
Revisiting sparse matrix coloring and bicoloring

Alexis Montoison, Guillaume Dalle

November, 17th 2025
JuMP-dev
Auckland

1 / 31

Introduction

Automatic Differentiation (AD) is at the core of modern scientific computing and
nonlinear optimization.

Solvers such as Ipopt, Knitro, Uno, and MadNLP require Jacobians and
Lagrangian Hessians at every iteration in order to compute search directions.

These derivative matrices are large but sparse, and exploiting this sparsity is key
to efficient AD and linear algebra.

Coloring and bicoloring provides an elegant way to reduce the number of AD
passes needed to recover sparse Jacobians and Hessians.

2 / 31

Jacobian computation via automatic differentiation

Consider c : Rn → Rm with Jacobian Jc(x) = ∂c(x).

Forward-mode AD computes Jacobian-vector products : u 7→ Jc(x)u.

Reverse-mode AD computes vector-Jacobian products : v 7→ v⊤Jc(x).

The full Jacobian can be reconstructed column-wise or row-wise.

3 / 31

Exploiting sparsity

If columns have disjoint non-zeros, they can be recovered together.

Figure – Materializing a Jacobian with forward-mode AD : (left) compressed evaluation of orthogonal columns (right)
decompression to Jacobian matrix.

4 / 31

Exploiting sparsity

If rows have disjoint non-zeros, they can be recovered together.

Figure – Materializing a Jacobian with reverse-mode AD : (left) compressed evaluation of orthogonal rows (right)
decompression to Jacobian matrix.

5 / 31

Automatic sparse differentiation

6 / 31

Graph coloring

This grouping problem can be reformulated as graph coloring.

The goal is to minimize the number of AD evaluations.

Graph coloring determines independent sets of columns (or rows).

Complexity scales with the number of colors instead of n or m.

7 / 31

Graph coloring

Figure – Optimal graph coloring.

Figure – Suboptimal graph coloring (vertex 1 could be colored in yellow).

Figure – Infeasible graph coloring (vertices 2 and 4 are adjacent on the graph, but share a color)

.
8 / 31

Hessian computation via automatic differentiation

Consider f : Rn → R with Hessian Hf (x) = ∂∇f (x).

Forward-over-reverse mode AD computes Hessian-vector products : w 7→ Hf (x)w .

We can exploit symmetry to recover non-zeros from the lower or upper triangle.

Star coloring and acyclic coloring are the most common symmetric colorings.

9 / 31

Bicoloring

Some Jacobians contain dense substructures.

Standard unidirectional coloring can become inefficient.

Bicoloring jointly colors rows and columns.

This combines forward- and reverse-mode AD for better performance.

10 / 31

Unidirectional coloring versus bicoloring

Row (left) and column (right) coloring of an arrowhead matrix (center), both
requiring the same number of colors as the matrix dimension (50 in this case).

11 / 31

Unidirectional coloring versus bicoloring

Bicoloring of an arrowhead matrix, requiring 10 colors for the rows (left) and 10
colors for the columns (right).

12 / 31

Coloring and bicoloring on a rectangle matrix

Figure – Row coloring (left) and column coloring (right) of a rectangle matrix, requiring the same number of colors
as the matrix dimensions (respectively 6 and 12 in this case).

Figure – Bicoloring of a rectangle matrix, requiring only 2 colors for the rows (left) and 2 colors for the columns
(right). In the central figure, each nonzero coefficient is colored using its row’s color and its column’s color.

13 / 31

Bicoloring in nonlinear least-squares problems

Gauss-Newton subproblem : min
d∈Rn

∥J(xk)d + F (xk)∥2 with J ∈ Rm×n.

Column coloring + forward-mode AD is efficient when m ≫ n.

Dense rows (e.g., normalization constraints) make column coloring inefficient :
entire row must be recovered.

Row coloring + reverse-mode AD is inefficient if m ≫ n (many row colors).

Bicoloring : recover sparse columns with forward-mode, few dense rows with
reverse-mode → improved performance.

14 / 31

Bicoloring in equality-constrained optimization

Consider min
x∈Rn

f (x) subject to c(x) = 0

f : Rn → R, c : Rn → Rm, and the Jacobian Jc(x) ∈ Rm×n

Row coloring + reverse-mode AD is efficient when n ≫ m.

Dense columns (variables affecting many constraints) make row coloring
inefficient.

