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§ “An open source object-oriented algebraic modeling language in Python for 
structured optimization problems.”
§ A Python package
§ A set of objects, classes, methods, and utilities for expressing optimization problems
§ A growing collection of utilities for manipulating optimization problems
§ A set of interfaces to common optimization solvers / search routines
§ The base of many other domain-specific optimization-centric modeling packages

§ … and a really cool origami bird

What is “Pyomo”?

Thanks, Doug Prout!
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§ First released in 2008 as the Coopr software library
§ Rebranded as Pyomo around 2011
§ Moved to GitHub in mid-2016
§ Steady growth in usage and popularity ever since
§ In the last year:

§ 5 releases (6.6.2, 6.7.0, 6.7.1, 6.7.2, 6.7.3)
§ 239 merged Pull Requests (from 32 developers)

History of Pyomo
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Pyomo: a growing ecosystem
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§ Design paradigms we think we “got right”
§ Design lessons we’ve learned
§ New features and packages
§ What’s next

Why am I here?
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§ We wanted to express high-level model structure: 
§ Use structures and expressions that match our understanding of the system
§ Formulate large models with a concise syntax
§ Composition, logic, dynamics, multi-level optimization

§ We wanted to explore new algorithms and approaches: 
§ Manage the translation from what the user said to what the solver understands
§ Decomposition, relaxations, model reformulations, iterative analysis algorithms

§ We wanted to build domain-specific optimization libraries
§ Make it easier for researchers to make their innovations available to the community (and us)
§ Electric grid model libraries, process model libraries, specialized tools for asset scheduling

Motivating design principles for Pyomo
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§ A Block is a collection of modeling components
§ A Block contains Var, Constraint, Objective, Param, 

…  and other Block components
§ Blocks can be solved independently of the rest of the model

§ Debugging, initialization
§ You can “turn on / off” portions of the model

§ Namespacing
§ You can “reserve” modeling spaces where you have complete 

control

How can we capture structure in optimization models?
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§ Blocks facilitate model composition

Hierarchical modeling is core to Pyomo
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§ Blocks facilitate model composition
§ and decomposition

Hierarchical modeling is core to Pyomo
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§ It is convenient to think of a solvable “model” as a everything contained below a 
single block in the block hierarchy
§ And that (potentially sub-)tree 

must be self contained (declare 
all variables, constraints, etc)
§ This is natural for 

composition-based modeling

§ But can break down in the 
context of transformations

Model decomposition: what’s a model?
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§ Pyomo (and the Pyomo development team) has refined the definition of “a model”

§ “The collection of all active components reachable by descending through active Blocks starting 
from a reference Block”

§ “Active Components”: e.g., Block, Constraint, Disjunct, Suffix
§ What’s not an active component: Param, Set, Var

§ This is a relaxation of the previous definition, which required all components used in the model 
be reachable by walking the block hierarchy
§ Better supports solving individual blocks within a larger model 

– constraints in the block can reference variables outside the subtree defined by the block

§ Cleaner handling of implicit sets: dynamically created indexing sets are no longer explicitly attached to 
the model (and no longer need to be named)

§ Currently promulgating this change through the writers
§ LP, NL, APPSI complete; BAR and GMS in progress

The block hierarchy has influenced “what’s a model”
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Pyomo models are trees!

§ Pyomo models are trees
§ Internal nodes are Blocks
§ Leaf nodes are Component containers

§ Set, Param, Var, Constraint

§ Pyomo expressions are also trees
Constraint(expr=(m.x + 5*m.y*m.q)**2 <= m.p)

InequalityExpression

m.p

PowExpression

LinearExpression

MonomialTermExpression

1

m.x

NPVProductExpression

m.y

MonomialTermExpression

2
5

m.q
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§ Pyomo’s fundamental data structure is an expression tree … even for things like 
linear expressions
§ Can be slower than custom representations for special structures like (MI)LP
§ Makes model manipulation easier with fewer special cases

§ The fundamental “operation” on a model is an expression walker
§ Focus on making them efficient and easy to write/extend



