

A Julia ecosystem for Quadratic Unconstrained Binary Optimization

Pedro Maciel Xavier

Purdue University Federal University of Rio de Janeiro

TITLE

What has to be done to incorporate Quantum & other Physics-inspired Technologies in Optimization Workflows?

What has to be done to incorporate Quantum & other Physics-inspired Technologies in Optimization Workflows?

Access Solvers

What has to be done to incorporate Quantum & other Physics-inspired Technologies in Optimization Workflows?

Access Solvers

How to deal with the many different APIs across services?

Summary What has to be done to incorporate Quantum **Reformulate Models** & other Physics-inspired Technologies in **Optimization Workflows? Access Solvers** How to deal with the many different APIs across services? **A Common Interface**

🔯 🔏 JUMP

QUBO.jl: A Julia ecosystem for Quadratic Unconstrained Binary Optimization JuMP-dev | July 19-21, 2024 | HEC Montréal, Canada

QUBO.jl: A Julia ecosystem for Quadratic Unconstrained Binary Optimization JuMP-dev | July 19-21, 2024 | HEC Montréal, Canada

QUBO.jl: A Julia ecosystem for Quadratic Unconstrained Binary Optimization JuMP-dev | July 19-21, 2024 | HEC Montréal, Canada

A Common Interface

A Compiler for Mathematical Programming

QUBO.jl: A Julia ecosystem for Quadratic Unconstrained Binary Optimization JuMP-dev | July 19-21, 2024 | HEC Montréal, Canada

QUBO.jl: A Julia ecosystem for Quadratic Unconstrained Binary Optimization JuMP-dev | July 19-21, 2024 | HEC Montréal, Canada

QUBO.jl: A Julia ecosystem for Quadratic Unconstrained Binary Optimization JuMP-dev | July 19-21, 2024 | HEC Montréal, Canada

JuMP-dev | July 19-21, 2024 | HEC Montréal, Canada

QUBO.jl: A Julia ecosystem for Quadratic Unconstrained Binary Optimization JuMP-dev | July 19-21, 2024 | HEC Montréal, Canada

JUMP

QUBO.jl: A Julia ecosystem for Quadratic Unconstrained Binary Optimization JuMP-dev | July 19-21, 2024 | HEC Montréal, Canada

JUMP

QUBO.jl: A Julia ecosystem for Quadratic Unconstrained Binary Optimization JuMP-dev | July 19-21, 2024 | HEC Montréal, Canada

JUMP

A Continuous Benchmarking Library

A Common Interface

Solution Overview

A Common Interface

$\min_{\mathbf{s} \neq -\mathbf{a}(\mathbf{y}; \mathbf{z})} f(\mathbf{y}; \mathbf{z}) \le 0$	MINLP	
$egin{aligned} & \mathbf{h}(m{y};m{z}) \leq 0 \ & m{h}(m{y};m{z}) = 0 \ & m{y} \in \mathbb{Z}^m; m{z} \in \mathbb{R}^n \end{aligned}$	$ \begin{array}{l} \min \ f(\boldsymbol{y}; \boldsymbol{z}) \\ \text{s.t.} \ \boldsymbol{g}(\boldsymbol{y}; \boldsymbol{z}) \leq 0 \\ \boldsymbol{h}(\boldsymbol{y}; \boldsymbol{z}) = 0 \\ \boldsymbol{y} \in \mathbb{Z}^m; \boldsymbol{z} \in \mathbb{R}^n \end{array} $	7

Solution Overview

Solution Overview

JUMP

A Common Interface

Integrating an heterogeneous Solver Landscape

D-Wave

Fujitsu

IBM

P. L. McMahon et al., 2016

Microsoft Research

Toshiba, Goto et al., 2019

Quantum Annealing, Digital Annealing, Variational Quantum Eigensolver, Quantum Alternating Optimization Ansatz, Coherent Ising Machine, Analog Iterative Machine, Simulated Bifurcation Machine, CMOS Annealing...

Hitachi, Yamaoka et al.

Integrating an heterogeneous Solver Landscape

D-Wave

Fujitsu

IBM

P. L. McMahon et al., 2016

Microsoft Research

Toshiba, Goto et al., 2019

Julia Mathematical Programming

Hitachi, Yamaoka et al.

