
Introduction Solvers Modeling Work in progress

Recent Advances in Optimization Solvers within
JuliaSmoothOptimizers

A tale of solving large-scale optimization problems with
JuliaSmoothOptimizers

jso.dev

Tangi Migot
tangi.migot@gmail.com / Github: @tmigot

joint work with D. Orban (Polytechnique Montréal)

and A.S. Siqueira (Netherlands eScience Center)

JuMP-dev 2024, Montréal, Canada, July 19-21th

jso.dev

Introduction Solvers Modeling Work in progress

Outline

1 Introduction

2 Solvers

3 Modeling

4 Work in progress

Introduction Solvers Modeling Work in progress

Introduction: Nonlinear nonconvex optimization

Variables: x ∈ X (take Rn);

Cost: f : X → R;
Constraints: C ⊆ X , for instance described by inequalities (in
this case C = {x : cL ≤ c(x) ≤ cU , ℓ ≤ x ≤ u}) with
c : X → Rm.

We denote
min
x∈X

f (x) s.t. x ∈ C .

Numerics?

Tools: Use derivatives (tradeoff
efficiency/guarantee);
Aim: Stationary points (local
result).

Introduction Solvers Modeling Work in progress

JuliaSmoothOptimizers: Brief genesis

Scientific background: numerical linear algebra (NLA) and
optimization (OPT);

JuliaSmoothOptimizers: is an organization on GitHub
containing a collection of Julia packages;

The organization was first initiated in 2015 by D. Orban
(@dpo) and A. Siqueira (@abelsiqueira). CUTEst,
AmplNLReader, Krylov were among the first packages;

Core contributors are mainly researchers in NLA and OPT;

JSO is used in the classroom, to write research papers, and
solve large problems;

Checkout @abelsiqueira’s talks at the JuliaCon 24
https://juliacon.org/2024/

The organization has a website https://jso.dev/ with
news, references and tutorials.

https://juliacon.org/2024/
https://jso.dev/

Introduction Solvers Modeling Work in progress

Thanks for making JSO possible

¡article:0¿[plain]

Introduction Solvers Modeling Work in progress

Some stats...

Since 2019, 27
journal
publications
and a book
using JSO
packages;

60 registered
packages for
NLA and OPT

In this talk...

we will only talk about smooth nonlinear OPT.

Introduction Solvers Modeling Work in progress

How to maintain JSO: BestieTemplate.jl

Template focused on best practice

Can be applied to existing packages (and reapplied or
updated)

Test repo: github.com/JSOSuite.jl

Formatting, citation file, workflows, docs, lint-checker, PR
template

Check @abelsiqueira’s talk at JuliaCon

github.com/JSOSuite.jl

Introduction Solvers Modeling Work in progress

JSO: The environment

Models
ADNLPModels.jl
KnetNLPModels.jl
LLSModels.jl
ManualNLPModels.jl
NLPModels.jl
NLPModelsModifiers.jl
QuadraticModels.jl
PartiallySeparableNLP...
PDENLPModels.jl

Models wrappers
AMPLNLReader.jl
NLPModelsJuMP.jl
QPSReader.jl

Pure Julia solvers
CaNNOLeS.jl
DCISolver.jl
FletcherPenaltySolver.jl
JSOSolvers.jl
NCL.jl
PartiallySeparableSolvers.jl
Percival.jl
RegularizedOptimization.jl
RipQP.jl

Solver wrappers
NLPModelsIpopt.jl
NLPModelsKnitro.jl
QuadraticModelsCPLEX.jl
/Gurobi.jl/Xpress.jl

Linear algebra
AMD.jl
Krylov.jl
LDLFactorizations.jl
LimitedLDLFactorizations.jl
LinearOperators.jl
SparseMatricesCOO.jl
SuiteSparseMatrixCollection.jl

Linear algebra wrappers
BasicLU.jl
PROPACK.jl
HSL.jl
MUMPS.jl
QRMumps.jl

Tools
BenchmarkProfiles.jl
ExpressionTreeForge.jl
JSOSuite.jl
PartitionedStructures.jl
ShiftedProximalOperators.jl
Solver/NLPModelsTest.jl
SolverBenchmark.jl
SolverCore.jl
SolverTools.jl

Test problems
CUTEst.jl
NLSProblems.jl
RegularizedProblems.jl
BundleAdjustmentModels.jl
OptimizationProblems.jl

Introduction Solvers Modeling Work in progress

An example of solver (1/3): ARCqK

Adaptive regularization with cubics (ARC) is an iterative algorithm
for

min
x∈Rn

f (x)

where f : Rn → R is smooth. At each iteration, ARC solves a
cubic unconstrained problem

min
d∈Rn

f (xk) + dT∇f (xk) +
1

2
dT∇2f (xk)d +

1

3α
∥d∥3

(VIP) Fun fact

of iterations to reach ∥∇f (xk)∥ ≤ ϵ is O(ϵ−3/2) for ARC, but
only O(ϵ−2) for steepest descent or trust-region.

