THE NEw: DisjunctiveProgramming.jl

Joshua Pulsipher and Hector Perez (Relational AI)

FACULTY OF
ENGINEERING

.gr:gg UNIVERSITY OF
4 WATERLOO

ACKNOWLEDGEMENTS

Carl Laird Ignacio Grossmann Hector Perez
CMU CMU RelationalAl
Professor Professor Researcher

UNIVERSITY OF

WATERLOO ‘..ill'lll.'_'.'_ill' Viellom 1 niversity

% C FJ D Center for Advanced

< Process Decision-making

Department of
Chemical Engineering

FACULTY OF
ENGINEERING

% WATERLOO

B
OUTLINE

= Background
= Modelling API
= Solution Approaches

= Infinite GDP

W UNIVERSITY OF EACULTY OF
/@\ WATERLOO ENGINEERING

B
OUTLINE

 Background

FACULTY OF

WATERLOO | encineerinG

WHAT IS GENERALIZED DISJUNCTIVE PROGRAMMING?

Disjunctions

Conditionally enforce constraints based on
values of Boolean variables ¢ € [True, False]

V [gz‘j()SOI’ et

1€T;

Example: Expansion Planning

Logic Constraints

Enforce logic on Boolean variables
Q) = True
Propositional logic
A V — — <
Constraint programming logic

atleast(n,) exactly(n, -) atmost(n, -)
Systematic conversion to algebraic constraints

= Apply De Morgan’s laws to convert to conjunctive
normal form

W UNIVERSITY OF EACULTY OF
@ WATERLOO ENGINEERING

Reactor 1

Flow 2 (F2) 1)

Flow 6 (Fg)

Separation 1
(S1)

THE OLD

Objective Function:

—Flow 1 (F1)

Reactor 2

Flow 3 (F3) (R2)

Flow 4 (F4,

max p;-F; —p- B — CR — Cs
Global Constraints: (Material Balances)
F, = F, + F;
F, = F5 + F,
Disjunctions: (Technology Selection)
) Y,
- Y, - F,=F,=0
Fo = Br, - F; Fy = Br, " F3
F3=F4=F5=0\/ R = VR
CR = VR,
cs =0 |

Logic Constraints: (Technology Selection)
Yp, VY,

Yp, © (Y51 v YSZ) «— Alternate

Yz, © (—Ys, A Y5) «———— Propositions

using JuMP, DisjunctiveProgramming, Random

Flow 7 (F7)3»
#parameters
P = Dict(l => rand(), 7 => 1 + rand())
B = Dict(r => rand() for r in [:R1l, :R2])
Yy = Dict(r => rand() for r in [:R1, :R2, :S1, :S2])
ySmax = maximum(y[:S1], y[:S2])
YRmax = maximum(y[:R1], y[:R2])
YRmin = minimum(y[:R1], y[:R2])
m = Model ()
@variable(m, 0 £ F[i = 1:7] £ 10)
@variable(m, 0 < CS < ySmax)
@variable (m, yRmin £ CR < yRmax)
@constraints (m,
begin
F[1l] == F[2] + F[3]
F[7] == F[5] + F[6]
end
inner disj = (@disjunction(m,
(begin)
F[5] == B[:S1]*F[4]
Cs == y[:81]
\end, y
(begin)
F[5] == B[:S2]*F[4]
Cs == y[:82]
\end, -/
reformulation = :big m, < -Reformulation
\k name = :¥S < TR onIl¥REITY oF I‘/@;ULTYOF
WATRRLQG) Verptitsive

Flow 2 (F2) Reaﬁ:‘;’ i Flow 6 (Fg)
—Flow 1 (F) s Flow 7 (F7)3»

