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Chapter 1

Introduction

Welcome to the documentation for JuMP.

Note

This documentation is also available in PDF format: JuMP.pdf.

1.1 What is JuMP?

JuMP is a domain-specific modeling language for mathematical optimization embedded in Julia.

JuMP makes it easy to formulate and solve a range of problem classes, including linear programs, integer
programs, conic programs, semidefinite programs, and constrained nonlinear programs. Here’s an example:

julia> using JuMP, Ipopt

julia> function solve_constrained_least_squares_regression(A::Matrix, b::Vector)
m, n = size(A)
model = Model(Ipopt.Optimizer)
set_silent(model)
@variable(model, x[1:n])
@variable(model, residuals[1:m])
@constraint(model, residuals == A * x - b)
@constraint(model, sum(x) == 1)
@objective(model, Min, sum(residuals.^2))
optimize!(model)
return value.(x)

end
solve_constrained_least_squares_regression (generic function with 1 method)

julia> A, b = rand(10, 3), rand(10);

2

https://github.com/jump-dev/JuMP.jl
https://en.wikipedia.org/wiki/Mathematical_optimization
https://julialang.org/
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julia> x = solve_constrained_least_squares_regression(A, b)
3-element Vector{Float64}:
0.4137624719002825
0.09707679853084578
0.48916072956887174

Tip

If you aren't sure if you should use JuMP, read Should you use JuMP?.

1.2 Resources for getting started

There are a few ways to get started with JuMP:

• Read the Installation Guide.

• Read the introductory tutorials Getting started with Julia and Getting started with JuMP.

• Browse some of our modeling tutorials, including classics such as The diet problem, or the Maximum
likelihood estimation problem using nonlinear programming.

Tip

Need help? Join the community forum to search for answers to commonly asked questions.

Before asking a question, make sure to read the post make it easier to help you, which contains a
number of tips on how to ask a good question.

1.3 How the documentation is structured

Having a high-level overview of how this documentation is structured will help you know where to look for
certain things.

• Tutorials contain worked examples of solving problems with JuMP. Start here if you are new to JuMP, or
you have a particular problem class you want to model.

• The Manual contains short code-snippets that explain how to achieve specific tasks in JuMP. Look here
if you want to know how to achieve a particular task, such as how to Delete a variable or how to Modify
an objective coefficient.

• The API Reference contains a complete list of the functions you can use in JuMP. Look here if you want
to know how to use a particular function.

• TheBackground information section contains background readingmaterial to provide context to JuMP.
Look here if you want an understanding of what JuMP is and why we created it, rather than how to use
it.

https://jump.dev/forum
https://discourse.julialang.org/t/psa-make-it-easier-to-help-you/14757
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Figure 1.1: NumFOCUS logo

• The Developer docs section contains information for people contributing to JuMP development or writ-
ing JuMP extensions. Don't worry about this section if you are using JuMP to formulate and solve problems
as a user.

• The MathOptInterface section is a self-contained copy of the documentation for MathOptInterface.
Look here for functions and constants beginning with MOI., as well as for general information on how
MathOptInterface works.

1.4 Citing JuMP

If you find JuMP useful in your work, we kindly request that you cite the following paper (preprint):

@article{Lubin2023,
author = {Miles Lubin and Oscar Dowson and Joaquim {Dias Garcia} and Joey Huchette and

Beno{\^i}t Legat and Juan Pablo Vielma},↪→

title = {{JuMP} 1.0: {R}ecent improvements to a modeling language for mathematical
optimization},↪→

journal = {Mathematical Programming Computation},
year = {2023},
doi = {10.1007/s12532-023-00239-3}

}

1.5 NumFOCUS

JuMP is a Sponsored Project of NumFOCUS, a 501(c)(3) nonprofit charity in the United States. NumFOCUS
provides JuMP with fiscal, legal, and administrative support to help ensure the health and sustainability of the
project. Visit numfocus.org for more information.

You can support JuMP by donating.

Donations to JuMP are managed by NumFOCUS. For donors in the United States, your gift is tax-deductible
to the extent provided by law. As with any donation, you should consult with your tax adviser about your
particular tax situation.

JuMP's largest expense is the annual JuMP-dev workshop. Donations will help us provide travel support for
JuMP-dev attendees and take advantage of other opportunities that arise to support JuMP development.

1.6 License

JuMP is licensed under the MPL-2.0 software license. Consult the license and the Mozilla FAQ for more informa-
tion. In addition, JuMP is typically used in conjunction with solver packages and extensions which have their
own licences. Consult their package repositories for the specific licenses that apply.

https://arxiv.org/abs/2206.03866
https://numfocus.org
https://numfocus.org/donate-to-jump
https://mozilla.org/MPL/2.0/
https://github.com/jump-dev/JuMP.jl/blob/master/LICENSE.md
https://www.mozilla.org/en-US/MPL/2.0/FAQ/
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Should you use JuMP?

JuMP is an algebraic modeling language for mathematical optimization written in the Julia language.

This page explains when you should consider using JuMP, and importantly, when you should not use JuMP.

2.1 When should you use JuMP?

You should use JuMP if you have a constrained optimization problem that is formulated using the language of
mathematical programming, that is, the problem has:

• a set of real- or complex-valued decision variables

• a scalar- or vector-valued real objective function

• a set of constraints.

Key reasons to use JuMP include:

• User friendliness

– JuMP has syntax that mimics natural mathematical expressions. (See the section on algebraic
modeling languages.)

