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Goals

▶ Goal: solve decision-making problems involving very large nonlinear networks

– Natural way to specify the relevant optimization problem

– Fast and parallelizable computational building blocks

▶ This talk: marriage of convex optimization and network flows

1



Goals

▶ Goal: solve decision-making problems involving very large nonlinear networks

– Natural way to specify the relevant optimization problem

– Fast and parallelizable computational building blocks

▶ This talk: marriage of convex optimization and network flows

1



Goals

▶ Goal: solve decision-making problems involving very large nonlinear networks

– Natural way to specify the relevant optimization problem

– Fast and parallelizable computational building blocks

▶ This talk: marriage of convex optimization and network flows

1



Goals

▶ Goal: solve decision-making problems involving very large nonlinear networks

– Natural way to specify the relevant optimization problem

– Fast and parallelizable computational building blocks

▶ This talk: marriage of convex optimization and network flows

1



Outline

Motivation

Framework

Applications

Algorithm



Outline

Motivation

Framework

Applications

Algorithm
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Motivating example: order routing in financial networks
(Diamandis et al., Financial Cryptography 2023)

▶ Goal: convert fixed amount of Google stock to maximum amount of Apple stock

▶ Many venues on which you can place the order

GOOGL

USD

APPL

GBP EUR

NYSE

IEX

NASDAQ

LSE Euronext

▶ Nonlinearity: Price impact of trading: the more you trade, worse the price
Motivation 3



Motivating example: optimal power flow

▶ Goal: generate power to meet demand at minimum cost

▶ Multiple sources and transmission lines to choose from

▶ Nonlinearity: Power loss: the more power transmitted, the more is dissipated

Motivation 4



Perhaps a generalization?

source

sink

Linear network flows
▶ Very fast to solve

▶ But not very expressive

x

f (x)

Convex Optimization
▶ Very expressive

▶ But slow in general
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Linear network flows
▶ Very fast to solve

▶ But not very expressive

What do we do between?

A new framework:
Convex Network Flows
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First generalization: hypergraphs

▶ Graph −→ hypergraph: edges can connect more than 2 vertices
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Second generalization: convex sets

▶ Linear input-output relationship −→ convex set of allowable flows T

edge
A

B

w

αw

Input-output relationship: h(w) = αw

edge flow z =

[
−w
h(w)

]

(−zmax
1 , αzmax

1 )

z1

z2

T = {z ∈ R2 | z2 = α · (−z1)}
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Accounting

▶ Net flow y ∈ Rn and edge flows xi ∈ Ti ⊆ Rni

▶ Matrices Ai map flow’s local index in edge i to global index, e.g.,

node Local Index Global Index
B 1 2
D 2 4
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]
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▶ The overall net flow in the network is

y =
m∑
i=1

Aixi
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Objective: maximize utility

▶ Concave, increasing utility functions for net flow U(y) and edge flows {Vi (xi )}

T

x̂
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Framework: convex flow problem
(Diamandis et al., arXiv preprint 2024)

▶ The convex flow problem:

maximize U(y) +
∑m

i=1 Vi (xi )

subject to y =
∑m

i=1 Aixi

xi ∈ Ti , i = 1, . . . ,m.
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Maximum flow & friends

▶ Maximum flow problem

▶ Minimum cost flow

▶ Multi-commodity flows

▶ and generalizations...
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Application: optimal power flow
(from Stursberg 2019)

▶ Goal: find cost-minimizing power generation plan that satisfies demand

▶ Graph: transmission line network

▶ Flow: power

▶ Allowable flows: transmission line physics

▶ Objective: minimize cost of power generation

in

out

Image source: Lawrence Berkeley National Laboratory
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Application: routing in wireless networks
(from Xiao et al. 2004)

▶ Goal: maximize data rate, subject to power and bandwidth constraints

▶ Hypergraph: communication network

▶ Flow: data rate

▶ Allowable flows: channel capacity (multicast)
with total power & bandwidth constraints

