List of bridges
This section describes the Bridges.AbstractBridge
s that are implemented in MathOptInterface.
Constraint bridges
These bridges are subtypes of Bridges.Constraint.AbstractBridge
.
MathOptInterface.Bridges.Constraint.AbstractFunctionConversionBridge
— Typeabstract type AbstractFunctionConversionBridge{F,S} <: AbstractBridge end
Abstract type to support writing bridges in which the function changes but the set does not.
By convention, the transformed function is stored in the .constraint
field.
MathOptInterface.Bridges.Constraint.AbstractToIntervalBridge
— TypeAbstractToIntervalBridge{T<:AbstractFloat,S,F}
An abstract type that simplifies the creation of other bridges.
T
must be a AbstractFloat
type because otherwise typemin
and typemax
would either be not implemented (for example, BigInt
), or would not give infinite value (for example, Int
). For this reason, this bridge is only added to MOI.Bridges.full_bridge_optimizer
when T
is a subtype of AbstractFloat
.
MathOptInterface.Bridges.Constraint.AllDifferentToCountDistinctBridge
— TypeAllDifferentToCountDistinctBridge{T,F} <: Bridges.Constraint.AbstractBridge
AllDifferentToCountDistinctBridge
implements the following reformulations:
- $x \in \textsf{AllDifferent}(d)$ to $(n, x) \in \textsf{CountDistinct}(1+d)$ and $n = d$
- $f(x) \in \textsf{AllDifferent}(d)$ to $(d, f(x)) \in \textsf{CountDistinct}(1+d)$
Source node
AllDifferentToCountDistinctBridge
supports:
F
inMOI.AllDifferent
where F
is MOI.VectorOfVariables
or MOI.VectorAffineFunction{T}
.
Target nodes
AllDifferentToCountDistinctBridge
creates:
MathOptInterface.Bridges.Constraint.BinPackingToMILPBridge
— TypeBinPackingToMILPBridge{T,F} <: Bridges.Constraint.AbstractBridge
BinPackingToMILPBridge
implements the following reformulation:
- $x \in BinPacking(c, w)$ into a mixed-integer linear program.
Reformulation
The reformulation is non-trivial, and it depends on the finite domain of each variable $x_i$, which we as define $S_i = \{l_i,\ldots,u_i\}$.
First, we introduce new binary variables $z_{ij}$, which are $1$ if variable $x_i$ takes the value $j$ in the optimal solution and $0$ otherwise:
\[\begin{aligned} z_{ij} \in \{0, 1\} & \;\; \forall i \in 1\ldots d, j \in S_i \\ x_i - \sum\limits_{j\in S_i} j \cdot z_{ij} = 0 & \;\; \forall i \in 1\ldots d \\ \sum\limits_{j\in S_i} z_{ij} = 1 & \;\; \forall i \in 1\ldots d \\ \end{aligned}\]
Then, we add the capacity constraint for all possible bins $j$:
\[\sum\limits_{i} w_i z_{ij} \le c \forall j \in \bigcup_{i=1,\ldots,d} S_i\]
Source node
BinPackingToMILPBridge
supports:
F
inMOI.BinPacking{T}
Target nodes
BinPackingToMILPBridge
creates:
MathOptInterface.Bridges.Constraint.CircuitToMILPBridge
— TypeCircuitToMILPBridge{T,F} <: Bridges.Constraint.AbstractBridge
CircuitToMILPBridge
implements the following reformulation:
- $x \in \textsf{Circuit}(d)$ to the Miller-Tucker-Zemlin formulation of the Traveling Salesperson Problem.
Source node
CircuitToMILPBridge
supports:
F
inMOI.Circuit
where F
is MOI.VectorOfVariables
or MOI.VectorAffineFunction{T}
.
Target nodes
CircuitToMILPBridge
creates:
MathOptInterface.Bridges.Constraint.ComplexNormInfinityToSecondOrderConeBridge
— TypeComplexNormInfinityToSecondOrderConeBridge{T} <: Bridges.Constraint.AbstractBridge
ComplexNormInfinityToSecondOrderConeBridge
implements the following reformulation:
- $(t, x) \in NormInfinity(1+d)$ into $(t, real(x_i), imag(x_i)) \in SecondOrderCone()$ for all $i$.
Source node
ComplexNormInfinityToSecondOrderConeBridge
supports:
Target nodes
ComplexNormInfinityToSecondOrderConeBridge
creates:
MathOptInterface.Bridges.Constraint.CountAtLeastToCountBelongsBridge
— TypeCountAtLeastToCountBelongsBridge{T,F} <: Bridges.Constraint.AbstractBridge
CountAtLeastToCountBelongsBridge
implements the following reformulation:
- $x \in \textsf{CountAtLeast}(n, d, \mathcal{S})$ to $(n_i, x_{d_i}) \in \textsf{CountBelongs}(1+d, \mathcal{S})$ and $n_i \ge n$ for all $i$.
Source node
CountAtLeastToCountBelongsBridge
supports:
F
inMOI.CountAtLeast
where F
is MOI.VectorOfVariables
or MOI.VectorAffineFunction{T}
.
Target nodes
CountAtLeastToCountBelongsBridge
creates:
MathOptInterface.Bridges.Constraint.CountBelongsToMILPBridge
— TypeCountBelongsToMILPBridge{T,F} <: Bridges.Constraint.AbstractBridge
CountBelongsToMILPBridge
implements the following reformulation:
- $(n, x) \in \textsf{CountBelongs}(1+d, \mathcal{S})$ into a mixed-integer linear program.
Reformulation
The reformulation is non-trivial, and it depends on the finite domain of each variable $x_i$, which we as define $S_i = \{l_i,\ldots,u_i\}$.
First, we introduce new binary variables $z_{ij}$, which are $1$ if variable $x_i$ takes the value $j$ in the optimal solution and $0$ otherwise:
\[\begin{aligned} z_{ij} \in \{0, 1\} & \;\; \forall i \in 1\ldots d, j \in S_i \\ x_i - \sum\limits_{j\in S_i} j \cdot z_{ij} = 0 & \;\; \forall i \in 1\ldots d \\ \sum\limits_{j\in S_i} z_{ij} = 1 & \;\; \forall i \in 1\ldots d \\ \end{aligned}\]
Finally, $n$ is constrained to be the number of $z_{ij}$ elements that are in $\mathcal{S}$:
\[n - \sum\limits_{i\in 1\ldots d, j \in \mathcal{S}} z_{ij} = 0\]
Source node
CountBelongsToMILPBridge
supports:
F
inMOI.CountBelongs
where F
is MOI.VectorOfVariables
or MOI.VectorAffineFunction{T}
.
Target nodes
CountBelongsToMILPBridge
creates:
MathOptInterface.Bridges.Constraint.CountDistinctToMILPBridge
— TypeCountDistinctToMILPBridge{T,F} <: Bridges.Constraint.AbstractBridge
CountDistinctToMILPBridge
implements the following reformulation:
- $(n, x) \in \textsf{CountDistinct}(1+d)$ into a mixed-integer linear program.
Reformulation
The reformulation is non-trivial, and it depends on the finite domain of each variable $x_i$, which we as define $S_i = \{l_i,\ldots,u_i\}$.
First, we introduce new binary variables $z_{ij}$, which are $1$ if variable $x_i$ takes the value $j$ in the optimal solution and $0$ otherwise:
\[\begin{aligned} z_{ij} \in \{0, 1\} & \;\; \forall i \in 1\ldots d, j \in S_i \\ x_i - \sum\limits_{j\in S_i} j \cdot z_{ij} = 0 & \;\; \forall i \in 1\ldots d \\ \sum\limits_{j\in S_i} z_{ij} = 1 & \;\; \forall i \in 1\ldots d \\ \end{aligned}\]
Then, we introduce new binary variables $y_j$, which are $1$ if a variable takes the value $j$ in the optimal solution and $0$ otherwise.
\[\begin{aligned} y_{j} \in \{0, 1\} & \;\; \forall j \in \bigcup_{i=1,\ldots,d} S_i \\ y_j \le \sum\limits_{i \in 1\ldots d: j \in S_i} z_{ij} \le M y_j & \;\; \forall j \in \bigcup_{i=1,\ldots,d} S_i\\ \end{aligned}\]
Finally, $n$ is constrained to be the number of $y_j$ elements that are non-zero:
\[n - \sum\limits_{j \in \bigcup_{i=1,\ldots,d} S_i} y_{j} = 0\]
Formulation (special case)
In the special case that the constraint is [2, x, y] in CountDistinct(3)
, then the constraint is equivalent to [x, y] in AllDifferent(2)
, which is equivalent to x != y
.
\[(x - y \le -1) \vee (y - x \le -1)\]
which is equivalent to (for suitable M
):
\[\begin{aligned} z \in \{0, 1\} \\ x - y - M z \le -1 \\ y - x - M (1 - z) \le -1 \end{aligned}\]
Source node
CountDistinctToMILPBridge
supports:
F
inMOI.CountDistinct
where F
is MOI.VectorOfVariables
or MOI.VectorAffineFunction{T}
.
