SINTEF

Applied optimization
with JUMP at SINTEF

Truls Flatberg

Technology for a better society

sl Outline

Background, SINTEF, Julia

How to work with large scale, complex optimization models

lllustrative examples showing two different approaches

Learning, experiences and how to progress

Technology for a better society

SINTEF

R Oe

b ¥ nd et el 8
LR

ONE OF EUROPE’S LARGEST INDEPENDENT
RESEARCH ORGANISATIONS

367 million 2200 6400 3300
EUR turnover employees projects customers
INTERNATIONAL NATIONALITIES PUBLICATIONS (INCL. DISSEMINATION) CUSTOMER SATISFACTION

57 million EUR 80 6200 46/5

suil Optimization modeling @SINTEF

* Developing optimization models for industrial use and economic analysis

* Historically the primary tool has been FICO Xpress using the Mosel modelling
language

* Other modeling tools: GAMS, AMPL, Pyomo
* Several models in daily operation across several industries (oil and gas, aluminium)

* Economic models for long term analysis (energy, infrastructure, regional, national and
global focus)

Technology for a better society

Why Julia and JuMP?

Specialized algebraic modelling languages typically lack support for:
— Easy modularization and code reuse

— Support for multiple solvers

— Ecosystem of surrounding packages for file 10, database access, plotting

Commercial modeling tools are costly, and some are tied to a specific solver

Research funding (EU and Research Council of Norway) tending towards more openly
available models and software

Julia and JuMP gradually introduced since 2020

Technology for a better society

sl Open packages released by SINTEF

SparseVariables: https://github.com/sintefore/SparseVariables.jl
UnitJuMP: https://github.com/trulsf/UnitJuMP.jl
TimeStruct: https://github.com/sintefore/TimeStruct.jl

EnergyModelsX: https://github.com/orgs/EnergyModelsX

PiecewiseAffineApprox: https://github.com/sintefore/PiecewiseAffineApprox.jl

For a short introduction to the packages see presentations at JuMP-Dev 2022, 2023 and
2024 (talks by Lars Hellemo and Julian Straus).

Technology for a better society

https://github.com/sintefore/SparseVariables.jl
https://github.com/trulsf/UnitJuMP.jl
https://github.com/sintefore/TimeStruct.jl
https://github.com/orgs/EnergyModelsX
https://github.com/sintefore/PiecewiseAffineApprox.jl

il How to handle complex optimization models

* Clear separation between input data and optimization modelling

* Multiple dispatch to control formulation and configuration

* Separate module(s) for the optimization model and associated data structures
* Automatic test routines

* Documentation

* Recommended reading
— https://jump.dev/JuMP.jl/stable/tutorials/getting_started/design_patterns_for larger_models/

Technology for a better society

https://jump.dev/JuMP.jl/stable/tutorials/getting_started/design_patterns_for_larger_models/

sl Modeling approaches

Single script — monolithic

Julia supports more modular approaches, but the model is still "global" by nature

What is the APl of an optimization model?
* How can a user easily extend model functionality?

* How can we combine multiple models?

Technology for a better society

Example 1: logistics of crushed stone and
excavated masses

TSR
Ny AR

Technology for a better society

sl Approach using JuMP

* UnitJuMP to ensure correct and flexible use of physical units
* TimeStruct for general time structures

» SparseVariables to allow dynamic generation of variables with
sparse structure

* MultiObjectiveAlgorithms to balance economic and
environmental aspects

» Separate packages for the optimization modeling and for setting
up an instance based on input data

Technology for a better society

SINTEF

Maskinkult

Kan pgsa gi 0/16 eller 0/63
Spreng_ 80/120/240
. —»
stein

T Maskinkult

Ballastpukk Pukk

32/63
(22/63)

Grgftepukk

Stensand

Technology for a better society

sl Model variables

* Separate structure to collect all model = Modelvariables
. ow
variables flow mode
. . . : n_trips
* Easier overview of available variables usage. trip
(including code completion) storage
: : : prod
* Using SparseVariables to allow dynamic consume
variable creation emit::Dict{Emission, IndexedVarArray}
_ . _ _ . fuel::Dict{Fuel, IndexedVarArray}
* Using UnitJuMP to include physical units epd_flow: :Dict{EPDIndicator, IndexedVarArray}

usage

usage_mode

Technology for a better society

SINTEF

UnitJuMP

|

@variable(m, flow[start = N, stop = N, product = P, period = 7] »>= ©, massunit; container =

= IndexedVarArray)
@variable(m, flow_mode[node = N, mode = D, product = P, period =] >= @, massunit; container = IndexedVarArray)

@variable(m, n_trips[trips = §, period = 7] >= ©; container = IndexedVarArray)
@variable(m, usage_trip[node = N, trips = §, period = 7] >= ©, timeunit; container = IndexedVarArray)

|

SparseVariables

Technology for a better society

milll Data structures

variables_node(mv, i::Market, t) * Each node in the network is responsible
for p in products(i)

e | e, B p for creating its own variables, constraints
7 BT e [B and objective contributions

insertvar!(mv.sale_income, i, p, t)
end o * Dispatching on node types
if allow_slack_min(i, p)

insertvar!(mv.slack_demand, i, p ,t)

insertvar! (mv.penalty cost, i, p ,t)
end

massbalance(m, mv, i::Market, t, prev)
for p in products(i)
ctr = @constraint(m, mv.sale[i, p, t] == sum(mv.flow[:, i, p, t]))

set_name(ctr, "mass_bal market($i,$p,$t)")
end

Technology for a better society

SINTEF

Industrial deployment

Confiouration * Julia model distributed as a
° self-contained executable
using PackageCompiler

* 382 MB zipped file

Optimization

i Solution(s)

Technology for a better society

SINTEF

/\, SIRKUL £R
52 zf: masseforvaltning

C:_project\CircMass\Test\Prosjekt\results

Lasningskatalog:

Mulige lgsninger

MassePlan (v1.0) - resultat

Velg...