• Solver independence

– JuMP uses a generic solver-independent interface provided by the MathOptInterface package, mak-
ing it easy to change between a number of open-source and commercial optimization software
packages ("solvers"). The Supported solvers section contains a table of the currently supported
solvers.

• Ease of embedding

– JuMP itself is written purely in Julia. Solvers are the only binary dependencies.

– JuMP provides automatic installation of most solvers.

– Because it is embedded in a general-purpose programming language, JuMP makes it easy to solve
optimization problems as part of a larger workflow, for example, inside a simulation, behind a
web server, or as a subproblem in a decomposition algorithm. As a trade-off, JuMP's syntax is
constrained by the syntax and functionality available in Julia.

5

https://julialang.org
https://github.com/jump-dev/MathOptInterface.jl
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– JuMP is MPL licensed, meaning that it can be embedded in commercial software that complies with
the terms of the license.

• Speed

– Benchmarking has shown that JuMP can create problems at similar speeds to special-purpose mod-
eling languages such as AMPL.

– JuMP communicates with most solvers in memory, avoiding the need to write intermediary files.

• Access to advanced algorithmic techniques

– JuMP supports efficient in-memory re-solves of models.

– JuMP provides access to solver-independent and solver-dependent Callbacks.

2.2 When should you not use JuMP?

JuMP supports a broad range of optimization classes. However, there are still some that it doesn't support, or
that are better supported by other software packages.

You want to optimize a complicated Julia function

Packages in Julia compose well. It's common for people to pick two unrelated packages and use them in
conjunction to create novel behavior. JuMP isn't one of those packages.

If you want to optimize an ordinary differential equation from DifferentialEquations.jl or tune a neural network
from Flux.jl, consider using other packages such as:

• Optim.jl

• Optimization.jl

• NLPModels.jl

• Nonconvex.jl

Black-box, derivative free, or unconstrained optimization

JuMP supports nonlinear programs with constraints and objectives containing user-defined operators. However,
the functions must be automatically differentiable, or you need to provide explicit derivatives. (See User-
defined operators for more information.)

If your function is a black-box that is non-differentiable (for example, the function calls a simulation written in
C++), JuMP is not the right tool for the job. This also applies if you want to use a derivative free method.

Even if your problem is differentiable, if it is unconstrained there is limited benefit (and downsides in the form
of more overhead) to using JuMP over tools which are concerned only with function minimization.

Alternatives to consider are:

• Optim.jl

• Optimization.jl

• NLopt.jl

https://www.mozilla.org/MPL/2.0/
https://ampl.com/
https://github.com/SciML/DifferentialEquations.jl
https://github.com/FluxML/Flux.jl
https://github.com/JuliaNLSolvers/Optim.jl
https://github.com/SciML/Optimization.jl
https://github.com/JuliaSmoothOptimizers/NLPModels.jl
https://github.com/JuliaNonconvex/Nonconvex.jl
https://github.com/JuliaNLSolvers/Optim.jl
https://github.com/SciML/Optimization.jl
https://github.com/JuliaOpt/NLopt.jl
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Disciplined convex programming

JuMP does not support disciplined convex programming (DCP).

Alternatives to consider are:

• Convex.jl

• CVXPY [Python]

• YALMIP [MATLAB]

Note

Convex.jl is also built on MathOptInterface, and shares the same set of underlying solvers. However,
you input problems differently, and Convex.jl checks that the problem is DCP.

Stochastic programming

JuMP requires deterministic input data.

If you have stochastic input data, consider using a JuMP extension such as:

• InfiniteOpt.jl

• StochasticPrograms.jl

• SDDP.jl

Polyhedral computations

JuMP does not provide tools for working with the polyhedron formed by the set of linear constraints.

Alternatives to consider are:

• Polyhedra.jl (See the documentation to create a polyhedron from a JuMP model.)

https://dcp.stanford.edu
https://github.com/jump-dev/Convex.jl
https://github.com/cvxpy/cvxpy
https://yalmip.github.io
https://github.com/infiniteopt/InfiniteOpt.jl
https://github.com/martinbiel/StochasticPrograms.jl
https://github.com/odow/SDDP.jl
https://github.com/JuliaPolyhedra/Polyhedra.jl
https://juliapolyhedra.github.io/Polyhedra.jl/v0.7.6/optimization/#Creating-a-polyhedron-from-the-feasible-set-of-a-JuMP-model
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Installation Guide

This guide explains how to install Julia and JuMP. If you have installation troubles, read the Common installation
issues section below.

3.1 Install Julia

JuMP is a package for Julia. To use JuMP, first download and install Julia.

Tip

If you are new to Julia, read our Getting started with Julia tutorial.

Choosing a version

You can install the "Current stable release" or the "Long-term support (LTS) release."

• The "Current stable release" is the latest release of Julia. It has access to newer features, and is likely
faster.

• The "Long-term support release" is an older version of Julia that has continued to receive bug and security
fixes. However, it may not have the latest features or performance improvements.

For most users, you should install the "Current stable release," and whenever Julia releases a new version of
the current stable release, you should update your version of Julia. Note that any code you write on one version
of the current stable release will continue to work on all subsequent releases.

For users in restricted software environments (for example, your enterprise IT controls what software you can
install), you may be better off installing the long-term support release because you will not have to update
Julia as frequently.

