
THE NEW:
Joshua Pulsipher and Hector Perez (RelationalAI)7/29/2024

ACKNOWLEDGEMENTS

Hector Perez

RelationalAI

Researcher

Carl Laird

CMU

Professor

Ignacio Grossmann

CMU

Professor

OUTLINE
▪ Background

▪ Modelling API

▪ Solution Approaches

▪ Infinite GDP

OUTLINE
▪ Background

▪ Modelling API

▪ Solution Approaches

▪ Infinite GDP

∧

WHAT IS GENERALIZED DISJUNCTIVE PROGRAMMING?

▪ Conditionally enforce constraints based on
values of Boolean variables 𝐺 ∈ [𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒]

▪ Example: Expansion Planning

▪ Enforce logic on Boolean variables 𝐺

▪ Propositional logic

▪ Constraint programming logic

▪ Systematic conversion to algebraic constraints

▪ Apply De Morgan’s laws to convert to conjunctive
normal form

Disjunctions Logic Constraints
∧

THE OLD

6

Objective Function:
max 𝑝7 ⋅ 𝐹7 − 𝑝1 ⋅ 𝐹1 − 𝑐𝑅 − 𝑐𝑆

Global Constraints: (Material Balances)
𝐹1 = 𝐹2 + 𝐹3

𝐹7 = 𝐹5 + 𝐹6

Disjunctions: (Technology Selection)

𝑌𝑅1

𝐹6 = 𝛽𝑅1
⋅ 𝐹2

𝐹3 = 𝐹4 = 𝐹5 = 0
𝑐𝑅 = 𝛾𝑅1

𝑐𝑆 = 0

ሧ

𝑌𝑅2

𝐹6 = 𝐹2 = 0
𝐹4 = 𝛽𝑅2

⋅ 𝐹3

𝑐𝑅 = 𝛾𝑅2

𝑌𝑆1

𝐹5 = 𝛽𝑆1
⋅ 𝐹4

𝑐𝑆 = 𝛾𝑆1

ሧ

𝑌𝑆2

𝐹5 = 𝛽𝑆2
⋅ 𝐹4

𝑐𝑆 = 𝛾𝑆2

using JuMP, DisjunctiveProgramming, Random

#parameters

p = Dict(1 => rand(), 7 => 1 + rand())

β = Dict(r => rand() for r in [:R1, :R2])

γ = Dict(r => rand() for r in [:R1, :R2, :S1, :S2])

γSmax = maximum(γ[:S1], γ[:S2])

γRmax = maximum(γ[:R1], γ[:R2])

γRmin = minimum(γ[:R1], γ[:R2])

m = Model()

@variable(m, 0 ≤ F[i = 1:7] ≤ 10)

@variable(m, 0 ≤ CS ≤ γSmax)

@variable(m, γRmin ≤ CR ≤ γRmax)

@constraints(m,

 begin

 F[1] == F[2] + F[3]

 F[7] == F[5] + F[6]

 end

)

inner_disj = @disjunction(m,

 begin

 F[5] == β[:S1]*F[4]

 CS == γ[:S1]

 end,

 begin

 F[5] == β[:S2]*F[4]

 CS == γ[:S2]

 end,

 reformulation = :big_m,

 name = :YS

)

- Reformulation
type
- Indicator Variable

Logic Constraints: (Technology Selection)
𝑌𝑅1

∨ 𝑌𝑅2

𝑌𝑅2
⇔ 𝑌𝑆1

∨ 𝑌𝑆2

𝑌𝑅1
⇔ ¬𝑌𝑆1

∧ ¬𝑌𝑆2

Alternate
Propositions

Disjunctions: (Technology Selection)

𝑌𝑅1

𝐹6 = 𝛽𝑅1
⋅ 𝐹2

𝐹3 = 𝐹4 = 𝐹5 = 0
𝑐𝑅 = 𝛾𝑅1

𝑐𝑆 = 0

ሧ

𝑌𝑅2

𝐹6 = 𝐹2 = 0
𝐹4 = 𝛽𝑅2

⋅ 𝐹3

𝑐𝑅 = 𝛾𝑅2

𝑌𝑆1

𝐹5 = 𝛽𝑆1
⋅ 𝐹4

𝑐𝑆 = 𝛾𝑆1

ሧ

𝑌𝑆2

𝐹5 = 𝛽𝑆2
⋅ 𝐹4

𝑐𝑆 = 𝛾𝑆2

R1_con = @constraints(m,

 begin

 F[6] == β[:R1]*F[2]

 F[3] == 0

 F[4] == 0

 F[5] == 0

 CR == γ[:R1]

 CS == 0

 end

)

R2_con = @constraints(m,

 begin

 F[6] == β[:R2]*F[3]

 CR == γ[:R2]

 end

)

add_disjunction!(m,

 R1_con,

 (

 R2_con,

 values(inner_disj)...