Target nodes
CountDistinctToMILPBridge
creates:
MathOptInterface.Bridges.Constraint.CountGreaterThanToMILPBridge
— TypeCountGreaterThanToMILPBridge{T,F} <: Bridges.Constraint.AbstractBridge
CountGreaterThanToMILPBridge
implements the following reformulation:
- $(c, y, x) \in CountGreaterThan()$ into a mixed-integer linear program.
Source node
CountGreaterThanToMILPBridge
supports:
F
inMOI.CountGreaterThan
Target nodes
CountGreaterThanToMILPBridge
creates:
MathOptInterface.Bridges.Constraint.ExponentialConeToScalarNonlinearFunctionBridge
— TypeExponentialConeToScalarNonlinearFunctionBridge{T,F} <:
Bridges.Constraint.AbstractBridge
ExponentialConeToScalarNonlinearFunctionBridge
implements the following reformulation:
- $(x, y, z) \in \textsf{ExponentialCone}()$ to $y \cdot exp(x / y)) - z \le 0$, $y \ge 0$.
Source node
ExponentialConeToScalarNonlinearFunctionBridge
supports:
F
inMOI.ExponentialCone
Target nodes
ExponentialConeToScalarNonlinearFunctionBridge
creates:
MathOptInterface.Bridges.Constraint.FlipSignBridge
— TypeFlipSignBridge{T,S1,S2,F,G}
An abstract type that simplifies the creation of other bridges.
MathOptInterface.Bridges.Constraint.FunctionConversionBridge
— TypeFunctionConversionBridge{T,F,G,S} <: AbstractFunctionConversionBridge{G,S}
FunctionConversionBridge
implements the following reformulations:
- $g(x) \in S$ into $f(x) \in S$
for these pairs of functions:
MOI.ScalarAffineFunction
to [
MOI.ScalarQuadraticFunction`](@ref)MOI.ScalarQuadraticFunction
toMOI.ScalarNonlinearFunction
MOI.VectorAffineFunction
toMOI.VectorQuadraticFunction
See also SetConversionBridge
.
Source node
FunctionConversionBridge
supports:
G
inS
Target nodes
FunctionConversionBridge
creates:
F
inS
MathOptInterface.Bridges.Constraint.GeoMeanBridge
— TypeGeoMeanBridge{T,F,G,H} <: Bridges.Constraint.AbstractBridge
GeoMeanBridge
implements a reformulation from MOI.GeometricMeanCone
into MOI.RotatedSecondOrderCone
.
The reformulation is best described in an example.
Consider the cone of dimension 4:
\[t \le \sqrt[3]{x_1 x_2 x_3}\]
This can be rewritten as $\exists y \ge 0$ such that:
\[\begin{align*} t & \le y,\\ y^4 & \le x_1 x_2 x_3 y. \end{align*}\]
Note that we need to create $y$ and not use $t^4$ directly because $t$ is not allowed to be negative.
This is equivalent to:
\[\begin{align*} t & \le \frac{y_1}{\sqrt{4}},\\ y_1^2 & \le 2y_2 y_3,\\ y_2^2 & \le 2x_1 x_2, \\ y_3^2 & \le 2x_3(y_1/\sqrt{4}) \\ y & \ge 0. \end{align*}\]
More generally, you can show how the geometric mean code is recursively expanded into a set of new variables $y$ in MOI.Nonnegatives
, a set of MOI.RotatedSecondOrderCone
constraints, and a MOI.LessThan
constraint between $t$ and $y_1$.
Source node
GeoMeanBridge
supports:
Target nodes
GeoMeanBridge
creates:
F
inMOI.LessThan{T}
G
inMOI.RotatedSecondOrderCone
G
inMOI.Nonnegatives
MathOptInterface.Bridges.Constraint.GeoMeanToPowerBridge
— TypeGeoMeanToPowerBridge{T,F} <: Bridges.Constraint.AbstractBridge
GeoMeanToPowerBridge
implements the following reformulation:
- $(y, x...) \in GeometricMeanCone(1+d)$ into $(x_1, t, y) \in PowerCone(1/d)$ and $(t, x_2, ..., x_d) in GeometricMeanCone(d)$, which is then recursively expanded into more
PowerCone
constraints.
Source node
GeoMeanToPowerBridge
supports:
Target nodes
GeoMeanToPowerBridge
creates:
MathOptInterface.Bridges.Constraint.GeoMeantoRelEntrBridge
— TypeGeoMeantoRelEntrBridge{T,F,G,H} <: Bridges.Constraint.AbstractBridge
GeoMeantoRelEntrBridge
implements the following reformulation:
- $(u, w) \in GeometricMeanCone$ into $(0, w, (u + y)\mathbf{1})\in RelativeEntropyCone$ and $y \ge 0$
Source node
GeoMeantoRelEntrBridge
supports:
Target nodes
GeoMeantoRelEntrBridge
creates:
G
inMOI.RelativeEntropyCone
F
inMOI.Nonnegatives
Derivation
The derivation of the bridge is as follows:
\[\begin{aligned} (u, w) \in GeometricMeanCone \iff & u \le \left(\prod_{i=1}^n w_i\right)^{1/n} \\ \iff & 0 \le u + y \le \left(\prod_{i=1}^n w_i\right)^{1/n}, y \ge 0 \\ \iff & 1 \le \frac{\left(\prod_{i=1}^n w_i\right)^{1/n}}{u + y}, y \ge 0 \\ \iff & 1 \le \left(\prod_{i=1}^n \frac{w_i}{u + y}\right)^{1/n}, y \ge 0 \\ \iff & 0 \le \sum_{i=1}^n \log\left(\frac{w_i}{u + y}\right), y \ge 0 \\ \iff & 0 \ge \sum_{i=1}^n \log\left(\frac{u + y}{w_i}\right), y \ge 0 \\ \iff & 0 \ge \sum_{i=1}^n (u + y) \log\left(\frac{u + y}{w_i}\right), y \ge 0 \\ \iff & (0, w, (u + y)\mathbf{1}) \in RelativeEntropyCone, y \ge 0 \\ \end{aligned}\]
This derivation assumes that $u + y > 0$, which is enforced by the relative entropy cone.
MathOptInterface.Bridges.Constraint.GreaterToIntervalBridge
— TypeGreaterToIntervalBridge{T,F} <: Bridges.Constraint.AbstractBridge
GreaterToIntervalBridge
implements the following reformulations:
- $f(x) \ge l$ into $f(x) \in [l, \infty)$
Source node
GreaterToIntervalBridge
supports:
F
inMOI.GreaterThan{T}
Target nodes
GreaterToIntervalBridge
creates:
F
inMOI.Interval{T}
MathOptInterface.Bridges.Constraint.GreaterToLessBridge
— TypeGreaterToLessBridge{T,F,G} <: Bridges.Constraint.AbstractBridge
GreaterToLessBridge
implements the following reformulation:
- $f(x) \ge l$ into $-f(x) \le -l$
Source node
GreaterToLessBridge
supports:
G
inMOI.GreaterThan{T}
Target nodes
GreaterToLessBridge
creates:
F
inMOI.LessThan{T}
MathOptInterface.Bridges.Constraint.HermitianToSymmetricPSDBridge
— TypeHermitianToSymmetricPSDBridge{T,F,G} <: Bridges.Constraint.AbstractBridge
HermitianToSymmetricPSDBridge
implements the following reformulation:
- Hermitian positive semidefinite
n x n
complex matrix to a symmetric positive semidefinite2n x 2n
real matrix.
See also MOI.Bridges.Variable.HermitianToSymmetricPSDBridge
.
Source node
HermitianToSymmetricPSDBridge
supports:
Target node
HermitianToSymmetricPSDBridge
creates:
Reformulation
The reformulation is best described by example.
The Hermitian matrix:
\[\begin{bmatrix} x_{11} & x_{12} + y_{12}im & x_{13} + y_{13}im\\ x_{12} - y_{12}im & x_{22} & x_{23} + y_{23}im\\ x_{13} - y_{13}im & x_{23} - y_{23}im & x_{33} \end{bmatrix}\]
is positive semidefinite if and only if the symmetric matrix:
\[\begin{bmatrix} x_{11} & x_{12} & x_{13} & 0 & y_{12} & y_{13} \\ & x_{22} & x_{23} & -y_{12} & 0 & y_{23} \\ & & x_{33} & -y_{13} & -y_{23} & 0 \\ & & & x_{11} & x_{12} & x_{13} \\ & & & & x_{22} & x_{23} \\ & & & & & x_{33} \end{bmatrix}\]
is positive semidefinite.
The bridge achieves this reformulation by constraining the above matrix to belong to the MOI.PositiveSemidefiniteConeTriangle(6)
.
