

INFINITEEXAMODELS.JL: ACCELERATING INFINITE-DIMENSIONAL OPTIMIZATION PROBLEMS ON CPU & GPU

7/29/2024

Joshua Pulsipher and Sungho Shin

ACKNOWLEDGEMENTS

Sungho Shin MIT *Assistant Professor*

François Pacaud Mines Paris *Assistant Professor*

Mihai Anitescu Argonne *Senior Computational Mathematician*

Department of Chemical Engineering

EXASCALE COMPUTING PROJECT

FACULTY OF ENGINEERING

OUTLINE

▪ InfiniteOpt

ExaModels

▪ InfiniteExaModels

OUTLINE

▪ **InfiniteOpt**

ExaModels

▪ InfiniteExaModels

INFINITE-DIMENSIONAL OPTIMIZATION

Infinite Parameters Infinite Variables

▪ Index over **continuous domains**

- **Example: Disease Control**
	- Population dynamics
		- $t\in[0,t_f]$
	- Uncertain infection rates
		- $\xi \in (-\infty, \infty) \sim \mathcal{N}(\mu, \Sigma)$

Decisions indexed by infinite parameters

- **Example: Disease Control**
	- Population of infected at a particular time and infection rate $y_i(t,\xi)$

INFINITE-DIMENSIONAL OPTIMIZATION

Differential Operators Measure Operators

▪ Capture of **rate of change** in variables

- **Example: Disease Control**
	- Time derivative
	- SEIR model

$$
\frac{\partial y_i(t,\xi)}{\partial t}
$$

 $\frac{\partial y_i(t,\xi)}{\partial t} = \xi y_e(t) - \gamma y_i(t)$

Summarize variables over continuous domains

- **Example:** Disease Control
	- Summarize overall infections

 $\mathbb{E}_{\xi}[y_i(t,\xi)]dt$ $\mathbb{E}_{\xi}\left[\int_{t\in\mathcal{D}_t}y_i(t,\xi)dt\right]$

FACULTY OF

TRANSFORMING INFINITEOPT PROBLEMS INTO FINITE ONES

Direct Transcription

Method of Weighted Residuals

J. L. Pulsipher, W. Zhang, T. J. Hongisto, and V. M. Zavala. "A *Unifying Modeling Abstraction for Infinite-Dimensional Optimization*." Computers & Chem. Eng. 2022

Zept InfiniteOpt Why is it Different? Intuitive Modeling API

- Implements **unifying abstraction**
	- Models a wide range of problems
	- Leverages structure to **accelerate solutions**
- Implemented in julia
	- Enables **intuitive** symbolic expressions
	- Highly **performant**

• **Extensive resources**

• Documentation, tutorials, examples, forum, short courses, videos

Try it @<https://github.com/infiniteopt/InfiniteOpt.jl>

$$
\frac{\partial y_b(t,\xi)}{\partial t} = 2y_b(t,\xi)^2 + y_a(t) - z_1
$$

$$
\mathbb{E}_{\xi} [y_c(t,\xi)] \ge \alpha
$$

$$
y_a(0) + z_2 = \beta
$$

 ϕ constraint(m, $\partial(yb, t) == 2yb^2 + ya - z[1]$) ϕ constraint(m, $E(yc, \xi) \ge \alpha$) ϕ constraint(m, ya(0) + z[2] == β)

Impact

Announcement **Welcome to InfiniteOpt.jl Discussions** (i) pulsipher

- 1000s of downloads
- Use cases in **diverse disciplines**
	- e.g., evolutionary biology, rocketry, economics, autonomous vehicles

TRANSFORMING INFINITEOPT MODELS

Transformation Paradigm

Transformation API

- Highly extensible to **make advanced solution techniques accessible/automated**
- Detailed templates, tutorials, and docs

- Many **derivative/measure approximations**
	- Orthogonal collocation, Gauss quadrature, etc.
- **Performant**

FACULTY OF ENGINEERING

SOLVING INFINITEOPT PROBLEMS VIA TRANSCRIPTIONOPT

- Apply **transformation** to obtain finite JuMP model that can be solved
- InfiniteOpt has a large suite of **discretization** techniques
- Discretized InfiniteOpt problems have **repeated structure**
- Traditional modeling languages like JuMP do not leverage repeated structure

How can we leverage the repeated structure to **accelerate solution performance**?

 $\sin^2(y(t)) \leq 42, t \in \mathcal{D}_t$

 $\sin^2(y_k) \leq 42, \ k \in \mathcal{K}$

• InfiniteOpt

▪ **ExaModels**

▪ InfiniteExaModels

Traditional Nonlinear Optimization: Software

- **Algebraic modeling systems** provide **front-end** and **sparse derivative evaluation** capabilities
- **Nonlinear optimization solvers** apply **optimization algorithms**
- **Sparse linear solvers** resolve **KKT systems** using **sparse matrix factorization**
- Many of these tools are developed in the 1980s-2000s (not compatible with GPUs).

How Does GPU Work?

- Single Instruction, Multiple Data **(SIMD) parallelism**
- **Dedicated device memory and slow interface:** all data should reside in device memory only
- **Emerging architectures** employ **unified memory.**

Adapting CPU code to GPU code is not merely a matter of software engineering; it often requires the **redesign of the algorithm**

SIMD Abstraction for NLPs

- **Large-scale optimization problems almost always have repeated patterns**
- **SIMD Abstraction** can capture such repeated patterns:

• Repeated patterns are inputted as **iterators** (data can be stored in structured format)

• **For each pattern**, the AD kernel is **compiled** and **executed over multiple data** in parallel

Shin, Pacaud, and Anitescu

Accelerating optimal power flow with GPUs: SIMD abstraction of nonlinear programs and condensed-space interior-point methods.

