
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525

Pyomo: Design Paradigms and Lessons Learned
Bethany Nicholson
Sandia National Laboratories

on behalf of the Pyomo Team
(Michael Bynum, Bill Hart, Emma Johnson, Carl Laird, Miranda Mundt,
Robby Parker, John Siirola, Jean-Paul Watson, David Woodruff, and the 20+
other people who have committed to the code in the last year)

JuMP-dev
July 2024

SAND2024-09191C

§ “An open source object-oriented algebraic modeling language in Python for
structured optimization problems.”
§ A Python package
§ A set of objects, classes, methods, and utilities for expressing optimization problems
§ A growing collection of utilities for manipulating optimization problems
§ A set of interfaces to common optimization solvers / search routines
§ The base of many other domain-specific optimization-centric modeling packages

§ … and a really cool origami bird

What is “Pyomo”?

Thanks, Doug Prout!

2

§ First released in 2008 as the Coopr software library
§ Rebranded as Pyomo around 2011
§ Moved to GitHub in mid-2016
§ Steady growth in usage and popularity ever since
§ In the last year:

§ 5 releases (6.6.2, 6.7.0, 6.7.1, 6.7.2, 6.7.3)
§ 239 merged Pull Requests (from 32 developers)

History of Pyomo

3

Pyomo: a growing ecosystem

4

Solver Interfaces

GLPK

BARON
CBC

CPLEX

Gurobi

Mosek

Bonmin

Couenne

DAKOTA

Core Modeling
Objects

Ipopt

Meta-Solvers
• Generalized Benders
• GDPopt
• MindtPy
• PyROS
• Linear MPEC

Modeling Extensions
• Constraint Programming
• Disjunctive programming
• Stochastic programming
• Differential equations
• Equilibrium constraints

Core Optimization
Objects

Model
Transformations

KNITRO

ANTIGONE

DICOPT

AMPL Solver Library

GAMS Solver Library

Xpress

cp-optimizer

HiGHS

Derived DSMLs

External extensions
• GALINI
• mpi-sppy
• OMLT
• PAO
• SUSPECT

SAS
MAiNGO Gurobi

Ipopt

NEOS Server

Cyipopt

§ Design paradigms we think we “got right”
§ Design lessons we’ve learned
§ New features and packages
§ What’s next

Why am I here?

5

§ We wanted to express high-level model structure:
§ Use structures and expressions that match our understanding of the system
§ Formulate large models with a concise syntax
§ Composition, logic, dynamics, multi-level optimization

§ We wanted to explore new algorithms and approaches:
§ Manage the translation from what the user said to what the solver understands
§ Decomposition, relaxations, model reformulations, iterative analysis algorithms

§ We wanted to build domain-specific optimization libraries
§ Make it easier for researchers to make their innovations available to the community (and us)
§ Electric grid model libraries, process model libraries, specialized tools for asset scheduling

Motivating design principles for Pyomo

6

§ A Block is a collection of modeling components
§ A Block contains Var, Constraint, Objective, Param,

… and other Block components
§ Blocks can be solved independently of the rest of the model

§ Debugging, initialization
§ You can “turn on / off” portions of the model

§ Namespacing
§ You can “reserve” modeling spaces where you have complete

control

How can we capture structure in optimization models?

7

m
 =

 C
on

cr
et

eM
od

el
() m.I = Set()

m.x = Var()

m.y = Var(m.I)

m.b = Block()

m.y[1]

m.y[…]

m.b.d[1]

m.b.d[…]

m.b.z = Var()

m.b.d = Block(m.I)

m.b.d[1].u = Var()

m.b.d[1].v = Var()

m.b.d[1].e = Block()

m.p = Param(m.I)

m.p[1]

m.p[…]