A Common Solver Interface

•••			
using JuMP using QiskitOpt # IBM Qiskit Optimizati	•••	ing JuMP ing PySA # NASA Parallel Tempering	
<pre>model = Model(QiskitOpt.QAOA.Optimizer)</pre>	using JuMP using DWave # DWave Quantum Annealing	del = Model(PySA.Optimizer)	
<pre>@variable(model, x[1:n], Bin) @objective(model, Min, x' * Q * x + l' * x + c)</pre>	<pre>model = Model(DWave.Optimizer) @variable(model, x[1:n], Bin) @objective(model,</pre>	<pre>variable(model, x[1:n], Bin) bjective(model, Min, x' * Q * x + ℓ' * x + c</pre>	
optimize!(model)	MIN, x' * Q * x + ℓ' * x + c)	timize!(model)	
@show objective_value(model) @show value.(x)	optimize!(model)	<pre>show objective_value(model) show value.(x)</pre>	
	@show objective_value(model) @show value.(x)		

Testing and Benchmarking Solvers

A Continuous Benchmarking Library

Testing and Benchmarking Solvers

A Continuous Benchmarking Library

Sources Summary			
Collection	Instances	Size Range	
arXiv:2103.008464 (3R3X)	2300	16 - 4096	
arXiv:1903.100928 (3R3X)	3200	16 - 4096	
arXiv:1903.100928 (5R5X)	307	24 - 24576	
qplib*	23	120 - 1225	

*QPLIB: A Library of Quadratic Programming Instances, Mathematical Programming Computation, 2018

Testing and Benchmarking Solvers

A Continuous Benchmarking Library

•••

QUB0Lib.load_index() do index db = QUB0Lib.database(index) df = DBInterface.execute(db, SELECT instance FROM Instances WHERE dimension < 100 AND guadratic_density < 0.5;) |> DataFrame codes = collect(Int, df[!, :instance]) @info "Running DWave Neal" OUBOLib.run!(index, DWave.Neal.Optimizer, codes; solver = "dwave-neal" @info "Running DWave (Quantum)" OUBOLib.run!(index, DWave.Optimizer, codes; solver = "dwave" end

Z JUMP

$$\begin{array}{l} \min \ f(\boldsymbol{y}; \boldsymbol{z}) \\ \text{s.t.} \ g_i(\boldsymbol{y}; \boldsymbol{z}) \in S_i \\ \boldsymbol{y} \in \mathbb{Z}^m; \boldsymbol{z} \in \mathbb{R}^n \end{array}$$

C, C++, Julia, Rust...

AMPL, JuMP, Pyomo...

EXAMPLE

$$\min_{\mathbf{g},\mathbf{u},\mathbf{x}} \sum_{t} \mathbf{c}' \mathbf{g}^{(t)} + \mathbf{i}' \mathbf{x}$$
s.a.
$$\sum_{j} g_{j}^{(t)} = d^{(t)} \quad \forall t$$

$$g_{j}^{(t)} \leq u_{j}^{(t)} G_{j}^{(\max)} \quad \forall j, t$$

$$u_{j}^{(t)} \leq x_{j} \quad \forall j, t$$

$$g_{j}^{(t)} \in [0, G_{j}^{(\max)}] \quad \forall j, t$$

$$u_{j}^{(t)} \in \{0, 1\} \quad \forall j, t$$

$$x_{j} \in \{0, 1\} \quad \forall j$$

OPERATION $\min_{\mathbf{g},\mathbf{u},\mathbf{x}}\sum_{t}\mathbf{c}'\mathbf{g}^{(t)}+\mathbf{i}'\mathbf{x}$ s.a. $\sum_{j} g_{j}^{(t)} = d^{(t)}$ $\forall t$ BALANCE $g_i^{(t)} \le u_i^{(t)} G_i^{(\max)} \quad \forall j, t$ $u_i^{(t)} \le x_j \qquad \forall j, t$ $g_j^{(t)} \in [0, G_j^{(\max)}] rac{orall j}{OPERATION} orall j, t$ $u_i^{(t)} \in \{0, 1\} \qquad \forall j, t$ $x_i \in \{0, 1\}$ $\forall j$

$$\begin{split} \min_{\mathbf{g},\mathbf{u},\mathbf{x}} \sum_{t} \mathbf{c}' \mathbf{g}^{(t)} + \mathbf{i}' \mathbf{x} \\ \text{s.a.} \sum_{j} g_{j}^{(t)} = d^{(t)} \qquad \forall t \\ g_{j}^{(t)} \leq u_{j}^{(t)} G_{j}^{(\max)} \quad \forall j, t \\ u_{j}^{(t)} \leq x_{j} \qquad \forall j, t \\ g_{j}^{(t)} \in [0, G_{j}^{(\max)}] \quad \forall j, t \\ u_{j}^{(t)} \in \{0, 1\} \qquad \forall j, t \\ u_{j}^{(t)} \in \{0, 1\} \qquad \forall j, t \\ x_{j} \in \{0, 1\} \qquad \forall j \end{split}$$