Objective Function: Flow 3 (F3) Re(a;g;fz Flow 4 (F), Flow 5 (Fs) 61_c1c;n = @Qconstraints(m, \
Separation 2 egln
max p;-F;, —p;-F — CR — Cs < F[6] == B[:R1]*F[2]
F[3] == 0
Global Constraints: (Material Balances) F[4] == 0
_ F[5] == 0
Fl_F2+F3 CR == y[:R1]
F, = Fs + Fg cs == 0
end
Disjunctions: (Techr?a.g.y_ﬂelaa(&a% f\f{z_con = Gconstraints (m, 4
YR \ begin
2
F[6] == B[:R2]*F[3]]
YR1 Fe=F,=0 CR == y[:R2]
F6=:8R1'F2 F4=ﬁR2.F3 end
F3 = F4 = FS =0 \/ . ‘R =VR, add _disjunction! (m,
CrR = VR Y Ys A_con,
1 1 2 (
CS == 0 F5 = ﬂSl y F4_ \/ FS = ﬁSZ . F4 R2 con,_ —
_ . values (inner disj)...
Cs = Vs, Cs = Vs,), =
reformulation = :big m,
name = :YR
Logic Constraints: (Technology Selection) \) y
choose! (1, YR[1], YR[2]; mode = :exactly)
YR1 M YR2 choose! (YR[2], ¥YS[1], ¥YS[2]; mode = :exactly)
iti , YR[1 =¥YS[1l] A =¥S[2
Yp, ® (Y5, VYs,) “——— Alternate #epropositionm, YRIL & L3 IN] frenryod)

’}3"’?’11 UNIVERSITY OF FACULTY OF
N

YR1 = (—|Y51 N\ —|Y52) — Propositions > WATERLOO | encineerinG

—
OLD LIMITATIONS (FrROM LAST JUMP-DEV)

Syntax doesn’t closely match mathematical representation

Cannot change transformation and resolve

Doesn’t scale for a large # of disjunctions

Not compatible with InfiniteOpt.jl

Doesn’t support nonlinear expressions (due to current JuMP limitations)

W UNIVERSITY OF EACULTY OF
@ WATERLOO ENGINEERING

OUTLINE 1 using DisjunctiveProgramming, HiGHS
2 model = GDPModel(HiGHS.Optimizer)
3
4 # Variables
" 5 @variable(model, z[j € 1:10])
6 @variable(model, Y[1:2, 1:10], Logical)
7 @variable(model, W[1:10], Logical)
8
o 9 # Disjunct 1
- PV[()(l(flllllg;.A&I?]: 10 @constraint(model, [j € 1:10], 3z[j]”2 <= 4, Disjunct(Y[1, j]))
11 @constraint(model, [j € 1:10], sin(z[j]) == 42, Disjunct(Y[1, j]))
12 # Disjunct 2
13 @constraint(model, [j € 1:10], 2z[j] <= 1, Disjunct(Y[2, j]))
m 14 # Disjunction
15 @disjunction(model, obj _name[j € 1:10], Y[:, J])
16
17 # Logic constraints
18 @constraint(model, [j € 1:10], =Y[1, j] A Y[2, j] = W[]j] := true)
| 19
20 # Cardinality constraints
21 @constraint(model, [j € 1:10], Y[:, j] in AtLeast(1))

W UNIVERSITY OF EACULTY OF
@ WATERLOO ENGINEERING

B
LOGICAL VARIABLES

= Defined on the set {False, True}
= Used as indicator for disjuncts and to build logical constraints

= Syntax

using DisjunctiveProgramming, HiGHS

model = GDPModel(HiGHS.Optimizer) # wraps a JuMP model

vl b w N

@variable(model, Y[1:2], Logical) # just add the "Logical® tag

W UNIVERSITY OF EACULTY OF
/@\ WATERLOO ENGINEERING

B
DISJUNCTIONS

= Disjuncts are identified via an associated logical variable (i.e., the indicator)
= Add constraints to a disjunct via the Disjunct tag

= Create disjunctions w/ @disjunction using the indicator variables

1 using DisjunctiveProgramming, HiGHS

2 model = GDPModel(HiGHS.Optimizer) # wraps a JuMP model

3 @variable(model, z[j € 1:10])

4 @variable(model, Y[1:2, 1:10], Logical) # just add the "Logical tag
5

6 # Disjunct 1

7 @constraint(model, [j € 1:10], 3z[j]”*2 <= 4, Disjunct(Y[1, j]))

8 @constraint(model, [j € 1:10], sin(z[j]) == 42, Disjunct(Y[1, j]))
9 # Disjunct 2

