
Convex Network Flows

Theo Diamandis
MIT (Julia Lab) & Bain Capital

joint work with Guillermo Angeris and Alan Edelman

JuMP-dev 2024

Goals

▶ Goal: solve decision-making problems involving very large nonlinear networks

– Natural way to specify the relevant optimization problem

– Fast and parallelizable computational building blocks

▶ This talk: marriage of convex optimization and network flows

1

Goals

▶ Goal: solve decision-making problems involving very large nonlinear networks

– Natural way to specify the relevant optimization problem

– Fast and parallelizable computational building blocks

▶ This talk: marriage of convex optimization and network flows

1

Goals

▶ Goal: solve decision-making problems involving very large nonlinear networks

– Natural way to specify the relevant optimization problem

– Fast and parallelizable computational building blocks

▶ This talk: marriage of convex optimization and network flows

1

Goals

▶ Goal: solve decision-making problems involving very large nonlinear networks

– Natural way to specify the relevant optimization problem

– Fast and parallelizable computational building blocks

▶ This talk: marriage of convex optimization and network flows

1

Outline

Motivation

Framework

Applications

Algorithm

Outline

Motivation

Framework

Applications

Algorithm

Nonlinear networks are everywhere!

▶ Power dispatch

Motivation 2

Nonlinear networks are everywhere!

▶ Power dispatch

▶ Communication systems

b1 b2

v

u

Motivation 2

Nonlinear networks are everywhere!

▶ Power dispatch

▶ Communication systems

▶ Arrow-Debreu markets (market clearing)
buyers

1

...

i

...

nb

u1(x1)

ui (xi)

unb(xnb)

goods

nb + 1

...

j

...

ng

1

1

1

Motivation 2

Nonlinear networks are everywhere!

▶ Power dispatch

▶ Communication systems

▶ Arrow-Debreu markets (market clearing)

▶ Financial order routing

GOOGL

USD

APPL

GBP EUR

NYSE

IEX

NASDAQ

LSE Euronext

Motivation 2

Nonlinear networks are everywhere!

▶ Power dispatch

▶ Communication systems

▶ Arrow-Debreu markets (market clearing)

▶ Financial order routing

▶ Supply chain with spoilage

▶ ...

Motivation 2

Nonlinear networks are everywhere!

▶ Power dispatch

▶ Communication systems

▶ Arrow-Debreu markets (market clearing)

▶ Financial order routing

▶ Supply chain with spoilage

▶ ...

Motivation 2

Motivating example: order routing in financial networks
(Diamandis et al., Financial Cryptography 2023)

▶ Goal: convert fixed amount of Google stock to maximum amount of Apple stock

▶ Many venues on which you can place the order

GOOGL

USD

APPL

GBP EUR

NYSE

IEX

NASDAQ

LSE Euronext

▶ Nonlinearity: Price impact of trading: the more you trade, worse the price
Motivation 3

Motivating example: optimal power flow

▶ Goal: generate power to meet demand at minimum cost

▶ Multiple sources and transmission lines to choose from

▶ Nonlinearity: Power loss: the more power transmitted, the more is dissipated

Motivation 4

Perhaps a generalization?

source

sink

Linear network flows
▶ Very fast to solve

▶ But not very expressive

x

f (x)

Convex Optimization
▶ Very expressive

▶ But slow in general

Motivation 5

Perhaps a generalization?

source

sink

Linear network flows
▶ Very fast to solve

▶ But not very expressive

What do we do between?

x

f (x)

Convex Optimization
▶ Very expressive

▶ But slow in general

Motivation 5

Perhaps a generalization?

source

sink

Linear network flows
▶ Very fast to solve

▶ But not very expressive

What do we do between?

A new framework:
Convex Network Flows

x

f (x)

Convex Optimization
▶ Very expressive

▶ But slow in general

Motivation 5

Outline

Motivation

Framework

Applications

Algorithm

First generalization: hypergraphs

▶ Graph −→ hypergraph: edges can connect more than 2 vertices

hyperedge 1

hyper-
edge 2

hyper-
edge 3

hyperedge 4

A

C

D

B

Framework 6

First generalization: hypergraphs

▶ Graph −→ hypergraph: edges can connect more than 2 vertices

hyperedge 1

hyper-
edge 2

hyper-
edge 3

hyperedge 4

A

C

D

B

hyperedge 1

hyperedge 2

hyperedge 3

hyperedge 4

A

B

C

D

Framework 6

Second generalization: convex sets

▶ Linear input-output relationship −→ convex set of allowable flows T

edge
A

B

w

αw

Input-output relationship: h(w) = αw

edge flow z =

[
−w
h(w)

]

(−zmax
1 , αzmax

1)

z1

z2

T = {z ∈ R2 | z2 = α · (−z1)}

Framework 7

Second generalization: convex sets

▶ Linear input-output relationship −→ convex set of allowable flows T

edge
A

B

w

αw

Input-output relationship: h(w) = αw

edge flow z =

[
−w
h(w)

]

(−zmax
1 , αzmax

1)

z1

z2

T = {z ∈ R2 | z2 = α · (−z1)}

Framework 7

Second generalization: convex sets

▶ Linear input-output relationship −→ convex set

w

h(w) =
√
w

−→

T = {z | 0 ≤ z2 = h(−z1)}

z1

z2

▶ Claim: we can ensure a solution flow always lies on the boundary (more soon)

Framework 8

Second generalization: convex sets

▶ Linear input-output relationship −→ convex set

w

h(w) =
√
w

−→

T = {z | 0 ≤ z2 ≤ h(−z1)}

z1

z2

▶ Claim: we can ensure a solution flow always lies on the boundary (more soon)

Framework 8

Second generalization: convex sets

▶ Linear input-output relationship −→ convex set

w

h(w) =
√
w

−→

T = {z | 0 ≤ z2 ≤ h(−z1)}

z1

z2

▶ Claim: we can ensure a solution flow always lies on the boundary (more soon)

Framework 8

Accounting

▶ Net flow y ∈ Rn and edge flows xi ∈ Ti ⊆ Rni

▶ Matrices Ai map flow’s local index in edge i to global index, e.g.,

node Local Index Global Index
B 1 2
D 2 4

Ai ·
[
−0.5
0.3

]
=

0

−0.5
0

0.3
...