INVESTMENT

$$\begin{split} \min_{\mathbf{g},\mathbf{u},\mathbf{x}} \sum_{t} \mathbf{c}' \mathbf{g}^{(t)} + \mathbf{i}' \mathbf{x} \\ \text{s.a.} \sum_{j} g_{j}^{(t)} = d^{(t)} \qquad \forall t \\ g_{j}^{(t)} \leq u_{j}^{(t)} G_{j}^{(\max)} \quad \forall j, t \\ u_{j}^{(t)} \leq x_{j} \qquad \forall j, t \\ g_{j}^{(t)} \in [0, G_{j}^{(\max)}] \quad \forall j, t \\ u_{j}^{(t)} \in \{0, 1\} \qquad \forall j, t \\ u_{j}^{(t)} \in \{0, 1\} \qquad \forall j \\ \text{INVESTMENT} \end{split}$$

•	•									
1 2 3	using JuMP using PySA									
4	<pre>model = Model(PySA.Optimizer)</pre>									
6 7 8 9	@variable(model, 0 ≤ g[1:T,j=1:n] ≤ Gmax[j]) @variable(model, u[1:T,1:n], Bin) @variable(model, x[1:n], Bin)									
10 11	<pre>@objective(model, Min, sum(c'g[t,:] for t=1:T) + i'x)</pre>									
12 13 14 15	<pre>@constraint(model, [t=1:T], sum(g[t,:]) = d[t]) @constraint(model, [t=1:T,j=1:n], g[t,j] ≤ u[t,j] ★ Gmax[j]) @constraint(model, [t=1:T,j=1:n], u[t,j] ≤ x[j])</pre>									
16 17	<pre>optimize!(model)</pre>									
18 19	<pre>@show objective_value(model) @show value.(x) snappily.com</pre>									

	OPERATION	INVEST	IENT
$\min_{\mathbf{g},\mathbf{u},\mathbf{x}}$	$\sum_t \mathbf{c}' \mathbf{g}^{(t)}$	$+ \mathbf{i}' \mathbf{x}$	
s.a.	$\sum g_i^{(t)} =$	$d^{(t)}$	$\forall t$
	\sum_{j}^{j}	I	BALANCE
	$g_j^{(t)} \le u_j^{(t)}$	$G_j^{(\max)}$	$\forall j, t$
	(t)	UNIT COM	MITMENT
	$u_j^{(i)} \leq x_j$		$\forall j,t$
	(t) -		ESTMENT
	$g_j^{(\iota)} \in [0, C]$	$\begin{bmatrix} \gamma(\max) \\ z_j \end{bmatrix}$	$\forall j, t$
	(t)		LINATION
	$u_j^{(\iota)} \in \{0, 1\}$	1	$\forall j, t$
	-(0, 1)		
	$x_j \in \{0, 1\}$	}	$\forall j$
		INV	ESTMENT

1 2 3	using JuMP, QUBO using PySA
4 5	<pre>model = Model(()</pre>
6 7 8	<pre>@variable(model, 0 ≤ g[1:T,j=1:n] ≤ Gmax[j]) @variable(model, u[1:T,1:n], Bin) @variable(model, x[1:n], Bin)</pre>
9 10 11	<pre>@objective(model, Min, sum(c'g[t,:] for t=1:T) + i'x)</pre>
12 13 14 15	<pre>@constraint(model, [t=1:T], sum(g[t,:]) = d[t]) @constraint(model, [t=1:T,j=1:n], g[t,j] ≤ u[t,j] * Gmax[j]) @constraint(model, [t=1:T,j=1:n], u[t,j] ≤ x[j])</pre>
16 17	<pre>optimize!(model)</pre>
18 19	<pre>@show objective_value(model) @show value.(x) snappify.com</pre>

RESULTS

Reformulation Performance

Qualitative Analysis

TABLE I: Comparing the support provided by of proposed framework and existing libraries and framework in each step of quantum optimization.

 \checkmark indicates that the corresponding action is performed automatically.

 \checkmark signifies that a proper function is available for implementing the step.