10 @constraint(model, [j € 1:10], 2z[j] <= 1, Disjunct(Y[2, j1))

11 # Disjunction

12 @disjunction(model, obj name[j € 1:10], Y[:, jl)

UNIVERSITY OF FACULTY OF

WATERLOO | encineerine

B
LOGIC CONSTRAINTS

= Supported logical operators: v (ll), A (&&), -, =, and & (==)
= Use JuMP’s Boolean constraint syntax using only logical variables
= Also supports cardinality constraints via AtMost, AtLeast, & Exactly sets
using DisjunctiveProgramming, HiGHS
model = GDPModel(HiGHS.Optimizer)
@variable(model, Y[1:2, 1:10], Logical)
@variable(model, W[1:10], Logical)

@constraint(model, [j € 1:10], -Y[1, j] A Y[2, j] = W[j] := true)

@constraint(model, [j € 1:10], Y[:, j] in AtLeast(1))

W UNIVERSITY OF EACULTY OF
/@\ WATERLOO ENGINEERING

B
OUTLINE

? =
6 [Big-M (equivalent): 100%
I [Big-M (nested): 100%
[___1 Tight-M (equivalent): 43%
o 5T [Tight-M (nested): 42%
[Hull (equivalent): 42%
& 4 I Hull (nested): 34%
]
3 b
[] 2 I
» Solution Approaches N
ﬂ [(] (] | 1 | | | [l (]
0 1 2 3 4 5 b6 7 8 9 10

W UNIVERSITY OF FACULTY OF
N

@ WAT E R Loo ENGINEERING

B
DISJUNCTION REFORMULATIONS

Idea: Convert logic variables to binary & then reformulate disjunctions to MIP

Reformulates the JuMP model directly (reformulations can be undone too)

Currently supported reformulations

" Big-M optimize!(model, gdp method = BigM())
« (Convex) Hull optimize!(model, gdp method = Hull())
optimize!(model, gdp method = Indicator())

= Indicator Constraints

Minimal extension API to add more

W UNIVERSITY OF EACULTY OF
/@\ WATERLOO ENGINEERING

B
LOGIC CONSTRAINT REFORMULATIONS

= Logical constraints are reformulated automatically into (MI)LP constraints
= Accomplishes this by first converting to conjunctive normal form

= Selecting a different approach is not currently supported

optimize! (model)

FACULTY OF

WATERLOO | encineerinG

B
FUTURE DEVELOPMENT PLANS

= Create MOI objects and solver to apply more specialized approaches (e.g., LOA)

Do Not Merge Yet: Add MOI Disjunction Set Reformulation #/

PPOpEnN pulsipher wants to merge 4 commits into hdavidi6:master from pulsipher:moi_reform &

() Conversation 9 -0- Commits (4 [l Checks (6 Files changed (2

pulsipher commented on Oct 12, 2023 « edited ~ Collaborator) =«

This adds the 'MoIDisjunction reformulation method which transforms disjunctions in vector constraints that use Disjunctionset .
This enables us to pass disjunctions directly down to the MOI level.

®)

= Add more reformulation techniques (e.g., multiple big-M, P-split)

W UNIVERSITY OF EACULTY OF
@ WATERLOO ENGINEERING

B
OUTLINE

Infinite GDP

[DO NOT MERGE YET] Add InfiniteOpt as an Extension #114

pulsipher wants to merge 4 commits into master from infiniteopt_ext [Ej

using DisjunctiveProgramming, InfiniteOpt, HiGHS

Create the model
model = InfiniteGDPModel(HiGHS.Optimizer)

Create the infinite variables

I-=-1:4

@infinite parameter(model, t € [@, 1], num_supports = 100)
@variable(model, @ <= g[I] <= 1@, Infinite(t))

Add the disjunctions and their indicator variables
@variable(model, G[I, 1:2], InfinitelLogical(t))

@constraint(model, [1i € I, j € 1:2], © <= g[i], Disjunct(G[i, 1]))
@constraint(model, [i € I, j € 1:2], g[i] <= @, Disjunct(G[i, 2]))
@disjunction(model, [i € I], G[i, :])

