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Highlights

‣ AI & Optimization: Friends and Foes.

‣ JuMP and Deep Learning: How to Train Optimization Surrogates?

‣ Julia’s Multiple Dispatch: It is Great when Things Just Work.

‣ JuMP and Reinforcement Learning: How to Train Policies?

‣ Hopes and Plans for the Future!
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AI & Optimization: Friends and Foes
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. . .

‣ AI & ML mostly concerned with Descriptive / Predictive Problems
– RL: Failures to then positive results

‣ Optimization focused on Prescriptions
– Uncertainty: Stochastic / Robust Optimization 

. . .



AI & Optimization: Finally, Friends?

‣ Predict than Optimize
– Point Prediction / Scenario Selection / Ambiguity Set Forecast
– Deterministic / Stochastic / Distributionally Robust Optimization

At blankxx, 
JuMP allowed complicated Portfolio Optimization (PO) with ML Forecasts.

» PortfolioOpt.jl: Portfolio Optimization (PO) using JuMP.

‣ Predict than Optimize – than loop
– Application's aware objective for ML models

DiffOpt (Differential Optimization) allowed us to feedback financial PO performance 
to ML-Models.
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https://github.com/andrewrosemberg/PortfolioOpt.jl


AI & Optimization: Teammates!

‣ Parametric - Optimization Problems
– Repetitive (Learnable) structure – What can we do?
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β → f(x)

Proxy

β → x

β → c
!

β x



Old News: Learning Value Functions

Convexity
for

Tractabilityx → E[Q(x,ω)]
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Using Value Functions Approximations

‣ Cutting Planes

min
x

cTx+Θ

s.t. Θ ≥ ḡk + π̄T

k
H(−x) ∀k = 1..K

π(ω)
π(ω)
π(ω)

x
ḡπ̄

Exp
ens
ive
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x → E[Q(x,ω)]



Input-Convex Neural Network (ICNN)
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Proxies and OPF
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Can ICNNs approximate OPF value functions?



Yes, they can!

‣ Demonstrated ICNN efficacy on large-scale systems, showing they 
match DNNs with most optimality gaps below 0.5%.

‣ For AC-OPF, SOC relaxation, and DC-OPF formulations.

‣ Bounds on ICNN generalization error based on training data 
performance.

 New tool to help efficiently solve larger OPF applications! 
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Yes, we can!
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L2O: JuMP + POI + Flux = 
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It’s Great when Things Just Work

‣ What if I want to represent my entire NN in JuMP?
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Learning OPF Value Functions with ICNN

This research is partly funded by NSF award 2112533.
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Andrew Rosemberg , Mathieu Tanneau, Bruno Fanzeres, Joaquim Garcia‡ and 
Pascal Van Hentenryck



What else? Proxies as Direct Policies!

‣ Multistage Stochastic Programing
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What else? Proxies as Direct Policies!

‣ Multistage Stochastic Programing
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Two-stage general decision rules (TS-GDR)

JuMP Flux

s1



TS-GDR vs SDDP

20

DecisionRules.jl



What about Control Problems?
‣ Stochastic Goddard Rocket
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MPC TS-GDRmax
h,v,m,u

hT

s.t.
ht − ht−1

∆t
= vt−1 for t = 2, . . . , T,

vt − vt−1

∆t
=

ut−1 −D(ht−1, vt−1)

mt−1

− g(ht−1)− wt−1 for t = 2, . . . , T,

mt −mt−1

∆t
= −

ut−1

c
for t = 2, . . . , T,

D(h, v) = Dcv
2 exp

(

−
hc(h− h0)

h0

)

,

g(h) = g0

(

h0

h

)2

v1 = v0, h1 = h0, m1 = m0, uT = 0.0,

vt ≥ 0, mt ≥ mT , 0 ≤ ut ≤ umax

t for t = 1, . . . , T.

wt ∈ N (0, 1)
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Godspeed!



This research is partly funded by NSF award 2112533.
 
The work of Alexandre Street and Davi Valladão was partially 
supported by CAPES, CNPq and FAPERJ.
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Andrew Rosemberg, Alexandre Street, Davi M. Valladão, Pascal Van Hentenryck

Two-stage general decision rules (TS-GDR)