MathOptInterface.Bridges.Constraint.IndicatorActiveOnFalseBridge
— TypeIndicatorActiveOnFalseBridge{T,F,S} <: Bridges.Constraint.AbstractBridge
IndicatorActiveOnFalseBridge
implements the following reformulation:
- $\neg z \implies {f(x) \in S}$ into $y \implies {f(x) \in S}$, $z + y = 1$, and $y \in \{0, 1\}$
Source node
IndicatorActiveOnFalseBridge
supports:
Target nodes
IndicatorActiveOnFalseBridge
creates:
MathOptInterface.Bridges.Constraint.IndicatorGreaterToLessThanBridge
— TypeIndicatorGreaterToLessThanBridge{T,A} <: Bridges.Constraint.AbstractBridge
IndicatorGreaterToLessThanBridge
implements the following reformulation:
- $z \implies {f(x) \ge l}$ into $z \implies {-f(x) \le -l}$
Source node
IndicatorGreaterToLessThanBridge
supports:
Target nodes
IndicatorGreaterToLessThanBridge
creates:
MathOptInterface.Bridges.Constraint.IndicatorLessToGreaterThanBridge
— TypeIndicatorLessToGreaterThanBridge{T,A} <: Bridges.Constraint.AbstractBridge
IndicatorLessToGreaterThanBridge
implements the following reformulations:
- $z \implies {f(x) \le u}$ into $z \implies {-f(x) \ge -u}$
Source node
IndicatorLessToGreaterThanBridge
supports:
Target nodes
IndicatorLessToGreaterThanBridge
creates:
MathOptInterface.Bridges.Constraint.IndicatorSOS1Bridge
— TypeIndicatorSOS1Bridge{T,S} <: Bridges.Constraint.AbstractBridge
IndicatorSOS1Bridge
implements the following reformulation:
- $z \implies {f(x) \in S}$ into $f(x) + y \in S$, $SOS1(y, z)$
This bridge assumes that the solver supports MOI.SOS1{T}
constraints in which one of the variables ($y$) is continuous.
Source node
IndicatorSOS1Bridge
supports:
Target nodes
IndicatorSOS1Bridge
creates:
MathOptInterface.Bridges.Constraint.IndicatorSetMapBridge
— TypeIndicatorSetMapBridge{T,A,S1,S2} <: Bridges.Constraint.AbstractBridge
IndicatorSetMapBridge
implements the following reformulations:
- $z \implies {f(x) \ge l}$ into $z \implies {-f(x) \le -l}$
- $z \implies {f(x) \le u}$ into $z \implies {-f(x) \ge -u}$
Source node
IndicatorSetMapBridge
supports:
Target nodes
IndicatorSetMapBridge
creates:
MathOptInterface.Bridges.Constraint.IndicatorToMILPBridge
— TypeIndicatorToMILPBridge{T,F,A,S} <: Bridges.Constraint.AbstractBridge
IndicatorToMILPBridge
implements the following reformulation:
- $x \in \textsf{Indicator}(s)$ into a mixed-integer linear program.
Source node
IndicatorToMILPBridge
supports:
F
inMOI.Indicator{A,S}
where F
is MOI.VectorOfVariables
or MOI.VectorAffineFunction{T}
.
Target nodes
IndicatorToMILPBridge
creates:
MathOptInterface.Bridges.Constraint.InequalityToComplementsBridge
— TypeInequalityToComplementsBridge{T,F,S,G} <: Bridges.Constraint.AbstractBridge
InequalityToComplementsBridge
implements the following reformulations:
- $f(x) \ge b$ into $\exists y$ such that $f(x) - b \perp y \ge 0$
- $f(x) \le b$ into $f(x) - b \perp y \le 0$
- $f(x) = b$ into $f(x) - b \perp y$
Source node
InequalityToComplementsBridge
supports:
F
inMOI.GreaterThan{T}
F
inMOI.LessThan{T}
F
inMOI.EqualTo
Target nodes
InequalityToComplementsBridge
creates:
MathOptInterface.Bridges.Constraint.IntegerToZeroOneBridge
— TypeIntegerToZeroOneBridge{T} <: Bridges.Constraint.AbstractBridge
IntegerToZeroOneBridge
implements the following reformulation:
- $x \in \mathbf{Z}$ into $y_i \in \{0, 1\}$, $x == lb + \sum 2^{i-1} y_i$.
Source node
IntegerToZeroOneBridge
supports:
VariableIndex
inMOI.Integer
Target nodes
IntegerToZeroOneBridge
creates:
Developer note
This bridge is implemented as a constraint bridge instead of a variable bridge because we don't want to substitute the linear combination of y
for every instance of x
. Doing so would be expensive and greatly reduce the sparsity of the constraints.
MathOptInterface.Bridges.Constraint.LessToGreaterBridge
— TypeLessToGreaterBridge{T,F,G} <: Bridges.Constraint.AbstractBridge
LessToGreaterBridge
implements the following reformulation:
- $f(x) \le u$ into $-f(x) \ge -u$
Source node
LessToGreaterBridge
supports:
G
inMOI.LessThan{T}
Target nodes
LessToGreaterBridge
creates:
F
inMOI.GreaterThan{T}
MathOptInterface.Bridges.Constraint.LessToIntervalBridge
— TypeLessToIntervalBridge{T,F} <: Bridges.Constraint.AbstractBridge
LessToIntervalBridge
implements the following reformulations:
- $f(x) \le u$ into $f(x) \in (-\infty, u]$
Source node
LessToIntervalBridge
supports:
F
inMOI.LessThan{T}
Target nodes
LessToIntervalBridge
creates:
F
inMOI.Interval{T}
MathOptInterface.Bridges.Constraint.LogDetBridge
— TypeLogDetBridge{T,F,G,H,I} <: Bridges.Constraint.AbstractBridge
The MOI.LogDetConeTriangle
is representable by MOI.PositiveSemidefiniteConeTriangle
and MOI.ExponentialCone
constraints.
Indeed, $\log\det(X) = \sum\limits_{i=1}^n \log(\delta_i)$ where $\delta_i$ are the eigenvalues of $X$.
Adapting the method from [1, p. 149], we see that $t \le u \log(\det(X/u))$ for $u > 0$ if and only if there exists a lower triangular matrix $Δ$ such that
\[\begin{align*} \begin{pmatrix} X & Δ\\ Δ^\top & \mathrm{Diag}(Δ) \end{pmatrix} & \succeq 0\\ t - \sum_{i=1}^n u \log\left(\frac{Δ_{ii}}{u}\right) & \le 0 \end{align*}\]
Which we reformulate further into
\[\begin{align*} \begin{pmatrix} X & Δ\\ Δ^\top & \mathrm{Diag}(Δ) \end{pmatrix} & \succeq 0\\ (l_i, u , Δ_{ii}) & \in ExponentialCone\quad \forall i \\ t - \sum_{i=1}^n l_i & \le 0 \end{align*}\]
Source node
LogDetBridge
supports:
Target nodes
LogDetBridge
creates:
[1] Ben-Tal, Aharon, and Arkadi Nemirovski. Lectures on modern convex optimization: analysis, algorithms, and engineering applications. Society for Industrial and Applied Mathematics, 2001.
MathOptInterface.Bridges.Constraint.MultiSetMapBridge
— Typeabstract type MultiSetMapBridge{T,S1,G} <: AbstractBridge end
Same as SetMapBridge
but the output constraint type does not only depend on the input constraint type.
When subtyping MultiSetMapBridge
, added_constraint_types
and supports
should additionally be implemented by the bridge.
For example, if a bridge BridgeType
may create either a constraint of type F2
-in-S2
or F3
-in-S3
, these methods should be implemented as follows:
function MOI.Bridges.added_constraint_types(
::Type{<:BridgeType{T,F2,F3}},
) where {T,F2,F3}
return Tuple{Type,Type}[(F2, S2), (F3, S3)]
end
function MOI.supports(
model::MOI.ModelLike,
attr::Union{MOI.ConstraintPrimalStart,MOI.ConstraintDualStart},
::Type{<:BridgeType{T,F2,F3}},
) where {T,F2,F3}
return MOI.supports(model, attr, MOI.ConstraintIndex{F2,S2}) ||
MOI.supports(model, attr, MOI.ConstraintIndex{F3,S3})
end
MathOptInterface.Bridges.Constraint.NonnegToNonposBridge
— TypeNonnegToNonposBridge{T,F,G} <: Bridges.Constraint.AbstractBridge
NonnegToNonposBridge
implements the following reformulation:
- $f(x) \in \mathbb{R}_+$ into $-f(x) \in \mathbb{R}_-$
Source node
NonnegToNonposBridge
supports:
G
inMOI.Nonnegatives
Target nodes
NonnegToNonposBridge
creates:
F
inMOI.Nonpositives
MathOptInterface.Bridges.Constraint.NonposToNonnegBridge
— TypeNonposToNonnegBridge{T,F,G} <: Bridges.Constraint.AbstractBridge
NonposToNonnegBridge
implements the following reformulation:
- $f(x) \in \mathbb{R}_-$ into $-f(x) \in \mathbb{R}_+$
Source node
NonposToNonnegBridge
supports:
G
inMOI.Nonpositives
Target nodes
NonposToNonnegBridge
creates:
F
inMOI.Nonnegatives
MathOptInterface.Bridges.Constraint.NormInfinityBridge
— TypeNormInfinityBridge{T,F,G} <: Bridges.Constraint.AbstractBridge
NormInfinityBridge
implements the following reformulation:
- $|x|_\infty \le t$ into $[t - x_i, t + x_i] \in \mathbb{R}_+$.
