Constraints
Attributes
PolyJuMP.MomentsAttribute — Type
MomentsAttribute(N)
MomentsAttribute()A constraint attribute for the vector of moments corresponding to the constraint that a polynomial is zero in the full space in result N. If the polynomial is constrained to be zero in an algebraic set, it is the moments for the constraint once it is rewritten into an constraint on the full space. If N is omitted, it is 1 by default.
Examples
Consider the following program:
@variable(model, α)
@variable(model, β ≤ 1)
using DynamicPolynomials
@polyvar x y
cref = @constraint(model, α * x - β * y == 0, domain = @set x == y)The constraint is equivalent to
@constraint(model, (α - β) * y == 0)for which the dual is the 1-element vector with the moment of y of value -1. This is the result of moments(cref). However, the dual of cref obtained by dual(cref) is the 2-elements vector with both the moments of x and y of value -1.
MultivariateMoments.moments — Method
SumOfSquares.GramMatrix — Type
struct GramMatrix{T, B, U, MT <: AbstractMatrix{T}} <: AbstractGramMatrix{T, B, U}
Q::MT
basis::B
endGram matrix $x^\top Q x$ where Q is a symmetric matrix indexed by the vector of polynomials of the basis basis.
SumOfSquares.GramMatrixAttribute — Type
GramMatrixAttribute(result_index)
GramMatrixAttribute()A constraint attribute for the GramMatrix of a constraint, that is, the positive semidefinite matrix Q indexed by the monomials in the vector X such that $X^\top Q X$ is the sum-of-squares certificate of the constraint.
SumOfSquares.gram_matrix — Function
SumOfSquares.gram_operate — Function
gram_operate(::typeof(+), p::GramMatrix, q::GramMatrix)Computes the Gram matrix equal to the sum between p and q. On the opposite, p + q gives a polynomial equal to p + q. The polynomial p + q can also be obtained by polynomial(gram_operate(+, p, q)).
gram_operate(/, p::GramMatrix, α)Computes the Gram matrix equal to p / α. On the opposite, p / α gives a polynomial equal to p / α. The polynomial p / α can also be obtained by polynomial(gram_operate(/, p, α)).
SumOfSquares.MomentMatrixAttribute — Type
MomentMatrixAttribute(N)
MomentMatrixAttribute()A constraint attribute fot the MomentMatrix of a constraint.
MultivariateMoments.moment_matrix — Function
SumOfSquares.CertificateBasis — Type
struct CertificateBasis <: MOI.AbstractConstraintAttribute endA constraint attribute for the basis indexing the GramMatrixAttribute and MomentMatrixAttribute certificates.
SumOfSquares.certificate_basis — Function
SumOfSquares.certificate_monomials — Function
certificate_monomials(cref::JuMP.ConstraintRef)Return the monomials of certificate_basis. If the basis if not MultivariateBases.AbstractMonomialBasis, an error is thrown.
SumOfSquares.LagrangianMultipliers — Type
LagrangianMultipliers(N)
LagrangianMultipliers()A constraint attribute fot the LagrangianMultipliers associated to the inequalities of the domain of a constraint. There is one multiplier per inequality and no multiplier for equalities as the equalities are handled by reducing the polynomials over the ideal they generate instead of explicitely creating multipliers.
SumOfSquares.lagrangian_multipliers — Function
SumOfSquares.SOSDecompositionWithDomain — Type
struct SOSDecompositionWithDomain{T, PT, S}Represents a Sum-of-Squares decomposition on a basic semi-algebraic domain.
sourceSumOfSquares.SOSDecompositionAttribute — Type
struct SOSDecompositionAttribute
ranktol::Real
dec::MultivariateMoments.LowRankLDLTAlgorithm
result_index::Int
endA constraint attribute for the SOSDecomposition of a constraint. By default, it is computed using SOSDecomposition(gram, ranktol, dec) where gram is the value of the GramMatrixAttribute.
SumOfSquares.sos_decomposition — Function
sos_decomposition(cref::JuMP.ConstraintRef, K<:AbstractBasicSemialgebraicSet)Return representation in the quadraic module associated with K.
sourceSAGE decomposition attribute:
PolyJuMP.SAGE.Decomposition — Type
PolyJuMP.SAGE.DecompositionAttribute — Type
struct DecompositionAttribute{T} <: MOI.AbstractConstraintAttribute
tol::T
endA constraint attribute for the Decomposition of a constraint.