3.2 Install JuMP

JuMP is installed using the built-in Julia package manager. Launch Julia, and then enter the following at the
julia> prompt:

julia> import Pkg

julia> Pkg.add("JuMP")

8

https://julialang.org
https://julialang.org/downloads/
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Tip

We recommend you create a Pkg environment for each project you use JuMP for, instead of adding lots
of packages to the global environment. The Pkg manager documentation has more information on this
topic.

When we release a new version of JuMP, you can update with:

julia> import Pkg

julia> Pkg.update("JuMP")

3.3 Install a solver

JuMP depends on solvers to solve optimization problems. Therefore, you will need to install one before you can
solve problems with JuMP.

Install a solver using the Julia package manager, replacing "HiGHS" by the Julia package name as appropriate.

julia> import Pkg

julia> Pkg.add("HiGHS")

Once installed, you can use HiGHS as a solver with JuMP as follows, using set_attribute to set solver-specific
options:

julia> using JuMP

julia> using HiGHS

julia> model = Model(HiGHS.Optimizer);

julia> set_attribute(model, "output_flag", false)

julia> set_attribute(model, "primal_feasibility_tolerance", 1e-8)

Note

Most packages follow the ModuleName.Optimizer naming convention, but exceptions may exist. See
the README of the Julia package's GitHub repository for more details on how to use a particular solver,
including any solver-specific options.

3.4 Supported solvers

Most solvers are not written in Julia, and some require commercial licenses to use, so installation is often more
complex.

https://julialang.github.io/Pkg.jl/v1/environments/
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• If a solver has Manual in the Installation column, the solver requires a manual installation step, such
as downloading and installing a binary, or obtaining a commercial license. Consult the README of the
relevant Julia package for more information.

• If the solver has Manualᴹ in the Installation column, the solver requires an installation of MATLAB.

• If the Installation column is missing an entry, installing the Julia package will download and install
any relevant solver binaries automatically, and you shouldn't need to do anything other than Pkg.add.

Solvers with a missing entry in the Julia Package column are written in Julia. The link in the Solver column
is the corresponding Julia package.

Where:

• LP = Linear programming

• QP = Quadratic programming

• SOCP = Second-order conic programming (including problems with convex quadratic constraints or ob-
jective)

• MCP = Mixed-complementarity programming

• NLP = Nonlinear programming

• SDP = Semidefinite programming

• (MI)XXX = Mixed-integer equivalent of problem type XXX

• CP-SAT = Constraint programming and Boolean satisfiability

Note

Developed a solver or solver wrapper? This table is open for new contributions. Edit the installation.md
file, and use the checklist Adding a new solver to the documentation when opening the pull request.

Note

Developing a solver or solver wrapper? See Models and the MathOptInterface docs for more details on
how JuMP interacts with solvers. Please get in touch via the Developer Chatroom with any questions
about connecting new solvers with JuMP.

3.5 AMPL-based solvers

Use AmplNLWriter to access solvers that support the NL format.

Some solvers, such as Bonmin, Couenne and SHOT can be installed via the Julia package manager. Others
need to be manually installed.

Consult the AMPL documentation for a complete list of supported solvers.

https://www.mathworks.com/products/matlab.html
https://github.com/jump-dev/JuMP.jl/blob/master/docs/src/installation.md
https://jump.dev/MathOptInterface.jl/stable/
https://jump.dev/pages/governance/#developer-chatroom
https://github.com/jump-dev/AmplNLWriter.jl
https://en.wikipedia.org/wiki/Nl_(format)
https://github.com/coin-or/Bonmin
https://github.com/coin-or/Couenne
https://github.com/coin-or/SHOT
https://ampl.com/products/solvers/all-solvers-for-ampl/
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3.6 GAMS-based solvers

Use GAMS.jl to access solvers available through GAMS. Such solvers include: AlphaECP, Antigone, BARON,
CONOPT, Couenne, LocalSolver, PATHNLP, SHOT, SNOPT, SoPlex. See a complete list here.

Note

GAMS.jl requires an installation of the commercial software GAMS for which a free community license
exists.

3.7 NEOS-based solvers

Use NEOSServer.jl to access solvers available through the NEOS Server.

3.8 Common installation issues

Tip

When in doubt, run import Pkg; Pkg.update() to see if updating your packages fixes the issue.
Remember you will need to exit Julia and start a new session for the changes to take effect.

Check the version of your packages

Each package is versioned with a three-part number of the form vX.Y.Z. You can check which versions you
have installed with import Pkg; Pkg.status().

This should almost always be the most-recent release. You can check the releases of a package by going to the
relevant GitHub page, and navigating to the "releases" page. For example, the list of JuMP releases is available
at: https://github.com/jump-dev/JuMP.jl/releases.

If you post on the community forum, please include the output of Pkg.status().

Unsatisfiable requirements detected

Did you get an error like Unsatisfiable requirements detected for package JuMP? The Pkg documenta-
tion has a section on how to understand and manage these conflicts.

Installing new packages can make JuMP downgrade to an earlier version

Another common complaint is that after adding a new package, code that previously worked no longer works.

This usually happens because the new package is not compatible with the latest version of JuMP. Therefore,
the package manager rolls-back JuMP to an earlier version. Here's an example.

First, we add JuMP:

(jump_example) pkg> add JuMP
Resolving package versions...