Pris Avgift
transport Pris innkjart EPD
Lasning Pris total [kr] [kr] produkt [kr] [kr] [kgCO2e] Masser inn Masser ut Total
1 1630260 357000 1149510 123750 51 743 Lesning: Volum [tonn] 9 670 2 750 12 420
2 1650775 377 515 1149 510 123 750 52743 EPD Al-A3 [kgCO2e] 23 788 23788
3 1713982 A40 722 1149 510 123 750 55712 EPD A4 [kgCO2e] 22 237 5718 27955
4 1872027 443 767 1304 510 123 750 57163 Pris produkt [kr] 1 149510 1149 510
Pris transport [kr] 300 372 56 628 357 000
Avgift innkjert [kr] 123 750
Pris total [kr] 1 449 882 180 378 1630 260
Masser inn
Pris Pris
Volum EPD Al-A3 EPD A4 produkt transport
Produkt Fra Til [tonn] [kgCO2e] [kgCO2e] [kr] [kr]
22125 Larenskog Prosjekt 7750 19 065 18 817 999 750 263 586
32 Bjenndalen Prosjekt 1920 4723 3421 149 760 36 786

miill Experiences and learnings

* The use of physical units can be a bit cumbersome, but can catch errors in modeling
at an early stage

* Custom structures for holding model variables can be beneficial
* Multi objective for "free" ©

* Deployment at customer can be a considerable challenge (but not necessarily related
to Julia/JuMP)

Technology for a better society

Example 2: Locating hydrogen infrastructure in
sl the Lofoten Islands

Photo by Holly Rowland/CC-BY 2.0 Technology for a better society

sl Approach using JuMP

TimeStruct for flexible time structures

Storages for general modeling of storage inventory (in combination with TimeStruct)

PiecewiseAffineApprox to add convex piecewise linear approximations of a set of
points to optimization models

EnergyModelsinvestement for general modeling of investment decisions

Technology for a better society

Submodels as separate packages with well-
sl defined APIs

* Inspired by the approach of ModelingToolkit/Modelica and Plasmo

* Create a standard library of components that can be combined through connectors

* Components can be added to an optimization model producing the required
submodel

Technology for a better society

sl Storages

Jlrlnﬂow

Storage as a high-level object that can be directly
added to a JuMP model

Builds upon TimeStruct

Capacity * Exposes a small interface:

init_storage, add storage!

set_inflow, set_outflow, set_capacity

1 Outflow

Tracking of storage levels is internal to the
module

Technology for a better society

sl Usage example

periods = SimpleTimes(3, 1)
model = JuMP.Model(HiGHS.Optimizer)
@variable(model, cap >= ©)
@objective(model, Min, cap)

storage = Storages.init_storage(model, "Lager", Storages.Cyclic(), periods)

set_capacity(storage, periods, cap)
for t in periods
set_outflow(storage, t, 1)
end
set_inflow(storage, first(periods), 3)

Storages.add_storage! (model, storage, StorageData(init_stock_level = FixedProfile(2)))

optimize! (model)

Technology for a better society

sl Generated model

Min cap
Subject to

_init_stock _level Lager[scl] ==

_stock_level Lager[tl] - _init_ stock_level Lager[scl] == 2
- _stock_level Lager[tl] + _stock_level Lager[t2] == -1

- _stock_level Lager[t2] + _stock level Lager[t3] == -1

- stock_level Lager[t3] + _init stock_level Lager[scl] == ©
-cap + _init_stock_level Lager[scl] <= ©

-cap + _stock_level Lager[tl] <= ©

-cap + _stock_level Lager[t2] <= ©

-cap + _stock_level Lager[t3] <= ©

cap >= ©

_stock_level Lager[tl] >=

_stock_level Lager[t2] >=

_stock_level Lager[t3] >=

_init_stock _level Lager[scl] »>= ©

Technology for a better society

miill Experiences and learnings

Separate modules for different components and aspects allow for easy reuse

Hiding internal model implementation reduces complexity

Composability in Julia is excellent

Still experimenting, more tutorials and best-practice are welcome

Technology for a better society

il Summary and wishlist

* Julia and JuMP has been well received among all involved colleagues
* JuMP documentation and tutorials are very good
* JuMP has been robust and stable

* Much to gain from working with an open-source approach (code and knowledge
sharing)

* Wishlist
— Use of physical units as an integral part of JuUMP

— Model debugger (IIS detection, relaxation, activating/deactivating constraints)
— Efficient handling of large scale and sparse models and associated solution information

Technology for a better society

SINTEF

Technology for a better society

	Slide 1: Applied optimization with JuMP at SINTEF
	Slide 2: Outline
	Slide 3
	Slide 4: Optimization modeling @SINTEF
	Slide 5: Why Julia and JuMP?
	Slide 6: Open packages released by SINTEF
	Slide 7: How to handle complex optimization models
	Slide 8: Modeling approaches
	Slide 9: Example 1: logistics of crushed stone and excavated masses
	Slide 10: Approach using JuMP
	Slide 11
	Slide 12: Model variables
	Slide 13
	Slide 14: Data structures
	Slide 15: Industrial deployment
	Slide 16
	Slide 17: Experiences and learnings
	Slide 18: Example 2: Locating hydrogen infrastructure in the Lofoten Islands
	Slide 19: Approach using JuMP
	Slide 20: Submodels as separate packages with well-defined APIs
	Slide 21: Storages
	Slide 22: Usage example
	Slide 23: Generated model
	Slide 24: Experiences and learnings
	Slide 25: Summary and wishlist
	Slide 26

