

Hybrid Quantum Branch-and-Bound Method for Quadratic Unconstrained Binary Optimization

Zedong Peng¹, Pedro Maciel Xavier¹, David E. Bernal Neira^{1,2}

¹Purdue University, ²Universities Space Research Association

JuMP-dev 2024

Montreal, Canada.

July 20, 2024

Background: QUBO and Quantum Optimization

Quadratic Unconstrained Binary Optimization (QUBO)

- Quadratic objective function
- No Constraints
- Binary variables

QUBO $\min_{\mathbf{x}} \quad \mathbf{x}^{\top}Q\mathbf{x} + 2l^{\top}\mathbf{x}$ s.t. $x \in \{0, 1\}$

- Applications
- Quadratic Assignment Problems
- Capital Budgeting Problems
- Task Allocation Problems

Ising Model $\begin{array}{ll} \min_{\mathbf{s}} & \mathbf{s}^{\top} J \mathbf{s} + 2h^{\top} \mathbf{s} \\ \text{s.t.} & s \in \{\pm 1\} \end{array}$

Quantum Computer

- Maximum Diversity Problems
- P-Median Problems
- Quadratic Knapsack Problems

Ref: [1] Glover, F., Kochenberger, G., Hennig, R., & Du, Y. (2022). Quantum bridge analytics I: a tutorial on formulating and using QUBO models. Annals of Operations Research, 314(1), 141-183. [2] Mohseni, N., McMahon, P. L., & Byrnes, T. (2022). Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics, 4(6), 363-379.

Algorithms to solve QUBOs

Exact Algorithms^[1]

- Branch & Prune method
- Branch & Bound method
- Branch & Cut method
 - Presolving
 - Domain propagation
 - Decomposition
 - Primal heuristics
 - Branching (pseudo-costs branching)
 - Cutting planes (odd-cycle cuts)

MIQP solvers: CPLEX, Gurobi, SCIP, BARON, etc.

Heuristic & Approximation algorithm^[2]

- Simulated annealing
- Tabu search
- Local search
- Scatter search
- Evolutionary algorithm

Heuristic Solvers: Algorithms implemented in MQLib

Quantum methods

- Quantum Alternating Optimization Algorithm (QAOA)
- Quantum Annealing (QA)

Quantum Solver: D-Wave Quantum Annealer

Ref: [1] Kochenberger, G., Hao, J. K., Glover, F., Lewis, M., Lü, Z., Wang, H., & Wang, Y. (2014). The unconstrained binary quadratic programming problem: a survey. Journal of combinatorial optimization, 28, 58-81.
[2] Dunning, I., Gupta, S., & Silberholz, J. (2018). What works best when? A systematic evaluation of heuristics for Max-Cut and QUBO. INFORMS Journal on Computing, 30(3), 608-624.
[3] Abbas, A., Ambainis, A., Augustino, B., Bärtschi, A., Buhrman, H., Coffrin, C., ... & Zoufal, C. (2023). Quantum optimization: Potential, challenges, and the path forward. arXiv preprint arXiv:2312.02279.

Goal: Solve QUBOs to Global Optimality

Branch and Bound

- Provides optimality bounds of the solution
- Can be slow for large problems
- For QUBO, strong cutting planes have not been developed (compared to constrained MIP problems)

- Does not guarantee optimality
- Potentially more efficient at obtaining good quality solutions for problems up to the number of qubits in the quantum annealer

Three ways to inject solution information into Gurobi

1. MIP start

- Pass a known feasible or partial solution when optimization starts
- MIP solver will try to reproduce that solution
- 2. Heuristic Callbacks
 - User code called at each node of the branch-and-cut tree
 - Can query relaxation solution, and can inject a feasible solution (or partial solution)
- 3. Variable hint
 - Pass hints about promising values for variables, and the relative priorities of those hints

Ref: [1] https://assets.gurobi.com/pdfs/user-events/2017-frankfurt/MIP-Models-and-Heuristics.pdf

Branch & Cut method in Gurobi

OBB

Quantum Processing Unit (QPU) solver

decomposes a large problem into subproblems requiring no more than the number of qubits available on the QPU.

1. MIP start

- Top 1, 10, 30, 100 heuristic solutions
- 2. Heuristic Callbacks
 - At each node, let the (quantum) heuristic find solutions to it.
 - At nodes where the relaxed problem is small enough for Quantum Computer.
 - Apply QPU solver once. Store the solution pool and provide the solution from the pool at the proper nodes.

