JuMP.Containers
This page lists the public API of JuMP.Containers.
This page is an unstructured list of the JuMP.Containers API. For a more structured overview, read the Manual or Tutorial parts of this documentation.
Load all of the public the API into the current scope with:
using JuMP.ContainersAlternatively, load only the module with:
import JuMP.Containersand then prefix all calls with JuMP.Containers. to create JuMP.Containers.<NAME>.
DenseAxisArray
JuMP.Containers.DenseAxisArray — TypeDenseAxisArray(data::Array{T, N}, axes...) where {T, N}Construct a JuMP array with the underlying data specified by the data array and the given axes. Exactly N axes must be provided, and their lengths must match size(data) in the corresponding dimensions.
Example
julia> array = Containers.DenseAxisArray([1 2; 3 4], [:a, :b], 2:3)
2-dimensional DenseAxisArray{Int64,2,...} with index sets:
Dimension 1, [:a, :b]
Dimension 2, 2:3
And data, a 2×2 Matrix{Int64}:
1 2
3 4
julia> array[:b, 3]
4DenseAxisArray{T}(undef, axes...) where TConstruct an uninitialized DenseAxisArray with element-type T indexed over the given axes.
Example
julia> array = Containers.DenseAxisArray{Float64}(undef, [:a, :b], 1:2);
julia> fill!(array, 1.0)
2-dimensional DenseAxisArray{Float64,2,...} with index sets:
Dimension 1, [:a, :b]
Dimension 2, 1:2
And data, a 2×2 Matrix{Float64}:
1.0 1.0
1.0 1.0
julia> array[:a, 2] = 5.0
5.0
julia> array[:a, 2]
5.0
julia> array
2-dimensional DenseAxisArray{Float64,2,...} with index sets:
Dimension 1, [:a, :b]
Dimension 2, 1:2
And data, a 2×2 Matrix{Float64}:
1.0 5.0
1.0 1.0SparseAxisArray
JuMP.Containers.SparseAxisArray — Typestruct SparseAxisArray{T,N,K<:NTuple{N, Any}} <: AbstractArray{T,N}
data::OrderedCollections.OrderedDict{K,T}
endN-dimensional array with elements of type T where only a subset of the entries are defined. The entries with indices idx = (i1, i2, ..., iN) in keys(data) has value data[idx].
Note that, as opposed to SparseArrays.AbstractSparseArray, the missing entries are not assumed to be zero(T), they are simply not part of the array. This means that the result of map(f, sa::SparseAxisArray) or f.(sa::SparseAxisArray) has the same sparsity structure as sa, even if f(zero(T)) is not zero.
Example
julia> using OrderedCollections: OrderedDict
julia> dict = OrderedDict((:a, 2) => 1.0, (:a, 3) => 2.0, (:b, 3) => 3.0)
OrderedDict{Tuple{Symbol, Int64}, Float64} with 3 entries:
(:a, 2) => 1.0
(:a, 3) => 2.0
(:b, 3) => 3.0
julia> array = Containers.SparseAxisArray(dict)
SparseAxisArray{Float64, 2, Tuple{Symbol, Int64}} with 3 entries:
[a, 2] = 1.0
[a, 3] = 2.0
[b, 3] = 3.0
julia> array[:b, 3]
3.0Containers.@container
JuMP.Containers.@container — Macro@container([i=..., j=..., ...], expr[, container = :Auto])Create a container with indices i, j, ... and values given by expr that may depend on the value of the indices.
@container(ref[i=..., j=..., ...], expr[, container = :Auto])Same as above but the container is assigned to the variable of name ref.
The type of container can be controlled by the container keyword.
When the index set is explicitly given as 1:n for any expression n, it is transformed to Base.OneTo(n) before being given to container.
Example
julia> Containers.@container([i = 1:3, j = 1:3], i + j)
3×3 Matrix{Int64}:
2 3 4
3 4 5
4 5 6
julia> I = 1:3
1:3
julia> Containers.@container(x[i = I, j = I], i + j);
julia> x
2-dimensional DenseAxisArray{Int64,2,...} with index sets:
Dimension 1, 1:3
Dimension 2, 1:3
And data, a 3×3 Matrix{Int64}:
2 3 4
3 4 5
4 5 6
julia> Containers.@container([i = 2:3, j = 1:3], i + j)
2-dimensional DenseAxisArray{Int64,2,...} with index sets:
Dimension 1, 2:3
Dimension 2, Base.OneTo(3)
And data, a 2×3 Matrix{Int64}:
3 4 5
4 5 6
julia> Containers.@container([i = 1:3, j = 1:3; i <= j], i + j)
SparseAxisArray{Int64, 2, Tuple{Int64, Int64}} with 6 entries:
[1, 1] = 2
[1, 2] = 3
[1, 3] = 4
[2, 2] = 4
[2, 3] = 5
[3, 3] = 6Containers.container
JuMP.Containers.container — Functioncontainer(f::Function, indices[[, ::Type{C} = AutoContainerType], names])Create a container of type C with index names names, indices indices and values at given indices given by f.
