Bridging Machine Learning and Optimization with JuMP

Andrew Rosemberg

∗AI4OPT, Georgia Institute of Technology, arosemberg3@gatech.edu

Highlights

- ‣ AI & Optimization: Friends and Foes.
- ‣ JuMP and Deep Learning: How to Train Optimization Surrogates?
- ‣ Julia's Multiple Dispatch: It is Great when Things Just Work.
- ‣ JuMP and Reinforcement Learning: How to Train Policies?
- ‣ Hopes and Plans for the Future!

AI & Optimization: Friends and Foes

- ‣ AI & ML mostly concerned with Descriptive / Predictive Problems – RL: Failures to then positive results
- ‣ Optimization focused on Prescriptions
	- Uncertainty: Stochastic / Robust Optimization

[AI & Optim](https://github.com/andrewrosemberg/PortfolioOpt.jl)ization: Finally, Friend

- ‣ Predict than Optimize
	- Point Prediction / Scenario Selection / Ambiguity
	- Deterministic / Stochastic / Distributionally Robu

At **JuMP allowed complicated Portfolio Optimization (PO)** with » PortfolioOpt.jl: Portfolio Optimization (PO) using JuN

▶ Predict than Optimize – than loop – Application's aware objective for ML models

DiffOpt (Differential Optimization) allowed us to feedback fire to ML-Models.

AI & Optimization: Teammates!

Al Institute for Advances in Optimization

- ‣ Parametric Optimization Problems
	- Repetitive (Learnable) structure What can we do?

β → f(x) **Proxy** β → x β → c!

 $\frac{\top}{\beta} \mathbf{x}$

Old News: Learning Value Functions

$$
\mathbf{x} \to \mathbb{E}[\mathcal{Q}(\mathbf{x},\omega)] \qquad \mathbf{1}^{\mathsf{st}} \; \mathsf{Stage} \begin{cases} \min \limits_{\mathbf{x}} & c^T \mathbf{x} + \mathbb{E}[\mathcal{Q}(\mathbf{x},\omega)] & \text{for} \\ \text{s.t.} & \mathbf{x} \in \mathcal{X} \end{cases}
$$
 Tractability

$$
2^{\mathsf{nd}}\ \mathsf{Stage} \left\{\mathcal{Q}(\mathbf{x},\omega) = \begin{cases} \min_{y} & g^T y \\ \text{s.t.} & Ay = b(\omega) - H\mathbf{x} \\ & y \in \mathcal{Y} \end{cases} \right\}
$$

6

 \bullet

Using Value Functions Approximations

‣ Cutting Planes

Using Value Functions Approximations

‣ Cutting Planes

Input-Convex Neural Network (ICNN)

Al Institute for Advances in Optimization

$$
\mathbf{x}^{k} = h^{k}(\mathbf{x}^{k-1}) = \text{ReLU}(W^{k}\mathbf{x}^{k-1} + H^{k}\mathbf{x}^{0} + d^{k}), \quad (9)
$$

Fig. 2. Fully Connected ICNN

(a) Example DNN (left) and its Output (right). The DNN defines a non-convex function.

(b) Example ICNN (left) and its Output (right). All ICNN weights are positive and it defines a convex function.

Fig. 1. Illustration of Input-Convex Neural Networks.

Using Value Functions Approximations

▶ Cutting Planes

Proxies and OPF

Al Institute for Advances in Optimization

Can ICNNs approximate OPF value functions?