Source node
NormInfinityBridge
supports:
Target nodes
NormInfinityBridge
creates:
F
inMOI.Nonnegatives
MathOptInterface.Bridges.Constraint.NormInfinityConeToNormConeBridge
— TypeNormInfinityConeToNormConeBridge{T,F} <: Bridges.Constraint.AbstractBridge
NormInfinityConeToNormConeBridge
implements the following reformulations:
- $(t, x) in NormInfinityCone(d)$ into $(t, x) in NormCone(Inf, d)$
Source node
NormInfinityConeToNormConeBridge
supports:
F
inMOI.NormInfinityCone
Target nodes
NormInfinityConeToNormConeBridge
creates:
F
inMOI.NormCone
MathOptInterface.Bridges.Constraint.NormNuclearBridge
— TypeNormNuclearBridge{T,F,G,H} <: Bridges.Constraint.AbstractBridge
NormNuclearBridge
implements the following reformulation:
- $t \ge \sum_i \sigma_i (X)$ into $\left[\begin{array}{c c}U & X^\top \\ X & V\end{array}\right] \succeq 0$ and $2t \ge tr(U) + tr(V)$.
Source node
NormNuclearBridge
supports:
H
inMOI.NormNuclearCone
Target nodes
NormNuclearBridge
creates:
MathOptInterface.Bridges.Constraint.NormOneBridge
— TypeNormOneBridge{T,F,G} <: Bridges.Constraint.AbstractBridge
NormOneBridge
implements the following reformulation:
- $\sum |x_i| \le t$ into $[t - \sum y_i, y_i - x_i, y_i + x_i] \in \mathbb{R}_+$.
Source node
NormOneBridge
supports:
G
inMOI.NormOneCone{T}
Target nodes
NormOneBridge
creates:
F
inMOI.Nonnegatives
MathOptInterface.Bridges.Constraint.NormOneConeToNormConeBridge
— TypeNormOneConeToNormConeBridge{T,F} <: Bridges.Constraint.AbstractBridge
NormOneConeToNormConeBridge
implements the following reformulations:
- $(t, x) in NormOneCone(d)$ into $(t, x) in NormCone(1, d)$
Source node
NormOneConeToNormConeBridge
supports:
F
inMOI.NormOneCone
Target nodes
NormOneConeToNormConeBridge
creates:
F
inMOI.NormCone
MathOptInterface.Bridges.Constraint.NormSpectralBridge
— TypeNormSpectralBridge{T,F,G} <: Bridges.Constraint.AbstractBridge
NormSpectralBridge
implements the following reformulation:
- $t \ge \sigma_1(X)$ into $\left[\begin{array}{c c}t\mathbf{I} & X^\top \\ X & t \mathbf{I}\end{array}\right] \succeq 0$
Source node
NormSpectralBridge
supports:
G
inMOI.NormSpectralCone
Target nodes
NormSpectralBridge
creates:
MathOptInterface.Bridges.Constraint.NormToPowerBridge
— TypeNormToPowerBridge{T,F} <: Bridges.Constraint.AbstractBridge
NormToPowerBridge
implements the following reformulation:
- $(t, x) \in NormCone(p, 1+d)$ into $(r_i, t, x_i) \in PowerCone(1 / p)$ for all $i$, and $\sum\limits_i r_i == t$.
For details, see Alizadeh, F., and Goldfarb, D. (2001). "Second-order cone programming." Mathematical Programming, Series B, 95:3-51.
Source node
NormToPowerBridge
supports:
F
inMOI.NormCone
Target nodes
NormToPowerBridge
creates:
MathOptInterface.Bridges.Constraint.NumberConversionBridge
— TypeNumberConversionBridge{T,F1,S1,F2,S2} <: Bridges.Constraint.AbstractBridge
NumberConversionBridge
implements the following reformulation:
- $f1(x) \in S1$ to $f2(x) \in S2$
where f
and S
are the same functional form, but differ in their coefficient type.
Source node
NumberConversionBridge
supports:
F1
inS1
Target node
NumberConversionBridge
creates:
F2
inS2
MathOptInterface.Bridges.Constraint.QuadtoSOCBridge
— TypeQuadtoSOCBridge{T} <: Bridges.Constraint.AbstractBridge
QuadtoSOCBridge
converts quadratic inequalities
\[\frac{1}{2}x^T Q x + a^T x \le ub\]
into MOI.RotatedSecondOrderCone
constraints, but it only applies when $Q$ is positive definite.
This is because, if Q
is positive definite, there exists U
such that $Q = U^T U$, and so the inequality can then be rewritten as;
\[\|U x\|_2^2 \le 2 (-a^T x + ub)\]
Therefore, QuadtoSOCBridge
implements the following reformulations:
- $\frac{1}{2}x^T Q x + a^T x \le ub$ into $(1, -a^T x + ub, Ux) \in RotatedSecondOrderCone$ where $Q = U^T U$
- $\frac{1}{2}x^T Q x + a^T x \ge lb$ into $(1, a^T x - lb, Ux) \in RotatedSecondOrderCone$ where $-Q = U^T U$
Source node
QuadtoSOCBridge
supports:
Target nodes
RelativeEntropyBridge
creates:
Errors
This bridge errors if Q
is not positive definite.
MathOptInterface.Bridges.Constraint.RSOCtoNonConvexQuadBridge
— TypeRSOCtoNonConvexQuadBridge{T} <: Bridges.Constraint.AbstractBridge
RSOCtoNonConvexQuadBridge
implements the following reformulations:
- $||x||_2^2 \le 2tu$ into $\sum x^2 - 2tu \le 0$, $1t + 0 \ge 0$, and $1u + 0 \ge 0$.
The MOI.ScalarAffineFunction
s $1t + 0$ and $1u + 0$ are used in case the variables have other bound constraints.
This transformation starts from a convex constraint and creates a non-convex constraint. Unless the solver has explicit support for detecting rotated second-order cones in quadratic form, this may (wrongly) be interpreted by the solver as being non-convex. Therefore, this bridge is not added automatically by MOI.Bridges.full_bridge_optimizer
. Care is recommended when adding this bridge to a optimizer.
Source node
RSOCtoNonConvexQuadBridge
supports:
Target nodes
RSOCtoNonConvexQuadBridge
creates:
MathOptInterface.Bridges.Constraint.RSOCtoPSDBridge
— TypeRSOCtoPSDBridge{T,F,G} <: Bridges.Constraint.AbstractBridge
RSOCtoPSDBridge
implements the following reformulation:
- $||x||_2^2 \le 2t\cdot u$ into $\left[\begin{array}{c c}t & x^\top \\ x & 2tu \mathbf{I}\end{array}\right]\succeq 0$
Source node
RSOCtoPSDBridge
supports:
Target nodes
RSOCtoPSDBridge
creates:
MathOptInterface.Bridges.Constraint.RSOCtoSOCBridge
— TypeRSOCtoSOCBridge{T,F,G} <: Bridges.Constraint.AbstractBridge
RSOCtoSOCBridge
implements the following reformulation:
- $||x||_2^2 \le 2tu$ into $||\frac{t - u}{\sqrt 2}, x||_2 \le \frac{t + u}{\sqrt 2}$
Source node
RSOCtoSOCBridge
supports:
Target node
RSOCtoSOCBridge
creates:
F
inMOI.SecondOrderCone
MathOptInterface.Bridges.Constraint.ReifiedAllDifferentToCountDistinctBridge
— TypeReifiedAllDifferentToCountDistinctBridge{T,F} <:
Bridges.Constraint.AbstractBridge
ReifiedAllDifferentToCountDistinctBridge
implements the following reformulations:
- $r \iff x \in \textsf{AllDifferent}(d)$ to $r \iff (n, x) \in \textsf{CountDistinct}(1+d)$ and $n = d$
- $r \iff f(x) \in \textsf{AllDifferent}(d)$ to $r \iff (d, f(x)) \in \textsf{CountDistinct}(1+d)$
Source node
ReifiedAllDifferentToCountDistinctBridge
supports:
where F
is MOI.VectorOfVariables
or MOI.VectorAffineFunction{T}
.
Target nodes
ReifiedAllDifferentToCountDistinctBridge
creates:
MathOptInterface.Bridges.Constraint.ReifiedCountDistinctToMILPBridge
— TypeReifiedCountDistinctToMILPBridge{T,F} <: Bridges.Constraint.AbstractBridge
ReifiedCountDistinctToMILPBridge
implements the following reformulation:
- $r \iff (n, x) \in \textsf{CountDistinct}(1+d)$ into a mixed-integer linear program.
Reformulation
The reformulation is non-trivial, and it depends on the finite domain of each variable $x_i$, which we as define $S_i = \{l_i,\ldots,u_i\}$.
