Constraints

Equality constraints between polynomials

Equality between polynomials in PolyJuMP uses the same syntax as equality between affine or quadratic expression in JuMP. For instance, creating two quadratic n-variate polynomials p and q that must sum up to one can be done as follows:

julia> n = 3
3

julia> using DynamicPolynomials

julia> @polyvar x[1:n]
(Variable{DynamicPolynomials.Commutative{DynamicPolynomials.CreationOrder}, Graded{LexOrder}}[x₁, x₂, x₃],)

julia> X = monomials(x, 0:2)
10-element MonomialVector{DynamicPolynomials.Commutative{DynamicPolynomials.CreationOrder}, Graded{LexOrder}}:
 1
 x₃
 x₂
 x₁
 x₃²
 x₂x₃
 x₂²
 x₁x₃
 x₁x₂
 x₁²

julia> using SumOfSquares

julia> model = Model()
A JuMP Model
Feasibility problem with:
Variables: 0
Model mode: AUTOMATIC
CachingOptimizer state: NO_OPTIMIZER
Solver name: No optimizer attached.

julia> @variable(model, p, Poly(X))
(_[1]) + (_[2])x₃ + (_[3])x₂ + (_[4])x₁ + (_[5])x₃² + (_[6])x₂x₃ + (_[7])x₂² + (_[8])x₁x₃ + (_[9])x₁x₂ + (_[10])x₁²

julia> @variable(model, q, Poly(X))
(_[11]) + (_[12])x₃ + (_[13])x₂ + (_[14])x₁ + (_[15])x₃² + (_[16])x₂x₃ + (_[17])x₂² + (_[18])x₁x₃ + (_[19])x₁x₂ + (_[20])x₁²

julia> @constraint(model, p + q == 1)
(_[1] + _[11] - 1) + (_[2] + _[12])x₃ + (_[3] + _[13])x₂ + (_[4] + _[14])x₁ + (_[5] + _[15])x₃² + (_[6] + _[16])x₂x₃ + (_[7] + _[17])x₂² + (_[8] + _[18])x₁x₃ + (_[9] + _[19])x₁x₂ + (_[10] + _[20])x₁² ∈ PolyJuMP.ZeroPoly()

Vectorized constraints can also be used as well as vector of constraints, named constraints, ... For instance, if P and Q are two $n \times n$ matrices of polynomials, the following constraints the sum of rows and columns to match:

@constraint(model, con[i=1:n], sum(P[i, :]) == sum(Q[:, i]))

and con[i] contains the reference to the constraint between the ith row of P and the ith column of Q.

Inequality constraints between polynomials

Polynomials can be constrained to be sum-of-squares with the in syntax. For instance, to constrain a polynomial p to be sum-of-squares, do

julia> @constraint(model, p in SOSCone())
(_[1]) + (_[2])x₃ + (_[3])x₂ + (_[4])x₁ + (_[5])x₃² + (_[6])x₂x₃ + (_[7])x₂² + (_[8])x₁x₃ + (_[9])x₁x₂ + (_[10])x₁² is SOS

Automatically interpreting polynomial nonnegativity as a sum-of-squares constraint

As detailed in When is nonnegativity equivalent to sum of squares ?, the nonnegativity of a polynomial is not equivalent to the existence of a sum-of-squares decomposition. However, if explicitely specified, nonnegativity constraints can be automatically interpreted as sum-of-squares constraints. The simplest way to do that is to create the model with

model = SOSModel(...)

instead of

model = Model(...)

An alternative equivalent way is to call setpolymodule! after creating the model:

julia> setpolymodule!(model, SumOfSquares)

This second approach may be useful if the SumOfSquares JuMP extension need to be used with another JuMP extension that also has a special model constructor. A third alternative is the following:

julia> PolyJuMP.setdefault!(model, PolyJuMP.NonNegPoly, SOSCone)
SOSCone (alias for NonnegPolyInnerCone{MathOptInterface.PositiveSemidefiniteConeTriangle})

julia> PolyJuMP.setdefault!(model, PolyJuMP.PosDefPolyMatrix, SOSMatrixCone)
SOSMatrixCone (alias for PSDMatrixInnerCone{MathOptInterface.PositiveSemidefiniteConeTriangle})

This approach adds the flexibility to choose the default cone for

  • constraints of the form @constraint(mode, ..., some_polynomial ≥ other_polynomial, ...) which is the cone given as default to PolyJuMP.NonNegPoly; and
  • constraints of the form @constraint(mode, ..., some_matrix_of_polynomial in PSDCone(), ...) or @constraint(mode, ..., some_matrix_of_polynomial >= other_matrix_of_polynomial, PSDCone(), ...) which is the cone given as default to PolyJuMP.NonNegPolyMatrix.