§ Blocks facilitate model composition

Hierarchical modeling is core to Pyomo

8

First stage decisions

Scenario 1

Scenario 2

Scenario 3

Process Modeling

Grid Modeling

Stochastic Programming

Switched
OPF

Switched
OPF

Switched
OPF

Switched
OPF

OPF OPF OPF OPF

OPF OPF OPF OPF

OPF OPF OPF OPF

D
et

er
m

in
is

tic
U

ni
t C

om
m

itm
en

t
C

on
tin

ge
nc

ie
sFlowsheet

 Unit Model
Control Volume

Material Balances
Energy Balance

Pressure Balance

State
Block

Performance
Equations

State
Block

OutletInlet

 Unit Model Unit Model

Outlet Inlet

Physical Parameter
Block

§ Blocks facilitate model composition
§ and decomposition

Hierarchical modeling is core to Pyomo

9

First stage decisions

Scenario 1

Scenario 2

Scenario 3

Grid Modeling

Stochastic Programming

Switched
OPF

Switched
OPF

Switched
OPF

Switched
OPF

OPF OPF OPF OPF

OPF OPF OPF OPF

OPF OPF OPF OPF

D
et

er
m

in
is

tic
U

ni
t C

om
m

itm
en

t
C

on
tin

ge
nc

ie
s

Process Modeling

Flowsheet
 Unit Model
Control Volume

Material Balances
Energy Balance

Pressure Balance

State
Block

Performance
Equations

State
Block

OutletInlet

 Unit Model Unit Model

Outlet Inlet

Physical Parameter
Block

§ It is convenient to think of a solvable “model” as a everything contained below a
single block in the block hierarchy
§ And that (potentially sub-)tree

must be self contained (declare
all variables, constraints, etc)
§ This is natural for

composition-based modeling

§ But can break down in the
context of transformations

Model decomposition: what’s a model?

10

_gdp_transformation_block

§ Pyomo (and the Pyomo development team) has refined the definition of “a model”

§ “The collection of all active components reachable by descending through active Blocks starting
from a reference Block”

§ “Active Components”: e.g., Block, Constraint, Disjunct, Suffix
§ What’s not an active component: Param, Set, Var

§ This is a relaxation of the previous definition, which required all components used in the model
be reachable by walking the block hierarchy
§ Better supports solving individual blocks within a larger model

– constraints in the block can reference variables outside the subtree defined by the block

§ Cleaner handling of implicit sets: dynamically created indexing sets are no longer explicitly attached to
the model (and no longer need to be named)

§ Currently promulgating this change through the writers
§ LP, NL, APPSI complete; BAR and GMS in progress

The block hierarchy has influenced “what’s a model”

11

Pyomo models are trees!

§ Pyomo models are trees
§ Internal nodes are Blocks
§ Leaf nodes are Component containers

§ Set, Param, Var, Constraint

§ Pyomo expressions are also trees
Constraint(expr=(m.x + 5*m.y*m.q)**2 <= m.p)

InequalityExpression

m.p

PowExpression

LinearExpression

MonomialTermExpression

1

m.x

NPVProductExpression

m.y

MonomialTermExpression

2
5

m.q

12

Pyomo models are trees!

§ Pyomo models are trees
§ Internal nodes are Blocks
§ Leaf nodes are Component containers

§ Set, Param, Var, Constraint

§ Pyomo expressions are also trees
Constraint(expr=(m.x + 5*m.y*m.q)**2 <= m.p)

InequalityExpression

m.p

PowExpression

LinearExpression

MonomialTermExpression

1

m.x

NPVProductExpression

m.y

MonomialTermExpression

2
5

m.q

13

§ Pyomo’s fundamental data structure is an expression tree … even for things like
linear expressions
§ Can be slower than custom representations for special structures like (MI)LP
§ Makes model manipulation easier with fewer special cases

§ The fundamental “operation” on a model is an expression walker
§ Focus on making them efficient and easy to write/extend

§ Generating and “walking” expression trees core to Pyomo
§ Shift to leveraging multiple dispatch for extensible expression generation and processing
§ Not native to the Python language, but efficiently implementable using dict vtables

and dynamic registration

§ Multiple dispatch has been integrated into
§ Numeric expression generation
§ Linear / Quadratic / AMPL expression compilers
§ LP, NL writers

§ Will be included as part of upcoming refactors of
§ Logical expression generation
§ BAR, GMS writers

Standardizing expression generation/manipulation

14

What do these have in common?

15

§ So, what’s an optimization model?
§ A general representation of a class of optimization problems

§ Data (instance) independent
§ Represents the modeler’s understanding of the class of problems

§ Explicitly annotates and conveys the class structure
§ Valid representation of the problem the modeler aims to solve

§ Incorporates assumptions and simplifications

§ …And what is a formulation?
§ A particular mathematical representation of a model

§ E.g., standard form linear program, Big-M representation of a disjunction, etc.
§ We typically like these tractable, i.e., we choose a formulation we think we will be able to solve.