First, we introduce new binary variables $z_{ij}$, which are $1$ if variable $x_i$ takes the value $j$ in the optimal solution and $0$ otherwise:
\[\begin{aligned} z_{ij} \in \{0, 1\} & \;\; \forall i \in 1\ldots d, j \in S_i \\ x_i - \sum\limits_{j\in S_i} j \cdot z_{ij} = 0 & \;\; \forall i \in 1\ldots d \\ \sum\limits_{j\in S_i} z_{ij} = 1 & \;\; \forall i \in 1\ldots d \\ \end{aligned}\]
Then, we introduce new binary variables $y_j$, which are $1$ if a variable takes the value $j$ in the optimal solution and $0$ otherwise.
\[\begin{aligned} y_{j} \in \{0, 1\} & \;\; \forall j \in \bigcup_{i=1,\ldots,d} S_i \\ y_j \le \sum\limits_{i \in 1\ldots d: j \in S_i} z_{ij} \le M y_j & \;\; \forall j \in \bigcup_{i=1,\ldots,d} S_i\\ \end{aligned}\]
Finally, $n$ is constrained to be the number of $y_j$ elements that are non-zero, with some slack:
\[n - \sum\limits_{j \in \bigcup_{i=1,\ldots,d} S_i} y_{j} = \delta^+ - \delta^-\]
And then the slack is constrained to respect the reif variable $r$:
\[\begin{aligned} d_1 \le \delta^+ \le M d_1 \\ d_2 \le \delta^- \le M d_s \\ d_1 + d_2 + r = 1 \\ d_1, d_2 \in \{0, 1\} \end{aligned}\]
Source node
ReifiedCountDistinctToMILPBridge
supports:
where F
is MOI.VectorOfVariables
or MOI.VectorAffineFunction{T}
.
Target nodes
ReifiedCountDistinctToMILPBridge
creates:
MathOptInterface.Bridges.Constraint.RelativeEntropyBridge
— TypeRelativeEntropyBridge{T,F,G,H} <: Bridges.Constraint.AbstractBridge
RelativeEntropyBridge
implements the following reformulation that converts a MOI.RelativeEntropyCone
into an MOI.ExponentialCone
:
- $u \ge \sum_{i=1}^n w_i \log \left(\frac{w_i}{v_i}\right)$ into $y_i \ge 0$, $u \ge \sum_{i=1}^n y_i$, and $(-y_i, w_i, v_i) \in ExponentialCone$.
Source node
RelativeEntropyBridge
supports:
Target nodes
RelativeEntropyBridge
creates:
F
inMOI.GreaterThan{T}
G
inMOI.ExponentialCone
MathOptInterface.Bridges.Constraint.RootDetBridge
— TypeRootDetBridge{T,F,G,H} <: Bridges.Constraint.AbstractBridge
The MOI.RootDetConeTriangle
is representable by MOI.PositiveSemidefiniteConeTriangle
and MOI.GeometricMeanCone
constraints, see [1, p. 149].
Indeed, $t \le \det(X)^{1/n}$ if and only if there exists a lower triangular matrix $Δ$ such that:
\[\begin{align*} \begin{pmatrix} X & Δ\\ Δ^\top & \mathrm{Diag}(Δ) \end{pmatrix} & \succeq 0\\ (t, \mathrm{Diag}(Δ)) & \in GeometricMeanCone \end{align*}\]
Source node
RootDetBridge
supports:
Target nodes
RootDetBridge
creates:
[1] Ben-Tal, Aharon, and Arkadi Nemirovski. Lectures on modern convex optimization: analysis, algorithms, and engineering applications. Society for Industrial and Applied Mathematics, 2001.
MathOptInterface.Bridges.Constraint.SOCtoNonConvexQuadBridge
— TypeSOCtoNonConvexQuadBridge{T} <: Bridges.Constraint.AbstractBridge
SOCtoNonConvexQuadBridge
implements the following reformulations:
- $||x||_2 \le t$ into $\sum x^2 - t^2 \le 0$ and $1t + 0 \ge 0$
The MOI.ScalarAffineFunction
$1t + 0$ is used in case the variable has other bound constraints.
This transformation starts from a convex constraint and creates a non-convex constraint. Unless the solver has explicit support for detecting second-order cones in quadratic form, this may (wrongly) be interpreted by the solver as being non-convex. Therefore, this bridge is not added automatically by MOI.Bridges.full_bridge_optimizer
. Care is recommended when adding this bridge to a optimizer.
Source node
SOCtoNonConvexQuadBridge
supports:
Target nodes
SOCtoNonConvexQuadBridge
creates:
MathOptInterface.Bridges.Constraint.SOCtoPSDBridge
— TypeSOCtoPSDBridge{T,F,G} <: Bridges.Constraint.AbstractBridge
SOCtoPSDBridge
implements the following reformulation:
- $||x||_2 \le t$ into $\left[\begin{array}{c c}t & x^\top \\ x & t \mathbf{I}\end{array}\right]\succeq 0$
This bridge is not added by default by MOI.Bridges.full_bridge_optimizer
because bridging second order cone constraints to semidefinite constraints can be achieved by the SOCtoRSOCBridge
followed by the RSOCtoPSDBridge
, while creating a smaller semidefinite constraint.
Source node
SOCtoPSDBridge
supports:
G
inMOI.SecondOrderCone
Target nodes
SOCtoPSDBridge
creates:
MathOptInterface.Bridges.Constraint.SOCtoRSOCBridge
— TypeSOCtoRSOCBridge{T,F,G} <: Bridges.Constraint.AbstractBridge
SOCtoRSOCBridge
implements the following reformulation:
- $||x||_2 \le t$ into $(t+x_1)(t-x_1)\ge ||(x_2\ldots,x_N)||_2^2$
Assumptions
SOCtoRSOCBridge
assumes that the length ofx
is at least one.
Source node
SOCtoRSOCBridge
supports:
G
inMOI.SecondOrderCone
Target node
SOCtoRSOCBridge
creates:
MathOptInterface.Bridges.Constraint.SOS1ToMILPBridge
— TypeSOS1ToMILPBridge{T,F} <: Bridges.Constraint.AbstractBridge
SOS1ToMILPBridge
implements the following reformulation:
- $x \in \textsf{SOS1}(d)$ into a mixed-integer linear program.
Source node
SOS1ToMILPBridge
supports:
F
inMOI.SOS1
where F
is MOI.VectorOfVariables
or MOI.VectorAffineFunction{T}
.
Target nodes
SOS1ToMILPBridge
creates:
MathOptInterface.Bridges.Constraint.SOS2ToMILPBridge
— TypeSOS2ToMILPBridge{T,F} <: Bridges.Constraint.AbstractBridge
SOS2ToMILPBridge
implements the following reformulation:
- $x \in \textsf{SOS2}(d)$ into a mixed-integer linear program.
Source node
SOS2ToMILPBridge
supports:
F
inMOI.SOS2
where F
is MOI.VectorOfVariables
or MOI.VectorAffineFunction{T}
.
Target nodes
SOS2ToMILPBridge
creates:
MathOptInterface.Bridges.Constraint.ScalarFunctionizeBridge
— TypeScalarFunctionizeBridge{T,S} = FunctionConversionBridge{T,MOI.ScalarAffineFunction{T},MOI.VariableIndex,S}
ScalarFunctionizeBridge
implements the following reformulations:
- $x \in S$ into $1x + 0 \in S$
Source node
ScalarFunctionizeBridge
supports:
MOI.VariableIndex
inS
Target nodes
ScalarFunctionizeBridge
creates:
MathOptInterface.Bridges.Constraint.ScalarSlackBridge
— TypeScalarSlackBridge{T,F,S} <: Bridges.Constraint.AbstractBridge
ScalarSlackBridge
implements the following reformulation:
- $f(x) \in S$ into $f(x) - y == 0$ and $y \in S$
Source node
ScalarSlackBridge
supports:
G
inS
, whereG
is notMOI.VariableIndex
andS
is notMOI.EqualTo
Target nodes
ScalarSlackBridge
creates:
F
inMOI.EqualTo{T}
MOI.VariableIndex
inS
MathOptInterface.Bridges.Constraint.ScalarizeBridge
— TypeScalarizeBridge{T,F,S}
ScalarizeBridge
implements the following reformulations:
- $f(x) - a \in \mathbb{R}_+$ into $f_i(x) \ge a_i$ for all $i$
- $f(x) - a \in \mathbb{R}_-$ into $f_i(x) \le a_i$ for all $i$
- $f(x) - a \in \{0\}$ into $f_i(x) == a_i$ for all $i$
Source node
ScalarizeBridge
supports:
G
inMOI.Nonnegatives{T}
G
inMOI.Nonpositives{T}
G
inMOI.Zeros{T}
Target nodes
ScalarizeBridge
creates:
F
inS
, whereS
is one ofMOI.GreaterThan{T}
,MOI.LessThan{T}
, andMOI.EqualTo{T}
, depending on the type of the input set.