§ Generating and “walking” expression trees core to Pyomo
§ Shift to leveraging multiple dispatch for extensible expression generation and processing
§ Not native to the Python language, but efficiently implementable using dict vtables 

and dynamic registration

§ Multiple dispatch has been integrated into
§ Numeric expression generation
§ Linear / Quadratic / AMPL expression compilers
§ LP, NL writers

§ Will be included as part of upcoming refactors of
§ Logical expression generation
§ BAR, GMS writers

Standardizing expression generation/manipulation
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What do these have in common?
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§ So, what’s an optimization model?
§ A general representation of a class of optimization problems

§ Data (instance) independent
§ Represents the modeler’s understanding of the class of problems

§ Explicitly annotates and conveys the class structure
§ Valid representation of the problem the modeler aims to solve

§ Incorporates assumptions and simplifications

§ …And what is a formulation?
§ A particular mathematical representation of a model

§ E.g., standard form linear program, Big-M representation of a disjunction, etc.
§ We typically like these tractable, i.e., we choose a formulation we think we will be able to solve.

Models are for Modelers
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§ What do solvers speak? Depends on the solver:
§ Does your instance need to be linear?
§ Does it need to be continuous?

§ For difficult instances, to get answers, we need to speak solver well:
§ Well-scaled representation
§ Well-structured representation
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Model Data Instance+ Optimization 
Solver

Answer!

§ Does your instance need to be algebraic?
§ Can it have logical structures?

§ Sparse representation
§ Tight representation

Transformations are for getting from your (intuitive, modeler-friendly) model instance to 
a (hopefully) tractable formulation that your solver understands and performs well on

Do you speak solver?



§ Transformations separate the model expression from how we intend to solve it
§ Support non-algebraic modeling constructs (e.g., Piecewise expressions, GDP, DAE, etc.)
§ Defer decisions that improve tractability until solution time
§ Explore alternative reformulations or representations
§ Support solver-specific modeling constructs (e.g., indicator constraints)
§ Support iterative methods that use different solvers requiring different representations 

(e.g., initializing NLP from MIP)

§ Reduce “mechanical” errors due to manual transformation

Transformations enable more intuitive modeling 
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Growing library of Pyomo transformations
§ Disjunctive programming

§ Big-M reformulation
§ Hull reformulation
§ Cutting planes-based strengthened Big-M
§ Hybrid Basic-Step based algorithm
§ Transform current disjunctive state
§ Between steps
§ Bound “pre-transformation”

§ Dynamic systems
§ Collocation on finite elements
§ Finite difference discretization

§ Logical Models
§ Logical to conjunctive normal form
§ Logical to disjunctive form

§ Complementarity / Equilibrium constraints
§ Nonlinear relaxation
§ Disjunctive relaxation
§ “Standard” form relaxation

§ Structural transformations
§ Relax discrete variables
§ Standard linear form
§ Dual transformation
§ Fix discrete variables
§ Nonnegative variables
§ Expand connectors
§ Add slack variables

§ Contributed transformations
§ Constraints to var bounds
§ Deactivate trivial constraints
§ Detect implicitly fixed vars
§ Variable initialization
§ Remove zero terms
§ Propagate var bounds, fixed flags
§ Projection via Fourier-Motzkin elimination
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§ The original solver interfaces were designed for “more than just Pyomo models”
§ Leverage an internal “meet in the middle” approach for mapping the model to the solver
§ Designed exclusively for “once through” paradigms

§ 2021: introduced APPSI (the Automatic Persistent Pyomo Solver Interface)
§ Redesigned to efficiently support repeated (related) solves of the same model
§ Heavily leveraged compiled extensions for key operations (like model compilation)
§ Proposed several fundamental (backwards incompatible) changes to the solver API

§ 2023: introduced updated problem compilers (writers)
§ Significant change to the information that needs to be passed between compilers and solvers

§ Presolve information, scaling factors, variable ordering, etc.

§ 2024: took lessons learned from APPSI and new writers and developed new standard solver interface
§ Still under development, preview available in pyomo.contrib.solver
§ New solvers are available in existing API / infrastructure through a “Legacy interface wrapper”
§ Many new writer features (e.g., presolve and model scaling) are only available via the new interfaces

A fresh take on solver interfaces
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Revisiting model compilation
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This is Ipopt version 3.14.11, running with linear solver ma27.

