LinearDecisionRules.jl

Bernardo Freitas Paulo da Costa (UFRJ & FGV)

with Joaquim Garcia (PSR)

JuMP-dev 2024, Montréal

不自下

 \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow

重

Stochastic Programming

A simple model for stochastic programming:

$$
\min \mathbb{E}\left[c^{\top}x\right] \n\text{s.t.} \quad Ax = b, \n x \geqslant 0.
$$

where

- \bullet x is the decision, subject to (random) constraints;
- \bullet c are the (possibly random) costs;

We write the uncertain parameters as functions of an underlying random vector ξ , and allow for the decision to be taken after observing the realization of ξ: .
. ‰

$$
\begin{array}{ll}\n\text{min} & \mathbb{E}\left[c(\xi)^{\top}x(\xi)\right] \\
\text{s.t.} & Ax(\xi) = b(\xi) \quad \forall \xi \in \Xi, \\
& x(\xi) \ge 0 \qquad \forall \xi \in \Xi.\n\end{array}
$$

∢ □ ▶ к 何 ▶ к ∃ ▶

重

 QQ

We write the uncertain parameters as functions of an underlying random vector ξ , and allow for the decision to be taken after observing the realization of ξ: .
. ‰

$$
\begin{array}{ll}\n\text{min} & \mathbb{E}\left[c(\xi)^{\top}x(\xi)\right] \\
\text{s.t.} & Ax(\xi) = b(\xi) \quad \forall \xi \in \Xi, \\
& x(\xi) \ge 0 \qquad \forall \xi \in \Xi.\n\end{array}
$$

We assume that the constraint matrix is *deterministic*.

We write the uncertain parameters as linear functions of an underlying random vector ξ , and allow for the decision to be taken *after observing the* realization of ξ .
. ‰

$$
\begin{aligned}\n\min \quad &\mathbb{E}\left[\xi^{\top}C^{\top}x(\xi)\right] \\
\text{s.t.} \quad & Ax(\xi) = B\xi \quad \forall \xi \in \Xi, \\
& x(\xi) \ge 0 \quad \forall \xi \in \Xi.\n\end{aligned}
$$

We assume that the constraint matrix is *deterministic*.

We write the uncertain parameters as linear functions of an underlying random vector ξ , and allow for the decision to be taken after observing the realization of ξ: .
. ‰

$$
\begin{aligned}\n\min \quad &\mathbb{E}\left[\xi^{\top}C^{\top}x(\xi)\right] \\
\text{s.t.} \quad & Ax(\xi) = B\xi \qquad \forall \xi \in \Xi, \\
& x(\xi) \ge 0 \qquad \forall \xi \in \Xi.\n\end{aligned}
$$

We assume that the constraint matrix is *deterministic*. We then posit a linear decision rule for x :

$$
x(\xi) = X\xi.
$$

We write the uncertain parameters as linear functions of an underlying random vector ξ , and allow for the decision to be taken after observing the realization of ξ : .
.

$$
\begin{aligned}\n\min \quad &\mathbb{E}\left[\xi^\top C^\top X \xi\right] \\
\text{s.t.} \quad & A X \xi = B \xi \qquad \forall \xi \in \Xi, \\
 & X \xi \geq 0 \qquad \qquad \forall \xi \in \Xi.\n\end{aligned}
$$

We assume that the constraint matrix is *deterministic*. We then posit a linear decision rule for x :

$$
x(\xi) = X\xi.
$$

We write the uncertain parameters as linear functions of an underlying random vector ξ , and allow for the decision to be taken after observing the realization of ξ: .
.

$$
\begin{aligned}\n\min \quad &\mathbb{E}\left[\xi^\top C^\top X \xi\right] \\
\text{s.t.} \quad & A X \xi = B \xi \qquad \forall \xi \in \Xi, \\
 & X \xi \geq 0 \qquad \qquad \forall \xi \in \Xi.\n\end{aligned}
$$

We assume that the constraint matrix is *deterministic*. We then posit a linear decision rule for x :

$$
x(\xi) = X\xi.
$$

This reduces the flexibility of the "wait-and-see" decision, but allows for a more tractable optimization problem.

If the uncertainty set Ξ is given as the polytope $\{\xi : W\xi \geq h\}$, we can rewrite the optimization problem as a linear program over the decision rule matrix X and auxiliary variables Λ (for the positivity constraints):

$$
\min_{X,\Lambda} \text{ Tr} \left(\mathbb{E} \left[\xi \xi^{\top} \right] C^{\top} X \right)
$$
\n
$$
\text{s.t.} \quad AX = B,
$$
\n
$$
X = \Lambda W, \ \Lambda h \ge 0, \ \Lambda \ge 0.
$$

The package LinearDecisionRules.jl provides a JuMP extension for modeling Stochastic Programming problems with linear decision rules.