Introduction Solvers Modeling Work in progress

An example of solver (2/3): The main ingredient

As in trust-region methods, minimizing the cubic model involves
solving the shifted linear system

(∇2f (xk) + λI)d = −∇f (xk) (LS)

while searching an appropriate value of the shift λ > 0.

Key idea

exploit Lanczos implementation of the conjugate gradient to
solve factorization-free (LS) for several shifts

only 1 matrix-vector product with the Hessian per iteration of
conjugate gradient for several shifts.

J.P. Dussault, T. Migot, D. Orban
Scalable adaptive cubic regularization methods, Math. Prog.,
2023.

Introduction Solvers Modeling Work in progress

An example of solver (2/3): The main ingredient

As in trust-region methods, minimizing the cubic model involves
solving the shifted linear system

(∇2f (xk) + λI)d = −∇f (xk) (LS)

while searching an appropriate value of the shift λ > 0.

Key idea

exploit Lanczos implementation of the conjugate gradient to
solve factorization-free (LS) for several shifts

only 1 matrix-vector product with the Hessian per iteration of
conjugate gradient for several shifts.

J.P. Dussault, T. Migot, D. Orban
Scalable adaptive cubic regularization methods, Math. Prog.,
2023.

Introduction Solvers Modeling Work in progress

An example of solver (3/3): Implementation

Krylov.jl + NLPModels.jl + SolverCore.jl =
AdaptiveRegularization.jl

CUTEst.jl + SolverBenchmark.jl = paper :)

Introduction Solvers Modeling Work in progress

An example of solver (3/3): Implementation

Krylov.jl + NLPModels.jl + SolverCore.jl =
AdaptiveRegularization.jl

CUTEst.jl + SolverBenchmark.jl = paper :)

Introduction Solvers Modeling Work in progress

Exploit structure: Partially separable solver

A partially separable objective function f sums element
functions of smaller dimensions. An example of a separable
objective function in R5:

f (x) := f1(x1, x2, x3) + f2(x3, x4, x5) + f3(x1, x3, x5) (1)

and its Hessian

We want to build specialized methods such as partitioned

quasi-Newton method.

Introduction Solvers Modeling Work in progress

NLPModels API

One of the core packages in JSO is NLPModels.jl, which provides
a standardized API for models of the form

min
x∈Rn

f (x) s.t. cL ≤ c(x) ≤ cU , ℓ ≤ x ≤ u,

provides access to objective and constraint functions

in-place and out-of-place evaluation of the objective gradient,
constraints, Jacobian and Hessian nonzero values

There is more...

It has an API to access separately linear and nonlinear constraints.

Introduction Solvers Modeling Work in progress

Access derivatives

Most of the algorithms we will use rely on first and second-order
derivatives either to:

compute a factorization of a system involving
Jacobian/Hessian matrices,

or, compute Jacobian/Hessian-vector products.

The NLPModel API provides two ways to access second-order
derivatives:

Using COO-structure (vectors of rows, columns and values).

Using linear operators (via LinearOperators.jl) to compute
the matrix-vector products without storing the whole matrix.

Introduction Solvers Modeling Work in progress

JSO-compliant optimization solvers

There is a minimal set of rules to qualify a JSO-compliant solver:

The input must be an instance of AbstractNLPModel as
presented before

The output has to include a GenericExecutionStats

implemented in SolverCore.jl which gives the solution,
optimal value, elapsed time, iterations, primal and dual
feasibility, etc.

and that’s it!

Note that the whole NLPModel API doesn’t have to be
implemented, only the methods required by the algorithm are
needed.

Introduction Solvers Modeling Work in progress

Optimization solvers within JSO

One of the strength of the organization is the variety of available
solvers included well-established codes such as:

Artelys Knitro via NLPModelsKnitro.jl;

Ipopt via NLPModelsIpopt.jl;

Algencan via NLPModelsAlgencan.jl;

and JSO pure-Julia implementation such as

JSOSolvers.jl and AdaptiveRegularization.jl

(unconstrained + bounds);

RipQP.jl (quadratic programs);

Percival.jl (bounds + ”=”);

DCISolver.jl (”=” only for now);

FletcherPenaltySolver.jl (”=” only for now).

Remark

These solvers are indepent of the origin of the problem!