A
B
C
D

▶ The overall net flow in the network is

y =
m∑
i=1

Aixi

Framework 9

Accounting

▶ Net flow y ∈ Rn and edge flows xi ∈ Ti ⊆ Rni

▶ Matrices Ai map flow’s local index in edge i to global index, e.g.,

node Local Index Global Index
B 1 2
D 2 4

Ai ·
[
−0.5
0.3

]
=

0

−0.5
0

0.3
...

A
B
C
D

▶ The overall net flow in the network is

y =
m∑
i=1

Aixi

Framework 9

Accounting

▶ Net flow y ∈ Rn and edge flows xi ∈ Ti ⊆ Rni

▶ Matrices Ai map flow’s local index in edge i to global index, e.g.,

node Local Index Global Index
B 1 2
D 2 4

Ai ·
[
−0.5
0.3

]
=

0

−0.5
0

0.3
...

A
B
C
D

▶ The overall net flow in the network is

y =
m∑
i=1

Aixi

Framework 9

Objective: maximize utility

▶ Concave, increasing utility functions for net flow U(y) and edge flows {Vi (xi)}

T

x̂

z1

z2

Framework 10

Objective: maximize utility

▶ Concave, increasing utility functions for net flow U(y) and edge flows {Vi (xi)}

T

x̂

∇U(y)

z1

z2

Framework 10

Objective: maximize utility

▶ Concave, increasing utility functions for net flow U(y) and edge flows {Vi (xi)}

T

x̂

x̃

∇U(y)

z1

z2

Framework 10

Framework: convex flow problem
(Diamandis et al., arXiv preprint 2024)

▶ The convex flow problem:

maximize U(y) +
∑m

i=1 Vi (xi)

subject to y =
∑m

i=1 Aixi

xi ∈ Ti , i = 1, . . . ,m.

Framework 11

Framework: convex flow problem
(Diamandis et al., arXiv preprint 2024)

▶ The convex flow problem:

maximize U(y) +
∑m

i=1 Vi (xi)

subject to y =
∑m

i=1 Aixi

xi ∈ Ti , i = 1, . . . ,m.

▶ Maximize utility of net flow plus utility of edge flows

Framework 11

Framework: convex flow problem
(Diamandis et al., arXiv preprint 2024)

▶ The convex flow problem:

maximize U(y) +
∑m

i=1 Vi (xi)

subject to y =
∑m

i=1 Aixi

xi ∈ Ti , i = 1, . . . ,m.

▶ Maximize utility of net flow plus utility of edge flows

▶ Subject to having flow conservation and allowable edge flows

▶ Aside: definition of allowable flows Ti ’s allows for a DCP-like ‘calculus’ of flows

Framework 11

Framework: convex flow problem
(Diamandis et al., arXiv preprint 2024)

▶ The convex flow problem:

maximize U(y) +
∑m

i=1 Vi (xi)

subject to y =
∑m

i=1 Aixi

xi ∈ Ti , i = 1, . . . ,m.

▶ Maximize utility of net flow plus utility of edge flows

▶ Subject to having flow conservation and allowable edge flows

▶ Aside: definition of allowable flows Ti ’s allows for a DCP-like ‘calculus’ of flows

Framework 11

Outline

Motivation

Framework

Applications

Algorithm

Maximum flow & friends

▶ Maximum flow problem

flow x

capacity = 3

source

sink

Applications 12

Maximum flow & friends

▶ Maximum flow problem

▶ Minimum cost flow

flow x

capacity = 3
cost = 1

specified output

source

sink

Applications 12

Maximum flow & friends

▶ Maximum flow problem

▶ Minimum cost flow

▶ Multi-commodity flows

flow (x1, x2)

capacity = 3

source

sink

Applications 12

Maximum flow & friends

▶ Maximum flow problem

▶ Minimum cost flow

▶ Multi-commodity flows

▶ and generalizations...

Applications 12

Application: optimal power flow
(from Stursberg 2019)

▶ Goal: find cost-minimizing power generation plan that satisfies demand

▶ Graph: transmission line network

▶ Flow: power

▶ Allowable flows: transmission line physics

▶ Objective: minimize cost of power generation

in

out

Image source: Lawrence Berkeley National Laboratory

Applications 13

Application: optimal power flow
(from Stursberg 2019)

▶ Goal: find cost-minimizing power generation plan that satisfies demand

▶ Graph: transmission line network

▶ Flow: power

▶ Allowable flows: transmission line physics

▶ Objective: minimize cost of power generation

in

out

Image source: Lawrence Berkeley National Laboratory

Applications 13

Application: optimal power flow
(from Stursberg 2019)

▶ Goal: find cost-minimizing power generation plan that satisfies demand

▶ Graph: transmission line network

▶ Flow: power

▶ Allowable flows: transmission line physics

▶ Objective: minimize cost of power generation

in

out

Image source: Lawrence Berkeley National Laboratory

Applications 13

Application: optimal power flow
(from Stursberg 2019)

▶ Goal: find cost-minimizing power generation plan that satisfies demand

▶ Graph: transmission line network

▶ Flow: power

▶ Allowable flows: transmission line physics

▶ Objective: minimize cost of power generation

in

out

Image source: Lawrence Berkeley National Laboratory

Applications 13

Application: optimal power flow
(from Stursberg 2019)

▶ Goal: find cost-minimizing power generation plan that satisfies demand

▶ Graph: transmission line network

▶ Flow: power

▶ Allowable flows: transmission line physics

▶ Objective: minimize cost of power generation

in

out

Image source: Lawrence Berkeley National Laboratory

Applications 13

Application: routing in wireless networks
(from Xiao et al. 2004)

▶ Goal: maximize data rate, subject to power and bandwidth constraints

▶ Hypergraph: communication network

▶ Flow: data rate

▶ Allowable flows: channel capacity (multicast)
with total power & bandwidth constraints

▶ Objective: maximize data rate from source to
destination

b1 b2

v

u

Hyperedges: all outgoing neighbors

Applications 14

Application: routing in wireless networks
(from Xiao et al. 2004)