Updating `~/jump_example/Project.toml`
[4076af6c] + JuMP v0.21.5

Updating `~/jump_example/Manifest.toml`
... lines omitted ...

https://github.com/GAMS-dev/gams.jl
https://www.gams.com
https://www.gams.com/latest/docs/S_ALPHAECP.html
https://www.gams.com/latest/docs/S_ANTIGONE.html
https://www.gams.com/latest/docs/S_BARON.html
https://www.gams.com/latest/docs/S_CONOPT.html
https://www.gams.com/latest/docs/S_COUENNE.html
https://www.gams.com/latest/docs/S_LOCALSOLVER.html
https://www.gams.com/latest/docs/S_PATHNLP.html
https://www.gams.com/latest/docs/S_SHOT.html
https://www.gams.com/latest/docs/S_SNOPT.html
https://www.gams.com/latest/docs/S_SOPLEX.html
https://www.gams.com/latest/docs/S_MAIN.html
https://github.com/GAMS-dev/gams.jl
https://www.gams.com
https://www.gams.com/latest/docs/UG_License.html#GAMS_Community_Licenses
https://github.com/odow/NEOSServer.jl
https://neos-server.org
https://semver.org
https://github.com/jump-dev/JuMP.jl/releases
https://jump.dev/forum
https://julialang.github.io/Pkg.jl/v1/managing-packages/#conflicts
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The + JuMP v0.21.5 line indicates that JuMP has been added at version 0.21.5. However, watch what happens
when we add JuMPeR:

(jump_example) pkg> add JuMPeR
Resolving package versions...

Updating `~/jump_example/Project.toml`
[4076af6c] ↓ JuMP v0.21.5 ⇒ v0.18.6
[707a9f91] + JuMPeR v0.6.0

Updating `~/jump_example/Manifest.toml`
... lines omitted ...

JuMPeR gets added at version 0.6.0 (+ JuMPeR v0.6.0), but JuMP gets downgraded from 0.21.5 to 0.18.6 (↓
JuMP v0.21.5 ⇒ v0.18.6)! The reason for this is that JuMPeR doesn't support a version of JuMP newer than
0.18.6.

Tip

Pay careful attention to the output of the package manager when adding new packages, especially
when you see a package being downgraded.

https://github.com/iainnz/JuMPeR.jl
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Solver Julia Package Installation License Supports

Alpine.jl Triad NS (MI)NLP
Artelys Knitro KNITRO.jl Manual Comm. (MI)LP, (MI)SOCP, (MI)NLP

BARON BARON.jl Manual Comm. (MI)NLP
Bonmin AmplNLWriter.jl EPL (MI)NLP

Cbc Cbc.jl EPL (MI)LP
CDCS CDCS.jl Manualᴹ GPL LP, SOCP, SDP
CDD CDDLib.jl GPL LP

Clarabel.jl Apache LP, QP, SOCP, SDP
Clp Clp.jl EPL LP

COPT COPT.jl Comm. (MI)LP, SOCP, SDP
COSMO.jl Apache LP, QP, SOCP, SDP
Couenne AmplNLWriter.jl EPL (MI)NLP
CPLEX CPLEX.jl Manual Comm. (MI)LP, (MI)SOCP
CSDP CSDP.jl EPL LP, SDP
DAQP DAQP.jl MIT (Mixed-binary) QP
DSDP DSDP.jl DSDP LP, SDP

EAGO.jl MIT (MI)NLP
ECOS ECOS.jl GPL LP, SOCP

FICO Xpress Xpress.jl Manual Comm. (MI)LP, (MI)SOCP
GLPK GLPK.jl GPL (MI)LP
Gurobi Gurobi.jl Manual Comm. (MI)LP, (MI)SOCP
HiGHS HiGHS.jl MIT (MI)LP, QP

Hypatia.jl MIT LP, SOCP, SDP
Ipopt Ipopt.jl EPL LP, QP, NLP

Juniper.jl MIT (MI)SOCP, (MI)NLP
Loraine.jl MIT LP, SDP
MadNLP.jl MIT LP, QP, NLP
MAiNGO MAiNGO.jl EPL 2.0 (MI)NLP
Manopt.jl MIT NLP
MiniZinc MiniZinc.jl Manual MPL-2 CP-SAT
Minotaur AmplNLWriter.jl Manual BSD-like (MI)NLP
MOSEK MosekTools.jl Manual Comm. (MI)LP, (MI)SOCP, SDP
NLopt NLopt.jl GPL LP, QP, NLP

Octeract AmplNLWriter.jl Comm. (MI)NLP
Optim.jl MIT NLP
OSQP OSQP.jl Apache LP, QP
PATH PATHSolver.jl MIT MCP

Pajarito.jl MPL-2 (MI)NLP, (MI)SOCP, (MI)SDP
Pavito.jl MPL-2 (MI)NLP
Penbmi Penopt.jl Comm. Bilinear SDP

Percival.jl MPL-2 NLP
PolyJuMP.KKT PolyJuMP.jl MIT NLP

PolyJuMP.QCQP PolyJuMP.jl MIT NLP
ProxSDP.jl MIT LP, SOCP, SDP
RAPOSa AmplNLWriter.jl Manual RAPOSa (MI)NLP

SCIP SCIP.jl Apache (MI)LP, (MI)NLP
SCS SCS.jl MIT LP, QP, SOCP, SDP
SDPA SDPA.jl, SDPAFamily.jl GPL LP, SDP
SDPLR SDPLR.jl GPL LP, SDP
SDPNAL SDPNAL.jl Manualᴹ CC BY-SA LP, SDP
SDPT3 SDPT3.jl Manualᴹ GPL LP, SOCP, SDP
SeDuMi SeDuMi.jl Manualᴹ GPL LP, SOCP, SDP
SHOT AmplNLWriter.jl EPL (MI)NLP