1st Stage
$$
\begin{cases} \min_{\mathbf{x}} & c^T \mathbf{x} + \mathbb{E}[\mathcal{Q}(\mathbf{x}, \omega)] \\ \text{s.t.} & \mathbf{x} \in \mathcal{X} \end{cases}
$$

Model 1 The AC-OPF Model
\n $\begin{array}{c}\n \text{min} \quad \sum_{i \in \mathcal{N}} c_i \mathbf{p}_i^g \\ \text{s.t.} \quad \mathbf{S}_i^g - \mathbf{S}_i^d - (Y_i^s)^* \mathbf{V}_i ^2 = \sum_{ij \in \mathcal{E} \cup \mathcal{E}^R} \mathbf{S}_{ij}^f \quad \forall i \in \mathcal{N} \\ \mathbf{S}_{ij}^f = (Y_{ij} + Y_{ij}^c)^* \mathbf{V}_i ^2 - Y_{ij}^* \mathbf{V}_i \mathbf{V}_j^* \quad \forall ij \in \mathcal{E} \\ \mathbf{S}_{ij}^f = (Y_{ij} + Y_{ij}^c)^* \mathbf{V}_j ^2 - Y_{ij}^* \mathbf{V}_i^* \mathbf{V}_j \quad \forall ij \in \mathcal{E} \\ \mathbf{S}_{ij}^f , \mathbf{S}_{ji}^f \leq \bar{s}_{ij} \quad \forall i \in \mathcal{N} \\ \mathbf{p}_i^g \leq \mathbf{p}_i^g \leq \bar{p}_i^g \quad \forall i \in \mathcal{N} \\ \mathbf{q}_i^g \leq \mathbf{q}_i^g \leq \bar{q}_i^g \quad \forall i \in \mathcal{N} \\ \mathbf{q}_i^g \leq \mathbf{q}_i^g \leq \bar{q}_i^g \quad \forall i \in \mathcal{N} \\ \mathbf{q}_i^g \leq \mathbf{q}_i^g \leq \bar{q}_i^g \quad \forall i \in \mathcal{N} \\ \mathbf{q}_i^g \leq \mathbf{q}_i^g \leq \bar{q}_i^g \quad \forall i \in \mathcal{N}\n \end{array}$ \n

Yes, they can!

- ‣ Demonstrated ICNN efficacy on **large-scale systems**, showing they match DNNs with most optimality gaps below 0.5%.
- ‣ For **AC-OPF**, **SOC** relaxation, and **DC-OPF** formulations.
- ‣ **Bounds** on ICNN generalization error based on training data performance.

New tool to help efficiently solve larger OPF applications!

Yes, we can!

$L2O: JuMP + POI + Flux =$

Al Institute for Advances in Optimization

It's Great when Things Just Work

‣ What if I want to represent my entire NN in JuMP?

JuMP.optimize!(model)

function NNlib.relu(ex::AffExpr)

end

```
tol = 0.00001model = owner model(ex)aux = @variable(model, binary = true)relu_out = @variable(mod], lower_bound = 0.0)Qconstraint(model, relu_out >= ex * (1-tol))
@constraint(model, relu_out <= ex * (1+tol) + big_M * (1 - aux))
Qconstraint(model, relu_out <= big_M * aux)
return relu_out
```


Learning OPF Value Functions with ICNN

Al Institute for Advances in Optimization

Andrew Rosemberg , Mathieu Tanneau, Bruno Fanzeres, Joaquim Garcia‡ and Pascal Van Hentenryck

This research is partly funded by NSF award 2112533.

What else? Proxies as Direct Policies!

• Multistage Stochastic Programing

$$
\min_{(\mathbf{y}_1,\mathbf{x}_1)\in\mathcal{X}_1(\mathbf{x}_0)} f(\mathbf{x}_1,\mathbf{y}_1) + \mathbf{E}[\min_{(\mathbf{y}_2,\mathbf{x}_2)\in\mathcal{X}_2(\mathbf{x}_1,w_2)} f(\mathbf{x}_2,\mathbf{y}_2) + \mathbf{E}[\cdots +\mathbf{E}[\min_{(\mathbf{y}_t,\mathbf{x}_t)\in\mathcal{X}_t(\mathbf{x}_{t-1},w_t)} f(\mathbf{x}_t,\mathbf{y}_t) + \mathbf{E}[\cdots]]]
$$

$$
V_t(\mathbf{x}_{t-1}, w_t) = \min_{\mathbf{x}_t, \mathbf{y}_t} \text{ s.t.}
$$

$$
f(\mathbf{x}_t, \mathbf{y}_t) + \mathbf{E}[V_{t+1}(\mathbf{x}_t, w_{t+1})]
$$

$$
\mathbf{x}_t = \mathcal{T}(\mathbf{x}_{t-1}, w_t, \mathbf{y}_t)
$$

$$
h(\mathbf{x}_t, \mathbf{y}_t) \ge 0
$$

What else? Proxies as Direct Policies!

