Cyclic symmetry for Sums of Hermitian Squares
We start by defining the Cyclic group.
using GroupsCore
import PermutationGroups
struct CyclicElem <: GroupElement
n::Int
id::Int
end
Base.:(==)(a::CyclicElem, b::CyclicElem) = a.n == b.n && a.id == b.id
Base.inv(el::CyclicElem) = CyclicElem(el.n, (el.n - el.id) % el.n)
function Base.:*(a::CyclicElem, b::CyclicElem)
return CyclicElem(a.n, (a.id + b.id) % a.n)
end
Base.:^(el::CyclicElem, k::Integer) = CyclicElem(el.n, (el.id * k) % el.n)
Base.conj(a::CyclicElem, b::CyclicElem) = inv(b) * a * b
Base.:^(a::CyclicElem, b::CyclicElem) = conj(a, b)
function PermutationGroups.order(el::CyclicElem)
return div(el.n, gcd(el.n, el.id))
end
struct CyclicGroup <: Group
n::Int
end
Base.eltype(::CyclicGroup) = CyclicElem
Base.one(c::Union{CyclicGroup, CyclicElem}) = CyclicElem(c.n, 0)
PermutationGroups.gens(c::CyclicGroup) = [CyclicElem(c.n, 1)]
PermutationGroups.order(::Type{T}, c::CyclicGroup) where {T} = convert(T, c.n)
function Base.iterate(c::CyclicGroup, prev::CyclicElem=CyclicElem(c.n, -1))
id = prev.id + 1
if id >= c.n
return nothing
else
next = CyclicElem(c.n, id)
return next, next
end
end
Now we define that the cyclic group acts on monomial by permuting variables cyclically. So for instance, CyclicElem(3, 1)
would transform x_1^3*x_2*x_3^4
into x_1^4*x_2^3*x_3
.
import MultivariatePolynomials as MP
import MultivariateBases as MB
using SumOfSquares
struct Action{V<:MP.AbstractVariable} <: Symmetry.OnMonomials
variables::Vector{V}
end
Symmetry.SymbolicWedderburn.coeff_type(::Action) = Float64
function Symmetry.SymbolicWedderburn.action(a::Action, el::CyclicElem, mono::MP.AbstractMonomial)
return prod(MP.powers(mono), init=MP.constant_monomial(mono)) do (var, exp)
index = findfirst(isequal(var), a.variables)
new_index = mod1(index + el.id, el.n)
return a.variables[new_index]^exp
end
end
using DynamicPolynomials
@polyvar x[1:3]
action = Action(x)
g = CyclicElem(3, 1)
Symmetry.SymbolicWedderburn.action(action, g, x[1]^3 * x[2] * x[3]^4)
\[ x_{1}^{4}x_{2}^{3}x_{3} \]
The following polynomial poly
is invariant under the action of the group G
.
N = 3
G = CyclicGroup(N)
poly = sum(x[i] * x[mod1(i + 1, N)] for i in 1:N) + sum(x.^2)
Symmetry.SymbolicWedderburn.action(action, g, poly)
\[ x_{3}^{2} + x_{2}x_{3} + x_{2}^{2} + x_{1}x_{3} + x_{1}x_{2} + x_{1}^{2} \]
Let's now find the minimum of p
by exploiting this symmetry.
import Clarabel
solver = Clarabel.Optimizer
model = Model(solver)
@variable(model, t)
@objective(model, Max, t)
pattern = Symmetry.Pattern(G, action)
basis = MB.explicit_basis(MB.algebra_element(poly - t))
using SymbolicWedderburn
summands = SymbolicWedderburn.symmetry_adapted_basis(
Float64,
pattern.group,
pattern.action,
basis,
semisimple = true,
)
gram_basis = SumOfSquares.Certificate.Symmetry._gram_basis(pattern, basis, Float64)
con_ref = @constraint(model, poly - t in SOSCone(), symmetry = pattern)
optimize!(model)
solution_summary(model)
* Solver : Clarabel
* Status
Result count : 1
Termination status : OPTIMAL
Message from the solver:
"SOLVED"
* Candidate solution (result #1)
Primal status : FEASIBLE_POINT
Dual status : FEASIBLE_POINT
Objective value : -7.30048e-11
Dual objective value : 2.25773e-10
* Work counters
Solve time (sec) : 6.65317e-04
Barrier iterations : 5
Let's look at the symmetry adapted basis used.
gram_matrix(con_ref)
BlockDiagonalGramMatrix with 2 blocks:
[1] Block with row/column basis:
Simple basis:
FixedBasis([1.0·1 + 0.0·x₃ + 0.0·x₂ + 0.0·x₁, 0.0·1 - 0.5773502691896257·x₃ - 0.5773502691896257·x₂ - 0.5773502691896257·x₁])
And entries in a 2×2 SymMatrix{Float64}:
7.300482440797396e-11 0.0
0.0 2.0
[2] Block with row/column basis:
Semisimple basis with 2 simple sub-bases:
FixedBasis([0.0·1 - 0.816496580927726·x₃ + 0.4082482904638631·x₂ + 0.4082482904638631·x₁])
FixedBasis([0.0·1 + 0.0·x₃ - 0.7071067811865477·x₂ + 0.7071067811865477·x₁])
And entries in a 1×1 SymMatrix{Float64}:
0.4999999999999991
Let's look into more details at the last two elements of the basis.
