
INFINITEEXAMODELS.JL:
ACCELERATING INFINITE-DIMENSIONAL
OPTIMIZATION PROBLEMS ON CPU & GPU

Joshua Pulsipher and Sungho Shin

7/29/2024

ACKNOWLEDGEMENTS

Sungho Shin

MIT

Assistant Professor

François Pacaud

Mines Paris

Assistant Professor

Mihai Anitescu

Argonne

Senior Computational

Mathematician

OUTLINE
▪ InfiniteOpt

▪ ExaModels

▪ InfiniteExaModels

OUTLINE
▪ InfiniteOpt

▪ ExaModels

▪ InfiniteExaModels

INFINITE-DIMENSIONAL OPTIMIZATION

▪ Index over continuous domains

▪ Example: Disease Control

▪ Population dynamics

▪ Uncertain infection rates

▪ Decisions indexed by infinite parameters

▪ Example: Disease Control

▪ Population of infected at a particular time and
infection rate

Infinite Parameters Infinite Variables

J. L. Pulsipher, W. Zhang, T. J. Hongisto, and V. M. Zavala. “A unifying modeling abstraction for infinite-dimensional optimization.” 2022

INFINITE-DIMENSIONAL OPTIMIZATION

▪ Capture of rate of change in variables

▪ Example: Disease Control

▪ Time derivative

▪ SEIR model

▪ Summarize variables over continuous domains

▪ Example: Disease Control

▪ Summarize overall infections

Differential Operators Measure Operators

J. L. Pulsipher, W. Zhang, T. J. Hongisto, and V. M. Zavala. “A unifying modeling abstraction for infinite-dimensional optimization.” 2022

UNIFYING ABSTRACTION

J. L. Pulsipher, W. Zhang, T. J. Hongisto, and V. M. Zavala. “A unifying modeling abstraction for infinite-dimensional optimization.” 2022

In
fi

n
it

e
Para

m
eters Infinite

Variab
le

s

Diffe
re

ntia

l O
p
er

a
to

r sM
e

a
su

re

O
perators

Dynamic
Optimization

Stochastic
Optimization

Space-Time
Optimization

Combinations

TRANSFORMING INFINITEOPT PROBLEMS INTO FINITE ONES
Direct Transcription

Method of Weighted Residuals

Project onto set of
finite points ෡𝒟

Project onto set of
known basis functions

J. L. Pulsipher, W. Zhang, T. J. Hongisto, and V. M. Zavala. “A Unifying Modeling Abstraction for Infinite-Dimensional Optimization.” Computers & Chem. Eng. 2022

• Implements unifying abstraction
• Models a wide range of problems
• Leverages structure to accelerate solutions

• Implemented in
• Enables intuitive symbolic expressions
• Highly performant

• Extensive resources
• Documentation, tutorials, examples, forum,

short courses, videos

Why is it Different? Intuitive Modeling API

▪ 1000s of downloads

▪ Use cases in diverse disciplines

▪ e.g., evolutionary biology, rocketry, economics,
autonomous vehicles

Impact

Try it @ https://github.com/infiniteopt/InfiniteOpt.jl

https://github.com/infiniteopt/InfiniteOpt.jl

TRANSFORMING INFINITEOPT MODELS

▪ Highly extensible to make advanced solution
techniques accessible/automated

▪ Detailed templates, tutorials, and docs

Transformation Paradigm

Transformation API

Automated Transcription

(via TranscriptionOpt)

• Many derivative/measure approximations

• Orthogonal collocation, Gauss quadrature, etc.

▪ Performant
Information Extraction Methods

Formulation

Transformation

Information Forwarding Methods

TransformationBackendInfiniteModel

Scalability!

InfiniteOpt.jl

↓
Automatic Transcription

JuMP.jl

↓
Manual Transcription

SOLVING INFINITEOPT PROBLEMS VIA TRANSCRIPTIONOPT
▪ Apply transformation to obtain finite JuMP model that can be solved

▪ InfiniteOpt has a large suite of discretization techniques

▪ Discretized InfiniteOpt problems have repeated structure

▪ Traditional modeling languages like JuMP do not leverage repeated structure

How can we leverage the repeated structure to accelerate solution performance?