4 D F

 Ω

The package LinearDecisionRules.jl provides a JuMP extension for modeling Stochastic Programming problems with linear decision rules.

Usage

1. We introduce LDRModel as an extension of JuMP.Model;

The package LinearDecisionRules.jl provides a JuMP extension for modeling Stochastic Programming problems with linear decision rules.

Usage

- 1. We introduce LDRModel as an extension of JuMP.Model;
- 2. The @variable macro is extended to allow for the declaration of uncertainties as variables in the model:

The package LinearDecisionRules.jl provides a JuMP extension for modeling Stochastic Programming problems with linear decision rules.

Usage

- 1. We introduce LDRModel as an extension of JuMP.Model;
- 2. The @variable macro is extended to allow for the declaration of uncertainties as variables in the model:
- 3. Attributes SolvePrimal() and SolveDual() enable and disable the optimization of primal and dual LDR reformulations.

つひひ

The package LinearDecisionRules.jl provides a JuMP extension for modeling Stochastic Programming problems with linear decision rules.

Usage

- 1. We introduce LDRModel as an extension of JuMP.Model;
- 2. The @variable macro is extended to allow for the declaration of uncertainties as variables in the model:
- 3. Attributes SolvePrimal() and SolveDual() enable and disable the optimization of primal and dual LDR reformulations.
- 4. We provide get_decision() to extract the coefficients of the decision rule matrix X in the original variables and uncertainties. A keyword argument dual is used for querying dual decision rule.

A toy (energy!) example

```
using JuMP , LinearDecisionRules
using Ipopt, Distributions
demand = 0.3initial_volume = 0.5
m = LDRModel()Qvariable(m, vi == initial volume)\texttt{Quariable}(m, 0 \leq v \leq t \leq 1)Quariable(m, gh > = 0.0)Quariable(m, gt > = 0.0)\alphavariable (m, 0 \leq \inf_{\alpha} L_0) \leq \inf_{\alpha} L_0 \leq \infty . Uncertainty,
   distribution=Uniform(0, 0.2))
@constant(m, balance, vf == vi - gh + inflow)@constant(m, gt + gh == demand)Cobjective (m, Min, gt^2 + vf^2/2 - vf)K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @
Bernardo Costa LinearDecisionRules.jl JuMP-dev 24 6 / 10
```
A toy example (cont.)

```
# Solve the primal LDR
set_attribute (m, SolvePrimal (), true)
set_attribute (m, SolveDual (), false)
set_optimizer (m , Ipopt . Optimizer )
optimize !( m )
# Get the decision rule
get_decision (m, vf) # Constant term
get_decision (m , vf , inflow ) # Linear coefficient
# Some checks
@test get_decision (m, gh) + get_decision (m, gt) \approxdemand atol =1e-6Otest get_decision (m, gh, inflow) + get_decision (m
   , gt, inflow) \approx 0 atol=1e-6
@test get_decision (m, vi) \approx initial_volume atol=1e
   -6
ton 0 a=6
                                                OROBernardo Costa LinearDecisionRules.jl JuMP-dev 24 7 / 10
```
Package structure

イロト イ部 トイ君 トイ君 トッ君

Next steps

Handle correlated uncertainties:

- \bullet The current model allows for independent uncertainties, and Ξ is the product of their support;
- We could allow for a general form as the product of independent vector uncertainties.

4 0 8

Next steps

Handle correlated uncertainties:

- \bullet The current model allows for independent uncertainties, and Ξ is the product of their support;
- We could allow for a general form as the product of independent vector uncertainties.

Multistage decision rules:

• 2-stage optimization: a *here-and-now* decision x_0 which does not depend on uncertainty;

Next steps

Handle correlated uncertainties:

- \bullet The current model allows for independent uncertainties, and Ξ is the product of their support;
- We could allow for a general form as the product of independent vector uncertainties.

Multistage decision rules:

- 2-stage optimization: a *here-and-now* decision x_0 which does not depend on uncertainty;
- \bullet In general, decisions x_t can only depend on *observed* uncertainties ξ_1,\ldots,ξ_t ;
- . Will benefit from correlated uncertainties to model more complex processes.

Questions?

K ロ ▶ K 何 ▶

 \Rightarrow 重