Column coloring + forward-mode AD is an alternative but may be suboptimal.

Bicoloring : recover sparse rows with reverse-mode, dense columns with
forward-mode → better overall efficiency.

15 / 31

How to perform a bidirectional coloring ?

Bicoloring and symmetric coloring share similarities.

Bicoloring : Recover coefficients from rows or columns.

Symmetric coloring : Recover coefficients from upper or lower triangle.

Can we use star and acyclic symmetric colorings for bicoloring?

16 / 31

How to perform a bidirectional coloring ?

Bicoloring on a Jacobian J can be seen as a symmetric coloring on H =
[

0 JT

J 0

]
.

We can easily derive both direct (star) and substitution (acyclic) bicoloring.

Figure – Symmetric coloring on H. Nonzeros are colored
by the color of their columns on the left panel
and by the color of their rows on the right pa-
nel.

Figure – Bicoloring on J. Nonzeros are colored accor-
ding to their column colors in the top panel
and according to their row colors in the bot-
tom panel.

17 / 31

Relation between neutral color and two-colored structures

1

2 4

3

4

1

2 3

1

2 3

4 5 6 7

Figure – Variants of two-colored structures with trivial stars and trees (left), normal star (center) and normal tree
(right).

Diagonal entries take the color of their column, but are always zero under
bicoloring.

Normal trees require both colors for decompression.

In normal stars, spoke colors are irrelevant for decompression.

For trivial structures, the decompression color may be chosen arbitrarily from
either vertex.

18 / 31

Content of SparseMatrixColorings.jl

SparseMatrixColorings.jl is a registered Julia package dedicated to coloring sparse
Jacobians and Hessians.� �
pkg> add SparseMatrixColorings
julia> using SparseMatrixColorings� �
SparseMatrixColorings.jl implements algorithms from our research and the following
articles :

• What Color Is Your Jacobian? Graph Coloring for Computing Derivatives,
Gebremedhin et al. (2005)

• New Acyclic and Star Coloring Algorithms with Application to Computing
Hessians, Gebremedhin et al. (2007)

• Efficient Computation of Sparse Hessians Using Coloring and Automatic
Differentiation, Gebremedhin et al. (2009)

• ColPack : Software for graph coloring and related problems in scientific
computing, Gebremedhin et al. (2013)

• Revisiting sparse matrix coloring and bicoloring, Montoison et al. (2025)

19 / 31

Content of SparseMatrixColorings.jl
The three main functions to perform a coloring are coloring, ColoringProblem
and GreedyColoringAlgorithm.� �
using SparseMatrixColorings, SparseArrays

S = sparse([
1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1

])

problem = ColoringProblem(; structure=:nonsymmetric,
partition=:bidirectional)

order = RandomOrder()

algo = GreedyColoringAlgorithm(order;
decompression=:direct,
postprocessing=true)

result = coloring(S, problem, algo)� �
20 / 31

Content of SparseMatrixColorings.jl

Based on the result of coloring, you can easily recover a vector of integer colors
with row_colors, column_colors, as well as the groups of colors with
row_groups and column_groups.� �
julia> column_colors(result)
1
0
0
0
0
0
0
0
0
2� �� �

julia> column_groups(result)
[1]
[10]� �

21 / 31

Content of SparseMatrixColorings.jl

� �
julia> row_colors(result)
2
0
0
0
1� �� �

julia> row_groups(result)
[5]
[1]� �� �

julia> ncolors(result)
4� �

22 / 31

Content of SparseMatrixColorings.jl
The functions compress and decompress efficiently store and retrieve compressed
representations of colorings for sparse matrices.� �
A = sparse([

1 2 3 4 5 6 7 8 9 10
11 0 0 0 0 0 0 0 0 14
12 0 0 0 0 0 0 0 0 15
13 0 0 0 0 0 0 0 0 16
17 18 19 20 21 22 23 24 25 26

])� �� �
Br, Bc = compress(A, result)
2×10 Matrix{Int64}:
17 18 19 20 21 22 23 24 25 26
1 2 3 4 5 6 7 8 9 10

5×2 Matrix{Int64}:
1 10
11 14
12 15
13 16
17 26� �

� �
julia> C = decompress(Br, Bc, result)
5×10 SparseMatrixCSC{Int64, Int64} with 26 stored entries:

1 2 3 4 5 6 7 8 9 10
11 · · · · · · · · 14
12 · · · · · · · · 15
13 · · · · · · · · 16
17 18 19 20 21 22 23 24 25 26� �

23 / 31

Content of SparseMatrixColorings.jl

� �
julia> C = decompress(Br, Bc, result)
5×10 SparseMatrixCSC{Int64, Int64} with 26 stored entries:

1 2 3 4 5 6 7 8 9 10
11 · · · · · · · · 14
12 · · · · · · · · 15
13 · · · · · · · · 16
17 18 19 20 21 22 23 24 25 26� �

� �
julia> decompress!(A, 2*Br, 3*Bc, result)
5×10 SparseMatrixCSC{Int64, Int64} with 26 stored entries:

6 8 12 16 20 24 28 32 36 60
66 · · · · · · · · 84
72 · · · · · · · · 90
78 · · · · · · · · 96
102 72 76 80 84 88 92 96 100 156� �

24 / 31

What actually matters for JuMP and MOI ?

Jacobian coloring is unnecessary : expression trees already enable very efficient
reverse-mode passes.

But recent work on bicoloring introduces the idea of neutral colors in symmetric
colorings and post-processing.

These neutral colors become directly useful in MOI if we stop assuming a fully
nonzero Hessian diagonal.

25 / 31

Ordering strategies matter

MOI only supports the natural ordering of vertices.

Many vertex orderings exist (random, largest first, smallest last, incidence degree,
dynamic largest first, ...) and produce different colorings.

We can precompute multiple colorings with different orderings as a preprocessing
phase.

Perfect elimination ordering is optimal for acyclic coloring on banded matrices or
matrices with chordal-like sparsity.

26 / 31

Acyclic vs. star coloring

MOI currently relies on acyclic coloring.

Only the colors are kept; tree structures are discarded, limiting efficient
preparation for decompression.

Star coloring is cheaper to compute but yields more colors. We can alternate
decompression and directional derivatives without storing all compressed Hessian
columns.

No need for DataStructures.IntDisjointSets : the forest structure in
SparseMatrixColorings.jl already captures everything, and could replace
the DataStructures.jl dependency in MOI.

27 / 31

Towards integration in JuMP / MOI

Neutral colors can be used in symmetric coloring for generic Hessian AD.

Multiple-coloring preprocessing could improve robustness and reduce AD passes.

Integration of SparseMatrixColorings.jl in MOI, potentially inside a new AD
backend ?

28 / 31

Optimal coloring with JuMP / MOI
We implemented an optimal column / row coloring algorithm based on constraint
programming in JuMP.� �
n = nb_vertices(bipartite_graph, Val(side))
model = Model(optimizer)

one variable per vertex to color, removing some renumbering
symmetries

@variable(model, 1 <= color[i=1:n] <= i, Int)

one variable to count the number of distinct colors
@variable(model, ncolors, Int)
@constraint(model, [ncolors; color] in MOI.CountDistinct(n + 1))

neighbors of the same vertex must have distinct colors
for i in vertices(bg, Val(other_side))

neigh = neighbors(bg, Val(other_side), i)
@constraint(model, color[neigh] in

MOI.AllDifferent(length(neigh)))
end

minimize the number of distinct colors
@objective(model, Min, ncolors)
optimize!(model)� �29 / 31

Optimal coloring with JuMP / MOI
Still need to add a JuMP formulation for symmetric colorings.� �
using SparseMatrixColorings, JuMP, MathOptInterface, MiniZinc

coloring_problem = ColoringProblem(;
structure=:nonsymmetric, partition=:column)

algo = OptimalColoringAlgorithm(
() -> MiniZinc.Optimizer{Float64}("highs");

silent=false, assert_solved=false)

coloring(J, coloring_problem, algo)
num_colors = ncolors(result)

import ORTools_jll
path_cp_sat = joinpath(ORTools_jll.artifact_dir, "share",

"minizinc", "solvers", "cp-sat.msc")

algo = OptimalColoringAlgorithm(()-> MiniZinc.Optimizer{Float64}
(path_cp_sat); silent=false, assert_solved=false)

coloring(J, coloring_problem, algo)
num_colors = ncolors(result)� �

30 / 31

Downloading SparseMatrixColorings.jl

https://github.com/gdalle/SparseMatrixColorings.jl

31 / 31

https://github.com/gdalle/SparseMatrixColorings.jl