▶ Objective: maximize data rate from source to
destination

b1 b2

v
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Hyperedges: all outgoing neighbors
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Application: market clearing
(from Végh 2014)

▶ Goal: find market clearing prices for to allocate divisible goods to buyers

▶ Hypergraph: each buyer linked to all goods

▶ Flow: goods & utility

▶ Allowable flows: amount of goods, nonlinear
utility of buyers (can include complements)

▶ Objective: maximize sum of log utilities
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Application: optimal orders in asset networks
(from Diamandis et al. 2023)

▶ Goal: maximize price-weighted output for fixed input portfolio

▶ Hypergraph: assets (nodes) linked by markets
(edges)

▶ Flow: assets

▶ Allowable flows: market structure

▶ Objective: maximize output
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And a lot more...

▶ Queueing networks (Bertsekas et al. 1992, §5.4)

▶ Routing games (Roughgarden 2007, §18)

▶ Supply chains with spoilage (Nagurney et al. 2022, §2.3)

▶ Reservoir network management (Bertsekas 1998, §8.1)

▶ Allocating computing resources (Agrawal et al. 2022)

▶ Supply chain allocation problems (Schütz et al. 2009)

▶ Wireless network resource allocation (Chiang et al. 2007)

Applications 17
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Dual problem

▶ Dual problem:

minimize g(ν, η) = Ū(ν) +
m∑
i=1

(
V̄i (ηi − AT

i ν) + fi (ηi )
)
,

where
Ū(ν) = sup

y
(U(y)− νT y),

V̄i (ξ) = sup
xi

(Vi (xi )− ξT xi ),

fi (η̃) = sup
x̃i∈Ti

η̃T x̃i .

Algorithm 18



Subproblems

▶ Maximum utility problem:

Ū(ν) = sup
y
(U(y)− νT y) = (−U)∗(−ν)

▶ Arbitrage problem:
fi (η) = sup

x̃i∈Ti

ηT x̃i

Example: w 7→ h(w)

fi (η) = sup
w

{η2h(w)− η1w}
Ti

(η1, η2)

(−w⋆, h(w⋆))

z1

z2

Algorithm 19
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Dual variables as prices

▶ Optimality conditions:

∇U(y⋆) = ν⋆, ‘global’ net flow prices

∇Vi (x
⋆
i ) = η⋆i − AT

i ν
⋆, i = 1, . . . ,m ‘local’ edge flow prices

η⋆i ∈ Ni (x̃
⋆
i ), i = 1, . . . ,m. no arbitrage

▶ Special case: Vi = 0:

∇U(y⋆) = ν⋆

AT
i ν

⋆ ∈ Ni (x
⋆
i )

Ti

AT
i ν

x⋆i

z1

z2

Algorithm 20
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Evaluating the dual function

▶ ‘Conjugate functions’ Ū and V̄i are easy, solution y⋆, x⋆i

▶ ‘Arbitrage problem’ fi : closed form or small root finding problem, solution x̃⋆i
– Parallelized across all edges

▶ Together, give us g(ν, η) and gradient:

∇νg(ν
⋆, η⋆) = y⋆ −

m∑
i=1

Aix
⋆
i ,

∇ηig(ν
⋆, η⋆) = x⋆i − x̃⋆i , i = 1, . . . ,m.

▶ Can solve dual problem with any first-order method

▶ If not strictly convex, simple method to recover feasible solution

Algorithm 21
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▶ ‘Conjugate functions’ Ū and V̄i are easy, solution y⋆, x⋆i

▶ ‘Arbitrage problem’ fi : closed form or small root finding problem, solution x̃⋆i
– Parallelized across all edges

▶ Together, give us g(ν, η) and gradient:

∇νg(ν
⋆, η⋆) = y⋆ −

m∑
i=1

Aix
⋆
i ,

∇ηig(ν
⋆, η⋆) = x⋆i − x̃⋆i , i = 1, . . . ,m.