If the method with names is not specialized on Type{C}, it falls back to calling container(f, indices, c) for backwards compatibility with containers not supporting index names.
Example
julia> Containers.container((i, j) -> i + j, Containers.vectorized_product(Base.OneTo(3), Base.OneTo(3)))
3×3 Matrix{Int64}:
2 3 4
3 4 5
4 5 6
julia> Containers.container((i, j) -> i + j, Containers.vectorized_product(1:3, 1:3))
2-dimensional DenseAxisArray{Int64,2,...} with index sets:
Dimension 1, 1:3
Dimension 2, 1:3
And data, a 3×3 Matrix{Int64}:
2 3 4
3 4 5
4 5 6
julia> Containers.container((i, j) -> i + j, Containers.vectorized_product(2:3, Base.OneTo(3)))
2-dimensional DenseAxisArray{Int64,2,...} with index sets:
Dimension 1, 2:3
Dimension 2, Base.OneTo(3)
And data, a 2×3 Matrix{Int64}:
3 4 5
4 5 6
julia> Containers.container((i, j) -> i + j, Containers.nested(() -> 1:3, i -> i:3, condition = (i, j) -> isodd(i) || isodd(j)))
SparseAxisArray{Int64, 2, Tuple{Int64, Int64}} with 5 entries:
[1, 1] = 2
[1, 2] = 3
[1, 3] = 4
[2, 3] = 5
[3, 3] = 6Containers.rowtable
JuMP.Containers.rowtable — Functionrowtable([f::Function=identity,] x; [header::Vector{Symbol} = Symbol[]])Applies the function f to all elements of the variable container x, returning the result as a Vector of NamedTuples, where header is a vector containing the corresponding axis names.
If x is an N-dimensional array, there must be N+1 names, so that the last name corresponds to the result of f(x[i]).
If header is left empty, then the default header is [:x1, :x2, ..., :xN, :y].
A Vector of NamedTuples implements the Tables.jl interface, and so the result can be used as input for any function that consumes a 'Tables.jl' compatible source.
Example
julia> model = Model();
julia> @variable(model, x[i=1:2, j=i:2] >= 0, start = i+j);
julia> Containers.rowtable(start_value, x; header = [:i, :j, :start])
3-element Vector{@NamedTuple{i::Int64, j::Int64, start::Float64}}:
(i = 1, j = 1, start = 2.0)
(i = 1, j = 2, start = 3.0)
(i = 2, j = 2, start = 4.0)
julia> Containers.rowtable(x)
3-element Vector{@NamedTuple{x1::Int64, x2::Int64, y::VariableRef}}:
(x1 = 1, x2 = 1, y = x[1,1])
(x1 = 1, x2 = 2, y = x[1,2])
(x1 = 2, x2 = 2, y = x[2,2])Containers.default_container
JuMP.Containers.default_container — Functiondefault_container(indices)If indices is a NestedIterator, return a SparseAxisArray. Otherwise, indices should be a VectorizedProductIterator and the function returns Array if all iterators of the product are Base.OneTo and returns DenseAxisArray otherwise.
Containers.nested
JuMP.Containers.nested — Functionnested(iterators...; condition = (args...) -> true)Create a NestedIterator.
Example
julia> iterator = Containers.nested(
() -> 1:2,
(i,) -> ["A", "B"];
condition = (i, j) -> isodd(i) || j == "B",
);
julia> collect(iterator)
3-element Vector{Tuple{Int64, String}}:
(1, "A")
(1, "B")
(2, "B")Containers.vectorized_product
JuMP.Containers.vectorized_product — Functionvectorized_product(iterators...)Created a VectorizedProductIterator.
Example
julia> iterator = Containers.vectorized_product(1:2, ["A", "B"]);
julia> collect(iterator)
2×2 Matrix{Tuple{Int64, String}}:
(1, "A") (1, "B")
(2, "A") (2, "B")Containers.build_error_fn
JuMP.Containers.build_error_fn — Functionbuild_error_fn(macro_name, args, source)Return a function that can be used in place of Base.error, but which additionally prints the macro from which it was called.
Containers.parse_macro_arguments
JuMP.Containers.parse_macro_arguments — Functionparse_macro_arguments(
error_fn::Function,
args;
valid_kwargs::Union{Nothing,Vector{Symbol}} = nothing,
num_positional_args::Union{Nothing,Int,UnitRange{Int}} = nothing,
)Returns a Tuple{Vector{Any},Dict{Symbol,Any}} containing the ordered positional arguments and a dictionary mapping the keyword arguments.
This specially handles the distinction of @foo(key = value) and @foo(; key = value) in macros.
An error is thrown if multiple keyword arguments are passed with the same key.
If valid_kwargs is a Vector{Symbol}, an error is thrown if a keyword is not in valid_kwargs.
If num_positional_args is not nothing, an error is thrown if the number of positional arguments is not in num_positional_args.