× indicates that the method is not fully supported.

⁺ denotes that logarithmic encoding is also compatible with bases different from two.

* signifies that the encoding techniques can be exploited only for constraints translation.

[†] indicates that the polynomial reduction is implemented by exploiting the corresponding qubovert function.

Summer			Existing	Existing Fra	Proposed					
Supports for each step		pyqubo [31]	qubovert [32]	dimod [33]	Qiskit [34]	fixstars [35]	openQAOA [36]	AutoQUBO [37]	QUBO.jl [38]	Framework
Floati	ng Encoding	×	×	×	×	×	×	×	1	1
	Logarithmic [39]	1	1	1	1	1.	×	×	1	√ +
	Unitary [39]	1	1	×	×	¥*	×	×	1	1
Integer Encoding	Dictionary [39]	1	×	×	×	×	×	×	1	1
	Domain-Wall [40]	1	×	×	×	×	×	×	1	1
	Bounded-Coeff [41]	×	×	×	×	×	×	×	1	1
	Arithmetic [42]	×	×	×	×	1.	×	×	1	1
	Equality [22] [21]	×	1	1	1	1	1	×	1	1
Functions	Inequality [22]	×	1	1	1	1	1	×	1	1
	Boolean [22]	1	1	1	×	1	×	×	×	1
Penalty Weight	UB positive [43]	×	×	×	×	×	×	×	×	1
	MQC [43]	×	×	1	×	×	×	×	×	1
	VLM [44]	×	×	×	×	×	×	1	×	1
	MOMC [43]	×	×	×	×	×	×	×	×	1
	MOC [43]	×	×	×	×	×	×	×	×	1
	UB Naive [45], [46]	×	1	×	1	×	×	1	×	1
	UB posiform [45], [46]	×	×	×	×	×	×	1	×	1
Polynomial Reduction		1	1	1	×	1	×	1	1	à
	Dwave QA	1	×	1	×	1	×	1	1	1
	QAOA	×	×	×	1	×	1	×	1	1
Solvers	VQE	×	×	×	1	×	1	×	1	1
	GAS	×	×	×	1	×	×	×	×	1
	SA	1	1	1	1	1	×	1	1	1
Soluti	Solution Decoding		1	1	1	1	1	1	1	1
Check Constraints		1	1	1	×	1	×	1	1	1
Penalty Update	Sequential [47]	×	×	×	×	×	×	×	×	1
	Scaled [47]	×	×	×	×	×	×	×	×	1
	Binary search [47]	×	×	×	×	×	×	×	×	1

Towards an Automatic Framework for Solving Optimization Problems with Quantum Computers, arXiv:2406.12840, 2024

CITATION

ALERT

Qualitative Analysis

TABLE I: Comparing the support provided by of proposed framework and existing libra quantum optimization.

 \checkmark indicates that the corresponding action is performed automatically.

- \checkmark signifies that a proper function is available for implementing the step.
- × indicates that the method is not fully supported.
- ⁺ denotes that logarithmic encoding is also compatible with bases different from two.
- * signifies that the encoding techniques can be exploited only for constraints translation.
- [†] indicates that the polynomial reduction is implemented by exploiting the corresponding qubovert function

	6			Existing	Existing Frameworks		Proposed			
Support	pyqubo [31]	qubovert [32]	dimod [33]	Qiskit [34]	fixstars [35]	openQAOA [36]	AutoQUBO [37]	QUBO.jl [38]	Framewor	
Floati	ng Encoding	×	×	×	×	×	×	×	1	1
	Logarithmic [39]	1	1	1	1	4.	×	×	1	√ +
	Unitary [39]	1	1	×	×	ו	×	×	1	1
Integer Encoding	Dictionary [39]	1	×	×	×	×	×	×	1	1
	Domain-Wall [40]	1	×	×	×	×	×	×	1	1
	Bounded-Coeff [41]	×	×	×	×	×	×	×	1	1
	Arithmetic [42]	×	×	×	×	1.	×	×	1	1
	Equality [22] [21]	×	1	1	1	1	1	×	1	1
Functions	Inequality [22]	×	1	1	1	1	1	×	1	1
	Boolean [22]	1	1	1	×	1	×	×	×	1
Penalty Weight	UB positive [43]	×	×	×	×	×	×	×	×	1
	MQC [43]	×	×	1	×	×	×	×	×	1
	VLM [44]	×	×	×	×	×	×	1	×	1
	MOMC [43]	×	×	×	×	×	×	×	×	1
	MOC [43]	×	×	×	×	×	×	×	×	1
	UB Naive [45], [46]	×	1	×	1	×	×	1	×	1
	UB posiform [45], [46]	×	×	×	×	×	×	1	×	1
Polynon	nial Reduction	1	1	1	×	1	×	1	1	v †
	Dwave QA	1	×	1	×	1	×	1	1	1
	QAOA	×	×	×	1	×	1	×	1	1
Solvers	VQE	×	×	×	1	×	1	×	1	1
	GAS	×	×	×	1	×	×	×	×	1
	SA	1	1	1	1	1	×	1	1	1
Solutio	Solution Decoding		1	1	1	1	1	1	1	1
Check	Check Constraints		1	1	×	1	×	1	1	1
Penalty Update	Sequential [47]	×	×	×	×	×	×	×	×	1
	Scaled [47]	×	×	×	×	×	×	×	×	1
	Binary search [47]	×	×	×	×	×	×	×	×	1