StatusSwitchingQP.jl MIT LP, QP
Tulip.jl MPL-2 LP

CATrustRegionMethod.jl MIT NLP

https://github.com/lanl-ansi/Alpine.jl
https://www.artelys.com/knitro
https://github.com/jump-dev/KNITRO.jl
http://minlp.com/baron
https://github.com/joehuchette/BARON.jl
http://github.com/coin-or/Bonmin
https://github.com/jump-dev/AmplNLWriter.jl
https://github.com/coin-or/Cbc
https://github.com/jump-dev/Cbc.jl
https://github.com/oxfordcontrol/CDCS
https://github.com/oxfordcontrol/CDCS.jl
https://github.com/cddlib/cddlib
https://github.com/JuliaPolyhedra/CDDLib.jl
https://github.com/oxfordcontrol/Clarabel.jl
https://github.com/coin-or/Clp
https://github.com/jump-dev/Clp.jl
https://www.shanshu.ai/copt
https://github.com/COPT-Public/COPT.jl
https://github.com/oxfordcontrol/COSMO.jl
http://github.com/coin-or/Couenne
https://github.com/jump-dev/AmplNLWriter.jl
https://www.ibm.com/analytics/cplex-optimizer/
https://github.com/jump-dev/CPLEX.jl
https://github.com/coin-or/Csdp
https://github.com/jump-dev/CSDP.jl
https://github.com/darnstrom/daqp
https://github.com/darnstrom/DAQP.jl
http://www.mcs.anl.gov/hs/software/DSDP/
https://github.com/jump-dev/DSDP.jl
https://github.com/psorlab/EAGO.jl
https://github.com/ifa-ethz/ecos
https://github.com/jump-dev/ECOS.jl
https://www.fico.com/en/products/fico-xpress-optimization-suite
https://github.com/jump-dev/Xpress.jl
http://www.gnu.org/software/glpk/
https://github.com/jump-dev/GLPK.jl
https://gurobi.com
https://github.com/jump-dev/Gurobi.jl
https://github.com/ERGO-Code/HiGHS
https://github.com/jump-dev/HiGHS.jl
https://github.com/chriscoey/Hypatia.jl
https://github.com/coin-or/Ipopt
https://github.com/jump-dev/Ipopt.jl
https://github.com/lanl-ansi/Juniper.jl
https://github.com/kocvara/Loraine.jl
https://github.com/sshin23/MadNLP.jl
https://git.rwth-aachen.de/avt-svt/public/maingo
https://github.com/MAiNGO-github/MAiNGO.jl
https://github.com/JuliaManifolds/Manopt.jl
https://www.minizinc.org/
https://github.com/jump-dev/MiniZinc.jl
https://github.com/coin-or/minotaur
https://github.com/jump-dev/AmplNLWriter.jl
https://www.mosek.com/
https://github.com/jump-dev/MosekTools.jl
https://github.com/stevengj/nlopt
https://github.com/JuliaOpt/NLopt.jl
https://octeract.gg
https://github.com/jump-dev/AmplNLWriter.jl
https://github.com/JuliaNLSolvers/Optim.jl/
https://osqp.org/
https://github.com/oxfordcontrol/OSQP.jl
http://pages.cs.wisc.edu/{~}ferris/path.html
https://github.com/chkwon/PATHSolver.jl
https://github.com/jump-dev/Pajarito.jl
https://github.com/jump-dev/Pavito.jl
http://www.penopt.com/penbmi.html
https://github.com/jump-dev/Penopt.jl/
https://github.com/JuliaSmoothOptimizers/Percival.jl/
https://github.com/jump-dev/PolyJuMP.jl
https://github.com/jump-dev/PolyJuMP.jl
https://github.com/jump-dev/PolyJuMP.jl
https://github.com/jump-dev/PolyJuMP.jl
https://github.com/mariohsouto/ProxSDP.jl
https://raposa.usc.es/
https://github.com/jump-dev/AmplNLWriter.jl
https://scipopt.org/
https://github.com/scipopt/SCIP.jl
https://github.com/cvxgrp/scs
https://github.com/jump-dev/SCS.jl
http://sdpa.sourceforge.net/
https://github.com/jump-dev/SDPA.jl
https://github.com/ericphanson/SDPAFamily.jl
https://github.com/sburer/sdplr
https://github.com/jump-dev/SDPLR.jl
https://blog.nus.edu.sg/mattohkc/softwares/sdpnalplus/
https://github.com/jump-dev/SDPNAL.jl
https://blog.nus.edu.sg/mattohkc/softwares/sdpt3/
https://github.com/jump-dev/SDPT3.jl
http://sedumi.ie.lehigh.edu/
https://github.com/jump-dev/SeDuMi.jl
https://github.com/coin-or/SHOT
https://github.com/jump-dev/AmplNLWriter.jl
https://github.com/PharosAbad/StatusSwitchingQP.jl
https://github.com/ds4dm/Tulip.jl
https://github.com/fadihamad94/CATrustRegionMethod.jl
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Chapter 4

Getting started

4.1 Introduction

The purpose of these "Getting started" tutorials is to teach new users the basics of Julia and JuMP.