                                                  with presolve    without presolve
Number of nonzeros in equality constraint Jacobian...:     5499    6052
Number of nonzeros in inequality constraint Jacobian.:        0       0
Number of nonzeros in Lagrangian Hessian.............:     2660    2666

Total number of variables............................:     1533    1760
Total number of equality constraints.................:     1324    1551

Number of Iterations....:                                    90     319
Objective...............:                8.5411094197678061e-02    2.0874479958555342e-01
Total seconds in IPOPT                                    0.163    2.186

                                   EXIT: Optimal Solution Found.   EXIT: Restoration Failed!

Impact of presolve on DAE optimal control problem



§ Coek: A C++ Optimization Expression Kernel
§ Express optimization problems in C++
§ Integrates CppAD and ASL to compute derivatives for nonlinear problems
§ Development is being driven by targeted experiments and demonstrations, often with runtime 

performance as a major driver

§ Poek: A performant Python library used to formulate and solve optimization 
problems
§ A light-weight Python wrapper for Coek
§ Can express large optimization problems in Python with modest overhead

§ Pyomo_coek:  Pyomo hybrids that leverage Coek to accelerate common operations
§ Smoek: A new Python-based modeling language that explicitly exploits compact 

expressions
§ Designed to support different backends (e.g. code generation for Coek or Pyomo models)

Exploring new AML ideas with a focus on performance
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§ CP (E. Johnson)
§ Constraint programming abstractions and solver interfaces

§ DoE (J. Liu, A. Dowling)
§ Model-based design of experiments
§ Workshop material from ESCAPE/PSE 2024: https://dowlinglab.github.io/pyomo-doe/Readme.html 

§ Incidence analysis (R. Parker)
§ Structural / numeric analysis of nonlinear programs
§ Core part of IDAES Diagnostics: https://idaes-pse.readthedocs.io/en/stable/explanations/model_diagnostics/index.html

§ Latex Printer (C. Karcher)
§ Print Pyomo models to a LaTeX compatible format

§ MindtPy (Z. Peng, D. Bernal)
§ Decomposition strategies for MINLPs, including Duran & Grossmann outer approximation algorithm 

§ Piecewise (E. Johnson)
§ Modeling with and reformulating multivariate piecewise linear functions

§ PyROS (J. Sherman, N. Isenberg, C. Gounaris)
§ Robust Optimization Solver (generalized robust cutting set algorithm)

Some of the Pyomo extensions under active development
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Pyomo Param component
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§ Pyomo supports a parameter component (Param)
§ Keeps data documented on the model
§ Allows for validation of data, default values, and changes in data without needing to rebuild the model
§ Allows Abstract model definitions (declare model, apply data later)

§ Scalar numeric values
model.a_parameter = pyo.Param( initialize = 42,
                               mutable = True )

§ Indexed numeric values
model.a_param_vec = pyo.Param( IDX, 
                               initialize = data,                              

  default = 0 )

Provide an (initial) value of 42 for the parameter

Providing “default” allows the 
initialization data to only specify 

the “unusual” values

“data” must be a dictionary of 
index keys to values because all 
sets are assumed to be unordered

Indicates to Pyomo that you may 
want to change this parameter later.



Units handling in Pyomo
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§ Units can be assigned to Var, Param, and ExternalFunction Pyomo components
§ Units can also be used directly in expressions (e.g., defining constraints)
§ Implemented using the pint Python package

import pyomo.environ as pyo
from pyomo.environ import units as u
from pyomo.util.check_units import assert_units_consistent, identify_inconsistent_units

model = pyo.ConcreteModel()
model.acc = pyo.Var(initialize=5.0, units=u.m/u.s**2)
model.obj = pyo.Objective(expr=(model.acc - 9.81*u.m/u.s**2)**2)

assert_units_consistent(model.obj) # raise exception if units invalid on obj
assert_units_consistent(model) # raise exception if units invalid anywhere on the model
print(u.get_units(model.obj.expr)) # print the units on the objective, m**2/s**4



§ Things we learned from JuMP
§ Multiple dispatch to accelerate operator overloading
§ Direct memory solver interfaces
§ Templatization and working with an “abstract expression tree”
§ Consistent dual convention in the modeling language 

