https://github.com/gdalle/SparseMatrixColorings.jl

31/31

https://github.com/gdalle/SparseMatrixColorings.jl