OUTLINE
▪ InfiniteOpt

▪ ExaModels

▪ InfiniteExaModels

Traditional Nonlinear Optimization: Software

• Algebraic modeling systems provide front-end and sparse derivative evaluation capabilities
• Nonlinear optimization solvers apply optimization algorithms
• Sparse linear solvers resolve KKT systems using sparse matrix factorization
• Many of these tools are developed in the 1980s-2000s (not compatible with GPUs).

Sungho Shin sshin@anl.gov

Algebraic Modeling Systems
e.g., AMPL, JuMP, CasADi

Line SearchNewton’s Step ComputationProblem Formulation

Nonlinear Optimization Solvers
e.g., Ipopt, Knitro

Sparse Linear Solvers
e.g., Ma27, Pardiso

mailto:sshin@anl.gov

How Does GPU Work?
• Single Instruction, Multiple Data (SIMD) parallelism
• Dedicated device memory and slow interface: all data should reside in device memory only
• Emerging architectures employ unified memory.

Sungho Shin sshin@anl.gov

Adapting CPU code to GPU code is not merely a matter of software engineering;
it often requires the redesign of the algorithm

NVIDIA Grace Hopper Apple M-series chips

mailto:sshin@anl.gov

SIMD Abstraction for NLPs

• Large-scale optimization problems almost always have repeated patterns
• SIMD Abstraction can capture such repeated patterns:

• Repeated patterns are inputted as iterators (data can be stored in structured format)

• For each pattern, the AD kernel is compiled and executed over multiple data in parallel

Sungho Shin sshin@anl.gov

constraint(c, 3 * x[i+1]^3 + 2 * sin(x[i+2]) for i = 1:N-2)

Shin, Pacaud, and Anitescu
Accelerating optimal power flow with GPUs: SIMD abstraction of nonlinear programs and condensed-space interior-point methods.
PSCC 2024

“single instruction”

“over multiple data”a small number of
different patterns

“Instruction” “Data”

mailto:sshin@anl.gov

Sparse AD Benchmark

• For the largest case, ExaModels on GPU is 100× faster than the state-of-the-art tools on CPUs
• ExaModels runs on all major GPU architectures and single/multi-threaded CPUs

Sungho Shin sshin@anl.gov

ExaModels Benchmark Results

I ExaModels runs on all major GPU architectures and single/multi-threaded CPUs.

102 103 104 105

10− 1

100

101

102

nvar

y
-t

im
es

fa
st

er
th

a
n

J
u

M
P

(h
es

s)

JuMP / 11th Gen Intel(R) Core(T M) i9-11900H @ 2.50GHz

AMPL / 11th Gen Intel(R) Core(T M) i9-11900H @ 2.50GHz

ExaModels / 11th Gen Intel(R) Core(T M) i9-11900H @ 2.50GHz

ExaModels (20T) / Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz

ExaModels (AMDGPU) / AMD Radeon RX 6400 Desktop Graphics

ExaModels (CUDA) / NVIDIA GeForce RT X 3060 Laptop GPU

ExaModels (CUDA) / Quadro GV100

ExaModels (oneAPI) / Intel (R) UHD Graphics

*Benchmark problems: AC OPF, Luksan-Vlcek problem, quadrotor control, distillation column control

I For the largest case (AC OPF), ExaModels running on GPU is 100⇥ faster than AMPL/JuMP.

I Even on single-threaded CPUs, ExaModels is significantly faster than AMPL/JuMP.

AC OPF (case1354) w/ default JuMP AC OPF (case1354) w/ ExaModels

I ExaModels is now interfaced with JuMP.

14 / 28

*Benchmark problems: AC OPF, Luksan-Vlcek problem,

quadrotor control, distillation column control

Sparse AD with SIMD abstraction enables efficient derivative computations on GPUs

https://github.com/exanauts/ExaModels.jl

Sp
ee

d-
up

 fo
r S

pa
rs

e
H

es
si

an
 C

om
pu

ta
tio

n

mailto:sshin@anl.gov

Nonlinear Optimization Framework on GPUs

Sungho Shin sshin@anl.gov

Algebraic Modeling Systems

Line SearchNewton’s Step ComputationProblem Formulation

Nonlinear Optimization Solvers Sparse Linear Solvers

• Parallel AD with SIMD abstraction
• Runs on GPU architectures

• Lifted & Hybrid KKT System
• Runs on NVIDIA GPUs

• Parallel Cholesky factorization
• Runs on NVIDIA GPUs

https://github.com/exanauts/ExaModels.jl
https://github.com/MadNLP/MadNLP.jl
https://docs.nvidia.com/cuda/cudss

mailto:sshin@anl.gov
https://github.com/exanauts/ExaModels.jl
https://github.com/MadNLP/MadNLP.jl
https://docs.nvidia.com/cuda/cudss/index.html