§ Where are we going?
§ A significant rework of the online documentation 

§ (targeting late summer release)

§ Complete redesign of parmest and pyomo.DoE
§ Move both tools to common abstractions and interfaces

§ Porting advancements from LP, NL writers to GAMS, BAR writers
§ (10-50% faster)

§ Template-aware writers
§ Avoid expanding most constraint expressions (speed + memory improvements)

Wrapping up
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Comparing Pyomo 
6.5.0 and 6.7.1

Component Improvement
Model creation 3%
LP writer 28%
NL writer 18%
BAR writer 19%
GAMS writer 4%



§ For more information:
§ www.pyomo.org
§ http://github.com/Pyomo/pyomo
§ pyomo-forum@googlegroups.com

Thank you!
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Backup
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§ Standard transformations for Logical & General CP-like expressions 
§ core.logical_to_linear

§ Converts LogicalConstraints to Constraints by constructing the MIP representation of the Conjunctive 
Normal Form of each LogicalConstraint

– All logical constraints are converted to MIP equivalents
– This transformation can be slow (conversion to/from sympy, calculation of the CNF)

§ contrib.logical_to_disjunctive
§ Converts LogicalConstraints to a mix of Constraints and Disjunctions by leveraging ideas from Factorable 

Programming, and introducing additional variables to capture values of intermediate expressions in 
complex constraints.

– The resulting model may contain disjunctions and require a subsequent GDP transformation (e.g., BigM or Hull)
– Fast (single pass of each logical expression tree)

§ Full Constraint Programming models can be sent to CP solvers
§ Currently, support for IBM ILOG CP Optimizer

CP: Solving Logical / Constraint Programming models
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DoE: Model-based Design of Experiments
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§ Model-based Design of Experiments in Pyomo (J. Wang, A. Dowling)
§ Given: 

§ Pyomo model, nominal parameter values, experimental design variables, covariance matrix
§ Compute Fisher information matrix
§ Perform exploratory analysis (enumeration)
§ Compute A- or D-optimal experimental design (via 2-stage stochastic programming)



§ Motivation: formulating nonlinear chemical process optimization problems 
    without making mistakes is difficult

§ Goal: develop “static analysis” tools for nonlinear optimization models
§ Move beyond “nonlinear programming folklore” [1]
§ Identify singularities and their sources

§ Approach: construct and analyze the 
bipartite incidence graph of variables 
and constraints

§ Result: Block triangularization and Dulmage-Mendelsohn tell us whether and why 
systems are singular

Incidence Analysis: static analysis of nonlinear models
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Underconstrained

Well-constrained

Overconstrained

“Independent” 
    diagonal blocks

[1] Tasseff, Coffrin, Wächter, and Laird. 
https://arxiv.org/pdf/1909.08104.pdf

https://arxiv.org/pdf/1909.08104.pdf


§ Vielma et al. [2015] presents a collection of formulations for multivariate piecewise 
linear representations
§ pyomo.contrib.piecewise generalizes these formulations through four GDP representations and 

subsequent application of standard GDP  MIP transformations.

Piecewise-linear approximations of multivariate functions
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BigM Multiple BigM Hull Ad-hoc
Inner 

Representation GDP
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Combination Model
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Multiple Choice Model

Nested GDP Logarithmic Convex 
Combination Model

Logarithmic 
Disaggregated Convex 

Combination Model

Ad-hoc Incremental Model 
(includes state-of-the-art 

decision tree formulations)



§ One of the most oft-requested features is the ability to 
convert a Pyomo model into (reasonable) LaTeX

Generation of LaTeX from Pyomo models

33



§ One of the most oft-requested features is the ability to 
convert a Pyomo model into (reasonable) LaTeX

§ We provide a level of customization
§ E.g., reducing meaningful variable names 

into “journal-friendly notation”

§ Disclaimers
§ This is experimental and under development

§ You are likely to run into bugs 
§ “Compact” model representation requires 

that your model constraints be “templatizable”
§ No logic / conditions within rules

§ Not all of Pyomo is supported yet
§ Blocks, DAE, and GDP are still in progress

Generation of LaTeX from Pyomo models
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