Towards an Automatic Framework for Solving Optimization Problems with Quantum Computers, arXiv:2406.12840, 2024

CITATION

ALERT

What's new?

- Additional attributes to control reformulation
 - e.g. ConstraintPenaltyHint, VariableEncodingMethod
- Reformulation Callbacks
- Architecture-based dispatch
- Disjuctive Programming (DisjunctiveToQUB0.jl)

Integrating an heterogeneous Solver Landscape

D-Wave

Fujitsu

IBM

P. L. McMahon et al., 2016

Microsoft Research

Toshiba, Goto et al., 2019

Julia Mathematical Programming

Hitachi, Yamaoka et al.

Integrating an heterogeneous Solver Landscape

D-Wave

Fujitsu

IBM

P. L. McMahon et al., 2016

Hitachi, Yamaoka et al.

Julia Mathematical Programming

U

Toshiba, Goto et al., 2019

D-Wave

IBM

Toshiba, Goto et al., 2019

P. L. McMahon et al., 2016

Hitachi, Yamaoka et al.

(QUBO) min $\mathbf{x'Qx} + \boldsymbol{\ell'x} + c$ s.t. $\mathbf{x} \in \{0, 1\}^n$

Microsoft Research AOC

(QUMO) min $\mathbf{z'Q}\mathbf{z} + \boldsymbol{\ell'z} + c$ s.t. $\mathbf{z} = [\mathbf{x}; \mathbf{y}]$ $\mathbf{x} \in \{0,1\}^m$ $\mathbf{y} \in [-1, +1]^n$

JUMP

MOI Bridges: [2002.03447] MathOptInterface: a data structure for mathematical optimization problems (arxiv.org)

JUMP

MOI Bridges: [2002.03447] MathOptInterface: a data structure for mathematical optimization problems (arxiv.org)

JUMP

MOI Bridges: [2002.03447] MathOptInterface: a data structure for mathematical optimization problems (arxiv.org)

JUMP

MOI Bridges: [2002.03447] MathOptInterface: a data structure for mathematical optimization problems (arxiv.org)

JUMP

MOI Bridges: [2002.03447] MathOptInterface: a data structure for mathematical optimization problems (arxiv.org)

JUMP

MOI Bridges: [2002.03447] MathOptInterface: a data structure for mathematical optimization problems (arxiv.org)

What about MOI Bridges?

- □ In fact, it is good to use as many MOI Bridges as possible
- □ Some of the operations are too destructive
 - e.g. Penalization, Encoding Continuous Variables
- □ Solver-dependent reformulation path finding
- □ Fine-grained control over reformulation steps

- Generalize the reformulation algorithm
- Expand constraint support
- Set up continuous benchmarking service
- Draw insights from benchmarking to guide reformulation

Wishlist Food for Thought

- Asynchronous optimize! call
- Communication protocol for client-server apps

Acknowledgements

Pedro Ripper PUC-Rio, PSR

Joaquim Dias Garcia PSR

Nelson Maculan UFRJ

David E. Bernal Neira Purdue

Universities Space Research Association

THANKS FLATICON.COM FOR THE FIGURES

More Acknowledgements

Christos Gkantsidis Microsoft Research UK

Kirill Kalinin Microsoft Research UK

THANKS FLATICON.COM FOR THE FIGURES

Thanks!

pmacielx@purdue.edu pedrox@cos.ufrj.br

GitHub Repository

arXiv Preprint