basis = [(x[1] + x[2] - 2x[3])/√6, (x[1] - x[2])/√2]
2-element Vector{DynamicPolynomials.Polynomial{DynamicPolynomials.Commutative{DynamicPolynomials.CreationOrder}, MultivariatePolynomials.Graded{MultivariatePolynomials.LexOrder}, Float64}}:
-0.8164965809277261x₃ + 0.4082482904638631x₂ + 0.4082482904638631x₁
-0.7071067811865475x₂ + 0.7071067811865475x₁
This actually constitutes the basis for an invariant subspace corresponding to a group character of degree 2 and multiplicity 1. This means that it decomposes the semidefinite matrix into 2 blocks of size 1-by-1 that are equal. Indeed, we see above that gram.Q
is identically equal for both. As the group is generated by one element g
, we can just verify it by verifying its invariance under g
. The image of each element under the basis is:
image = [Symmetry.SymbolicWedderburn.action(action, g, p) for p in basis]
2-element Vector{DynamicPolynomials.Polynomial{DynamicPolynomials.Commutative{DynamicPolynomials.CreationOrder}, MultivariatePolynomials.Graded{MultivariatePolynomials.LexOrder}, Float64}}:
0.4082482904638631x₃ + 0.4082482904638631x₂ - 0.8164965809277261x₁
-0.7071067811865475x₃ + 0.7071067811865475x₂
We can see that they are both still in the same 2-dimensional subspace.
a = -1/2
b = √3/2
[a -b; b a] * basis
2-element Vector{DynamicPolynomials.Polynomial{DynamicPolynomials.Commutative{DynamicPolynomials.CreationOrder}, MultivariatePolynomials.Graded{MultivariatePolynomials.LexOrder}, Float64}}:
0.4082482904638631x₃ + 0.4082482904638629x₂ - 0.816496580927726x₁
-0.7071067811865476x₃ + 0.7071067811865475x₂ + 5.551115123125783e-17x₁
In fact, these last two basis comes from the real decomposition of a complex one.
model = Model(solver)
@variable(model, t)
@objective(model, Max, t)
pattern = Symmetry.Pattern(G, action)
cone = SumOfSquares.NonnegPolyInnerCone{MOI.HermitianPositiveSemidefiniteConeTriangle}()
con_ref = @constraint(model, poly - t in cone, symmetry = pattern)
optimize!(model)
solution_summary(model)
gram_matrix(con_ref)
BlockDiagonalGramMatrix with 3 blocks:
[1] Block with row/column basis:
Simple basis:
FixedBasis([(1.0 - 0.0im)·1 + (0.0 + 0.0im)·x₃ + (0.0 + 0.0im)·x₂ + (0.0 + 0.0im)·x₁, (0.0 + 0.0im)·1 + (-0.5773502691896257 - 0.0im)·x₃ + (-0.5773502691896257 - 0.0im)·x₂ + (-0.5773502691896257 - 0.0im)·x₁])
And entries in a 2×2 VectorizedHermitianMatrix{ComplexF64, Float64, ComplexF64}:
8.099519427648694e-10 + 0.0im 0.0 + 0.0im
0.0 + 0.0im 2.0000000000000013 + 0.0im
[2] Block with row/column basis:
Simple basis:
FixedBasis([(0.0 + 0.0im)·1 + (-0.577350269189626 - 0.0im)·x₃ + (0.28867513459481314 - 0.49999999999999994im)·x₂ + (0.2886751345948128 + 0.5000000000000001im)·x₁])
And entries in a 1×1 VectorizedHermitianMatrix{ComplexF64, Float64, ComplexF64}:
0.4999999999999958 + 0.0im
[3] Block with row/column basis:
Simple basis:
FixedBasis([(0.0 + 0.0im)·1 + (-0.577350269189626 - 0.0im)·x₃ + (0.2886751345948128 + 0.5000000000000001im)·x₂ + (0.28867513459481314 - 0.49999999999999994im)·x₁])
And entries in a 1×1 VectorizedHermitianMatrix{ComplexF64, Float64, ComplexF64}:
0.5000000000000036 + 0.0im
We can see that the real invariant subspace was in fact coming from two complex conjugate complex invariant subspaces:
complex_basis = basis[1] + im * basis[2]
image = Symmetry.SymbolicWedderburn.action(action, g, complex_basis)
\[ (0.4082482904638631 - 0.7071067811865475im)x_{3} + (0.4082482904638631 + 0.7071067811865475im)x_{2} + (-0.8164965809277261 + 0.0im)x_{1} \]
And there is a direct correspondance between the representation of the real and complex versions:
(a + b * im) * complex_basis
\[ (0.4082482904638631 - 0.7071067811865476im)x_{3} + (0.4082482904638629 + 0.7071067811865475im)x_{2} + (-0.816496580927726 + 5.551115123125783e-17im)x_{1} \]
This page was generated using Literate.jl.