Simple multi-objective examples
This tutorial was generated using Literate.jl. Download the source as a .jl
file.
This tutorial contains a number of examples of multi-objective programs from the literature.
Required packages
This tutorial requires the following packages:
using JuMP
import HiGHS
import MultiObjectiveAlgorithms as MOA
Bi-objective linear problem
This example is taken from Example 6.3 (from Steuer, 1985), page 154 of Ehrgott, M. (2005). Multicriteria Optimization. Springer, Berlin. The code was adapted from an example in vOptGeneric by @xgandibleux.
model = Model()
set_silent(model)
@variable(model, x1 >= 0)
@variable(model, 0 <= x2 <= 3)
@objective(model, Min, [3x1 + x2, -x1 - 2x2])
@constraint(model, 3x1 - x2 <= 6)
set_optimizer(model, () -> MOA.Optimizer(HiGHS.Optimizer))
set_attribute(model, MOA.Algorithm(), MOA.Lexicographic())
optimize!(model)
solution_summary(model)
* Solver : MOA[algorithm=MultiObjectiveAlgorithms.Lexicographic, optimizer=HiGHS]
* Status
Result count : 2
Termination status : OPTIMAL
Message from the solver:
"Solve complete. Found 2 solution(s)"
* Candidate solution (result #1)
Primal status : FEASIBLE_POINT
Dual status : NO_SOLUTION
Objective value : [0.00000e+00,0.00000e+00]
Objective bound : [0.00000e+00,-9.00000e+00]
* Work counters
Solve time (sec) : 1.22285e-03
for i in 1:result_count(model)
@assert is_solved_and_feasible(model; result = i)
print(i, ": z = ", round.(Int, objective_value(model; result = i)), " | ")
println("x = ", value.([x1, x2]; result = i))
end
1: z = [0, 0] | x = [0.0, -0.0]
2: z = [12, -9] | x = [3.0, 3.0]
Bi-objective linear assignment problem
This example is taken from Example 9.38 (from Ulungu and Teghem, 1994), page 255 of Ehrgott, M. (2005). Multicriteria Optimization. Springer, Berlin. The code was adapted from an example in vOptGeneric by @xgandibleux.
C1 = [5 1 4 7; 6 2 2 6; 2 8 4 4; 3 5 7 1]
C2 = [3 6 4 2; 1 3 8 3; 5 2 2 3; 4 2 3 5]
n = size(C2, 1)
model = Model()
set_silent(model)
@variable(model, x[1:n, 1:n], Bin)
@objective(model, Min, [sum(C1 .* x), sum(C2 .* x)])
@constraint(model, [i = 1:n], sum(x[i, :]) == 1)
@constraint(model, [j = 1:n], sum(x[:, j]) == 1)
set_optimizer(model, () -> MOA.Optimizer(HiGHS.Optimizer))
set_attribute(model, MOA.Algorithm(), MOA.EpsilonConstraint())
optimize!(model)
solution_summary(model)
* Solver : MOA[algorithm=MultiObjectiveAlgorithms.EpsilonConstraint, optimizer=HiGHS]
* Status
Result count : 6
Termination status : OPTIMAL
Message from the solver:
"Solve complete. Found 6 solution(s)"
* Candidate solution (result #1)
Primal status : FEASIBLE_POINT
Dual status : NO_SOLUTION
Objective value : [6.00000e+00,2.40000e+01]
Objective bound : [6.00000e+00,7.00000e+00]
* Work counters
Solve time (sec) : 7.45201e-03
for i in 1:result_count(model)
@assert is_solved_and_feasible(model; result = i)
print(i, ": z = ", round.(Int, objective_value(model; result = i)), " | ")
println("x = ", round.(Int, value.(x; result = i)))
end
1: z = [6, 24] | x = [0 1 0 0; 0 0 1 0; 1 0 0 0; 0 0 0 1]
2: z = [9, 17] | x = [0 0 1 0; 0 1 0 0; 1 0 0 0; 0 0 0 1]
3: z = [12, 13] | x = [1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1]
4: z = [16, 11] | x = [0 0 0 1; 0 1 0 0; 0 0 1 0; 1 0 0 0]
5: z = [19, 10] | x = [0 0 1 0; 1 0 0 0; 0 0 0 1; 0 1 0 0]
6: z = [22, 7] | x = [0 0 0 1; 1 0 0 0; 0 0 1 0; 0 1 0 0]
Bi-objective shortest path problem
This example is taken from Exercise 9.5 page 269 of Ehrgott, M. (2005). Multicriteria Optimization. Springer, Berlin. The code was adapted from an example in vOptGeneric by @xgandibleux.
M = 50
C1 = [
M 4 5 M M M
M M 2 1 2 7
M M M 5 2 M
M M 5 M M 3
M M M M M 4
M M M M M M
]
C2 = [
M 3 1 M M M
M M 1 4 2 2
M M M 1 7 M
M M 1 M M 2
M M M M M 2
M M M M M M
]
n = size(C2, 1)
model = Model()
set_silent(model)
@variable(model, x[1:n, 1:n], Bin)
@objective(model, Min, [sum(C1 .* x), sum(C2 .* x)])
@constraint(model, sum(x[1, :]) == 1)
@constraint(model, sum(x[:, n]) == 1)
@constraint(model, [i = 2:n-1], sum(x[i, :]) - sum(x[:, i]) == 0)
set_optimizer(model, () -> MOA.Optimizer(HiGHS.Optimizer))
set_attribute(model, MOA.Algorithm(), MOA.EpsilonConstraint())
optimize!(model)
solution_summary(model)
* Solver : MOA[algorithm=MultiObjectiveAlgorithms.EpsilonConstraint, optimizer=HiGHS]
* Status
Result count : 4
Termination status : OPTIMAL
Message from the solver:
"Solve complete. Found 4 solution(s)"
* Candidate solution (result #1)
Primal status : FEASIBLE_POINT
Dual status : NO_SOLUTION
Objective value : [8.00000e+00,9.00000e+00]
Objective bound : [8.00000e+00,4.00000e+00]
* Work counters
Solve time (sec) : 5.27501e-03
for i in 1:result_count(model)
@assert is_solved_and_feasible(model; result = i)
print(i, ": z = ", round.(Int, objective_value(model; result = i)), " | ")
X = round.(Int, value.(x; result = i))
print("Path:")
for ind in findall(val -> val ≈ 1, X)
i, j = ind.I
print(" $i->$j")
end
println()
end
1: z = [8, 9] | Path: 1->2 2->4 4->6
2: z = [10, 7] | Path: 1->2 2->5 5->6
3: z = [11, 5] | Path: 1->2 2->6
4: z = [13, 4] | Path: 1->3 3->4 4->6