▶ Goal: maximize data rate, subject to power and bandwidth constraints

▶ Hypergraph: communication network

▶ Flow: data rate

▶ Allowable flows: channel capacity (multicast)
with total power & bandwidth constraints

▶ Objective: maximize data rate from source to
destination

b1 b2

v

u

Hyperedges: all outgoing neighbors

Applications 14

Application: routing in wireless networks
(from Xiao et al. 2004)

▶ Goal: maximize data rate, subject to power and bandwidth constraints

▶ Hypergraph: communication network

▶ Flow: data rate

▶ Allowable flows: channel capacity (multicast)
with total power & bandwidth constraints

▶ Objective: maximize data rate from source to
destination

b1 b2

v

u

Hyperedges: all outgoing neighbors

Applications 14

Application: routing in wireless networks
(from Xiao et al. 2004)

▶ Goal: maximize data rate, subject to power and bandwidth constraints

▶ Hypergraph: communication network

▶ Flow: data rate

▶ Allowable flows: channel capacity (multicast)
with total power & bandwidth constraints

▶ Objective: maximize data rate from source to
destination

b1 b2

v

u

Hyperedges: all outgoing neighbors

Applications 14

Application: routing in wireless networks
(from Xiao et al. 2004)

▶ Goal: maximize data rate, subject to power and bandwidth constraints

▶ Hypergraph: communication network

▶ Flow: data rate

▶ Allowable flows: channel capacity (multicast)
with total power & bandwidth constraints

▶ Objective: maximize data rate from source to
destination

b1 b2

v

u

Hyperedges: all outgoing neighbors

Applications 14

Application: market clearing
(from Végh 2014)

▶ Goal: find market clearing prices for to allocate divisible goods to buyers

▶ Hypergraph: each buyer linked to all goods

▶ Flow: goods & utility

▶ Allowable flows: amount of goods, nonlinear
utility of buyers (can include complements)

▶ Objective: maximize sum of log utilities

buyers

1

...

i

...

nb

u1(x1)

ui (xi)

unb(xnb)

goods

nb + 1

...

j

...

ng

1

1

1

Applications 15

Application: market clearing
(from Végh 2014)

▶ Goal: find market clearing prices for to allocate divisible goods to buyers

▶ Hypergraph: each buyer linked to all goods

▶ Flow: goods & utility

▶ Allowable flows: amount of goods, nonlinear
utility of buyers (can include complements)

▶ Objective: maximize sum of log utilities

buyers

1

...

i

...

nb

u1(x1)

ui (xi)

unb(xnb)

goods

nb + 1

...

j

...

ng

1

1

1

Applications 15

Application: market clearing
(from Végh 2014)

▶ Goal: find market clearing prices for to allocate divisible goods to buyers

▶ Hypergraph: each buyer linked to all goods

▶ Flow: goods & utility

▶ Allowable flows: amount of goods, nonlinear
utility of buyers (can include complements)

▶ Objective: maximize sum of log utilities

buyers

1

...

i

...

nb

u1(x1)

ui (xi)

unb(xnb)

goods

nb + 1

...

j

...

ng

1

1

1

Applications 15

Application: market clearing
(from Végh 2014)

▶ Goal: find market clearing prices for to allocate divisible goods to buyers

▶ Hypergraph: each buyer linked to all goods

▶ Flow: goods & utility

▶ Allowable flows: amount of goods, nonlinear
utility of buyers (can include complements)

▶ Objective: maximize sum of log utilities

buyers

1

...

i

...

nb

u1(x1)

ui (xi)

unb(xnb)

goods

nb + 1

...

j

...

ng

1

1

1

Applications 15

Application: market clearing
(from Végh 2014)

▶ Goal: find market clearing prices for to allocate divisible goods to buyers

▶ Hypergraph: each buyer linked to all goods

▶ Flow: goods & utility

▶ Allowable flows: amount of goods, nonlinear
utility of buyers (can include complements)

▶ Objective: maximize sum of log utilities

buyers

1

...

i

...

nb

u1(x1)

ui (xi)

unb(xnb)

goods

nb + 1

...

j

...

ng

1

1

1

Applications 15

Application: optimal orders in asset networks
(from Diamandis et al. 2023)

▶ Goal: maximize price-weighted output for fixed input portfolio

▶ Hypergraph: assets (nodes) linked by markets
(edges)

▶ Flow: assets

▶ Allowable flows: market structure

▶ Objective: maximize output

GOOGL

USD

APPL

GBP EUR

NYSE

IEX

NASDAQ

LSE Euronext

Applications 16

Application: optimal orders in asset networks
(from Diamandis et al. 2023)

▶ Goal: maximize price-weighted output for fixed input portfolio

▶ Hypergraph: assets (nodes) linked by markets
(edges)

▶ Flow: assets

▶ Allowable flows: market structure

▶ Objective: maximize output

GOOGL

USD

APPL

GBP EUR

NYSE

IEX

NASDAQ

LSE Euronext

Applications 16

Application: optimal orders in asset networks
(from Diamandis et al. 2023)

▶ Goal: maximize price-weighted output for fixed input portfolio

▶ Hypergraph: assets (nodes) linked by markets
(edges)

▶ Flow: assets

▶ Allowable flows: market structure

▶ Objective: maximize output

GOOGL

USD

APPL

GBP EUR

NYSE

IEX

NASDAQ

LSE Euronext

Applications 16

Application: optimal orders in asset networks
(from Diamandis et al. 2023)

▶ Goal: maximize price-weighted output for fixed input portfolio

▶ Hypergraph: assets (nodes) linked by markets
(edges)

▶ Flow: assets

▶ Allowable flows: market structure

▶ Objective: maximize output

GOOGL

USD

APPL

GBP EUR

NYSE

IEX

NASDAQ

LSE Euronext

Applications 16

Application: optimal orders in asset networks
(from Diamandis et al. 2023)

▶ Goal: maximize price-weighted output for fixed input portfolio

▶ Hypergraph: assets (nodes) linked by markets
(edges)

▶ Flow: assets

▶ Allowable flows: market structure

▶ Objective: maximize output

GOOGL

USD

APPL

GBP EUR

NYSE

IEX

NASDAQ

LSE Euronext

Applications 16

And a lot more...