▶ Can solve dual problem with any first-order method

▶ If not strictly convex, simple method to recover feasible solution
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Example: optimal power flow

▶ Convergence with L-BFGS-B, after change of variables, (left) and BFGS (right)
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Example: optimal power flow
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Example: optimal power flow
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Example: financial order routing

Algorithm 24



Conjugates? Support functions?

How does a ‘normal’ user specify a problem?
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Conjugates? Support functions?

How does a ‘normal’ user specify a problem?
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A Simple Interface: ConvexFlows.jl
(from Diamandis et al. 2024a)

▶ Problem specification: library of objective functions, specify edge gain functions:

� �
h(w) = 3w - 16.0*(log(1 + exp(0.25 * w)) - log(2))
push!(edges, Edge((i, j); h=h, ub=3.0))� �

▶ CVX-like ability to naturally specify problems and quickly test them

▶ Specify subproblems using JuMP.jl

▶ Performance-sensitive users: specify subproblem solutions directly

Algorithm 26



Full problem specification

� �
# Parameters: demand d, graph Adj, upper bounds ub

obj = NonpositiveQuadratic(d)

h(w) = 3w - 16.0*(log1pexp(0.25 * w) - log(2))

lines = Edge[]
for i in 1:n, j in i+1:n

Adj[i, j] ≤ 0 && continue
push!(lines, Edge((i, j); h=h, ub=ub[i]))

end

prob = problem(obj=obj, edges=lines)
result = solve!(prob)� �

Algorithm 27



Questions? (email: tdiamand@mit.edu)

▶ New framework for nonlinear network flows over hypergraphs
– Generalizes many classic results & includes many problems in the literature

▶ Fast algorithm to solve, implemented in ConvexFlows.jl

▶ Natural fixed fee and decentralized extensions to model and algorithm

hyperedge 1

hyper-
edge 2

hyper-
edge 3

hyperedge 4

A

C

D

B

Ti

AT
i ν

x⋆i

z1

z2
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Downward closure

▶ Idea: allow any ‘worse’ point

T

z1

z2

−→

T

z1

z2
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Sets of allowable flows
(inspired by Angeris et al. 2023)

▶ A set of allowable flows T ⊆ Rn must
– be closed and convex

– be downward closed

– contain the zero vector

– be bounded: b−T ⊆ Rn
+ for some b

T

z1

z2
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Flow calculus

We can combine, split, and transform sets of allowable flows:

▶ Addition (Minkowski)

T z1

z2

+
T̃

z1

z2

=

T + T̃

z1

z2
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Flow calculus

We can combine, split, and transform sets of allowable flows:

▶ Addition (Minkowski)

▶ Scaling by a nonnegative injective matrix: Ti −→ ATi − Rn (e.g., lifting)

T

z1

z2

1
1

−R3 −→ T
z1

z2

z3

More theory Flow calculus 33



Aggregate edge example

▶ Orderbook markets: many linear edges or one piecewise linear edge

0.5 1 2
price

qu
an

tit
y

T0.5
z1

z2

T1

T2

T0.5 + T1 + T2

z1

z2
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Fixed costs
(from Diamandis et al. 2024b)

▶ Natural extension: fixed cost qi to use edge i

maximize U(y) +
∑m

i=1 Vi (xi ) + qTλ

subject to y =
∑m

i=1 Aixi

(xi , λi ) ∈ {(0, 0)} ∪ (Ti × {−1}), i = 1, . . . ,m,

▶ Problem is nonconvex

▶ NP-hard to solve
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Idea: convex relaxation

maximize U(y) +
∑m

i=1 Vi (xi ) + qTλ

subject to y =
∑m

i=1 Aixi

(xi , λi ) ∈ conv ({(0, 0)} ∪ (Ti × {−1})) , i = 1, . . . ,m,

T

−1

z1
z2

λ

conv−→
T

z1
z2

λ

conv ({(0, 0)} ∪ (Ti × {−1})) = cone ({(0, 0)} ∪ (Ti × {−1})) ∩ (Rni × [−1, 0]).
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So what? Case with Vi = 0