AC Optimal Power Flow

• For large-scale cases (> 20k vars), GPU becomes significantly faster than CPU (up to ×10)
• Reliable convergence for tol=10-6, but still less reliable than CPUs

Pacaud, Shin, Montoison, Schanen, and Anitescu. Approaches to nonlinear programming on GPU architectures. In preparation.

Approaches to nonlinear programming on GPU archit ectures 27

F ig. 4 Comparing the performance obtained with various GPUs on three di↵erent OPF

instances.

5.4 Benchmark on COPS instances

We have observed in the previous sect ion that both LiftedKKT and HyKKT

outperforms HSL MA27 when running on the GPU. However, the OPF in-

stances are specific nonlinear problems. For that reason, we complement our

analysis by looking at the performance of LiftedKKT and HyKKT on the

COPS benchmark, which gathers generic nonlinear programs [12]. We look

at the performance we get on the part icular COPS instances used in the

Mit telmann benchmark, widely used to benchmark nonlinear opt imizat ion

solvers [25]. The results of the COPS benchmark are displayed in Table 4.

HSL MA57 gives bet ter results than HSL MA27 on the COPS benchmark,

and we have decided to use HSL MA57 as the reference running on the CPU.

As expected, the results are di↵erent than on the OPF benchmark. We

observe that LiftedKKT+ cuDSS and HyKKT+ cuDSS outperform HSL MA57

on the dense instance elec (20x speed-up) and bearing— an instance whose

sparsity pat tern is similar to the OPF. In the other instances, LiftedKKT and

HyKKT on par with HSL MA57 and somet imes even slight ly slower (rocket

and pinene).

To illust rate the heterogeneity of the COPS instances compared to the

previous OPF problems, we display in Figure 5 the sparsity pat tern of the

condensed matrices K γ (10) for one OPF instance and for mult iple COPS

instances. We observe that some instances (bearing) have a sparsity pat tern

similar to the OPF instance on the left , whereas some are fully dense (elec).

On the opposite, the opt imal cont rol instances (marine, pinene) are highly

sparse and have highly st ructured Cholesky lower t riangular factors.

6 Conclusion

This art icle moves one step further in the solut ion of generic nonlinear pro-

grams on GPU architectures. We have compared two approaches to solve the

KKT systems arising at each interior-point iterat ion, both based on a con-

CPU Lifted KKT on GPU Hybrid KKT on GPU

Optimizing entire eastern interconnection

++

Distillation Column

• “Symbolic analysis” is often the bottleneck on GPUs, but this can be computed “off-line”
thus, online computation performance can be even greater

• The distillation column control problem can be solved more than 20x faster

Sungho Shin sshin@anl.gov

ExaModels, MadNLP, and CUDSS provide efficient and reliable solution
framework for large-scale nonlinear optimization problems

Pacaud and Shin. GPU-accelerated nonlinear model predictive control with ExaModels and MadNLP. arXiv:2403:15913

++

CPU Lifted KKT on GPU Hybrid KKT on GPU

#time steps

mailto:sshin@anl.gov

Remaining Challenges
• Portable sparse Cholesky factorization

• Currently, we are relying on a proprietary Cholesky solver (CUDSS)
• An open-source, portable Cholesky solver is needed to run on Exascale

Sungho Shin sshin@anl.gov

Highlight: Stochastic AC OPF (multi GPU)

I Our approach is ⇥6 faster than Pardiso (commercial multi-CPU solver w/ incomplete LU trick).

I Single-node, multi-GPU parallelism is more efficient than multi-node, multi-GPU.

