Transitioning from MathProgBase
MathOptInterface is a replacement for MathProgBase.jl. However, it is not a direct replacement.
Transitioning a solver interface
MathOptInterface is more extensive than MathProgBase which may make its implementation seem daunting at first. There are however numerous utilities in MathOptInterface that the simplify implementation process.
For more information, read Implementing a solver interface.
Transitioning the high-level functions
MathOptInterface doesn't provide replacements for the high-level interfaces in MathProgBase. We recommend you use JuMP as a modeling interface instead.
If you haven't used JuMP before, start with the tutorial Getting started with JuMP
linprog
Here is one way of transitioning from linprog
:
using JuMP
function linprog(c, A, sense, b, l, u, solver)
N = length(c)
model = Model(solver)
@variable(model, l[i] <= x[i=1:N] <= u[i])
@objective(model, Min, c' * x)
eq_rows, ge_rows, le_rows = sense .== '=', sense .== '>', sense .== '<'
@constraint(model, A[eq_rows, :] * x .== b[eq_rows])
@constraint(model, A[ge_rows, :] * x .>= b[ge_rows])
@constraint(model, A[le_rows, :] * x .<= b[le_rows])
optimize!(model)
return (
status = termination_status(model),
objval = objective_value(model),
sol = value.(x)
)
end
mixintprog
Here is one way of transitioning from mixintprog
:
using JuMP
function mixintprog(c, A, rowlb, rowub, vartypes, lb, ub, solver)
N = length(c)
model = Model(solver)
@variable(model, lb[i] <= x[i=1:N] <= ub[i])
for i in 1:N
if vartypes[i] == :Bin
set_binary(x[i])
elseif vartypes[i] == :Int
set_integer(x[i])
end
end
@objective(model, Min, c' * x)
@constraint(model, rowlb .<= A * x .<= rowub)
optimize!(model)
return (
status = termination_status(model),
objval = objective_value(model),
sol = value.(x)
)
end
quadprog
Here is one way of transitioning from quadprog
:
using JuMP
function quadprog(c, Q, A, rowlb, rowub, lb, ub, solver)
N = length(c)
model = Model(solver)
@variable(model, lb[i] <= x[i=1:N] <= ub[i])
@objective(model, Min, c' * x + 0.5 * x' * Q * x)
@constraint(model, rowlb .<= A * x .<= rowub)
optimize!(model)
return (
status = termination_status(model),
objval = objective_value(model),
sol = value.(x)
)
end