The FileFormats submodule

The FileFormats module provides functions for reading and writing MOI models using write_to_file and read_from_file.

Supported file types

You must read and write files to a FileFormats.Model object. Specific the file-type by passing a FileFormats.FileFormat enum. For example:

The Conic Benchmark Format

julia> model = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_CBF)
MOI.FileFormats.CBF.Model
├ ObjectiveSense: FEASIBILITY_SENSE
├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
├ NumberOfVariables: 0
└ NumberOfConstraints: 0

The LP file format

julia> model = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_LP)
MOI.FileFormats.LP.Model
├ ObjectiveSense: FEASIBILITY_SENSE
├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
├ NumberOfVariables: 0
└ NumberOfConstraints: 0

The MathOptFormat file format

julia> model = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_MOF)
MOI.FileFormats.MOF.Model
├ ObjectiveSense: FEASIBILITY_SENSE
├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
├ NumberOfVariables: 0
└ NumberOfConstraints: 0

The MPS file format

julia> model = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_MPS)
MOI.FileFormats.MPS.Model
├ ObjectiveSense: FEASIBILITY_SENSE
├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
├ NumberOfVariables: 0
└ NumberOfConstraints: 0

The NL file format

julia> model = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_NL)
MOI.FileFormats.NL.Model
├ ObjectiveSense: unknown
├ ObjectiveFunctionType: unknown
├ NumberOfVariables: unknown
└ NumberOfConstraints: unknown

The REW file format

julia> model = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_REW)
MOI.FileFormats.MPS.Model
├ ObjectiveSense: FEASIBILITY_SENSE
├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
├ NumberOfVariables: 0
└ NumberOfConstraints: 0

Note that the REW format is identical to the MPS file format, except that all names are replaced with generic identifiers.

The SDPA file format

julia> model = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_SDPA)
MOI.FileFormats.SDPA.Model
├ ObjectiveSense: FEASIBILITY_SENSE
├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
├ NumberOfVariables: 0
└ NumberOfConstraints: 0

Write to file

To write a model src to a MathOptFormat file, use:

julia> src = MOI.Utilities.Model{Float64}();

julia> MOI.add_variable(src);

julia> dest = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_MOF);

julia> MOI.copy_to(dest, src)
MathOptInterface.Utilities.IndexMap with 1 entry:
  MOI.VariableIndex(1) => MOI.VariableIndex(1)

julia> MOI.write_to_file(dest, "file.mof.json")

julia> print(read("file.mof.json", String))
{"name":"MathOptFormat Model","version":{"major":1,"minor":7},"variables":[{"name":"x1"}],"objective":{"sense":"feasibility"},"constraints":[]}

Read from file

To read a MathOptFormat file, use:

julia> dest = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_MOF);

julia> MOI.read_from_file(dest, "file.mof.json")

julia> MOI.get(dest, MOI.ListOfVariableIndices())
1-element Vector{MathOptInterface.VariableIndex}:
 MOI.VariableIndex(1)

julia> rm("file.mof.json")  # Clean up after ourselves.

Detecting the file-type automatically

Instead of the format keyword, you can also use the filename keyword argument to FileFormats.Model. This will attempt to automatically guess the format from the file extension. For example:

julia> src = MOI.Utilities.Model{Float64}();

julia> dest = MOI.FileFormats.Model(filename = "file.cbf.gz");

julia> MOI.copy_to(dest, src)
MathOptInterface.Utilities.IndexMap()

julia> MOI.write_to_file(dest, "file.cbf.gz")

julia> src_2 = MOI.FileFormats.Model(filename = "file.cbf.gz");

julia> MOI.read_from_file(src_2, "file.cbf.gz")

julia> rm("file.cbf.gz")  # Clean up after ourselves.

Note how the compression format (GZip) is also automatically detected from the filename.

Unsupported constraints

In some cases src may contain constraints that are not supported by the file format (for example, the CBF format supports integer variables but not binary). If so, copy src to a bridged model using Bridges.full_bridge_optimizer:

julia> src = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variable(src);

julia> MOI.add_constraint(src, x, MOI.ZeroOne());

julia> dest = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_CBF);

julia> bridged = MOI.Bridges.full_bridge_optimizer(dest, Float64);

julia> MOI.copy_to(bridged, src);

julia> MOI.write_to_file(dest, "my_model.cbf")

julia> rm("my_model.cbf")  # Clean up after ourselves.
Note

Even after bridging, it may still not be possible to write the model to file because of unsupported constraints (for example, PSD variables in the LP file format).

Read and write to io

In addition to write_to_file and read_from_file, you can read and write directly from IO streams using Base.write and Base.read!:

julia> src = MOI.Utilities.Model{Float64}();

julia> dest = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_MPS);

julia> MOI.copy_to(dest, src)
MathOptInterface.Utilities.IndexMap()

julia> io = IOBuffer();

julia> write(io, dest)

julia> seekstart(io);

julia> src_2 = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_MPS);

julia> read!(io, src_2);

ScalarNonlinearFunction

By default, reading a .nl or .mof.json that contains nonlinear expressions will create an NLPBlock.

To instead read nonlinear expressions as ScalarNonlinearFunction, pass the use_nlp_block = false keyword argument to the Model constructor:

julia> model = MOI.FileFormats.Model(;
           format = MOI.FileFormats.FORMAT_MOF,
           use_nlp_block = false,
       );

julia> model = MOI.FileFormats.Model(;
           format = MOI.FileFormats.FORMAT_NL,
           use_nlp_block = false,
       );

Validating MOF files

MathOptFormat files are governed by a schema. Use JSONSchema.jl to check if a .mof.json file satisfies the schema.

First, construct the schema object as follows:

julia> import JSON, JSONSchema

julia> schema = JSONSchema.Schema(JSON.parsefile(MOI.FileFormats.MOF.SCHEMA_PATH))
A JSONSchema

Then, check if a model file is valid using isvalid:

julia> good_model = JSON.parse("""
       {
         "version": {
           "major": 1,
           "minor": 5
         },
         "variables": [{"name": "x"}],
         "objective": {"sense": "feasibility"},
         "constraints": []
       }
       """);

julia> isvalid(schema, good_model)
true

If we construct an invalid file, for example by mis-typing name as NaMe, the validation fails:

julia> bad_model = JSON.parse("""
       {
         "version": {
           "major": 1,
           "minor": 5
         },
         "variables": [{"NaMe": "x"}],
         "objective": {"sense": "feasibility"},
         "constraints": []
       }
       """);

julia> isvalid(schema, bad_model)
false

Use JSONSchema.validate to obtain more insight into why the validation failed:

julia> JSONSchema.validate(schema, bad_model)
Validation failed:
path:         [variables][1]
instance:     Dict{String, Any}("NaMe" => "x")
schema key:   required
schema value: Any["name"]