▶ Queueing networks (Bertsekas et al. 1992, §5.4)

▶ Routing games (Roughgarden 2007, §18)

▶ Supply chains with spoilage (Nagurney et al. 2022, §2.3)

▶ Reservoir network management (Bertsekas 1998, §8.1)

▶ Allocating computing resources (Agrawal et al. 2022)

▶ Supply chain allocation problems (Schütz et al. 2009)

▶ Wireless network resource allocation (Chiang et al. 2007)

Applications 17

Outline

Motivation

Framework

Applications

Algorithm

Dual problem

▶ Dual problem:

minimize g(ν, η) = Ū(ν) +
m∑
i=1

(
V̄i (ηi − AT

i ν) + fi (ηi)
)
,

where
Ū(ν) = sup

y
(U(y)− νT y),

V̄i (ξ) = sup
xi

(Vi (xi)− ξT xi),

fi (η̃) = sup
x̃i∈Ti

η̃T x̃i .

Algorithm 18

Subproblems

▶ Maximum utility problem:

Ū(ν) = sup
y
(U(y)− νT y) = (−U)∗(−ν)

▶ Arbitrage problem:
fi (η) = sup

x̃i∈Ti

ηT x̃i

Example: w 7→ h(w)

fi (η) = sup
w

{η2h(w)− η1w}
Ti

(η1, η2)

(−w⋆, h(w⋆))

z1

z2

Algorithm 19

Subproblems

▶ Maximum utility problem:

Ū(ν) = sup
y
(U(y)− νT y) = (−U)∗(−ν)

▶ Arbitrage problem:
fi (η) = sup

x̃i∈Ti

ηT x̃i

Example: w 7→ h(w)

fi (η) = sup
w

{η2h(w)− η1w}
Ti

(η1, η2)

(−w⋆, h(w⋆))

z1

z2

Algorithm 19

Subproblems

▶ Maximum utility problem:

Ū(ν) = sup
y
(U(y)− νT y) = (−U)∗(−ν)

▶ Arbitrage problem:
fi (η) = sup

x̃i∈Ti

ηT x̃i

Example: w 7→ h(w)

fi (η) = sup
w

{η2h(w)− η1w}

Ti

(η1, η2)

(−w⋆, h(w⋆))

z1

z2

Algorithm 19

Subproblems

▶ Maximum utility problem:

Ū(ν) = sup
y
(U(y)− νT y) = (−U)∗(−ν)

▶ Arbitrage problem:
fi (η) = sup

x̃i∈Ti

ηT x̃i

Example: w 7→ h(w)

fi (η) = sup
w

{η2h(w)− η1w}
Ti

(η1, η2)

(−w⋆, h(w⋆))

z1

z2

Algorithm 19

Dual variables as prices

▶ Optimality conditions:

∇U(y⋆) = ν⋆, ‘global’ net flow prices

∇Vi (x
⋆
i) = η⋆i − AT

i ν
⋆, i = 1, . . . ,m ‘local’ edge flow prices

η⋆i ∈ Ni (x̃
⋆
i), i = 1, . . . ,m. no arbitrage

▶ Special case: Vi = 0:

∇U(y⋆) = ν⋆

AT
i ν

⋆ ∈ Ni (x
⋆
i)

Ti

AT
i ν

x⋆i

z1

z2

Algorithm 20

Dual variables as prices

▶ Optimality conditions:

∇U(y⋆) = ν⋆, ‘global’ net flow prices

∇Vi (x
⋆
i) = η⋆i − AT

i ν
⋆, i = 1, . . . ,m ‘local’ edge flow prices

η⋆i ∈ Ni (x̃
⋆
i), i = 1, . . . ,m. no arbitrage

▶ Special case: Vi = 0:

∇U(y⋆) = ν⋆

AT
i ν

⋆ ∈ Ni (x
⋆
i)

Ti

AT
i ν

x⋆i

z1

z2

Algorithm 20

Dual variables as prices

▶ Optimality conditions:

∇U(y⋆) = ν⋆, ‘global’ net flow prices

∇Vi (x
⋆
i) = η⋆i − AT

i ν
⋆, i = 1, . . . ,m ‘local’ edge flow prices

η⋆i ∈ Ni (x̃
⋆
i), i = 1, . . . ,m. no arbitrage

▶ Special case: Vi = 0:

∇U(y⋆) = ν⋆

AT
i ν

⋆ ∈ Ni (x
⋆
i)

Ti

AT
i ν

x⋆i

z1

z2

Algorithm 20

Evaluating the dual function

▶ ‘Conjugate functions’ Ū and V̄i are easy, solution y⋆, x⋆i

▶ ‘Arbitrage problem’ fi : closed form or small root finding problem, solution x̃⋆i
– Parallelized across all edges

▶ Together, give us g(ν, η) and gradient:

∇νg(ν
⋆, η⋆) = y⋆ −

m∑
i=1

Aix
⋆
i ,

∇ηig(ν
⋆, η⋆) = x⋆i − x̃⋆i , i = 1, . . . ,m.

▶ Can solve dual problem with any first-order method

▶ If not strictly convex, simple method to recover feasible solution

Algorithm 21

Evaluating the dual function

▶ ‘Conjugate functions’ Ū and V̄i are easy, solution y⋆, x⋆i

▶ ‘Arbitrage problem’ fi : closed form or small root finding problem, solution x̃⋆i

– Parallelized across all edges

▶ Together, give us g(ν, η) and gradient:

∇νg(ν
⋆, η⋆) = y⋆ −

m∑
i=1

Aix
⋆
i ,

∇ηig(ν
⋆, η⋆) = x⋆i − x̃⋆i , i = 1, . . . ,m.

▶ Can solve dual problem with any first-order method

▶ If not strictly convex, simple method to recover feasible solution

Algorithm 21

Evaluating the dual function

▶ ‘Conjugate functions’ Ū and V̄i are easy, solution y⋆, x⋆i

▶ ‘Arbitrage problem’ fi : closed form or small root finding problem, solution x̃⋆i
– Parallelized across all edges

▶ Together, give us g(ν, η) and gradient:

∇νg(ν
⋆, η⋆) = y⋆ −

m∑
i=1

Aix
⋆
i ,

∇ηig(ν
⋆, η⋆) = x⋆i − x̃⋆i , i = 1, . . . ,m.