How these tutorials are structured

Having a high-level overview of how this part of the documentation is structured will help you know where to
look for certain things.

• The "Getting started with" tutorials are basic introductions to different aspects of JuMP and Julia. If you
are new to JuMP and Julia, start by reading them in the following order:

– Getting started with Julia

– Getting started with JuMP

– Getting started with sets and indexing

– Getting started with data and plotting

• Julia has a reputation for being "fast." Unfortunately, it is also easy to write slow Julia code. Performance
tips contains a number of important tips on how to improve the performance of models you write in JuMP.

• Design patterns for larger models is a more advanced tutorial that is aimed at users writing large JuMP
models. It's in the "Getting started" section to give you an early preview of how JuMP makes it easy to
structure larger models. If you are new to JuMP you may want to skip or briefly skim this tutorial, and
come back to it once you have written a few JuMP models.

4.2 Getting started with Julia

This tutorial was generated using Literate.jl. Download the source as a .jl file.

Because JuMP is embedded in Julia, knowing some basic Julia is important before you start learning JuMP.

Tip

This tutorial is designed to provide a minimalist crash course in the basics of Julia. You can find re-
sources that provide a more comprehensive introduction to Julia here.

15

https://github.com/fredrikekre/Literate.jl
tutorials/getting_started/getting_started_with_julia.jl
https://julialang.org/learning/
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Installing Julia

To install Julia, download the latest stable release, then follow the platform specific install instructions.

Tip

Unless you know otherwise, you probably want the 64-bit version.

Next, you need an IDE to develop in. VS Code is a popular choice, so follow these install instructions.

Julia can also be used with Jupyter notebooks or the reactive notebooks of Pluto.jl.

The Julia REPL

The main way of interacting with Julia is via its REPL (Read Evaluate Print Loop). To access the REPL, start the
Julia executable to arrive at the julia> prompt, and then start coding:

julia> 1 + 1
2

As your programs become larger, write a script as a text file, and then run that file using:

julia> include("path/to/file.jl")

Warning

Because of Julia's startup latency, running scripts from the command line like the following is slow:

$ julia path/to/file.jl

Use the REPL or a notebook instead.

Code blocks in this documentation

In this documentation you'll see a mix of code examples with and without the julia>.

The Julia prompt is mostly used to demonstrate short code snippets, and the output is exactly what you will
see if run from the REPL.

Blocks without the julia> can be copy-pasted into the REPL, but they are used because they enable richer
output like plots or LaTeX to be displayed in the online and PDF versions of the documentation. If you run them
from the REPL you may see different output.

Where to get help

• Read the documentation

– JuMP https://jump.dev/JuMP.jl/stable/

– Julia https://docs.julialang.org/en/v1/

• Ask (or browse) the Julia community forum: https://discourse.julialang.org

https://julialang.org/downloads/
https://julialang.org/downloads/platform/
https://www.julia-vscode.org/docs/stable/gettingstarted/
https://github.com/JuliaLang/IJulia.jl
https://github.com/fonsp/Pluto.jl
https://jump.dev/JuMP.jl/stable/JuMP.pdf
https://jump.dev/JuMP.jl/stable/
https://docs.julialang.org/en/v1/
https://discourse.julialang.org
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– If the question is JuMP-related, ask in the Optimization (Mathematical) section, or tag your question
with "jump"

To access the built-in help at the REPL, type ? to enter help-mode, followed by the name of the function to
lookup:

help?> print
search: print println printstyled sprint isprint prevind parentindices precision escape_string

print([io::IO], xs...)

Write to io (or to the default output stream stdout if io is not given) a canonical
(un-decorated) text representation. The representation used by print includes minimal formatting
and tries to avoid Julia-specific details.

print falls back to calling show, so most types should just define show. Define print if your
type has a separate "plain" representation. For example, show displays strings with quotes, and
print displays strings without quotes.

string returns the output of print as a string.

Examples
≡≡≡≡≡≡≡≡≡≡

julia> print("Hello World!")
Hello World!
julia> io = IOBuffer();

julia> print(io, "Hello", ' ', :World!)

julia> String(take!(io))
"Hello World!"

Numbers and arithmetic

Since we want to solve optimization problems, we're going to be using a lot of math. Luckily, Julia is great for
math, with all the usual operators:

julia> 1 + 1
2

julia> 1 - 2
-1

julia> 2 * 2
4

julia> 4 / 5
0.8

julia> 3^2
9

https://discourse.julialang.org/c/domain/opt/13
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Did you notice how Julia didn't print .0 after some of the numbers? Julia is a dynamic language, which means
you never have to explicitly declare the type of a variable. However, in the background, Julia is giving each
variable a type. Check the type of something using the typeof function:

julia> typeof(1)
Int64

julia> typeof(1.0)
Float64

Here 1 is an Int64, which is an integer with 64 bits of precision, and 1.0 is a Float64, which is a floating point
number with 64-bits of precision.

Tip

If you aren't familiar with floating point numbers, make sure to read the Floating point numbers section.

We create complex numbers using im:

julia> x = 2 + 1im
2 + 1im

julia> real(x)
2

julia> imag(x)
1

julia> typeof(x)
Complex{Int64}

julia> x * (1 - 2im)
4 - 3im

Info

The curly brackets surround what we call the parameters of a type. You can read Complex{Int64}
as "a complex number, where the real and imaginary parts are represented by Int64." If we call
typeof(1.0 + 2.0im) it will be Complex{Float64}, which a complex number with the parts repre-
sented by Float64.