MathOptInterface.Bridges.Constraint.SecondOrderConeToNormConeBridge
— TypeSecondOrderConeToNormConeBridge{T,F} <: Bridges.Constraint.AbstractBridge
SecondOrderConeToNormConeBridge
implements the following reformulations:
- $(t, x) in SecondOrderCone(d)$ into $(t, x) in NormCone(2, d)$
Source node
SecondOrderConeToNormConeBridge
supports:
F
inMOI.SecondOrderCone
Target nodes
SecondOrderConeToNormConeBridge
creates:
F
inMOI.NormCone
MathOptInterface.Bridges.Constraint.SemiToBinaryBridge
— TypeSemiToBinaryBridge{T,S} <: Bridges.Constraint.AbstractBridge
SemiToBinaryBridge
implements the following reformulations:
- $x \in \{0\} \cup [l, u]$ into
\[\begin{aligned} x \leq z u \\ x \geq z l \\ z \in \{0, 1\} \end{aligned}\]
- $x \in \{0\} \cup \{l, \ldots, u\}$ into
\[\begin{aligned} x \leq z u \\ x \geq z l \\ z \in \{0, 1\} \\ x \in \mathbb{Z} \end{aligned}\]
Source node
SemiToBinaryBridge
supports:
Target nodes
SemiToBinaryBridge
creates:
MathOptInterface.Bridges.Constraint.SetConversionBridge
— TypeSetConversionBridge{T,S2,S1,F} <:
MOI.Bridges.Constraint.SetMapBridge{T,S2,S1,F,F}
SetConversionBridge
implements the following reformulations:
- $f(x) \in S1$ into $f(x) \in S2$
In order to add this bridge, you need to create a bridge specific for a given type T
and set S2
:
MOI.Bridges.add_bridge(model, MOI.Bridges.Constraint.SetConversionBridge{T,S2})
In order to define a bridge with S2
specified but T
unspecified, for example for JuMP.add_bridge
, you can use
const MyBridge{T,S1,F} = MOI.Bridges.Constraint.SetConversionBridge{T,S2,S1,F}
See also FunctionConversionBridge
.
Source node
SetConversionBridge
supports:
F
inS1
Target nodes
SetConversionBridge
creates:
F
inS2
MathOptInterface.Bridges.Constraint.SetDotInverseScalingBridge
— TypeSetDotInverseScalingBridge{T,S,F,G} <: Bridges.Constraint.AbstractBridge
SetDotInverseScalingBridge
implements the reformulation from constraints in the MOI.Scaled{S}
to constraints in the S
.
Source node
SetDotInverseScalingBridge
supports:
G
inMOI.Scaled{S}
Target node
SetDotInverseScalingBridge
creates:
F
inS
MathOptInterface.Bridges.Constraint.SetDotScalingBridge
— TypeSetDotScalingBridge{T,S,F,G} <: Bridges.Constraint.AbstractBridge
SetDotScalingBridge
implements the reformulation from constraints in S
to constraints in MOI.Scaled{S}
.
Source node
SetDotScalingBridge
supports:
G
inS
Target node
SetDotScalingBridge
creates:
F
inMOI.Scaled{S}
MathOptInterface.Bridges.Constraint.SetMapBridge
— Typeabstract type SetMapBridge{T,S2,S1,F,G} <: MultiSetMapBridge{T,S1,G} end
Consider two type of sets, S1
and S2
, and a linear mapping A
such that the image of a set of type S1
under A
is a set of type S2
.
A SetMapBridge{T,S2,S1,F,G}
is a bridge that maps G
-in-S1
constraints into F
-in-S2
by mapping the function through A
.
The linear map A
is described by;
Implementing a method for these two functions is sufficient to bridge constraints. However, in order for the getters and setters of attributes such as dual solutions and starting values to work as well, a method for the following functions must be implemented:
MOI.Bridges.inverse_map_set
MOI.Bridges.inverse_map_function
MOI.Bridges.adjoint_map_function
MOI.Bridges.inverse_adjoint_map_function
See the docstrings of each function to see which feature would be missing if it was not implemented for a given bridge.
MathOptInterface.Bridges.Constraint.SplitComplexEqualToBridge
— TypeSplitComplexEqualToBridge{T,F,G} <: Bridges.Constraint.AbstractBridge
SplitComplexEqualToBridge
implements the following reformulation:
- $f(x) + g(x) * im = a + b * im$ into $f(x) = a$ and $g(x) = b$
Source node
SplitComplexEqualToBridge
supports:
where G
is a function with Complex
coefficients.
Target nodes
SplitComplexEqualToBridge
creates:
F
inMOI.EqualTo{T}
where F
is the type of the real/imaginary part of G
.
MathOptInterface.Bridges.Constraint.SplitComplexZerosBridge
— TypeSplitComplexZerosBridge{T,F,G} <: Bridges.Constraint.AbstractBridge
SplitComplexZerosBridge
implements the following reformulation:
- $f(x) \in \{0\}^n$ into $\text{Re}(f(x)) \in \{0\}^n$ and $\text{Im}(f(x)) \in \{0\}^n$
Source node
SplitComplexZerosBridge
supports:
G
inMOI.Zeros
where G
is a function with Complex
coefficients.
Target nodes
SplitComplexZerosBridge
creates:
F
inMOI.Zeros
where F
is the type of the real/imaginary part of G
.
MathOptInterface.Bridges.Constraint.SplitHyperRectangleBridge
— TypeSplitHyperRectangleBridge{T,G,F} <: Bridges.Constraint.AbstractBridge
SplitHyperRectangleBridge
implements the following reformulation:
- $f(x) \in \textsf{HyperRectangle}(l, u)$ to $[f(x) - l; u - f(x)] \in \mathbb{R}_+$.
Source node
SplitHyperRectangleBridge
supports:
F
inMOI.HyperRectangle
Target nodes
SplitHyperRectangleBridge
creates:
G
inMOI.Nonnegatives
MathOptInterface.Bridges.Constraint.SplitIntervalBridge
— TypeSplitIntervalBridge{T,F,S,LS,US} <: Bridges.Constraint.AbstractBridge
SplitIntervalBridge
implements the following reformulations:
- $l \le f(x) \le u$ into $f(x) \ge l$ and $f(x) \le u$
- $f(x) = b$ into $f(x) \ge b$ and $f(x) \le b$
- $f(x) \in \{0\}$ into $f(x) \in \mathbb{R}_+$ and $f(x) \in \mathbb{R}_-$
Source node
SplitIntervalBridge
supports:
F
inMOI.Interval{T}
F
inMOI.EqualTo{T}
F
inMOI.Zeros
Target nodes
SplitIntervalBridge
creates:
F
inMOI.LessThan{T}
F
inMOI.GreaterThan{T}
or
F
inMOI.Nonnegatives
F
inMOI.Nonpositives
If T<:AbstractFloat
and S
is MOI.Interval{T}
then no lower (resp. upper) bound constraint is created if the lower (resp. upper) bound is typemin(T)
(resp. typemax(T)
). Similarly, when MOI.ConstraintSet
is set, a lower or upper bound constraint may be deleted or created accordingly.
MathOptInterface.Bridges.Constraint.SquareBridge
— TypeSquareBridge{T,F,G,TT,ST} <: Bridges.Constraint.AbstractBridge
SquareBridge
implements the following reformulations:
- $(t, u, X) \in LogDetConeSquare$ into $(t, u, Y) in LogDetConeTriangle$
- $(t, X) \in RootDetConeSquare$ into $(t, Y) in RootDetConeTriangle$
- $X \in AbstractSymmetricMatrixSetSquare$ into $Y in AbstractSymmetricMatrixSetTriangle$
where $Y$ is the upper triangluar component of $X$.
In addition, constraints are added as necessary to constrain the matrix $X$ to be symmetric. For example, the constraint for the matrix:
\[\begin{pmatrix} 1 & 1 + x & 2 - 3x\\ 1 + x & 2 + x & 3 - x\\ 2 - 3x & 2 + x & 2x \end{pmatrix}\]
can be broken down to the constraint of the symmetric matrix
\[\begin{pmatrix} 1 & 1 + x & 2 - 3x\\ \cdot & 2 + x & 3 - x\\ \cdot & \cdot & 2x \end{pmatrix}\]
and the equality constraint between the off-diagonal entries (2, 3) and (3, 2) $3 - x == 2 + x$. Note that no symmetrization constraint needs to be added between the off-diagonal entries (1, 2) and (2, 1) or between (1, 3) and (3, 1) because the expressions are the same.
Source node
SquareBridge
supports:
F
inST
Target nodes
SquareBridge
creates:
G
inTT
MathOptInterface.Bridges.Constraint.TableToMILPBridge
— TypeTableToMILPBridge{T,F} <: Bridges.Constraint.AbstractBridge
TableToMILPBridge
implements the following reformulation:
- $x \in Table(t)$ into
\[\begin{aligned} z_{j} \in \{0, 1\} & \quad \forall i, j \\ \sum\limits_{j=1}^n z_{j} = 1 \\ \sum\limits_{j=1}^n t_{ij} z_{j} = x_i & \quad \forall i \end{aligned}\]
Source node
TableToMILPBridge
supports:
F
inMOI.Table{T}
Target nodes
TableToMILPBridge
creates:
MathOptInterface.Bridges.Constraint.ToScalarNonlinearBridge
— TypeToScalarNonlinearBridge{T,G,S} <: AbstractFunctionConversionBridge{G,S}
ToScalarNonlinearBridge
implements the following reformulation:
- $g(x) \in S$ into $f(x) \in S$
where g
is an abstract scalar function and f
is a MOI.ScalarNonlinearFunction
.