▶ Can solve dual problem with any first-order method

▶ If not strictly convex, simple method to recover feasible solution

Algorithm 21

Evaluating the dual function

▶ ‘Conjugate functions’ Ū and V̄i are easy, solution y⋆, x⋆i

▶ ‘Arbitrage problem’ fi : closed form or small root finding problem, solution x̃⋆i
– Parallelized across all edges

▶ Together, give us g(ν, η) and gradient:

∇νg(ν
⋆, η⋆) = y⋆ −

m∑
i=1

Aix
⋆
i ,

∇ηig(ν
⋆, η⋆) = x⋆i − x̃⋆i , i = 1, . . . ,m.

▶ Can solve dual problem with any first-order method

▶ If not strictly convex, simple method to recover feasible solution

Algorithm 21

Evaluating the dual function

▶ ‘Conjugate functions’ Ū and V̄i are easy, solution y⋆, x⋆i

▶ ‘Arbitrage problem’ fi : closed form or small root finding problem, solution x̃⋆i
– Parallelized across all edges

▶ Together, give us g(ν, η) and gradient:

∇νg(ν
⋆, η⋆) = y⋆ −

m∑
i=1

Aix
⋆
i ,

∇ηig(ν
⋆, η⋆) = x⋆i − x̃⋆i , i = 1, . . . ,m.

▶ Can solve dual problem with any first-order method

▶ If not strictly convex, simple method to recover feasible solution

Algorithm 21

Evaluating the dual function

▶ ‘Conjugate functions’ Ū and V̄i are easy, solution y⋆, x⋆i

▶ ‘Arbitrage problem’ fi : closed form or small root finding problem, solution x̃⋆i
– Parallelized across all edges

▶ Together, give us g(ν, η) and gradient:

∇νg(ν
⋆, η⋆) = y⋆ −

m∑
i=1

Aix
⋆
i ,

∇ηig(ν
⋆, η⋆) = x⋆i − x̃⋆i , i = 1, . . . ,m.

▶ Can solve dual problem with any first-order method

▶ If not strictly convex, simple method to recover feasible solution
Algorithm 21

Example: optimal power flow

▶ Convergence with L-BFGS-B, after change of variables, (left) and BFGS (right)

Algorithm 22

Example: optimal power flow

Algorithm 23

Example: optimal power flow

Algorithm 23

Example: financial order routing

Algorithm 24

Conjugates? Support functions?

How does a ‘normal’ user specify a problem?

Algorithm 25

Conjugates? Support functions?

How does a ‘normal’ user specify a problem?

Algorithm 25

A Simple Interface: ConvexFlows.jl
(from Diamandis et al. 2024a)

▶ Problem specification: library of objective functions, specify edge gain functions:

� �
h(w) = 3w - 16.0*(log(1 + exp(0.25 * w)) - log(2))
push!(edges, Edge((i, j); h=h, ub=3.0))� �

▶ CVX-like ability to naturally specify problems and quickly test them

▶ Specify subproblems using JuMP.jl

▶ Performance-sensitive users: specify subproblem solutions directly

Algorithm 26

Full problem specification

� �
Parameters: demand d, graph Adj, upper bounds ub

obj = NonpositiveQuadratic(d)

h(w) = 3w - 16.0*(log1pexp(0.25 * w) - log(2))

lines = Edge[]
for i in 1:n, j in i+1:n

Adj[i, j] ≤ 0 && continue
push!(lines, Edge((i, j); h=h, ub=ub[i]))

end

prob = problem(obj=obj, edges=lines)
result = solve!(prob)� �

Algorithm 27

Questions? (email: tdiamand@mit.edu)

▶ New framework for nonlinear network flows over hypergraphs
– Generalizes many classic results & includes many problems in the literature

▶ Fast algorithm to solve, implemented in ConvexFlows.jl

▶ Natural fixed fee and decentralized extensions to model and algorithm

hyperedge 1

hyper-
edge 2

hyper-
edge 3

hyperedge 4

A

C

D

B

Ti

AT
i ν

x⋆i

z1

z2

Conclusion 28

Appendix

29

Appendix

A bit of history

More theory
Flow calculus
Nonconvex flows
Theory Miscellanea

Motivating example details

Numerical experiment details

Additional algorithmic considerations

Works cited

1947
Simplex algorithm

A bit of history 30

1947
Simplex algorithm

1954
Max flow & min cut

A bit of history 30

1947
Simplex algorithm

1954
Max flow & min cut

Ford-Fulkerson algorithm
1955

A bit of history 30

1947
Simplex algorithm

1954
Max flow & min cut

Ford-Fulkerson algorithm
1955

today
many applications

A bit of history 30

Appendix

A bit of history

More theory
Flow calculus
Nonconvex flows
Theory Miscellanea

Motivating example details

Numerical experiment details

Additional algorithmic considerations

Works cited

Appendix

A bit of history

More theory
Flow calculus
Nonconvex flows
Theory Miscellanea

Motivating example details

Numerical experiment details

Additional algorithmic considerations

Works cited

Downward closure

▶ Idea: allow any ‘worse’ point

T

z1

z2

−→

T

z1

z2

More theory Flow calculus 31

Sets of allowable flows
(inspired by Angeris et al. 2023)

▶ A set of allowable flows T ⊆ Rn must
– be closed and convex

– be downward closed

– contain the zero vector

– be bounded: b−T ⊆ Rn
+ for some b

T

z1

z2

More theory Flow calculus 32

Sets of allowable flows
(inspired by Angeris et al. 2023)

▶ A set of allowable flows T ⊆ Rn must
– be closed and convex

– be downward closed

– contain the zero vector

– be bounded: b−T ⊆ Rn
+ for some b

T

z1

z2

More theory Flow calculus 32

Sets of allowable flows
(inspired by Angeris et al. 2023)