Models are for Modelers

16

§ What do solvers speak? Depends on the solver:
§ Does your instance need to be linear?
§ Does it need to be continuous?

§ For difficult instances, to get answers, we need to speak solver well:
§ Well-scaled representation
§ Well-structured representation

17

Model Data Instance+ Optimization
Solver

Answer!

§ Does your instance need to be algebraic?
§ Can it have logical structures?

§ Sparse representation
§ Tight representation

Transformations are for getting from your (intuitive, modeler-friendly) model instance to
a (hopefully) tractable formulation that your solver understands and performs well on

Do you speak solver?

§ Transformations separate the model expression from how we intend to solve it
§ Support non-algebraic modeling constructs (e.g., Piecewise expressions, GDP, DAE, etc.)
§ Defer decisions that improve tractability until solution time
§ Explore alternative reformulations or representations
§ Support solver-specific modeling constructs (e.g., indicator constraints)
§ Support iterative methods that use different solvers requiring different representations

(e.g., initializing NLP from MIP)

§ Reduce “mechanical” errors due to manual transformation

Transformations enable more intuitive modeling

18

Model Data Instance+

Optimization
Solver

Answer!

Transform

Original
Modeling
Space

Transformed
Space

Growing library of Pyomo transformations
§ Disjunctive programming

§ Big-M reformulation
§ Hull reformulation
§ Cutting planes-based strengthened Big-M
§ Hybrid Basic-Step based algorithm
§ Transform current disjunctive state
§ Between steps
§ Bound “pre-transformation”

§ Dynamic systems
§ Collocation on finite elements
§ Finite difference discretization

§ Logical Models
§ Logical to conjunctive normal form
§ Logical to disjunctive form

§ Complementarity / Equilibrium constraints
§ Nonlinear relaxation
§ Disjunctive relaxation
§ “Standard” form relaxation

§ Structural transformations
§ Relax discrete variables
§ Standard linear form
§ Dual transformation
§ Fix discrete variables
§ Nonnegative variables
§ Expand connectors
§ Add slack variables

§ Contributed transformations
§ Constraints to var bounds
§ Deactivate trivial constraints
§ Detect implicitly fixed vars
§ Variable initialization
§ Remove zero terms
§ Propagate var bounds, fixed flags
§ Projection via Fourier-Motzkin elimination

19

§ The original solver interfaces were designed for “more than just Pyomo models”
§ Leverage an internal “meet in the middle” approach for mapping the model to the solver
§ Designed exclusively for “once through” paradigms

§ 2021: introduced APPSI (the Automatic Persistent Pyomo Solver Interface)
§ Redesigned to efficiently support repeated (related) solves of the same model
§ Heavily leveraged compiled extensions for key operations (like model compilation)
§ Proposed several fundamental (backwards incompatible) changes to the solver API

§ 2023: introduced updated problem compilers (writers)
§ Significant change to the information that needs to be passed between compilers and solvers

§ Presolve information, scaling factors, variable ordering, etc.

§ 2024: took lessons learned from APPSI and new writers and developed new standard solver interface
§ Still under development, preview available in pyomo.contrib.solver
§ New solvers are available in existing API / infrastructure through a “Legacy interface wrapper”
§ Many new writer features (e.g., presolve and model scaling) are only available via the new interfaces

A fresh take on solver interfaces

20

Revisiting model compilation

21

This is Ipopt version 3.14.11, running with linear solver ma27.

 with presolve without presolve
Number of nonzeros in equality constraint Jacobian...: 5499 6052
Number of nonzeros in inequality constraint Jacobian.: 0 0
Number of nonzeros in Lagrangian Hessian.............: 2660 2666

Total number of variables............................: 1533 1760
Total number of equality constraints.................: 1324 1551

Number of Iterations....: 90 319
Objective...............: 8.5411094197678061e-02 2.0874479958555342e-01
Total seconds in IPOPT 0.163 2.186

 EXIT: Optimal Solution Found. EXIT: Restoration Failed!