Source node
ToScalarNonlinearBridge
supports:
G<:AbstractScalarFunction
inS
Target nodes
ToScalarNonlinearBridge
creates:
MathOptInterface.Bridges.Constraint.ToScalarQuadraticBridge
— TypeToScalarQuadraticBridge{T,G,S} <: AbstractFunctionConversionBridge{G,S}
ToScalarQuadraticBridge
implements the following reformulation:
- $g(x) \in S$ into $f(x) \in S$
where g
is an abstract scalar function and f
is a MOI.ScalarQuadraticFunction
.
Source node
ToScalarQuadraticBridge
supports:
G<:AbstractScalarFunction
inS
Target nodes
ToScalarQuadraticBridge
creates:
MathOptInterface.Bridges.Constraint.ToVectorQuadraticBridge
— TypeToVectorQuadraticBridge{T,G,S} <: AbstractFunctionConversionBridge{G,S}
ToVectorQuadraticBridge
implements the following reformulation:
- $g(x) \in S$ into $f(x) \in S$
where g
is an abstract vector function and f
is a MOI.VectorQuadraticFunction
.
Source node
ToVectorQuadraticBridge
supports:
G<:AbstractVectorFunction
inS
Target nodes
ToVectorQuadraticBridge
creates:
MathOptInterface.Bridges.Constraint.VectorFunctionizeBridge
— TypeVectorFunctionizeBridge{T,S} = FunctionConversionBridge{T,MOI.VectorAffineFunction{T},S}
VectorFunctionizeBridge
implements the following reformulations:
- $x \in S$ into $Ix + 0 \in S$
Source node
VectorFunctionizeBridge
supports:
Target nodes
VectorFunctionizeBridge
creates:
MathOptInterface.Bridges.Constraint.VectorSlackBridge
— TypeVectorSlackBridge{T,F,S} <: Bridges.Constraint.AbstractBridge
VectorSlackBridge
implements the following reformulation:
- $f(x) \in S$ into $f(x) - y \in \{0\}$ and $y \in S$
Source node
VectorSlackBridge
supports:
G
inS
, whereG
is notMOI.VectorOfVariables
andS
is notMOI.Zeros
Target nodes
VectorSlackBridge
creates:
F
inMOI.Zeros
MOI.VectorOfVariables
inS
MathOptInterface.Bridges.Constraint.VectorizeBridge
— TypeVectorizeBridge{T,F,S,G} <: Bridges.Constraint.AbstractBridge
VectorizeBridge
implements the following reformulations:
- $g(x) \ge a$ into $[g(x) - a] \in \mathbb{R}_+$
- $g(x) \le a$ into $[g(x) - a] \in \mathbb{R}_-$
- $g(x) == a$ into $[g(x) - a] \in \{0\}$
where T
is the coefficient type of g(x) - a
.
Source node
VectorizeBridge
supports:
G
inMOI.GreaterThan{T}
G
inMOI.LessThan{T}
G
inMOI.EqualTo{T}
Target nodes
VectorizeBridge
creates:
F
inS
, whereS
is one ofMOI.Nonnegatives
,MOI.Nonpositives
,MOI.Zeros
depending on the type of the input set.
MathOptInterface.Bridges.Constraint.ZeroOneBridge
— TypeZeroOneBridge{T} <: Bridges.Constraint.AbstractBridge
ZeroOneBridge
implements the following reformulation:
- $x \in \{0, 1\}$ into $x \in \mathbb{Z}$, $1x \in [0, 1]$.
ZeroOneBridge
adds a linear constraint instead of adding variable bounds to avoid conflicting with bounds set by the user.
Source node
ZeroOneBridge
supports:
Target nodes
ZeroOneBridge
creates:
Objective bridges
These bridges are subtypes of Bridges.Objective.AbstractBridge
.
MathOptInterface.Bridges.Objective.FunctionConversionBridge
— TypeFunctionConversionBridge{T,F,G} <: AbstractBridge
FunctionConversionBridge
implements the following reformulations:
- $\min \{g(x)\}$ into $\min\{f(x)\}$
- $\max \{g(x)\}$ into $\max\{f(x)\}$
for these pairs of functions:
MOI.ScalarAffineFunction
to [
MOI.ScalarQuadraticFunction`](@ref)MOI.ScalarQuadraticFunction
toMOI.ScalarNonlinearFunction
MOI.VectorAffineFunction
toMOI.VectorQuadraticFunction
Source node
FunctionConversionBridge
supports:
Target nodes
FunctionConversionBridge
creates:
- One objective node:
MOI.ObjectiveFunction{F}
MathOptInterface.Bridges.Objective.FunctionizeBridge
— TypeFunctionizeBridge{T,G} <: FunctionConversionBridge{T,MOI.ScalarAffineFunction{T},G}
FunctionizeBridge
implements the following reformulations:
- $\min \{x\}$ into $\min\{1x + 0\}$
- $\max \{x\}$ into $\max\{1x + 0\}$
where T
is the coefficient type of 1
and 0
.
Source node
FunctionizeBridge
supports:
Target nodes
FunctionizeBridge
creates:
- One objective node:
MOI.ObjectiveFunction{MOI.ScalarAffineFunction{T}}
MathOptInterface.Bridges.Objective.QuadratizeBridge
— TypeQuadratizeBridge{T,G} <: FunctionConversionBridge{T,MOI.ScalarQuadraticFunction{T},G}
QuadratizeBridge
implements the following reformulations:
- $\min \{a^\top x + b\}$ into $\min\{x^\top \mathbf{0} x + a^\top x + b\}$
- $\max \{a^\top x + b\}$ into $\max\{x^\top \mathbf{0} x + a^\top x + b\}$
where T
is the coefficient type of 0
.
Source node
QuadratizeBridge
supports:
Target nodes
QuadratizeBridge
creates:
- One objective node:
MOI.ObjectiveFunction{MOI.ScalarQuadraticFunction{T}}
MathOptInterface.Bridges.Objective.SlackBridge
— TypeSlackBridge{T,F,G}
SlackBridge
implements the following reformulations:
- $\min\{f(x)\}$ into $\min\{y\;|\; f(x) - y \le 0\}$
- $\max\{f(x)\}$ into $\max\{y\;|\; f(x) - y \ge 0\}$
where F
is the type of f(x) - y
, G
is the type of f(x)
, and T
is the coefficient type of f(x)
.
Source node
SlackBridge
supports:
Target nodes
SlackBridge
creates:
- One variable node:
MOI.VariableIndex
inMOI.Reals
- One objective node:
MOI.ObjectiveFunction{MOI.VariableIndex}
- One constraint node, that depends on the
MOI.ObjectiveSense
:F
-in-MOI.LessThan
ifMIN_SENSE
F
-in-MOI.GreaterThan
ifMAX_SENSE
When using this bridge, changing the optimization sense is not supported. Set the sense to MOI.FEASIBILITY_SENSE
first to delete the bridge, then set MOI.ObjectiveSense
and re-add the objective.
MathOptInterface.Bridges.Objective.VectorFunctionizeBridge
— TypeVectorFunctionizeBridge{T,G} <: FunctionConversionBridge{T,MOI.VectorAffineFunction{T},G}
VectorFunctionizeBridge
implements the following reformulations:
- $\min \{x\}$ into $\min\{1x + 0\}$
- $\max \{x\}$ into $\max\{1x + 0\}$
where T
is the coefficient type of 1
and 0
.
Source node
VectorFunctionizeBridge
supports:
Target nodes
VectorFunctionizeBridge
creates:
- One objective node:
MOI.ObjectiveFunction{MOI.VectorAffineFunction{T}}
MathOptInterface.Bridges.Objective.VectorSlackBridge
— TypeVectorSlackBridge{T,F,G}
VectorSlackBridge
implements the following reformulations:
- $\min\{f(x)\}$ into $\min\{y\;|\; y - f(x) \in \mathbb{R}_+ \}$
- $\max\{f(x)\}$ into $\max\{y\;|\; f(x) - y \in \mathbb{R}_+ \}$
where F
is the type of f(x) - y
, G
is the type of f(x)
, and T
is the coefficient type of f(x)
.
Source node
VectorSlackBridge
supports:
Target nodes
VectorSlackBridge
creates:
- One variable node:
MOI.VectorOfVariables
inMOI.Reals
- One objective node:
MOI.ObjectiveFunction{MOI.VectorOfVariables}
- One constraint node:
F
-in-MOI.Nonnegatives
When using this bridge, changing the optimization sense is not supported. Set the sense to MOI.FEASIBILITY_SENSE
first to delete the bridge, then set MOI.ObjectiveSense
and re-add the objective.
Variable bridges
These bridges are subtypes of Bridges.Variable.AbstractBridge
.