▶ A set of allowable flows T ⊆ Rn must
– be closed and convex

– be downward closed

– contain the zero vector

– be bounded: b−T ⊆ Rn
+ for some b

T

z1

z2

More theory Flow calculus 32

Flow calculus

We can combine, split, and transform sets of allowable flows:

▶ Addition (Minkowski)

T z1

z2

+
T̃

z1

z2

=

T + T̃

z1

z2

More theory Flow calculus 33

Flow calculus

We can combine, split, and transform sets of allowable flows:

▶ Addition (Minkowski)

▶ Scaling by a nonnegative injective matrix: Ti −→ ATi − Rn (e.g., lifting)

T

z1

z2

1
1

−R3 −→ T
z1

z2

z3

More theory Flow calculus 33

Aggregate edge example

▶ Orderbook markets: many linear edges or one piecewise linear edge

0.5 1 2
price

qu
an

tit
y

T0.5
z1

z2

T1

T2

T0.5 + T1 + T2

z1

z2

More theory Flow calculus 34

Appendix

A bit of history

More theory
Flow calculus
Nonconvex flows
Theory Miscellanea

Motivating example details

Numerical experiment details

Additional algorithmic considerations

Works cited

Fixed costs
(from Diamandis et al. 2024b)

▶ Natural extension: fixed cost qi to use edge i

maximize U(y) +
∑m

i=1 Vi (xi) + qTλ

subject to y =
∑m

i=1 Aixi

(xi , λi) ∈ {(0, 0)} ∪ (Ti × {−1}), i = 1, . . . ,m,

▶ Problem is nonconvex

▶ NP-hard to solve

More theory Nonconvex flows 35

Fixed costs
(from Diamandis et al. 2024b)

▶ Natural extension: fixed cost qi to use edge i

maximize U(y) +
∑m

i=1 Vi (xi) + qTλ

subject to y =
∑m

i=1 Aixi

(xi , λi) ∈ {(0, 0)} ∪ (Ti × {−1}), i = 1, . . . ,m,

▶ Problem is nonconvex

▶ NP-hard to solve

More theory Nonconvex flows 35

Idea: convex relaxation

maximize U(y) +
∑m

i=1 Vi (xi) + qTλ

subject to y =
∑m

i=1 Aixi

(xi , λi) ∈ conv ({(0, 0)} ∪ (Ti × {−1})) , i = 1, . . . ,m,

T

−1

z1
z2

λ

conv−→
T

z1
z2

λ

conv ({(0, 0)} ∪ (Ti × {−1})) = cone ({(0, 0)} ∪ (Ti × {−1})) ∩ (Rni × [−1, 0]).

More theory Nonconvex flows 36

Idea: convex relaxation

maximize U(y) +
∑m

i=1 Vi (xi) + qTλ

subject to y =
∑m

i=1 Aixi

(xi , λi) ∈ conv ({(0, 0)} ∪ (Ti × {−1})) , i = 1, . . . ,m,

T

−1

z1
z2

λ

conv−→
T

z1
z2

λ

conv ({(0, 0)} ∪ (Ti × {−1})) = cone ({(0, 0)} ∪ (Ti × {−1})) ∩ (Rni × [−1, 0]).

More theory Nonconvex flows 36

Idea: convex relaxation

maximize U(y) +
∑m

i=1 Vi (xi) + qTλ

subject to y =
∑m

i=1 Aixi

(xi , λi) ∈ conv ({(0, 0)} ∪ (Ti × {−1})) , i = 1, . . . ,m,

T

−1

z1
z2

λ

conv−→
T

z1
z2

λ

conv ({(0, 0)} ∪ (Ti × {−1})) = cone ({(0, 0)} ∪ (Ti × {−1})) ∩ (Rni × [−1, 0]).

More theory Nonconvex flows 36

So what? Case with Vi = 0

▶ Often many more edges m than nodes n

▶ Shapley–Folkman Lemma: sum of many nonconvex sets is ‘almost’ convex

S + S S + S

▶ Can find optimal {(xi , λi)} with at most n + 1 non-integral λi ’s

▶ Optimal objective for relaxation p0 satisfies 0 ≤ p0 − p⋆ ≤ (n + 1) (maxi qi) .

More theory Nonconvex flows 37

So what? Case with Vi = 0

▶ Often many more edges m than nodes n

▶ Shapley–Folkman Lemma: sum of many nonconvex sets is ‘almost’ convex

S + S S + S

▶ Can find optimal {(xi , λi)} with at most n + 1 non-integral λi ’s

▶ Optimal objective for relaxation p0 satisfies 0 ≤ p0 − p⋆ ≤ (n + 1) (maxi qi) .

More theory Nonconvex flows 37

So what? Case with Vi = 0

▶ Often many more edges m than nodes n

▶ Shapley–Folkman Lemma: sum of many nonconvex sets is ‘almost’ convex

S + S S + S

▶ Can find optimal {(xi , λi)} with at most n + 1 non-integral λi ’s

▶ Optimal objective for relaxation p0 satisfies 0 ≤ p0 − p⋆ ≤ (n + 1) (maxi qi) .

More theory Nonconvex flows 37

So what? Case with Vi = 0

▶ Often many more edges m than nodes n

▶ Shapley–Folkman Lemma: sum of many nonconvex sets is ‘almost’ convex

S + S S + S

▶ Can find optimal {(xi , λi)} with at most n + 1 non-integral λi ’s

▶ Optimal objective for relaxation p0 satisfies 0 ≤ p0 − p⋆ ≤ (n + 1) (maxi qi) .

More theory Nonconvex flows 37

Structure in the dual problem suggests heuristic

▶ Recall that the dual problem requires solving the ‘arbitrage problem’, now

f fees
i (ηi) = max (fi (ηi)− qi , 0)

▶ Solution λ⋆
i is 0 or −1 unless fi (ηi) = qi

▶ Easy to ‘almost’ solve convex flow problem with fixed fees

▶ But may be difficult to find feasible point y if constraints in U.