F. Pacaud, M. Schanen, S. Shin, D. A. Maldonado, and M. Anitescu. Parallel interior-point solver for block-structured nonlinear programs on SIMD/GPU architectures . Accepted to OMS. 22 / 28

• Multi-GPU optimization tools
• A single GPU is sometimes limited in

computation & storage capacity
• Our recent results suggest that there are

significant opportunities in multi-GPU utilization

Pacaud et. al. Parallel interior-point solver for block-structured nonlinear programs on SIMD/GPU architectures, OMS (2024).

mailto:sshin@anl.gov

EXAMODELSMOI.JL
▪ Provides an MOI optimizer for JuMP models

▪ Can use either ExaModels.IpoptOptimizer or ExaModels.MadNLPOptimizer

▪ Searches for repeated algebraic structure via a bin search

▪ Doesn’t necessary yield the most efficient ExaModel structure

ACCELERATING NLP PERFORMANCE ON CPUS AND GPUS
▪ ExaModels + MadNLP is highly performant for problems with repeated patterns

▪ Translating InfiniteOpt problems to

 SIMD is nontrivial

▪ TranscriptionOpt + ExaModelsMOI has to

 ignore structure while building the model

S. Shin, F. Pacaud, and M. Anitescu. "Accelerating optimal power flow with gpus: Simd abstraction of nonlinear programs and condensed-space interior-point methods." 2023

OUTLINE
▪ InfiniteOpt

▪ ExaModels

▪ InfiniteExaModels

INFINITEEXAMODELS.JL
▪ Bridges the gap between &

▪ Automates transcription via established transformation interface

▪ Leverages repeated structure to drastically reduce model creation time

▪ More efficient than manual transcription directly given to ExaModels

J. Pulsipher and S. Shin. "Scalable Modeling of Infinite-Dimensional Nonlinear Programs with InfiniteExaModels.jl." 2023

IMPLEMENTATION DETAILS
▪ Supports the use of JSO NLP solvers (e.g., Ipopt, MadNLP, KNITRO)

▪ Defined via an ExaTranscriptionBackend

▪ Rapidly transcribes infinite model into efficient ExaModels

▪ Model build time is nearly independent of the discretization size

BENCHMARK PROBLEMS
▪ Compare performance with JuMP, AMPL, ExaModels, and InfiniteExaModels

▪ Run on CPU with Ipopt and GPU with MadNLP

J. Pulsipher and S. Shin. "Scalable Modeling of Infinite-Dimensional Nonlinear Programs with InfiniteExaModels.jl." 2023

NUMERICAL RESULTS (CPU W/ IPOPT)
▪ AD is 5 – 20 times faster

▪ Model build time is 1 – 2 orders-of-magnitude faster

J. Pulsipher and S. Shin. "Scalable Modeling of Infinite-Dimensional Nonlinear Programs with InfiniteExaModels.jl." 2023

NUMERICAL RESULTS (GPU W/ MADNLP)
▪ All AD and solve times are up to ~20 faster on GPU

▪ InfiniteExaModels.jl builds models orders-of-magnitude faster than ExaModels

(151 on CPU) (172 on CPU) (397 on CPU)

TRY IT OUT!

InfiniteExaModels

InfiniteExaModels

	Slide 1: InfiniteExaModels.jl: Accelerating Infinite-Dimensional optimization problems on CPU & GPU
	Slide 2: Acknowledgements
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: Infinite-Dimensional Optimization
	Slide 6: Infinite-Dimensional Optimization
	Slide 7: Unifying Abstraction
	Slide 8: Transforming InfiniteOpt Problems into Finite Ones
	Slide 9
	Slide 10: Transforming InfiniteOpt Models
	Slide 11: Solving InfiniteOpt problems via TranscriptionOpt
	Slide 12: Outline
	Slide 13: Traditional Nonlinear Optimization: Software
	Slide 14: How Does GPU Work?
	Slide 15: SIMD Abstraction for NLPs
	Slide 16: Sparse AD Benchmark
	Slide 17: Nonlinear Optimization Framework on GPUs
	Slide 18: AC Optimal Power Flow
	Slide 19: Distillation Column
	Slide 20: Remaining Challenges
	Slide 21: ExaModelsMoi.JL
	Slide 22: Accelerating NLP Performance on CPUs and GPUs
	Slide 23: Outline
	Slide 24: InfiniteExaModels.jl
	Slide 25: Implementation Details
	Slide 26: Benchmark Problems
	Slide 27: Numerical Results (CPU w/ Ipopt)
	Slide 28: Numerical Results (GPU w/ MadNLP)
	Slide 29: Try it Out!
	Slide 30