MathOptInterface.Bridges.Variable.FlipSignBridge
— Typeabstract type FlipSignBridge{T,S1,S2} <: SetMapBridge{T,S2,S1} end
An abstract type that simplifies the creation of other bridges.
MathOptInterface.Bridges.Variable.FreeBridge
— TypeFreeBridge{T} <: Bridges.Variable.AbstractBridge
FreeBridge
implements the following reformulation:
- $x \in \mathbb{R}$ into $y, z \ge 0$ with the substitution rule $x = y - z$,
where T
is the coefficient type of y - z
.
Source node
FreeBridge
supports:
Target nodes
FreeBridge
creates:
- One variable node:
MOI.VectorOfVariables
inMOI.Nonnegatives
MathOptInterface.Bridges.Variable.HermitianToSymmetricPSDBridge
— TypeHermitianToSymmetricPSDBridge{T} <: Bridges.Variable.AbstractBridge
HermitianToSymmetricPSDBridge
implements the following reformulation:
- Hermitian positive semidefinite
n x n
complex matrix to a symmetric positive semidefinite2n x 2n
real matrix satisfying equality constraints described below.
Source node
HermitianToSymmetricPSDBridge
supports:
Target node
HermitianToSymmetricPSDBridge
creates:
MOI.VectorOfVariables
inMOI.PositiveSemidefiniteConeTriangle
MOI.ScalarAffineFunction{T}
inMOI.EqualTo{T}
Reformulation
The reformulation is best described by example.
The Hermitian matrix:
\[\begin{bmatrix} x_{11} & x_{12} + y_{12}im & x_{13} + y_{13}im\\ x_{12} - y_{12}im & x_{22} & x_{23} + y_{23}im\\ x_{13} - y_{13}im & x_{23} - y_{23}im & x_{33} \end{bmatrix}\]
is positive semidefinite if and only if the symmetric matrix:
\[\begin{bmatrix} x_{11} & x_{12} & x_{13} & 0 & y_{12} & y_{13} \\ & x_{22} & x_{23} & -y_{12} & 0 & y_{23} \\ & & x_{33} & -y_{13} & -y_{23} & 0 \\ & & & x_{11} & x_{12} & x_{13} \\ & & & & x_{22} & x_{23} \\ & & & & & x_{33} \end{bmatrix}\]
is positive semidefinite.
The bridge achieves this reformulation by adding a new set of variables in MOI.PositiveSemidefiniteConeTriangle(6)
, and then adding three groups of equality constraints to:
- constrain the two
x
blocks to be equal - force the diagonal of the
y
blocks to be0
- force the lower triangular of the
y
block to be the negative of the upper triangle.
MathOptInterface.Bridges.Variable.NonposToNonnegBridge
— TypeNonposToNonnegBridge{T} <: Bridges.Variable.AbstractBridge
NonposToNonnegBridge
implements the following reformulation:
- $x \in \mathbb{R}_-$ into $y \in \mathbb{R}_+$ with the substitution rule $x = -y$,
where T
is the coefficient type of -y
.
Source node
NonposToNonnegBridge
supports:
Target nodes
NonposToNonnegBridge
creates:
- One variable node:
MOI.VectorOfVariables
inMOI.Nonnegatives
,
MathOptInterface.Bridges.Variable.ParameterToEqualToBridge
— TypeParameterToEqualToBridge{T} <: Bridges.Variable.AbstractBridge
ParameterToEqualToBridge
implements the following reformulation:
- $x \in Parameter(v)$ into $x == v$
Source node
ParameterToEqualToBridge
supports:
Target nodes
ParameterToEqualToBridge
creates:
- One variable node:
MOI.VariableIndex
inMOI.EqualTo{T}
MathOptInterface.Bridges.Variable.RSOCtoPSDBridge
— TypeRSOCtoPSDBridge{T} <: Bridges.Variable.AbstractBridge
RSOCtoPSDBridge
implements the following reformulation:
- $||x||_2^2 \le 2tu$ where $t, u \ge 0$ into $Y \succeq 0$, with the substitution rule: $Y = \left[\begin{array}{c c}t & x^\top \\ x & 2u \mathbf{I}\end{array}\right].$
Additional bounds are added to ensure the off-diagonals of the $2uI$ submatrix are 0
, and linear constraints are added to ensure the diagonal of $2uI$ takes the same values.
As a special case, if $|x|| = 0$, then RSOCtoPSDBridge
reformulates into $(t, u) \in \mathbb{R}_+$.
Source node
RSOCtoPSDBridge
supports:
Target nodes
RSOCtoPSDBridge
creates:
- One variable node that depends on the input dimension:
MOI.VectorOfVariables
inMOI.Nonnegatives
if dimension is1
or2
MOI.VectorOfVariables
in
MOI.PositiveSemidefiniteConeTriangle
otherwise - The constraint node
MOI.VariableIndex
inMOI.EqualTo
- The constant node
MOI.ScalarAffineFunction
inMOI.EqualTo
MathOptInterface.Bridges.Variable.RSOCtoSOCBridge
— TypeRSOCtoSOCBridge{T} <: Bridges.Variable.AbstractBridge
RSOCtoSOCBridge
implements the following reformulation:
- $||x||_2^2 \le 2tu$ into $||v||_2 \le w$, with the substitution rules $t = \frac{w}{\sqrt 2} + \frac{v_1}{\sqrt 2}$, $u = \frac{w}{\sqrt 2} - \frac{v_1}{\sqrt 2}$, and $x = (v_2,\ldots,v_N)$.
Source node
RSOCtoSOCBridge
supports:
Target node
RSOCtoSOCBridge
creates:
MathOptInterface.Bridges.Variable.SOCtoRSOCBridge
— TypeSOCtoRSOCBridge{T} <: Bridges.Variable.AbstractBridge
SOCtoRSOCBridge
implements the following reformulation:
- $||x||_2 \le t$ into $2uv \ge ||w||_2^2$, with the substitution rules $t = \frac{u}{\sqrt 2} + \frac{v}{\sqrt 2}$, $x = (\frac{u}{\sqrt 2} - \frac{v}{\sqrt 2}, w)$.
Assumptions
SOCtoRSOCBridge
assumes that $|x| \ge 1$.
Source node
SOCtoRSOCBridge
supports:
Target node
SOCtoRSOCBridge
creates:
MathOptInterface.Bridges.Variable.SetMapBridge
— Typeabstract type SetMapBridge{T,S1,S2} <: AbstractBridge end
Consider two type of sets, S1
and S2
, and a linear mapping A
such that the image of a set of type S1
under A
is a set of type S2
.
A SetMapBridge{T,S1,S2}
is a bridge that substitutes constrained variables in S2
into the image through A
of constrained variables in S1
.
The linear map A
is described by:
Implementing a method for these two functions is sufficient to bridge constrained variables. However, in order for the getters and setters of attributes such as dual solutions and starting values to work as well, a method for the following functions must be implemented:
MOI.Bridges.inverse_map_set
MOI.Bridges.inverse_map_function
MOI.Bridges.adjoint_map_function
MOI.Bridges.inverse_adjoint_map_function
.
See the docstrings of each function to see which feature would be missing if it was not implemented for a given bridge.
MathOptInterface.Bridges.Variable.VectorizeBridge
— TypeVectorizeBridge{T,S} <: Bridges.Variable.AbstractBridge
VectorizeBridge
implements the following reformulations:
- $x \ge a$ into $[y] \in \mathbb{R}_+$ with the substitution rule $x = a + y$
- $x \le a$ into $[y] \in \mathbb{R}_-$ with the substitution rule $x = a + y$
- $x == a$ into $[y] \in \{0\}$ with the substitution rule $x = a + y$
where T
is the coefficient type of a + y
.
Source node
VectorizeBridge
supports:
MOI.VariableIndex
inMOI.GreaterThan{T}
MOI.VariableIndex
inMOI.LessThan{T}
MOI.VariableIndex
inMOI.EqualTo{T}
Target nodes
VectorizeBridge
creates:
- One variable node:
MOI.VectorOfVariables
inS
, whereS
is one ofMOI.Nonnegatives
,MOI.Nonpositives
,MOI.Zeros
depending on the type of $S$.
MathOptInterface.Bridges.Variable.ZerosBridge
— TypeZerosBridge{T} <: Bridges.Variable.AbstractBridge
ZerosBridge
implements the following reformulation:
- $x \in \{0\}$ into the substitution rule $x = 0$,
where T
is the coefficient type of 0
.
Source node
ZerosBridge
supports:
Target nodes
ZerosBridge
does not create target nodes. It replaces all instances of x
with 0
via substitution. This means that no variables are created in the underlying model.
Caveats
The bridged variables are similar to parameters with zero values. Parameters with non-zero values can be created with constrained variables in MOI.EqualTo
by combining a VectorizeBridge
and this bridge.
However, functions modified by ZerosBridge
cannot be unbridged. That is, for a given function, we cannot determine if the bridged variables were used.
A related implication is that this bridge does not support MOI.ConstraintDual
. However, if a MOI.Utilities.CachingOptimizer
is used, the dual can be determined by the bridged optimizer using MOI.Utilities.get_fallback
because the caching optimizer records the unbridged function.