▶ Often many more edges m than nodes n

▶ Shapley–Folkman Lemma: sum of many nonconvex sets is ‘almost’ convex

S + S S + S

▶ Can find optimal {(xi , λi )} with at most n + 1 non-integral λi ’s

▶ Optimal objective for relaxation p0 satisfies 0 ≤ p0 − p⋆ ≤ (n + 1) (maxi qi ) .
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Structure in the dual problem suggests heuristic

▶ Recall that the dual problem requires solving the ‘arbitrage problem’, now

f fees
i (ηi ) = max (fi (ηi )− qi , 0)

▶ Solution λ⋆
i is 0 or −1 unless fi (ηi ) = qi

▶ Easy to ‘almost’ solve convex flow problem with fixed fees

▶ But may be difficult to find feasible point y if constraints in U.

▶ Future work: conditions on when heuristic is exact

More theory Nonconvex flows 38
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An augmenting path generalization

▶ Max Flow Problem: Flow is optimal iff there is no augmenting path

▶ Convex Flow Problem (Vi = 0): Flow is optimal iff there is no arbitrage

▶ Define
T ⋆
i (xi ) = {δ | xi + tδi ∈ Ti for some t > 0}.

▶ No arbitrage condition: for ν = ∇U(y) and any δi ∈ T ⋆
i (xi ),

νT

(
m∑
i=1

Aiδi

)
≤ 0.

More theory Theory Miscellanea 39



An augmenting path generalization

▶ Max Flow Problem: Flow is optimal iff there is no augmenting path

▶ Convex Flow Problem (Vi = 0): Flow is optimal iff there is no arbitrage

▶ Define
T ⋆
i (xi ) = {δ | xi + tδi ∈ Ti for some t > 0}.

▶ No arbitrage condition: for ν = ∇U(y) and any δi ∈ T ⋆
i (xi ),

νT

(
m∑
i=1

Aiδi

)
≤ 0.

More theory Theory Miscellanea 39



NP-hard proof

▶ Knapsack problem: given c ∈ Zn
+ and b ∈ Z+, find x ∈ {0, 1}n such that cT x = b.

▶ Reduction of knapsack (subset sum) problem to convex flow problem with fees:

maximize y − I (y ≥ b) + cTλ

subject to y =
m∑
i=1

Aixi

(xi , λi ) ∈ {(0, 0)} ∪ ((−∞, ci ]× {−1}), i = 1, . . . ,m.

▶ Opt value 0 iff there exists solution to knapsack since
y + cTλ =

∑m
i=1(−λi )xi + cTλ ≤∑m

i=1 ciλi (−1 + 1) = 0

More theory Theory Miscellanea 40



(Almost) self-dual problem

▶ Conic problem:
maximize U(y) +

∑m
i=1 Vi (xi )

subject to y =
∑m

i=1 Aixi

xi ∈ Ki , i = 1, . . . ,m.

▶ Dual problem:
minimize Ū(ν) +

∑m
i=1 V̄i (ηi − ξi )

subject to ν =
∑m

i=1 Aiξi

ηi ∈ K ◦
i , i = 1, . . . ,m.

More theory Theory Miscellanea 41
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My 2022 internship project

Motivating example details 42



It became quite popular...

▶ A company (Flood) reached out to implement this (exact same algorithm)
▶ And I decided to write up a paper on it for Financial Cryptography
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A real example

▶ Trade asset A for asset F

Markets as nodes:

IN: y1 of A

A → B

A → C

B → D

D → A

C → E E → D

C → F OUT: yn of F

Assets as nodes:

A (y1)

B

D

C E

F (yn)

Input

Output

Motivating example details 44



A real example

▶ This one was executed in reality by Flood (flood.bid)

Motivating example details 45

flood.bid
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Optimal power flow

▶ Goal: minimize a quadratic power generation cost for random demand

ci (w) =

{
(1/2)w2 w ≥ 0
0 w < 0.

▶ Demand randomly sampled from {0.5, 1, 2}

▶ Power each node needs to generate is d − y , so objective is

U(y) =
n∑

i=1

−ci (di − yi ).

