
The state of JuMP

Miles Lubin (Hudson River Trading*)

JuMP-dev 2024

*Speaking in a personal capacity. Views and opinions expressed do not necessarily reflect
those of HRT.

What is JuMP?
Part of the zoo of algebraic modeling languages

CMPL, CPLEX Concert, GNU MathProg, Gurobi C++/Python API, linopy,
MATLAB “problem-based optimization workflow”, Mosek Fusion, MOSEL, ompr,
OPTMODEL, PuLP, PyOptInterface, Python-MIP, YALMIP, ZIMPL, …

What is JuMP?
An algebraic modeling language in Julia

using JuMP, Ipopt
function constrained_linear_regression(A::Matrix, b::Vector)
 model = Model(Ipopt.Optimizer)
 @variable(model, 0 <= x[1:size(A, 2)] <= 1)
 @variable(model, residuals[1:size(A, 1)])
 @constraint(model, residuals == A * x - b)
 @constraint(model, sum(x) <= 1)
 @objective(model, Min, sum(r^2 for r in residuals))
 optimize!(model)
 return value.(x)
end
A, y = rand(30, 20), rand(30)
x = constrained_linear_regression(A, b)

Why is JuMP interesting?

● Nice syntax
● Comprehensive documentation
● Vibrant community
● Open source
● Solver independent (50+ supported solvers)
● Embedded in Julia
● Supports interacting with solvers while they’re running
● Low overhead for model generation
● Extensible to new solvers
● Extensible to new problem classes

Who is (some of) JuMP?
https://github.com/jump-dev/JuMP.jl/graphs/contributors

https://github.com/jump-dev/JuMP.jl/graphs/contributors

In the last 12 months of github.com/jump-dev…

>695,000
downloads of jump-dev

packages

52
unique contributors

1,174
pull requests opened

373
issues opened

Milestones from the past year

● Between July 2023 and July 2024: 1.13 ➔ 1.22
● Three roadmap items completed
● Supported solvers increased from 43 to 54
● Convex.jl backend rewrite
● Julia community prize
● Transitioned from NSF funding (new: LANL, PSR)
● Second JuMP baby

Major technical improvements

● New Nonlinear API
● Macro refactoring

Improving nonlinear programming support in JuMP
https://jump.dev/JuMP.jl/stable/manual/nonlinear/

using JuMP
model = Model()
@variable(model, x[1:2])
@objective(model, Min, x[2]^3 * sin(x[1])^x[2])
my_func(y) = sum(2^y[1] .+ exp.(y))
@expression(model, expr, 2 * my_func(x))
@constraint(model, expr <= 100)
@constraint(model, sqrt(x’ * x) <= 1)

https://jump.dev/JuMP.jl/stable/manual/nonlinear/

Nonlinear complementarity
https://jump.dev/JuMP.jl/stable/tutorials/nonlinear/complementarity/

using JuMP, PATHSolver
model = Model(PATHSolver.Optimizer)
@variable(model, 0 <= x[1:2] <= 1, start = 0.5)
To add a constraint of the form `F(x) ⟂ x` do
@constraint(model, x[2]^3 - x[1] ⟂ x[1])
@constraint(model, 1 - exp(x[1]) ⟂ x[2])
optimize!(model)
value.(x)

https://jump.dev/JuMP.jl/stable/tutorials/nonlinear/complementarity/

Smaller items

Parameters

using JuMP
model = Model()
@variable(model, x in Parameter(2))
@variable(model, y[1:2])
@constraint(model, sum(y) >= x)
set_parameter_value(x, 3)

Use with extensions like ParametricOptInterface.jl

DimensionalData

using JuMP, DimensionalData
model = Model()
@variable(
 model,
 x[i = 2:4, j = ["a", "b"]] >= i,
 container = DimensionalData.DimArray,
)
x[At(2), At("a")]
x[1, 1]

https://jump.dev/JuMP.jl/stable/extensions/DimensionalData/

Boolean SAT
https://jump.dev/JuMP.jl/stable/manual/constraints/#Boolean-constraints

using JuMP, MiniZinc
model = GenericModel{Bool}(() ->

MiniZinc.Optimizer{Bool}("chuffed"))
@variable(model, x[1:2])
@constraint(model, x[1] || x[2] := true)
@constraint(model, x[1] && x[2] := false)
optimize!(model)
value.(x)

lp_matrix_data

using JuMP
model = Model()
@variable(model, x[1:2])
@constraint(model, x[1] + 2 * x[2] <= 1)
@objective(model, Max, x[2])
data = lp_matrix_data(model)

is_solved_and_feasible

● Does what its name says
● Shortcut for checking MOI termination and solution statuses

Also

● Convex.jl backend rewrite
● Gurobi automated install
● New solvers/interfaces:

○ MINOTAUR
○ PolyJuMP.QCQP
○ Octeract
○ MiniZinc
○ Percival
○ Manopt
○ SDPLR
○ Optim
○ MAiNGO
○ DSDP

● Nonlinear expressions with vector inputs and outputs
● First-class support for units

○ @variable(model, x, u"m/s")
● (Maybe more after this workshop!)

New roadmap items

2.0?

● Haven’t seen a good reason to make breaking changes so far
● Compare with numpy (16 years from 1.0 to 2.0!)

JuMP-inspired packages

I’d love to use JuMP but I’m coding in ___

● C++/Python: MathOpt (Google OR-Tools)
● Python: PyOptInterface
● R: ompr

Great!

Thank you!
Go to jump.dev for more information

And the whole JuMP community!