▶ Future work: conditions on when heuristic is exact

More theory Nonconvex flows 38

Structure in the dual problem suggests heuristic

▶ Recall that the dual problem requires solving the ‘arbitrage problem’, now

f fees
i (ηi) = max (fi (ηi)− qi , 0)

▶ Solution λ⋆
i is 0 or −1 unless fi (ηi) = qi

▶ Easy to ‘almost’ solve convex flow problem with fixed fees

▶ But may be difficult to find feasible point y if constraints in U.

▶ Future work: conditions on when heuristic is exact

More theory Nonconvex flows 38

Structure in the dual problem suggests heuristic

▶ Recall that the dual problem requires solving the ‘arbitrage problem’, now

f fees
i (ηi) = max (fi (ηi)− qi , 0)

▶ Solution λ⋆
i is 0 or −1 unless fi (ηi) = qi

▶ Easy to ‘almost’ solve convex flow problem with fixed fees

▶ But may be difficult to find feasible point y if constraints in U.

▶ Future work: conditions on when heuristic is exact

More theory Nonconvex flows 38

Appendix

A bit of history

More theory
Flow calculus
Nonconvex flows
Theory Miscellanea

Motivating example details

Numerical experiment details

Additional algorithmic considerations

Works cited

An augmenting path generalization

▶ Max Flow Problem: Flow is optimal iff there is no augmenting path

▶ Convex Flow Problem (Vi = 0): Flow is optimal iff there is no arbitrage

▶ Define
T ⋆
i (xi) = {δ | xi + tδi ∈ Ti for some t > 0}.

▶ No arbitrage condition: for ν = ∇U(y) and any δi ∈ T ⋆
i (xi),

νT

(
m∑
i=1

Aiδi

)
≤ 0.

More theory Theory Miscellanea 39

An augmenting path generalization

▶ Max Flow Problem: Flow is optimal iff there is no augmenting path

▶ Convex Flow Problem (Vi = 0): Flow is optimal iff there is no arbitrage

▶ Define
T ⋆
i (xi) = {δ | xi + tδi ∈ Ti for some t > 0}.

▶ No arbitrage condition: for ν = ∇U(y) and any δi ∈ T ⋆
i (xi),

νT

(
m∑
i=1

Aiδi

)
≤ 0.

More theory Theory Miscellanea 39

NP-hard proof

▶ Knapsack problem: given c ∈ Zn
+ and b ∈ Z+, find x ∈ {0, 1}n such that cT x = b.

▶ Reduction of knapsack (subset sum) problem to convex flow problem with fees:

maximize y − I (y ≥ b) + cTλ

subject to y =
m∑
i=1

Aixi

(xi , λi) ∈ {(0, 0)} ∪ ((−∞, ci]× {−1}), i = 1, . . . ,m.

▶ Opt value 0 iff there exists solution to knapsack since
y + cTλ =

∑m
i=1(−λi)xi + cTλ ≤∑m

i=1 ciλi (−1 + 1) = 0

More theory Theory Miscellanea 40

(Almost) self-dual problem

▶ Conic problem:
maximize U(y) +

∑m
i=1 Vi (xi)

subject to y =
∑m

i=1 Aixi

xi ∈ Ki , i = 1, . . . ,m.

▶ Dual problem:
minimize Ū(ν) +

∑m
i=1 V̄i (ηi − ξi)

subject to ν =
∑m

i=1 Aiξi

ηi ∈ K ◦
i , i = 1, . . . ,m.

More theory Theory Miscellanea 41

Appendix

A bit of history

More theory
Flow calculus
Nonconvex flows
Theory Miscellanea

Motivating example details

Numerical experiment details

Additional algorithmic considerations

Works cited

My 2022 internship project

Motivating example details 42

It became quite popular...

▶ A company (Flood) reached out to implement this (exact same algorithm)
▶ And I decided to write up a paper on it for Financial Cryptography

Motivating example details 43

It became quite popular...

▶ A company (Flood) reached out to implement this (exact same algorithm)
▶ And I decided to write up a paper on it for Financial Cryptography

Motivating example details 43

A real example

▶ Trade asset A for asset F

Markets as nodes:

IN: y1 of A

A → B

A → C

B → D

D → A

C → E E → D

C → F OUT: yn of F

Assets as nodes:

A (y1)

B

D

C E

F (yn)

Input

Output

Motivating example details 44

A real example

▶ This one was executed in reality by Flood (flood.bid)

Motivating example details 45

flood.bid

Appendix

A bit of history

More theory
Flow calculus
Nonconvex flows
Theory Miscellanea

Motivating example details

Numerical experiment details

Additional algorithmic considerations

Works cited

Optimal power flow

▶ Goal: minimize a quadratic power generation cost for random demand

ci (w) =

{
(1/2)w2 w ≥ 0
0 w < 0.

▶ Demand randomly sampled from {0.5, 1, 2}

▶ Power each node needs to generate is d − y , so objective is

U(y) =
n∑

i=1

−ci (di − yi).

Numerical experiment details 46

Optimal power flow: network

▶ We generate the network as in Kraning et al. 2013

Numerical experiment details 47

Optimal power flow: edges

▶ Edges have random capacity, sampled from {1, 2, 3}

▶ Power lost is
ℓ(w) = 16 (log(1 + exp(w/4))− log 2)− 2w

▶ The set of allowable flows is

T = {z ∈ R2 | −b ≤ z1 ≤ 0 z2 ≤ −z1 − ℓ(−z1)}

▶ Given prices η, the optimal input has a closed form:

x⋆1 = −
(

4 log
(

3η2 − η1

η2 + η1

))
[0,b]

, x⋆2 = −x⋆1 − ℓ(−x⋆1)

Numerical experiment details 48

Optimal power flow: conic form

▶ Compare the convex flow problem with the equivalent conic form

maximize − 1T t1
subject to (0.5, (t1)i , (t2)i) ∈ Krot2, for i = 1, . . . n

t2 ≥ d − y , t2 ≥ 0
− bi ≤ (xi)1 ≤ 0, for i = 1, . . .m
ui + vi ≤ 1 for i = 1, . . .m
(−βi (xi)1 + (3(xi)1 + (xi)2)/α− log(2), 1, ui) ∈ Kexp for i = 1, . . .m
((3(xi)1 + (xi)2)/α− log(2), 1, vi) ∈ Kexp for i = 1, . . .m.