There are also some cool things like an irrational representation of π.

julia> π
π = 3.1415926535897...

Tip

To make π (and most other Greek letters), type \pi and then press [TAB].
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julia> typeof(π)
Irrational{:π}

However, if we do math with irrational numbers, they get converted to Float64:

julia> typeof(2π / 3)
Float64

Floating point numbers

Warning

If you aren't familiar with floating point numbers, make sure to read this section carefully.

A Float64 is a floating point approximation of a real number using 64-bits of information.

Because it is an approximation, things we know hold true in mathematics don't hold true in a computer. For
example:

julia> 0.1 * 3 == 0.3
false

A more complicated example is:

julia> sin(2π / 3) == √3 / 2
false

Tip

Get √ by typing \sqrt then press [TAB].

Let's see what the differences are:

julia> 0.1 * 3 - 0.3
5.551115123125783e-17

julia> sin(2π / 3) - √3 / 2
1.1102230246251565e-16

They are small, but not zero.

One way of explaining this difference is to consider how we would write 1 / 3 and 2 / 3 using only four digits
after the decimal point. We would write 1 / 3 as 0.3333, and 2 / 3 as 0.6667. So, despite the fact that 2 *
(1 / 3) == 2 / 3, 2 * 0.3333 == 0.6666 != 0.6667.

Let's try that again using ≈ (\approx + [TAB]) instead of ==:

https://en.wikipedia.org/wiki/Floating-point_arithmetic


CHAPTER 4. GETTING STARTED 20

julia> 0.1 * 3 ≈ 0.3
true

julia> sin(2π / 3) ≈ √3 / 2
true

≈ is a clever way of calling the isapprox function:

julia> isapprox(sin(2π / 3), √3 / 2; atol = 1e-8)
true

Warning

Floating point is the reason solvers use tolerances when they solve optimization models. A common
mistake you're likely to make is checking whether a binary variable is 0 using value(z) == 0. Always
remember to use something like isapprox when comparing floating point numbers.

Note that isapprox will always return false if one of the number being compared is 0 and atol is zero (its
default value).

julia> 1e-300 ≈ 0.0
false

so always set a nonzero value of atol if one of the arguments can be zero.

julia> isapprox(1e-9, 0.0; atol = 1e-8)
true

Tip

Gurobi has a good series of articles on the implications of floating point in optimization if you want to
read more.

If you aren't careful, floating point arithmetic can throw up all manner of issues. For example:

julia> 1 + 1e-16 == 1
true

It even turns out that floating point numbers aren't associative:

julia> (1 + 1e-16) - 1e-16 == 1 + (1e-16 - 1e-16)
false

It's important to note that this issue isn't Julia-specific. It happens in every programming language (try it out
in Python).

https://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html
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Vectors, matrices, and arrays

Similar to MATLAB, Julia has native support for vectors, matrices and tensors; all of which are represented by
arrays of different dimensions. Vectors are constructed by comma-separated elements surrounded by square
brackets:

julia> b = [5, 6]
2-element Vector{Int64}:
5
6

Matrices can be constructed with spaces separating the columns, and semicolons separating the rows:

julia> A = [1.0 2.0; 3.0 4.0]
2×2 Matrix{Float64}:
1.0 2.0
3.0 4.0

We can do linear algebra:

julia> x = A \ b
2-element Vector{Float64}:
-3.9999999999999987
4.499999999999999

Info

Here is floating point at work again; x is approximately [-4, 4.5].

julia> A * x
2-element Vector{Float64}:
5.0
6.0

julia> A * x ≈ b
true

Note that when multiplying vectors and matrices, dimensions matter. For example, you can't multiply a vector
by a vector:

julia> b * b
MethodError: no method matching *(::Vector{Int64}, ::Vector{Int64})
The function `*` exists, but no method is defined for this combination of argument types.

Closest candidates are:
*(::Any, ::Any, !Matched::Any, !Matched::Any...)
@ Base operators.jl:596

*(!Matched::Type{<:LinearOperatorCollection.ProdOp}, ::Any, !Matched::Any)
@ LinearOperatorCollection ~/.julia/packages/LinearOperatorCollection/qbON0/src/ProdOp.jl:73

*(!Matched::ChainRulesCore.NotImplemented, ::Any)
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@ ChainRulesCore ~/.julia/packages/ChainRulesCore/U6wNx/src/tangent_arithmetic.jl:37
...

But multiplying transposes works:

julia> b' * b
61

julia> b * b'
2×2 Matrix{Int64}:
25 30
30 36

Other common types

Comments

Although not technically a type, code comments begin with the # character:

julia> 1 + 1 # This is a comment
2

Multiline comments begin with #= and end with =#:

#=
Here is a
multiline comment
=#

Comments can even be nested inside expressions. This is sometimes helpful when documenting inputs to
functions:

julia> isapprox(
sin(π),
0.0;
#= We need an explicit atol here because we are comparing with 0 =#
atol = 0.001,

)
true

Strings

Double quotes are used for strings:

julia> typeof("This is Julia")
String

Unicode is fine in strings:
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julia> typeof("π is about 3.1415")
String

Use println to print a string:

julia> println("Hello, World!")
Hello, World!