Add the logical propositions

@variable(model, W, Infinitelogical(t))

@constraint(model, G[1, 1] VvV G[2, 1] A G[3, 1] == W := true)
@constraint(model, E(binary_variable(W), t) >= ©.95) # incorporate bin

Reformulate and solve
optimize! (model, gdp_method = Hull())

check the results
value(W)

W UNIVERSITY OF EACULTY OF
/@\ WATERLOO ENGINEERING

B
INFINITE-DIMENSIONAL GDP

= Enforce disjunctions and/or logical constraints with infinite-dimensional
variables and/or constraints

\/ [gij(,y(t,x,g))<0]a iEI’tGDt,ZUEijpg

1E€T;

= Applications: Strategic planning, expansion planning, scheduling, more

FACULTY OF

WATERLOO | encineerinG

B
GDP FOR CHANCE CONSTRAINTS

Infinite GDP Derivation Illustration

= Chance constraint = Event occurs over a fraction of ¢

/5 - La(ge)<0)(§)p(§)dE > o (1) values*
cl¢
= Disjunctions over constraint satisfaction a < 1 _\|DDf al
§
Gi(€) -G (€)

V

, iEI,fEDE (2)

g9i(§) <0 gi(§) >0

= Express event logic via logical propositions

QG(E)) <= (), €D
E¢[W ()] 2

(3)

» Combine (2) and (3) to represent (1) “Assuming Consm'}f'ﬁf{ iy o
% WATERLOO | fentene

J. L. Pulsipher, D. Ovalle, H. Perez, I. E. Grossmann, C. D. Laird. “Characterizing Event Constraints with General Disjunctive Programming”. 2022

MODELLING INFINITE GDPS WITH INFINITEOPT oo

[DO NOT MERGE YET] Add InfiniteOpt as an Extension #114

pulsipher wants to merge 4 commits into m ~ from infiniteopt_ext [Ej

using DisjunctiveProgramming, InfiniteOpt, HiGHS EXtenSion that loads W/ Infiniteopt
Create the model
model = InfiniteGDPModel(HiGHS.Optimizer)

Create the infinite variables

I=1:4

@infinite parameter(model, t € [©, 1], num_supports = 100)
@variable(model, @ <= g[I] <= 1@, Infinite(t))

Adds InfiniteGDPModel and InfiniteLogical

Add the disjunctions and their indicator variables
@variable(model, G[I, 1:2], InfinitelLogical(t))

@constraint(model, [i € I, j € 1:2], @ <= g[i], Disjunct(G[i, 1]))
@constraint(model, [i € I, j € 1:2], g[i] <= @, Disjunct(G[i, 2]))
@disjunction(model, [i € I], G[i, :])

More efficient reformulations

Add the logical propositions

@variable(model, W, Infinitelogical(t))

@constraint(model, G[1, 1] V G[2, 1] A G[3, 1] == W := true)
@constraint(model, E(binary_variable(W), t) >= ©.95) # incorporate bin{

Reformulate and solve
optimize!(model, gdp_method = Hull())

check the results
value(W)

W UNIVERSITY OF EACULTY OF
/@\ WATERLOO ENGINEERING

UNIVERSITY OF

DisjunctiveProgramming.jl WAT E R Loo
S <./

/&

+WATERLOO

Our greatest impact happens together.

	Slide 1: The new:
	Slide 2: Acknowledgements
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: What is Generalized Disjunctive Programming?
	Slide 6: The Old
	Slide 7: The Old
	Slide 8: Old Limitations (From Last JuMP-dev)
	Slide 9: Outline
	Slide 10: Logical Variables
	Slide 11: Disjunctions
	Slide 12: Logic constraints
	Slide 13: Outline
	Slide 14: Disjunction Reformulations
	Slide 15: Logic Constraint Reformulations
	Slide 16: Future Development Plans
	Slide 17: Outline
	Slide 18: Infinite-Dimensional GDP
	Slide 19: GDP for Chance Constraints
	Slide 20: Modelling Infinite GDPs with InfiniteOpt
	Slide 21