For instance, to use the diagonally-dominant-sum-of-squares cone (see (Ahmadi and Majumdar, 2017; Definition 2)) for the first type of contraints, do

julia> PolyJuMP.setdefault!(model, PolyJuMP.NonNegPoly, DSOSCone)
DSOSCone (alias for NonnegPolyInnerCone{SumOfSquares.DiagonallyDominantConeTriangle})

Changing the polynomial basis

As introduced in Choosing a polynomial basis, there may be numerical advantages to use another basis than the standard monomial basis when creating polynomial variables. Similarly, other polynomial bases can be used for polynomial constraints. However, for constraints, the polynomial space is determined by the polynomial constrained to be nonnegative. For instance, consider the constraint:

julia> using DynamicPolynomials

julia> @polyvar x y
(x, y)

julia> using SumOfSquares

julia> model = SOSModel()
A JuMP Model
Feasibility problem with:
Variables: 0
Model mode: AUTOMATIC
CachingOptimizer state: NO_OPTIMIZER
Solver name: No optimizer attached.

julia> @variable(model, α)
α

julia> @variable(model, β)
β

julia> @constraint(model, α * x^2 + β * y^2 ≥ (α - β) * x * y)
(β)y² + (-α + β)xy + (α)x² is SOS

where α and β are JuMP decision variables and x and y are polynomial variables. Since the polynomial is a quadratic form, the sum-of-squares certificate is also a quadratic form (see (Blekherman et al., 2012; Section~3.3.4)). Hence the default polynomial basis used for the [Nonnegative polynomial variables] certificate is MonomialBasis([x, y]), that is, we search for a positive semidefinite matrix Q such that

\[\alpha x^2 + \beta y^2 - (\alpha - \beta) x y = X^\top Q X\]

where $X = (x, y)$.

As the polynomial space is determined by the polynomial being constrained, only the basis type needs to be given. For instance, to use the scaled monomial basis in the example above, use

julia> @constraint(model, α * x^2 + β * y^2 ≥ (α - β) * x * y, basis = ScaledMonomialBasis)
(β)y² + (-α + β)xy + (α)x² is SOS

Polynomial nonnegativity on a subset of the space

By default, the constraint

julia> @constraint(model, x^3 - x^2 + 2x*y -y^2 + y^3 >= α)
(-α) + (-1)y² + (2)xy + (-1)x² + (1)y³ + (1)x³ is SOS

constrains the polynomial to be nonnegative for every real numbers x and y. However, the set of points (x, y) for which the polynomial is constrained to be nonnegative can be specified by the domain keyword:

julia> S = @set x >= 0 && y >= 0 && x + y >= 1;

julia> @constraint(model, x^3 - x^2 + 2x*y -y^2 + y^3 >= α, domain = S)
(-α) + (-1)y² + (2)xy + (-1)x² + (1)y³ + (1)x³ is SOS

See this notebook for a detailed example.

Dual of polynomial constraints

The dual of a polynomial constraint cref is a moment serie μ as defined in MultivariateMoments. The dual can be obtained with the dual function as with classical dual values in JuMP.

μ = dual(cref)

By dual of a Sum-of-Squares constraint, we may mean different things and the meaning chosen for dual function was chosen for consistency with the definition of the JuMP dual function to ensure that generic code will work as expected with Sum-of-Squares constraints. In a Sum-of-Squares constraint, a polynomial $p$ is constraint to be SOS in some domain defined by polynomial q_i. So p(x) is constrained to be equal to s(x) = s_0(x) + s_1(x) * q_1(x) + s_2(x) * q_2(x) + ... where the s_i(x) polynomials are Sum-of-Squares. The dual of the equality constraint between p(x) and s(x) is given by SumOfSquares.MultivariateMoments.moments.

μ = moments(cref)

Note that the dual and moments may give different results. For instance, the output of dual only contains the moments corresponding to monomials of p while the output of moments may give the moments of other monomials if s(x) has more monomials than p(x). Besides, if the domain contains polynomial, equalities, only the remainder of p(x) - s(x) modulo the ideal is constrained to be zero, see Corollary 2 of (Cox et al., 2015). In that case, the output moments is the dual of the constraint on the remainder so some monomials may have different moments with dual or moments.

The dual of the Sum-of-Squares constraint on s_0(x), commonly referred to as the the matrix of moments can be obtained using moment_matrix:

ν = moment_matrix(cref)

The atomic_measure function of MultivariateMoments can be used to check if there exists an atomic measure (i.e. a measure that is a sum of Dirac measures) that has the moments given in the the moment matrix ν. This can be used for instance in polynomial optimization (see this notebook) or stability analysis (see this notebook).

SAGE extension

To use the SAGE cone in place of the Sum-of-Squares cone for an inequality constraints between polynomials, use the following:

import PolyJuMP
PolyJuMP.setpolymodule!(model, PolyJuMP.SAGE)