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Stochastic Programming

A simple model for stochastic programming:

min E
“

cJx
‰

s.t. Ax “ b,
x ě 0.

where

x is the decision, subject to (random) constraints;

c are the (possibly random) costs;
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Linear Decision Rules

We write the uncertain parameters as functions of an underlying random

vector ξ, and allow for the decision to be taken after observing the

realization of ξ:
min E

“

cpξqJxpξq
‰

s.t. Axpξq “ bpξq @ξ P Ξ,
xpξq ě 0 @ξ P Ξ.

We assume that the constraint matrix is deterministic.

We then posit a linear decision rule for x:

xpξq “ Xξ.

This reduces the �exibility of the �wait-and-see� decision, but allows for a

more tractable optimization problem.
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Linear Decision Rules � Reformulation

If the uncertainty set Ξ is given as the polytope t ξ : Wξ ě h u, we can

rewrite the optimization problem as a linear program over the decision rule

matrix X and auxiliary variables Λ (for the positivity constraints):

min
X,Λ

Tr
`

E
“

ξξJ
‰

CJX
˘

s.t. AX “ B,
X “ ΛW, Λh ě 0, Λ ě 0.
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The LinearDecisionRules.jl Package

The package LinearDecisionRules.jl provides a JuMP extension for

modeling Stochastic Programming problems with linear decision rules.

Usage

1. We introduce LDRModel as an extension of JuMP.Model;

2. The @variable macro is extended to allow for the declaration of

uncertainties as variables in the model;

3. Attributes SolvePrimal() and SolveDual() enable and disable the

optimization of primal and dual LDR reformulations.

4. We provide get_decision() to extract the coe�cients of the

decision rule matrix X in the original variables and uncertainties. A

keyword argument dual is used for querying dual decision rule.
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A toy (energy!) example

using JuMP , LinearDecisionRules

using Ipopt , Distributions

demand = 0.3

initial_volume = 0.5

m = LDRModel ()

@variable(m, vi == initial_volume)

@variable(m, 0 <= vf <= 1)

@variable(m, gh >= 0.0)

@variable(m, gt >= 0.0)

@variable(m, 0 <= inflow <= 0.2, Uncertainty ,

distribution=Uniform(0, 0.2))

@constraint(m, balance , vf == vi - gh + inflow)

@constraint(m, gt + gh == demand)

@objective(m, Min , gt^2 + vf^2/2 - vf)
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A toy example (cont.)
# Solve the primal LDR

set_attribute(m, SolvePrimal (), true)

set_attribute(m, SolveDual (), false)

set_optimizer(m, Ipopt.Optimizer)

optimize !(m)

# Get the decision rule

get_decision(m, vf) # Constant term

get_decision(m, vf , inflow) # Linear coefficient

# Some checks

@test get_decision(m, gh) + get_decision(m, gt) «

demand atol=1e-6

@test get_decision(m, gh, inflow) + get_decision(m

, gt , inflow) « 0 atol=1e-6

@test get_decision(m, vi) « initial_volume atol=1e

-6

@test get_decision(m, vi, inflow) « 0 atol=1e-6
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Package structure

Modeler

User API

LDRModel <: JuMP.AbstractModel

with additional info cache (uncertainties)

Start from:
JuMP.jl/test/JuMPExtension.jl

Query the resulting LDR:

# constant term
get decision(m, variable)

# linear term
get decision(m, variable, uncertainty)

(re-uses maps from Model cache to LDR)

Package
internals

Matrix Data (A, b, c,Q)

Start from:
JuMP.lp matrix data

(we need QPs)

Formulation of:
1 - Primal LDR Model
2 - Dual LDR Model
as JuMP Models (cache maps)

Pass to solver and JuMP.optimize!

- Ipopt
- HiGHS
- etc
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Next steps

Handle correlated uncertainties:

The current model allows for independent uncertainties, and Ξ is the

product of their support;

We could allow for a general form as the product of independent

vector uncertainties.

Multistage decision rules:

2-stage optimization: a here-and-now decision x0 which does not

depend on uncertainty;

In general, decisions xt can only depend on observed uncertainties

ξ1, . . . , ξt;

Will bene�t from correlated uncertainties to model more complex

processes.
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Questions?
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