JuMP.Containers
This page lists the public API of JuMP.Containers
.
This page is an unstructured list of the JuMP.Containers API. For a more structured overview, read the Manual or Tutorial parts of this documentation.
Load all of the public the API into the current scope with:
using JuMP.Containers
Alternatively, load only the module with:
import JuMP.Containers
and then prefix all calls with JuMP.Containers.
to create JuMP.Containers.<NAME>
.
DenseAxisArray
JuMP.Containers.DenseAxisArray
— TypeDenseAxisArray(data::Array{T, N}, axes...) where {T, N}
Construct a JuMP array with the underlying data specified by the data
array and the given axes. Exactly N
axes must be provided, and their lengths must match size(data)
in the corresponding dimensions.
Example
julia> array = Containers.DenseAxisArray([1 2; 3 4], [:a, :b], 2:3)
2-dimensional DenseAxisArray{Int64,2,...} with index sets:
Dimension 1, [:a, :b]
Dimension 2, 2:3
And data, a 2×2 Matrix{Int64}:
1 2
3 4
julia> array[:b, 3]
4
DenseAxisArray{T}(undef, axes...) where T
Construct an uninitialized DenseAxisArray with element-type T
indexed over the given axes.
Example
julia> array = Containers.DenseAxisArray{Float64}(undef, [:a, :b], 1:2);
julia> fill!(array, 1.0)
2-dimensional DenseAxisArray{Float64,2,...} with index sets:
Dimension 1, [:a, :b]
Dimension 2, 1:2
And data, a 2×2 Matrix{Float64}:
1.0 1.0
1.0 1.0
julia> array[:a, 2] = 5.0
5.0
julia> array[:a, 2]
5.0
julia> array
2-dimensional DenseAxisArray{Float64,2,...} with index sets:
Dimension 1, [:a, :b]
Dimension 2, 1:2
And data, a 2×2 Matrix{Float64}:
1.0 5.0
1.0 1.0
SparseAxisArray
JuMP.Containers.SparseAxisArray
— Typestruct SparseAxisArray{T,N,K<:NTuple{N, Any}} <: AbstractArray{T,N}
data::OrderedCollections.OrderedDict{K,T}
end
N
-dimensional array with elements of type T
where only a subset of the entries are defined. The entries with indices idx = (i1, i2, ..., iN)
in keys(data)
has value data[idx]
.
Note that, as opposed to SparseArrays.AbstractSparseArray
, the missing entries are not assumed to be zero(T)
, they are simply not part of the array. This means that the result of map(f, sa::SparseAxisArray)
or f.(sa::SparseAxisArray)
has the same sparsity structure as sa
, even if f(zero(T))
is not zero.
Example
julia> using OrderedCollections: OrderedDict
julia> dict = OrderedDict((:a, 2) => 1.0, (:a, 3) => 2.0, (:b, 3) => 3.0)
OrderedDict{Tuple{Symbol, Int64}, Float64} with 3 entries:
(:a, 2) => 1.0
(:a, 3) => 2.0
(:b, 3) => 3.0
julia> array = Containers.SparseAxisArray(dict)
SparseAxisArray{Float64, 2, Tuple{Symbol, Int64}} with 3 entries:
[a, 2] = 1.0
[a, 3] = 2.0
[b, 3] = 3.0
julia> array[:b, 3]
3.0
Containers.@container
JuMP.Containers.@container
— Macro@container([i=..., j=..., ...], expr[, container = :Auto])
Create a container with indices i
, j
, ... and values given by expr
that may depend on the value of the indices.
@container(ref[i=..., j=..., ...], expr[, container = :Auto])
Same as above but the container is assigned to the variable of name ref
.
The type of container can be controlled by the container
keyword.
When the index set is explicitly given as 1:n
for any expression n
, it is transformed to Base.OneTo(n)
before being given to container
.