Impact of presolve on DAE optimal control problem

§ Coek: A C++ Optimization Expression Kernel
§ Express optimization problems in C++
§ Integrates CppAD and ASL to compute derivatives for nonlinear problems
§ Development is being driven by targeted experiments and demonstrations, often with runtime

performance as a major driver

§ Poek: A performant Python library used to formulate and solve optimization
problems
§ A light-weight Python wrapper for Coek
§ Can express large optimization problems in Python with modest overhead

§ Pyomo_coek: Pyomo hybrids that leverage Coek to accelerate common operations
§ Smoek: A new Python-based modeling language that explicitly exploits compact

expressions
§ Designed to support different backends (e.g. code generation for Coek or Pyomo models)

Exploring new AML ideas with a focus on performance

22

§ CP (E. Johnson)
§ Constraint programming abstractions and solver interfaces

§ DoE (J. Liu, A. Dowling)
§ Model-based design of experiments
§ Workshop material from ESCAPE/PSE 2024: https://dowlinglab.github.io/pyomo-doe/Readme.html

§ Incidence analysis (R. Parker)
§ Structural / numeric analysis of nonlinear programs
§ Core part of IDAES Diagnostics: https://idaes-pse.readthedocs.io/en/stable/explanations/model_diagnostics/index.html

§ Latex Printer (C. Karcher)
§ Print Pyomo models to a LaTeX compatible format

§ MindtPy (Z. Peng, D. Bernal)
§ Decomposition strategies for MINLPs, including Duran & Grossmann outer approximation algorithm

§ Piecewise (E. Johnson)
§ Modeling with and reformulating multivariate piecewise linear functions

§ PyROS (J. Sherman, N. Isenberg, C. Gounaris)
§ Robust Optimization Solver (generalized robust cutting set algorithm)

Some of the Pyomo extensions under active development

23

https://dowlinglab.github.io/pyomo-doe/Readme.html
https://idaes-pse.readthedocs.io/en/stable/explanations/model_diagnostics/index.html

Pyomo Param component

24

§ Pyomo supports a parameter component (Param)
§ Keeps data documented on the model
§ Allows for validation of data, default values, and changes in data without needing to rebuild the model
§ Allows Abstract model definitions (declare model, apply data later)

§ Scalar numeric values
model.a_parameter = pyo.Param(initialize = 42,
 mutable = True)

§ Indexed numeric values
model.a_param_vec = pyo.Param(IDX,
 initialize = data,

 default = 0)

Provide an (initial) value of 42 for the parameter

Providing “default” allows the
initialization data to only specify

the “unusual” values

“data” must be a dictionary of
index keys to values because all
sets are assumed to be unordered

Indicates to Pyomo that you may
want to change this parameter later.

Units handling in Pyomo

25

§ Units can be assigned to Var, Param, and ExternalFunction Pyomo components
§ Units can also be used directly in expressions (e.g., defining constraints)
§ Implemented using the pint Python package

import pyomo.environ as pyo
from pyomo.environ import units as u
from pyomo.util.check_units import assert_units_consistent, identify_inconsistent_units

model = pyo.ConcreteModel()
model.acc = pyo.Var(initialize=5.0, units=u.m/u.s**2)
model.obj = pyo.Objective(expr=(model.acc - 9.81*u.m/u.s**2)**2)

assert_units_consistent(model.obj) # raise exception if units invalid on obj
assert_units_consistent(model) # raise exception if units invalid anywhere on the model
print(u.get_units(model.obj.expr)) # print the units on the objective, m**2/s**4

§ Things we learned from JuMP
§ Multiple dispatch to accelerate operator overloading
§ Direct memory solver interfaces
§ Templatization and working with an “abstract expression tree”
§ Consistent dual convention in the modeling language

§ Where are we going?
§ A significant rework of the online documentation

§ (targeting late summer release)

§ Complete redesign of parmest and pyomo.DoE
§ Move both tools to common abstractions and interfaces

§ Porting advancements from LP, NL writers to GAMS, BAR writers
§ (10-50% faster)

§ Template-aware writers
§ Avoid expanding most constraint expressions (speed + memory improvements)

Wrapping up

26

Comparing Pyomo
6.5.0 and 6.7.1

Component Improvement
Model creation 3%
LP writer 28%
NL writer 18%
BAR writer 19%
GAMS writer 4%

§ For more information:
§ www.pyomo.org
§ http://github.com/Pyomo/pyomo
§ pyomo-forum@googlegroups.com

Thank you!