Introduction Solvers Modeling Work in progress

JSOSuite: Motivations

We needed a tool that gives a simple and intuitive entry point
in the JSO universe;

Be able to easily prototype and compare solvers to find the
right option.

Collect information about a solver and select an appropriate
solver (ongoing: automatic detection of linear constraints,
NLS, etc.)

Connect with SolverBenchmark.jl for benchmarks and
collect results.

Introduction Solvers Modeling Work in progress

Implement the API

NLPModels.jl define the NLPModel API for the abstract
type AbstractNLPModel;

Packages are making subtypes of AbstractNLPModel and
implementing the API:

ADNLPModels: automatic differentiation;
ManualNLPModels: manually inputted functions.

Some packages exploit the problem to provide more efficient
implementations:

PDENLPModels;
PartiallySeparableNLPModels.jl;
KnetNLPModels.jl or FluxNLPModels.jl.

There are also wrappers with optimization modeling
languages: NLPModelsJuMP.jl for JuMP.jl and MOI,
CUTEst.jl or AmplNLReader.jl.

Introduction Solvers Modeling Work in progress

ADNLPModels

The package ADNLPModels.jl provides AD-based model
implementations that conform to the NLPModels API.

It has no specific modeling constraints, and accepts directly
Julia’s Function type;

This allow to define models for any floating-point type that
supports arithmetic operations;

It uses automatic differentiation modules such as
ForwardDiff.jl or ReverseDiff.jl to compute
derivatives;

It is design with a backend organization that allow switching
from one AD-module to another and build mixed-models;

Try out ADNLPModels 0.8.2 and 0.8.3

thanks to @amontoison, @gdalle and @adrhill there was massive
improvement in Jacobian/Hessian computations.

Introduction Solvers Modeling Work in progress

Mixed NLPModels with ADNLPModels.jl

PDENLPModels.jl usually defined sparse Jacobian and Hessian
matrices, but no operator-type product.

Introduction Solvers Modeling Work in progress

NLPModels: Things I won’t talk about

NLPModels.jl define the NLPModel API for problems such as

min
x∈Rn

f (x) s.t. cL ≤ c(x) ≤ cU , ℓ ≤ x ≤ u, (2)

It is possible to specialize the API for a subproblem of (1), for
instance consider the nonlinear least squares (NLS):

min
x∈Rn

1

2
∥F (x)∥22 s.t. cL ≤ c(x) ≤ cU , ℓ ≤ x ≤ u. (3)

NLPModels.jl also defines an API that access to the residual
F and its derivatives.

It is possible to modify NLPModel, for instance use a quasi
Newton approximation, add slack variables, etc. The main
package for these transformations is
NLPModelsModifiers.jl.

Introduction Solvers Modeling Work in progress

An example of NLPModel modifier: TimerNLPModels.jl

Introduction Solvers Modeling Work in progress

JSO GPU support

We recently started testing and supporting GPU data types across
the organization

NLPModels.jl with NLPModelsTest.jl now have tests for
GPU compatible problems.

The other NLPModel packages that are compatible are also
tested.

Solvers are being tested too: TRUNK, first-order solvers R2

Soon: Equality-constrained solvers
FletcherPenaltySolver.jl and Percival.jl

To come later: LBFGS, bound-constrained solvers, and
Percival.jl with inequalities.

Introduction Solvers Modeling Work in progress

Parameter optimization

What is a JSO-compliant solver?

Minimal JSO-compliant: NLPModel as input,
GenericExecutionStats as output;

Efficient JSO-compliant: implement
solve!(nlp::AbstractNLPModel,

solver::AbstractOptimizationSolver,

stats::GenericExecutionStats)

New change

We are adding a new structure for handling solver parameters
AbstractParameterSet.

Introduction Solvers Modeling Work in progress

Parameter optimization

The strategy is as follows

Use AbstractParameterSet in your solver, specify bounds,
constraints, defaults for each parameter;

Instantiate a BBModel, an unconstrained model that
corresponds to the parameter optimization problem;

Solve this problem (derivative-free solver, random search,
etc.);

Feed the solver with your optimized parameters.

(Automatize this process in the repos)

Introduction Solvers Modeling Work in progress

Parameter optimization

Introduction Solvers Modeling Work in progress

Thank you for your attention!

https://github.com/JuliaSmoothOptimizers/JSOSuite.jl

Where to start with JuliaSmoothOptimizers?

JSO website https://jso.dev with news, tutorials, etc.

New contributors are always welcome! Feel free to say Hi! or
discuss ideas, potential use-cases, etc.

https://github.com/JuliaSmoothOptimizers/JSOSuite.jl
https://jso.dev

	Introduction
	Solvers
	Modeling
	Work in progress