Numerical experiment details 49

Financial network routing problem: edges

▶ Most DEXs are implemented as constant function market makers (CFMMs)

▶ CFMMs are defined by their trading function φ : Rn
+ → R

▶ Maps reserves R ∈ Rn
+ to a real number

▶ Is concave and increasing

▶ Accepts trade ∆ → Λ if φ(R + γ∆− Λ) ≥ φ(R).

Numerical experiment details 50

Financial network routing problem: conic form

maximize cT y − (1/2)
n∑

i=1

(p1)i − (1/2)
m∑
i=1

(t1)i

subject to (0.5, (p1)i , (p2)i) ∈ Krot2, i = 1, . . . , n
p1 ≥ 0
p2 ≥ 0, p2 ≥ −y

(0.5, (t1)i , (t2)i) ∈ Krot2, i = 1, . . . , n
t1 ≥ 0
t2 ≥ 0, (t2)i ≥ −(Λi −∆i)

(R + γ∆− Λ, φ(R)) ∈ Kpow(wi), i = 1, . . . ,m1

(−3φ(R), R + γ∆− Λ) ∈ Kgeomean, i = m1 + 1, . . . ,m
∆i , Λi ≥ 0, i = 1, . . . ,m,

Numerical experiment details 51

Appendix

A bit of history

More theory
Flow calculus
Nonconvex flows
Theory Miscellanea

Motivating example details

Numerical experiment details

Additional algorithmic considerations

Works cited

Full dual problem

▶ Ū and V̄i introduce implicit nonnegativity constraints

▶ Dual problem with these explicit is:

minimize Ū(ν) +
m∑
i=1

(
V̄i (ηi − AT

i ν) + fi (ηi)
)

subject to ν ≥ 0, ηi ≥ AT
i ν, i = 1, . . . ,m.

▶ Letting µ = (ν, η), a change of variables gives
minimize g(F−1µ̃)

subject to µ̃ ≥ 0,

Additional algorithmic considerations 52

Two-node subproblems

▶ The arbitrage problem for two nodes is

f (η) = −η1w + η2h(w)

▶ This has optimality conditions

η2h
+(w⋆) ≤ η1 ≤ η2h

−(w⋆)

▶ When differentiable, forward and reverse derivatives equal

Additional algorithmic considerations 53

Second-stage problem

▶ Assume U strictly concave (so y⋆ unique)

▶ Let S be the set of strictly concave allowable flows

▶ Second-stage problem:

minimize ∥y⋆ −
m∑
i=1

Aixi∥

subject to xi = x̃⋆i , i ∈ S

xi ∈ Ti ∪ ∂fi (η
⋆
i), i ̸∈ S .

Additional algorithmic considerations 54

Appendix

A bit of history

More theory
Flow calculus
Nonconvex flows
Theory Miscellanea

Motivating example details

Numerical experiment details

Additional algorithmic considerations

Works cited

Works cited I

Agrawal, Akshay, Stephen Boyd, Deepak Narayanan, Fiodar Kazhamiaka, and Matei Zaharia
(2022). “Allocation of fungible resources via a fast, scalable price discovery method”. In:
Mathematical Programming Computation 14.3, pp. 593–622.
Angeris, Guillermo, Tarun Chitra, Theo Diamandis, Alex Evans, and Kshitij Kulkarni (2023). “The
geometry of constant function market makers”. In: arXiv preprint arXiv:2308.08066.
Bertsekas, Dimitri (1998). Network optimization: continuous and discrete models. Vol. 8. Athena
Scientific.
Bertsekas, Dimitri and Robert Gallager (1992). Data networks. Athena Scientific.

Chiang, Mung, Steven H Low, A Robert Calderbank, and John C Doyle (2007). “Layering as
optimization decomposition: A mathematical theory of network architectures”. In: Proceedings of
the IEEE 95.1, pp. 255–312.
Diamandis, Theo and Guillermo Angeris (2024a). “Solving the Convex Flow Problem”. In: URL:
theodiamandis.com/pdfs/papers/routing-algorithm.pdf.
Diamandis, Theo, Guillermo Angeris, and Alan Edelman (2024b). “Conic and Nonconvex Network
Flows”. In: in preparation.

Works cited 55

theodiamandis.com/pdfs/papers/routing-algorithm.pdf

Works cited II

Diamandis, Theo, Max Resnick, Tarun Chitra, and Guillermo Angeris (2023). “An Efficient
Algorithm for Optimal Routing Through Constant Function Market Makers”. In: arXiv preprint
arXiv:2302.04938.
Kraning, Matt, Eric Chu, Javad Lavaei, Stephen Boyd, et al. (2013). “Dynamic network energy
management via proximal message passing”. In: Foundations and Trends® in Optimization 1.2,
pp. 73–126.
Nagurney, Anna and Deniz Besik (2022). “Spatial price equilibrium networks with flow-dependent
arc multipliers”. In: Optimization Letters 16.8, pp. 2483–2500.
Roughgarden, Tim (2007). “Routing games”. In: Algorithmic game theory 18, pp. 459–484.

Schütz, Peter, Asgeir Tomasgard, and Shabbir Ahmed (2009). “Supply chain design under
uncertainty using sample average approximation and dual decomposition”. In: European journal of
operational research 199.2, pp. 409–419.
Stursberg, Paul Melvin (2019). “On the mathematics of energy system optimization”. PhD thesis.
Technische Universität München.

Works cited 56

Works cited III

Végh, László A (2014). “Concave generalized flows with applications to market equilibria”. In:
Mathematics of Operations Research 39.2, pp. 573–596.
Xiao, Lin, Mikael Johansson, and Stephen P Boyd (2004). “Simultaneous routing and resource
allocation via dual decomposition”. In: IEEE Transactions on Communications 52.7, pp. 1136–1144.

Works cited 57

	Motivation
	Framework
	Applications
	Algorithm
	Conclusion
	Appendix
	A bit of history
	More theory
	Flow calculus
	Nonconvex flows
	Theory Miscellanea

	Motivating example details
	Numerical experiment details
	Additional algorithmic considerations
	Works cited