• Multistage Stochastic Programing

$$
\min_{(\mathbf{y}_1,\mathbf{x}_1)\in\mathcal{X}_1(\mathbf{x}_0)} f(\mathbf{x}_1,\mathbf{y}_1) + \mathbf{E}[\min_{(\mathbf{y}_2,\mathbf{x}_2)\in\mathcal{X}_2(\mathbf{x}_1,w_2)} f(\mathbf{x}_2,\mathbf{y}_2) + \mathbf{E}[\cdots +\mathbf{E}[\min_{(\mathbf{y}_t,\mathbf{x}_t)\in\mathcal{X}_t(\mathbf{x}_{t-1},w_t)} f(\mathbf{x}_t,\mathbf{y}_t) + \mathbf{E}[\cdots]]]
$$

$$
\pi_t^*(\{w_j\}_{j=2..t}, \mathbf{x}_0) \in \arg\min_{\mathbf{x}_t, \mathbf{y}_t} \qquad f(\mathbf{x}_t, \mathbf{y}_t) + \mathcal{V}_{t+1}(\mathbf{x}_t) \qquad \qquad \text{s.t.} \qquad \qquad \mathbf{x}_t = \mathcal{T}(\mathbf{x}_{t-1}, w_t, \mathbf{y}_t) \qquad \qquad h(\mathbf{x}_t, \mathbf{y}_t) \ge 0
$$

Two-stage general decision rules (TS-GDR)

Al Institute for Advances in Optimization

TS-GDR vs SDDP

HydroPowerModels.jl PowerModels.jl SDDP.jl

What about Control Problems?

Al Institute for Advances in Optimization

‣ Stochastic Goddard Rocket

$$
\begin{array}{ll}\n\max_{h,v,m,u} & h_T \\
\text{s.t.} & \frac{h_t - h_{t-1}}{\Delta t} = v_{t-1} \quad \text{for } t = 2, ..., T, \\
\frac{v_t - v_{t-1}}{\Delta t} = \frac{u_{t-1} - D(h_{t-1}, v_{t-1})}{m_{t-1}} - g(h_{t-1}) \left[-w_{t-1} \right] \quad \text{for } t = 2, ..., T, \\
\frac{m_t - m_{t-1}}{\Delta t} = -\frac{u_{t-1}}{c} \quad \text{for } t = 2, ..., T, \\
D(h, v) = D_c v^2 \exp\left(-\frac{h_c(h - h_0)}{h_0}\right), \\
g(h) = g_0 \left(\frac{h_0}{h}\right)^2 \\
v_1 = v_0, \quad h_1 = h_0, \quad m_1 = m_0, \quad u_T = 0.0, \\
v_t \ge 0, \quad m_t \ge m_T, \quad 0 \le u_t \le u_t^{\max} \quad \text{for } t = 1, ..., T.\n\end{array}
$$
\n1.002
\n
$$
\begin{array}{ll}\n\text{1.002} \\
\text{1.002} \\
\text{2.50} \\
\text{500} \\
\text{Time} \\
\end{array}
$$

Two-stage general decision rules (TS-GDR)

Al Institute for Advances in Optimization

Andrew Rosemberg, Alexandre Street, Davi M. Valladão, Pascal Van Hentenryck

EAMPS Laboratory of Applied Mathematical

This research is partly funded by NSF award 2112533.

The work of Alexandre Street and Davi Valladão was partially supported by CAPES, CNPq and FAPERJ.

