Markowitz Efficient Frontier
In this example, we solve the classical portfolio problem where we introduce the weight parameter $\gamma$ and maximize $\gamma \text{ risk} - \text{expected return}$. By updating the values of $\gamma$ we trace the efficient frontier.
Given the prices changes with mean $\mu$ and covariance $\Sigma$, we can construct the classical portfolio problem:
\[\begin{array}{ll} \text{maximize} & \gamma* x^T \mu - x^T \Sigma x \\ \text{subject to} & \| x \|_1 = 1 \\ & x \succeq 0 \end{array}\]
The problem data was gotten from the example portfolio optimization
using ParametricOptInterface, MathOptInterface, JuMP, Ipopt
using LinearAlgebra, Plots
const POI = ParametricOptInterface
const MOI = MathOptInterface
# generate problem data
μ = [11.5; 9.5; 6] / 100 #expected returns
Σ = [
166 34 58 #covariance matrix
34 64 4
58 4 100
] / 100^2
We first build the model with $\gamma$ as parameter in POI
function first_model(μ,Σ)
cached = MOI.Bridges.full_bridge_optimizer(
MOIU.CachingOptimizer(
MOIU.UniversalFallback(MOIU.Model{Float64}()),
Ipopt.Optimizer(),
),
Float64,
)
optimizer = POI.Optimizer(cached)
portfolio = direct_model(optimizer)
set_silent(portfolio)
N = length(μ)
@variable(portfolio, x[1:N] >= 0)
@variable(portfolio, γ in MOI.Parameter(0.0))
@objective(portfolio, Max, γ*dot(μ,x) - x' * Σ * x)
@constraint(portfolio, sum(x) == 1)
optimize!(portfolio)
return portfolio
end
Then, we update the $\gamma$ value in the model
function update_model!(portfolio,γ_value)
γ = portfolio[:γ]
MOI.set(portfolio, POI.ParameterValue(), γ, γ_value)
optimize!(portfolio)
return portfolio
end
Collecting all the return and risk resuls for each $\gamma$
function add_to_dict(portfolios_values,portfolio,μ,Σ)
γ = portfolio[:γ]
γ_value = value(γ)
x = portfolio[:x]
x_value = value.(x)
portfolio_return = dot(μ,x_value)
portfolio_deviation = x_value' * Σ * x_value
portfolios_values[γ_value] = (portfolio_return,portfolio_deviation)
end
Run the portfolio optimization for different values of $\gamma$
portfolio = first_model(μ,Σ)
portfolios_values = Dict()
# Create a reference to the model to change it later
portfolio_ref = [portfolio]
add_to_dict(portfolios_values,portfolio,μ,Σ)
for γ_value in 0.02:0.02:1.0
portfolio_ref[] = update_model!(portfolio_ref[],γ_value)
add_to_dict(portfolios_values,portfolio_ref[],μ,Σ)
end
Plot the efficient frontier
portfolios_values = sort(portfolios_values,by=x->x[1])
portfolios_values_matrix = hcat([[v[1],v[2]] for v in values(portfolios_values)]...)'
plot(portfolios_values_matrix[:,2],portfolios_values_matrix[:,1],legend=false,
xlabel="Standard Deviation", ylabel = "Return", title = "Efficient Frontier")