Example
julia> Containers.@container([i = 1:3, j = 1:3], i + j)
3×3 Matrix{Int64}:
2 3 4
3 4 5
4 5 6
julia> I = 1:3
1:3
julia> Containers.@container(x[i = I, j = I], i + j);
julia> x
2-dimensional DenseAxisArray{Int64,2,...} with index sets:
Dimension 1, 1:3
Dimension 2, 1:3
And data, a 3×3 Matrix{Int64}:
2 3 4
3 4 5
4 5 6
julia> Containers.@container([i = 2:3, j = 1:3], i + j)
2-dimensional DenseAxisArray{Int64,2,...} with index sets:
Dimension 1, 2:3
Dimension 2, Base.OneTo(3)
And data, a 2×3 Matrix{Int64}:
3 4 5
4 5 6
julia> Containers.@container([i = 1:3, j = 1:3; i <= j], i + j)
SparseAxisArray{Int64, 2, Tuple{Int64, Int64}} with 6 entries:
[1, 1] = 2
[1, 2] = 3
[1, 3] = 4
[2, 2] = 4
[2, 3] = 5
[3, 3] = 6
Containers.container
JuMP.Containers.container
— Functioncontainer(f::Function, indices[[, ::Type{C} = AutoContainerType], names])
Create a container of type C
with index names names
, indices indices
and values at given indices given by f
.
If the method with names
is not specialized on Type{C}
, it falls back to calling container(f, indices, c)
for backwards compatibility with containers not supporting index names.
Example
julia> Containers.container((i, j) -> i + j, Containers.vectorized_product(Base.OneTo(3), Base.OneTo(3)))
3×3 Matrix{Int64}:
2 3 4
3 4 5
4 5 6
julia> Containers.container((i, j) -> i + j, Containers.vectorized_product(1:3, 1:3))
2-dimensional DenseAxisArray{Int64,2,...} with index sets:
Dimension 1, 1:3
Dimension 2, 1:3
And data, a 3×3 Matrix{Int64}:
2 3 4
3 4 5
4 5 6
julia> Containers.container((i, j) -> i + j, Containers.vectorized_product(2:3, Base.OneTo(3)))
2-dimensional DenseAxisArray{Int64,2,...} with index sets:
Dimension 1, 2:3
Dimension 2, Base.OneTo(3)
And data, a 2×3 Matrix{Int64}:
3 4 5
4 5 6
julia> Containers.container((i, j) -> i + j, Containers.nested(() -> 1:3, i -> i:3, condition = (i, j) -> isodd(i) || isodd(j)))
SparseAxisArray{Int64, 2, Tuple{Int64, Int64}} with 5 entries:
[1, 1] = 2
[1, 2] = 3
[1, 3] = 4
[2, 3] = 5
[3, 3] = 6
Containers.rowtable
JuMP.Containers.rowtable
— Functionrowtable([f::Function=identity,] x; [header::Vector{Symbol} = Symbol[]])
Applies the function f
to all elements of the variable container x
, returning the result as a Vector
of NamedTuple
s, where header
is a vector containing the corresponding axis names.
If x
is an N
-dimensional array, there must be N+1
names, so that the last name corresponds to the result of f(x[i])
.
If header
is left empty, then the default header is [:x1, :x2, ..., :xN, :y]
.
A Vector
of NamedTuple
s implements the Tables.jl interface, and so the result can be used as input for any function that consumes a 'Tables.jl' compatible source.