Numerical experiment details 46



Optimal power flow: network

▶ We generate the network as in Kraning et al. 2013

Numerical experiment details 47



Optimal power flow: edges

▶ Edges have random capacity, sampled from {1, 2, 3}

▶ Power lost is
ℓ(w) = 16 (log(1 + exp(w/4))− log 2)− 2w

▶ The set of allowable flows is

T = {z ∈ R2 | −b ≤ z1 ≤ 0 z2 ≤ −z1 − ℓ(−z1)}

▶ Given prices η, the optimal input has a closed form:

x⋆1 = −
(

4 log
(

3η2 − η1

η2 + η1

))
[0,b]

, x⋆2 = −x⋆1 − ℓ(−x⋆1 )

Numerical experiment details 48



Optimal power flow: conic form

▶ Compare the convex flow problem with the equivalent conic form

maximize − 1T t1
subject to (0.5, (t1)i , (t2)i ) ∈ Krot2, for i = 1, . . . n

t2 ≥ d − y , t2 ≥ 0
− bi ≤ (xi )1 ≤ 0, for i = 1, . . .m
ui + vi ≤ 1 for i = 1, . . .m
(−βi (xi )1 + (3(xi )1 + (xi )2)/α− log(2), 1, ui ) ∈ Kexp for i = 1, . . .m
((3(xi )1 + (xi )2)/α− log(2), 1, vi ) ∈ Kexp for i = 1, . . .m.

Numerical experiment details 49



Financial network routing problem: edges

▶ Most DEXs are implemented as constant function market makers (CFMMs)

▶ CFMMs are defined by their trading function φ : Rn
+ → R

▶ Maps reserves R ∈ Rn
+ to a real number

▶ Is concave and increasing

▶ Accepts trade ∆ → Λ if φ(R + γ∆− Λ) ≥ φ(R).

Numerical experiment details 50



Financial network routing problem: conic form

maximize cT y − (1/2)
n∑

i=1

(p1)i − (1/2)
m∑
i=1

(t1)i

subject to (0.5, (p1)i , (p2)i ) ∈ Krot2, i = 1, . . . , n
p1 ≥ 0
p2 ≥ 0, p2 ≥ −y

(0.5, (t1)i , (t2)i ) ∈ Krot2, i = 1, . . . , n
t1 ≥ 0
t2 ≥ 0, (t2)i ≥ −(Λi −∆i )

(R + γ∆− Λ, φ(R)) ∈ Kpow(wi ), i = 1, . . . ,m1

(−3φ(R), R + γ∆− Λ) ∈ Kgeomean, i = m1 + 1, . . . ,m
∆i , Λi ≥ 0, i = 1, . . . ,m,

Numerical experiment details 51
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Full dual problem

▶ Ū and V̄i introduce implicit nonnegativity constraints

▶ Dual problem with these explicit is:

minimize Ū(ν) +
m∑
i=1

(
V̄i (ηi − AT

i ν) + fi (ηi )
)

subject to ν ≥ 0, ηi ≥ AT
i ν, i = 1, . . . ,m.

▶ Letting µ = (ν, η), a change of variables gives
minimize g(F−1µ̃)

subject to µ̃ ≥ 0,

Additional algorithmic considerations 52



Two-node subproblems

▶ The arbitrage problem for two nodes is

f (η) = −η1w + η2h(w)

▶ This has optimality conditions

η2h
+(w⋆) ≤ η1 ≤ η2h

−(w⋆)

▶ When differentiable, forward and reverse derivatives equal

Additional algorithmic considerations 53



Second-stage problem

▶ Assume U strictly concave (so y⋆ unique)

▶ Let S be the set of strictly concave allowable flows

▶ Second-stage problem:

minimize ∥y⋆ −
m∑
i=1

Aixi∥

subject to xi = x̃⋆i , i ∈ S

xi ∈ Ti ∪ ∂fi (η
⋆
i ), i ̸∈ S .
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