Ref: [1] https://assets.gurobi.com/pdfs/user-events/2017-frankfurt/MIP-Models-and-Heuristics.pdf

Julv 20, 2024

Motivation

Embedding: mapping all the variables of a QUBO problem to the physical qubits on quantum computers.

Intuition: Fix the most connected variable, and the size of the resulting embedded subproblem will be smaller.

Branch Priority = the degree of the graph induced by matrix Q

Ref: [1] https://docs.dwavesys.com/docs/latest/c_gs_7.html#triangle

OBB

• QUBO instances in QUBOLib.jl

• Solvability: Instances take default Gurobi more than 10 seconds to solve. (1000)

Ref: [1] Kowalsky, M., Albash, T., Hen, I., & Lidar, D. A. (2022). 3-regular three-XORSAT planted solutions benchmark of classical and quantum heuristic optimizers. Quantum Science and Technology, 7(2), 025008.

[2] Hen, I. (2019). Equation planting: a tool for benchmarking Ising machines. Physical Review Applied, 12(1), 011003.

- Benchmark setting
 - **Baseline**: Gurobi 11.0.0 with default parameters
 - Performance index = (experiment baseline) / baseline
 - Solution time
 - Number of nodes
 - Geometric mean over instances
 - Penalty for failed instances
- For comparison, we apply the following heuristics
 - Heuristic methods from MQLib

(BURER2002, FESTA2002GVNSPR, PALUBECKIS2004bMST3, FESTA2002GPR, FESTA2002GVNS, PALUBECKIS2004bMST2, and etc)

- Simulated Annealing as implemented in dimod.neal V0.5.9.
- **Quantum Annealing** running on system Advantage 4.1 with 5750 qubits and at least 35000 couplers.

• Benchmark results

Strategies	Number of Nodes	Solution time
Branch Priority	-22%	-16%

Performance Compare – MQLib Heuristics

We tested 16 heuristic methods in MQLib to provide the heuristic solution to Gurobi.

• Heuristic callback: since MQLib only provides the optimal solution, we apply MQLib at each node to solve the subproblem.

Strategies	Heuristic Method	Number of Nodes	Solution time
MIP start (top1)	PALUBECKIS2006 (Best)	-15%	-12%
	FESTA2002G (Worst)	-9%	-5%
	Average MQLib Heuristic	-13%	-7%
	Optimal Solution	-95%	-96%
Heuristic callback	LU 2010 (Best)	-1%	+73%
	FESTA2002GVNSPR (Worst)	+18%	+89%
	Average MQLib Heuristic	+8%	+83%

- Injecting the heuristic solution at MIP start is helpful.
- Triggering heuristic callback at each node is too expensive.

We tested QA and SA in DWave to provide the heuristic solution to Gurobi.

- Heuristic callback
 - QUBO heuristic provides the solution pool.
 - Run QUBO heuristic only once and retrieve the solution from the pool at each node.

Strategies	Heuristic Method	Number of Nodes	Solution time
MIP start TOP 1 (TOP 10, TOP 30, TOP 100)	Simulated Annealing	-11% (-12%, -15%, -13%)	-7% (-5%, -10%, -14%)
	Quantum Annealing	-13% (-11%, -11%, -10%)	-6% (-7%, -7%, -4%)
	Quantum Annealing + Embedding	-10% (-15%, -13%, -10%)	-7% (-11%, -8%, -9%)
MIP start + Branch Priority Top 1 (TOP 10, TOP 30, TOP 100)	Simulated Annealing	-20% (-19%, -19%, 20%)	-19% (-13%, -12%, -16%)
	Quantum Annealing	-17% (-19%, -22%, -16%)	-12% (-16%, -11%, -13%)
Heuristic Callback	Simulated Annealing	+1%	+5%
	Quantum Annealing	+4%	+24%
MIP start	Optimal Solution	-95%	-96%

OBB

Thank you! Hybrid Quantum Branch-and-Bound Method for Quadratic Unconstrained Binary Optimization

Zedong Peng¹, Pedro Maciel Xavier¹, David E. Bernal Neira^{1,2}

¹Purdue University, ²Universities Space Research Association

JuMP-dev 2024

Montreal, Canada.

July 20, 2024