Example
julia> model = Model();
julia> @variable(model, x[i=1:2, j=i:2] >= 0, start = i+j);
julia> Containers.rowtable(start_value, x; header = [:i, :j, :start])
3-element Vector{@NamedTuple{i::Int64, j::Int64, start::Float64}}:
(i = 1, j = 1, start = 2.0)
(i = 1, j = 2, start = 3.0)
(i = 2, j = 2, start = 4.0)
julia> Containers.rowtable(x)
3-element Vector{@NamedTuple{x1::Int64, x2::Int64, y::VariableRef}}:
(x1 = 1, x2 = 1, y = x[1,1])
(x1 = 1, x2 = 2, y = x[1,2])
(x1 = 2, x2 = 2, y = x[2,2])
Containers.default_container
JuMP.Containers.default_container
— Functiondefault_container(indices)
If indices
is a NestedIterator
, return a SparseAxisArray
. Otherwise, indices
should be a VectorizedProductIterator
and the function returns Array
if all iterators of the product are Base.OneTo
and returns DenseAxisArray
otherwise.
Containers.nested
JuMP.Containers.nested
— Functionnested(iterators...; condition = (args...) -> true)
Create a NestedIterator
.
Example
julia> iterator = Containers.nested(
() -> 1:2,
(i,) -> ["A", "B"];
condition = (i, j) -> isodd(i) || j == "B",
);
julia> collect(iterator)
3-element Vector{Tuple{Int64, String}}:
(1, "A")
(1, "B")
(2, "B")
Containers.vectorized_product
JuMP.Containers.vectorized_product
— Functionvectorized_product(iterators...)
Created a VectorizedProductIterator
.
Example
julia> iterator = Containers.vectorized_product(1:2, ["A", "B"]);
julia> collect(iterator)
2×2 Matrix{Tuple{Int64, String}}:
(1, "A") (1, "B")
(2, "A") (2, "B")
Containers.build_error_fn
JuMP.Containers.build_error_fn
— Functionbuild_error_fn(macro_name, args, source)
Return a function that can be used in place of Base.error
, but which additionally prints the macro from which it was called.
Containers.parse_macro_arguments
JuMP.Containers.parse_macro_arguments
— Functionparse_macro_arguments(
error_fn::Function,
args;
valid_kwargs::Union{Nothing,Vector{Symbol}} = nothing,
num_positional_args::Union{Nothing,Int,UnitRange{Int}} = nothing,
)
Returns a Tuple{Vector{Any},Dict{Symbol,Any}}
containing the ordered positional arguments and a dictionary mapping the keyword arguments.
This specially handles the distinction of @foo(key = value)
and @foo(; key = value)
in macros.
An error is thrown if multiple keyword arguments are passed with the same key.
If valid_kwargs
is a Vector{Symbol}
, an error is thrown if a keyword is not in valid_kwargs
.
If num_positional_args
is not nothing, an error is thrown if the number of positional arguments is not in num_positional_args
.
Containers.parse_ref_sets
JuMP.Containers.parse_ref_sets
— Functionparse_ref_sets(
error_fn::Function,
expr;
invalid_index_variables::Vector{Symbol} = Symbol[],
)
Helper function for macros to construct container objects.
This function is for advanced users implementing JuMP extensions. See container_code
for more details.
Arguments
error_fn
: a function that takes aString
and throws an error, potentially annotating the input string with extra information such as from which macro it was thrown from. Useerror
if you do not want a modified error message.expr
: anExpr
that specifies the container, for example,:(x[i = 1:3, [:red, :blue], k = S; i + k <= 6])
Returns
name
: the name of the container, if given, otherwisenothing
index_vars
: aVector{Any}
of names for the index variables, for example,[:i, gensym(), :k]
. These may also be expressions, like:((i, j))
from a call like:(x[(i, j) in S])
.indices
: an iterator over the indices, for example,Containers.NestedIterator
Example
See container_code
for a worked example.
Containers.build_name_expr
JuMP.Containers.build_name_expr
— Functionbuild_name_expr(
name::Union{Symbol,Nothing},
index_vars::Vector,
kwargs::Dict{Symbol,Any},
)
Returns an expression for the name of a container element, where name
and index_vars
are the values returned by parse_ref_sets
and kwargs
is the dictionary returned by parse_macro_arguments
.
This assumes that the key in kwargs
used to over-ride the name choice is :base_name
.