Containers.parse_ref_sets
JuMP.Containers.parse_ref_sets — Functionparse_ref_sets(
error_fn::Function,
expr;
invalid_index_variables::Vector{Symbol} = Symbol[],
)Helper function for macros to construct container objects.
This function is for advanced users implementing JuMP extensions. See container_code for more details.
Arguments
error_fn: a function that takes aStringand throws an error, potentially annotating the input string with extra information such as from which macro it was thrown from. Useerrorif you do not want a modified error message.expr: anExprthat specifies the container, for example,:(x[i = 1:3, [:red, :blue], k = S; i + k <= 6])
Returns
name: the name of the container, if given, otherwisenothingindex_vars: aVector{Any}of names for the index variables, for example,[:i, gensym(), :k]. These may also be expressions, like:((i, j))from a call like:(x[(i, j) in S]).indices: an iterator over the indices, for example,Containers.NestedIterator
Example
See container_code for a worked example.
Containers.build_name_expr
JuMP.Containers.build_name_expr — Functionbuild_name_expr(
name::Union{Symbol,Nothing},
index_vars::Vector,
kwargs::Dict{Symbol,Any},
)Returns an expression for the name of a container element, where name and index_vars are the values returned by parse_ref_sets and kwargs is the dictionary returned by parse_macro_arguments.
This assumes that the key in kwargs used to over-ride the name choice is :base_name.
Example
julia> Containers.build_name_expr(:x, [:i, :j], Dict{Symbol,Any}())
:(string("x", "[", string($(Expr(:escape, :i))), ",", string($(Expr(:escape, :j))), "]"))
julia> Containers.build_name_expr(nothing, [:i, :j], Dict{Symbol,Any}())
""
julia> Containers.build_name_expr(:y, [:i, :j], Dict{Symbol,Any}(:base_name => "y"))
:(string("y", "[", string($(Expr(:escape, :i))), ",", string($(Expr(:escape, :j))), "]"))Containers.add_additional_args
JuMP.Containers.add_additional_args — Functionadd_additional_args(
call::Expr,
args::Vector,
kwargs::Dict{Symbol,Any};
kwarg_exclude::Vector{Symbol} = Symbol[],
)Add the positional arguments args to the function call expression call, escaping each argument expression.
This function is able to incorporate additional positional arguments to calls that already have keyword arguments.
Containers.container_code
JuMP.Containers.container_code — Functioncontainer_code(
index_vars::Vector{Any},
indices::Expr,
code,
requested_container::Union{Symbol,Expr,Dict{Symbol,Any}},
)Used in macros to construct a call to container. This should be used in conjunction with parse_ref_sets.
Arguments
index_vars::Vector{Any}: a vector of names for the indices of the container. These may also be expressions, like:((i, j))from a call like:(x[(i, j) in S]).indices::Expr: an expression that evaluates to an iterator of the indices.code: an expression or literal constant for the value to be stored in the container as a function of the namedindex_vars.requested_container: passed to the third argument ofcontainer. For built-in JuMP types, choose one of:Array,:DenseAxisArray,:SparseAxisArray, or:Auto. For a user-defined container, this expression must evaluate to the correct type. You may also pass thekwargsdictionary fromparse_macro_arguments.
Example
julia> macro foo(ref_sets, code)
name, index_vars, indices =
Containers.parse_ref_sets(error, ref_sets)
@assert name !== nothing # Anonymous container not supported
container =
Containers.container_code(index_vars, indices, esc(code), :Auto)
return quote
$(esc(name)) = $container
end
end
@foo (macro with 1 method)
julia> @foo(x[i=1:2, j=["A", "B"]], j^i);
julia> x
2-dimensional DenseAxisArray{String,2,...} with index sets:
Dimension 1, Base.OneTo(2)
Dimension 2, ["A", "B"]
And data, a 2×2 Matrix{String}:
"A" "B"
"AA" "BB"Containers.AutoContainerType
JuMP.Containers.AutoContainerType — TypeAutoContainerTypePass AutoContainerType to container to let the container type be chosen based on the type of the indices using default_container.
Containers.NestedIterator
JuMP.Containers.NestedIterator — Typestruct NestedIterator{T}
iterators::T # Tuple of functions
condition::Function
endIterators over the tuples that are produced by a nested for loop.
Construct a NestedIterator using nested.
Example
julia> iterators = (() -> 1:2, (i,) -> ["A", "B"]);
julia> condition = (i, j) -> isodd(i) || j == "B";
julia> x = Containers.NestedIterator(iterators, condition);
julia> for (i, j) in x
println((i, j))
end
(1, "A")
(1, "B")
(2, "B")is the same as
julia> for i in iterators[1]()
for j in iterators[2](i)
if condition(i, j)
println((i, j))
end
end
end
(1, "A")
(1, "B")
(2, "B")Containers.VectorizedProductIterator
JuMP.Containers.VectorizedProductIterator — Typestruct VectorizedProductIterator{T}
prod::Iterators.ProductIterator{T}
endA wrapper type for Iterators.ProuctIterator that discards shape information and returns a Vector.
Construct a VectorizedProductIterator using vectorized_product.