PSCC 2024

Sparse AD Benchmark

- For the largest case, **ExaModels on GPU** is **100× faster** than the state-of-the-art tools on CPUs
- \bullet ExaModels runs on all major GPU architectures and single/multi-threaded CPUs

Sparse AD with **SIMD abstraction** enables **efficient derivative computations on GPUs**

Nonlinear Optimization Framework on GPUs

• Runs on NVIDIA GPUs

• Runs on GPU architectures

<https://github.com/exanauts/ExaModels.jl> <https://github.com/MadNLP/MadNLP.jl> [https://docs.nvidia.com/cuda/cudss](https://docs.nvidia.com/cuda/cudss/index.html)

Sungho Shin sshin@anl.gov

• Runs on NVIDIA GPUs

AC Optimal Power Flow

ExaModels + Solution And NLP +

O

CUDA

Table 3 OPF benchmark, solved with a tolerance tol=1e-6. (A100 GPU)

• For large-scale cases (> 20k vars), GPU becomes **significantly faster than CPU** (up to ×10)

• **Reliable convergence for** tol=10-6 , but still less reliable than CPUs $\frac{1}{2}$. $\frac{1}{2}$.

Pacaud, Shin, Montoison, Schanen, and Anitescu. *Approaches to nonlinear programming on GPU architectures*. In preparation. θ and θ are the section that both L is previous section that θ and θ and θ and θ and θ and θ

Distillation Column

- "**Symbolic analysis**" is often the bottleneck on GPUs, but this can be computed "**off-line**" thus, **online computation performance** can be **even greater**
- The distillation column control problem can be solved more than 20x faster

ExaModels, **MadNLP**, and **CUDSS** provide **efficient and reliable** solution framework for large-scale nonlinear optimization problems

Remaining Challenges

• **Portable sparse Cholesky factorization**

- Currently, we are relying on a **proprietary** Cholesky solver (CUDSS)
- An open-source, **portable Cholesky solver is needed** to run on Exascale **Experience of the COPT of COPPO (Stockholm of Property COPPO)**
Molecky colver is needed to run on Expect of Co
- **Multi-GPU optimization tools**
	- A **single GPU is sometimes limited** in computation & storage capacity
	- Our recent results suggest that there are significant opportunities in **multi-GPU utilization**

Pacaud et. al. *Parallel interior-point solver for block-structured nonlinear programs on SIMD/GPU architectures*, OMS (2024).

EXAMODELSMOI.JL

 $\overline{2}$

▪ Provides an **MOI optimizer** for JuMP models

- Can use either ExaModels.IpoptOptimizer or ExaModels.MadNLPOptimizer
	- $\mathbf 1$ using ExaModels, JuMP, CUDA, MadNLPGPU
	- 3 $model = Model(() \rightarrow ExaModels.MadNLPOptimize(CUDABackend())$
- Searches for repeated algebraic structure via a **bin search**

■ Doesn't necessary yield the most efficient ExaModel structure

ACCELERATING NLP PERFORMANCE ON CPUS AND GPUS

- \blacksquare ExaModels + MadNLP is highly performant for problems with repeated patterns
- Translating InfiniteOpt problems to SIMD is nontrivial
- TranscriptionOpt + ExaModelsMOI has to ignore structure while building the model

OUTLINE

▪ InfiniteOpt

ExaModels

▪ **InfiniteExaModels**

INFINITEEXAMODELS.JL

- **•** Bridges the gap between \overline{Q}^F InfiniteOpt & \overline{Q} ExaModels
- **Automates transcription** via established transformation interface
- Leverages repeated structure to **drastically reduce model creation time**
	- More efficient than manual transcription directly given to ExaModels

IMPLEMENTATION DETAILS

- Supports the use of **JSO NLP solvers** (e.g., Ipopt, MadNLP, KNITRO)
- **Defined via an** ExaTranscriptionBackend
	- using InfiniteOpt, InfiniteExaModels, NLPModelsIpopt $\mathbf{1}$
	- model = InfiniteModel(ExaTranscriptionBackend(IpoptSolver)) \mathcal{L}
- Rapidly transcribes infinite model into **efficient ExaModels**
- **Model build** time is nearly **independent of the discretization** size

BENCHMARK PROBLEMS

- Compare performance with JuMP, AMPL, ExaModels, and InfiniteExaModels
- Run on CPU with Ipopt and GPU with MadNLP

2-Stage Stochastic Program

- Stochastic optimal power flow
- 1,000 to 16,000 random scenarios

Optimal Control

- Model predictive control of quadcopter
- Track trajectory setpoint and vary grid size

Stochastic Optimal Control

- Control isolation policy to combat disease
- Uncertain transmission rate

NUMERICAL RESULTS (CPU W/ IPOPT)

- AD is **5 – 20 times faster**
- Model build time is **1 – 2 orders-of-magnitude faster**

using InfiniteOpt, InfiniteExaModels, NLPModelsIpopt $\mathbf{1}$

 $\overline{2}$ $model = InfiniteModel(ExaTransactionBackend(IpoptSolver))$

NUMERICAL RESULTS (GPU W/ MADNLP)

- All AD and solve times are up to **~20 faster on GPU**
- InfiniteExaModels.jl builds models **orders-of-magnitude faster** than ExaModels

- using InfiniteOpt, InfiniteExaModels, MadNLPGPU, CUDA $\mathbf{1}$
- transform_backend = ExaTranscriptionBackend(MadNLPSolver, backend = CUDABackend()) $2¹$
- $model = InfiniteModel(transform *backend*)$ $\overline{3}$

TRY IT OUT!

InfiniteExaModels

InfiniteExaModels

UNIVERSITY OF **WATERLOO**

FACULTY OF ENGINEERING

+WATERLOO

Our greatest impact happens together.