Example
julia> Containers.build_name_expr(:x, [:i, :j], Dict{Symbol,Any}())
:(string("x", "[", string($(Expr(:escape, :i))), ",", string($(Expr(:escape, :j))), "]"))
julia> Containers.build_name_expr(nothing, [:i, :j], Dict{Symbol,Any}())
""
julia> Containers.build_name_expr(:y, [:i, :j], Dict{Symbol,Any}(:base_name => "y"))
:(string("y", "[", string($(Expr(:escape, :i))), ",", string($(Expr(:escape, :j))), "]"))
Containers.add_additional_args
JuMP.Containers.add_additional_args
— Functionadd_additional_args(
call::Expr,
args::Vector,
kwargs::Dict{Symbol,Any};
kwarg_exclude::Vector{Symbol} = Symbol[],
)
Add the positional arguments args
to the function call expression call
, escaping each argument expression.
This function is able to incorporate additional positional arguments to call
s that already have keyword arguments.
Containers.container_code
JuMP.Containers.container_code
— Functioncontainer_code(
index_vars::Vector{Any},
indices::Expr,
code,
requested_container::Union{Symbol,Expr,Dict{Symbol,Any}},
)
Used in macros to construct a call to container
. This should be used in conjunction with parse_ref_sets
.
Arguments
index_vars::Vector{Any}
: a vector of names for the indices of the container. These may also be expressions, like:((i, j))
from a call like:(x[(i, j) in S])
.indices::Expr
: an expression that evaluates to an iterator of the indices.code
: an expression or literal constant for the value to be stored in the container as a function of the namedindex_vars
.requested_container
: passed to the third argument ofcontainer
. For built-in JuMP types, choose one of:Array
,:DenseAxisArray
,:SparseAxisArray
, or:Auto
. For a user-defined container, this expression must evaluate to the correct type. You may also pass thekwargs
dictionary fromparse_macro_arguments
.
In most cases, you should esc(code)
before passing it to container_code
.
Example
julia> macro foo(ref_sets, code)
name, index_vars, indices =
Containers.parse_ref_sets(error, ref_sets)
@assert name !== nothing # Anonymous container not supported
container =
Containers.container_code(index_vars, indices, esc(code), :Auto)
return quote
$(esc(name)) = $container
end
end
@foo (macro with 1 method)
julia> @foo(x[i=1:2, j=["A", "B"]], j^i);
julia> x
2-dimensional DenseAxisArray{String,2,...} with index sets:
Dimension 1, Base.OneTo(2)
Dimension 2, ["A", "B"]
And data, a 2×2 Matrix{String}:
"A" "B"
"AA" "BB"
Containers.AutoContainerType
JuMP.Containers.AutoContainerType
— TypeAutoContainerType
Pass AutoContainerType
to container
to let the container type be chosen based on the type of the indices using default_container
.
Containers.NestedIterator
JuMP.Containers.NestedIterator
— Typestruct NestedIterator{T}
iterators::T # Tuple of functions
condition::Function
end
Iterators over the tuples that are produced by a nested for loop.
Construct a NestedIterator
using nested
.
Example
julia> iterators = (() -> 1:2, (i,) -> ["A", "B"]);
julia> condition = (i, j) -> isodd(i) || j == "B";
julia> x = Containers.NestedIterator(iterators, condition);
julia> for (i, j) in x
println((i, j))
end
(1, "A")
(1, "B")
(2, "B")
is the same as
julia> for i in iterators[1]()
for j in iterators[2](i)
if condition(i, j)
println((i, j))
end
end
end
(1, "A")
(1, "B")
(2, "B")
Containers.VectorizedProductIterator
JuMP.Containers.VectorizedProductIterator
— Typestruct VectorizedProductIterator{T}
prod::Iterators.ProductIterator{T}
end
A wrapper type for Iterators.ProuctIterator
that discards shape information and returns a Vector
.
Construct a VectorizedProductIterator
using vectorized_product
.