),

 reformulation = :big_m,

 name = :YR

)

choose!(1, YR[1], YR[2]; mode = :exactly)

choose!(YR[2], YS[1], YS[2]; mode = :exactly)

#@proposition(m, YR[1] ⇔ (¬YS[1] ∧ ¬YS[2])

THE OLD

7

Objective Function:
max 𝑝7 ⋅ 𝐹7 − 𝑝1 ⋅ 𝐹1 − 𝑐𝑅 − 𝑐𝑆

Global Constraints: (Material Balances)
𝐹1 = 𝐹2 + 𝐹3

𝐹7 = 𝐹5 + 𝐹6

Logic Constraints: (Technology Selection)
𝑌𝑅1

∨ 𝑌𝑅2

𝑌𝑅2
⇔ 𝑌𝑆1

∨ 𝑌𝑆2

𝑌𝑅1
⇔ ¬𝑌𝑆1

∧ ¬𝑌𝑆2

Alternate
Propositions

▪ Syntax doesn’t closely match mathematical representation

▪ Cannot change transformation and resolve

▪ Doesn’t scale for a large # of disjunctions

▪ Not compatible with InfiniteOpt.jl

▪ Doesn’t support nonlinear expressions (due to current JuMP limitations)

OLD LIMITATIONS (FROM LAST JUMP-DEV)

OUTLINE
▪ Background

▪ Modelling API

▪ Solution Approaches

▪ Infinite GDP

LOGICAL VARIABLES
▪ Defined on the set {𝐹𝑎𝑙𝑠𝑒, 𝑇𝑟𝑢𝑒}

▪ Used as indicator for disjuncts and to build logical constraints

▪ Syntax

DISJUNCTIONS
▪ Disjuncts are identified via an associated logical variable (i.e., the indicator)

▪ Add constraints to a disjunct via the Disjunct tag

▪ Create disjunctions w/ @disjunction using the indicator variables

LOGIC CONSTRAINTS
▪ Supported logical operators: ∨ (||), ∧ (&&), ¬, ⟹, and ⇔ (==)

▪ Use JuMP’s Boolean constraint syntax using only logical variables

▪ Also supports cardinality constraints via AtMost, AtLeast, & Exactly sets

OUTLINE
▪ Background

▪ Modelling API

▪ Solution Approaches

▪ Infinite GDP

DISJUNCTION REFORMULATIONS
▪ Idea: Convert logic variables to binary & then reformulate disjunctions to MIP

▪ Reformulates the JuMP model directly (reformulations can be undone too)

▪ Currently supported reformulations

▪ Big-M

▪ (Convex) Hull

▪ Indicator Constraints

▪ Minimal extension API to add more

LOGIC CONSTRAINT REFORMULATIONS
▪ Logical constraints are reformulated automatically into (MI)LP constraints

▪ Accomplishes this by first converting to conjunctive normal form

▪ Selecting a different approach is not currently supported

FUTURE DEVELOPMENT PLANS
▪ Create MOI objects and solver to apply more specialized approaches (e.g., LOA)

▪ Add more reformulation techniques (e.g., multiple big-M, P-split)

OUTLINE
▪ Background

▪ Modelling API

▪ Solution Approaches

▪ Infinite GDP

INFINITE-DIMENSIONAL GDP
▪ Enforce disjunctions and/or logical constraints with infinite-dimensional

variables and/or constraints

▪ Applications: Strategic planning, expansion planning, scheduling, more

GDP FOR CHANCE CONSTRAINTS

▪ Chance constraint

▪ Disjunctions over constraint satisfaction

▪ Express event logic via logical propositions

▪ Combine (2) and (3) to represent (1)

▪ Event occurs over 𝜶 fraction of 𝜉
values*

Infinite GDP Derivation Illustration

J. L. Pulsipher, D. Ovalle, H. Perez, I. E. Grossmann, C. D. Laird. “Characterizing Event Constraints with General Disjunctive Programming”. 2022

(1)

(2)

(3)

*Assuming constant pdf

MODELLING INFINITE GDPS WITH INFINITEOPT

▪ Extension that loads w/ InfiniteOpt

▪ Adds InfiniteGDPModel and InfiniteLogical

▪ More efficient reformulations

	Slide 1: The new:
	Slide 2: Acknowledgements
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: What is Generalized Disjunctive Programming?
	Slide 6: The Old
	Slide 7: The Old
	Slide 8: Old Limitations (From Last JuMP-dev)
	Slide 9: Outline
	Slide 10: Logical Variables
	Slide 11: Disjunctions
	Slide 12: Logic constraints
	Slide 13: Outline
	Slide 14: Disjunction Reformulations
	Slide 15: Logic Constraint Reformulations
	Slide 16: Future Development Plans
	Slide 17: Outline
	Slide 18: Infinite-Dimensional GDP
	Slide 19: GDP for Chance Constraints
	Slide 20: Modelling Infinite GDPs with InfiniteOpt
	Slide 21