27

§ Acknowledgements
§ This work was supported by the Laboratory Directed Research and Development program at Sandia National

Laboratories, a multimission laboratory managed and operated by National Technology and Engineering
Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department
of Energy’s National Nuclear Security Administration under contract DE-NA0003525

§ IDAES gratefully acknowledges support from the U.S. Department of Energy, Office of Fossil Energy and
Carbon Management through the Simulation-Based Engineering/Crosscutting Research Program

§ PROMMIS gratefully acknowledges support from the U.S. DOE’s Fossil Energy and Carbon Management
Office of Resource Sustainability.

§ DISPATCHES gratefully acknowledges support from the Grid Modernization Laboratory Consortium through
FECM, NE, & EERE/HFTO

Disclaimer: This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use
would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of
their contractors. The Lawrence Berkeley National Laboratory (LBNL) is managed and operated by the University of California (UC) under U.S. Department of Energy Contract No. DE-AC02-05CH11231. Sandia National Laboratories is a multimission
laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA-0003525.

http://github.com/Pyomo/pyomo
http://github.com/Pyomo/pyomo

Backup

28

§ Standard transformations for Logical & General CP-like expressions
§ core.logical_to_linear

§ Converts LogicalConstraints to Constraints by constructing the MIP representation of the Conjunctive
Normal Form of each LogicalConstraint

– All logical constraints are converted to MIP equivalents
– This transformation can be slow (conversion to/from sympy, calculation of the CNF)

§ contrib.logical_to_disjunctive
§ Converts LogicalConstraints to a mix of Constraints and Disjunctions by leveraging ideas from Factorable

Programming, and introducing additional variables to capture values of intermediate expressions in
complex constraints.

– The resulting model may contain disjunctions and require a subsequent GDP transformation (e.g., BigM or Hull)
– Fast (single pass of each logical expression tree)

§ Full Constraint Programming models can be sent to CP solvers
§ Currently, support for IBM ILOG CP Optimizer

CP: Solving Logical / Constraint Programming models

29

DoE: Model-based Design of Experiments

30

§ Model-based Design of Experiments in Pyomo (J. Wang, A. Dowling)
§ Given:

§ Pyomo model, nominal parameter values, experimental design variables, covariance matrix
§ Compute Fisher information matrix
§ Perform exploratory analysis (enumeration)
§ Compute A- or D-optimal experimental design (via 2-stage stochastic programming)

§ Motivation: formulating nonlinear chemical process optimization problems
 without making mistakes is difficult

§ Goal: develop “static analysis” tools for nonlinear optimization models
§ Move beyond “nonlinear programming folklore” [1]
§ Identify singularities and their sources

§ Approach: construct and analyze the
bipartite incidence graph of variables
and constraints

§ Result: Block triangularization and Dulmage-Mendelsohn tell us whether and why
systems are singular

Incidence Analysis: static analysis of nonlinear models

31

Underconstrained

Well-constrained

Overconstrained

“Independent”
 diagonal blocks

[1] Tasseff, Coffrin, Wächter, and Laird.
https://arxiv.org/pdf/1909.08104.pdf

https://arxiv.org/pdf/1909.08104.pdf

§ Vielma et al. [2015] presents a collection of formulations for multivariate piecewise
linear representations
§ pyomo.contrib.piecewise generalizes these formulations through four GDP representations and

subsequent application of standard GDP MIP transformations.

Piecewise-linear approximations of multivariate functions

32

BigM Multiple BigM Hull Ad-hoc
Inner

Representation GDP
Disaggregated Convex

Combination Model

Reduced-Space Inner
Representation GDP

Convex Combination
Model

Outer
Representation GDP

Multiple Choice Model

Nested GDP Logarithmic Convex
Combination Model

Logarithmic
Disaggregated Convex

Combination Model

Ad-hoc Incremental Model
(includes state-of-the-art

decision tree formulations)

§ One of the most oft-requested features is the ability to
convert a Pyomo model into (reasonable) LaTeX

Generation of LaTeX from Pyomo models

33

§ One of the most oft-requested features is the ability to
convert a Pyomo model into (reasonable) LaTeX

§ We provide a level of customization
§ E.g., reducing meaningful variable names

into “journal-friendly notation”

§ Disclaimers
§ This is experimental and under development

§ You are likely to run into bugs
§ “Compact” model representation requires

that your model constraints be “templatizable”
§ No logic / conditions within rules

§ Not all of Pyomo is supported yet
§ Blocks, DAE, and GDP are still in progress

Generation of LaTeX from Pyomo models

34