Use $() to interpolate values into a string:

julia> x = 123
123

julia> println("The value of x is: $(x)")
The value of x is: 123

Use triple-quotes for multiline strings:

julia> s = """
Here is
a
multiline string
"""

"Here is\na\nmultiline string\n"

julia> println(s)
Here is
a
multiline string

Symbols

Julia Symbols are a data structure from the compiler that represent Julia identifiers (that is, variable names).

julia> println("The value of x is: $(eval(:x))")
The value of x is: 123

Warning

We used eval here to demonstrate how Julia links Symbols to variables. However, avoid calling eval
in your code. It is usually a sign that your code is doing something that could be more easily achieved
a different way. The Community Forum is a good place to ask for advice on alternative approaches.

julia> typeof(:x)
Symbol

https://jump.dev/forum
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You can think of a Symbol as a String that takes up less memory, and that can't be modified.

Convert between String and Symbol using their constructors:

julia> String(:abc)
"abc"

julia> Symbol("abc")
:abc

Tip

Symbols are often (ab)used to stand in for a String or an Enum, when one of the latter is likely a better
choice. The JuMP Style guide recommends reserving Symbols for identifiers. See @enum vs. Symbol
for more.

Tuples

Julia makes extensive use of a simple data structure called Tuples. Tuples are immutable collections of values.
For example:

julia> t = ("hello", 1.2, :foo)
("hello", 1.2, :foo)

julia> typeof(t)
Tuple{String, Float64, Symbol}

Tuples can be accessed by index, similar to arrays:

julia> t[2]
1.2

And they can be "unpacked" like so:

julia> a, b, c = t
("hello", 1.2, :foo)

julia> b
1.2

The values can also be given names, which is a convenient way of making light-weight data structures.

julia> t = (word = "hello", num = 1.2, sym = :foo)
(word = "hello", num = 1.2, sym = :foo)

Values can be accessed using dot syntax:
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julia> t.word
"hello"

Dictionaries

Similar to Python, Julia has native support for dictionaries. Dictionaries provide a very generic way of mapping
keys to values. For example, a map of integers to strings:

julia> d1 = Dict(1 => "A", 2 => "B", 4 => "D")
Dict{Int64, String} with 3 entries:
4 => "D"
2 => "B"
1 => "A"

Info

Type-stuff again: Dict{Int64,String} is a dictionary with Int64 keys and String values.

Looking up a value uses the bracket syntax:

julia> d1[2]
"B"

Dictionaries support non-integer keys and can mix data types:

julia> Dict("A" => 1, "B" => 2.5, "D" => 2 - 3im)
Dict{String, Number} with 3 entries:
"B" => 2.5
"A" => 1
"D" => 2-3im

Info

Julia types form a hierarchy. Here the value type of the dictionary is Number, which is a generalization
of Int64, Float64, and Complex{Int}. Leaf nodes in this hierarchy are called "concrete" types, and
all others are called "Abstract." In general, having variables with abstract types like Number can lead
to slower code, so you should try to make sure every element in a dictionary or vector is the same
type. For example, in this case we could represent every element as a Complex{Float64}:

julia> Dict("A" => 1.0 + 0.0im, "B" => 2.5 + 0.0im, "D" => 2.0 - 3.0im)
Dict{String, ComplexF64} with 3 entries:
"B" => 2.5+0.0im
"A" => 1.0+0.0im
"D" => 2.0-3.0im

Dictionaries can be nested:
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julia> d2 = Dict("A" => 1, "B" => 2, "D" => Dict(:foo => 3, :bar => 4))
Dict{String, Any} with 3 entries:
"B" => 2
"A" => 1
"D" => Dict(:bar=>4, :foo=>3)

julia> d2["B"]
2

julia> d2["D"][:foo]
3

Structs

You can define custom datastructures with struct:

julia> struct MyStruct
x::Int
y::String
z::Dict{Int,Int}

end

julia> a = MyStruct(1, "a", Dict(2 => 3))
Main.MyStruct(1, "a", Dict(2 => 3))

julia> a.x
1

By default, these are not mutable

julia> a.x = 2
setfield!: immutable struct of type MyStruct cannot be changed

However, you can declare a mutable struct which is mutable:

julia> mutable struct MyStructMutable
x::Int
y::String
z::Dict{Int,Int}

end

julia> a = MyStructMutable(1, "a", Dict(2 => 3))
Main.MyStructMutable(1, "a", Dict(2 => 3))

julia> a.x
1

julia> a.x = 2
2

julia> a
Main.MyStructMutable(2, "a", Dict(2 => 3))
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Loops

Julia has native support for for-each style loops with the syntax for <value> in <collection> end:

julia> for i in 1:5
println(i)

end
1
2
3
4
5

Info

Ranges are constructed as start:stop, or start:step:stop.

julia> for i in 1.2:1.1:5.6
println(i)

end
1.2
2.3
3.4
4.5
5.6

This for-each loop also works with dictionaries:

julia> for (key, value) in Dict("A" => 1, "B" => 2.5, "D" => 2 - 3im)
println("$(key): $(value)")

end
B: 2.5
A: 1
D: 2 - 3im

Note that in contrast to vector languages like MATLAB and R, loops do not result in a significant performance
degradation in Julia.

Control flow

Julia control flow is similar to MATLAB, using the keywords if-elseif-else-end, and the logical operators ||
and && for or and and respectively:

julia> for i in 0:5:15
if i < 5

println("$(i) is less than 5")
elseif i < 10

println("$(i) is less than 10")
else

if i == 10
println("the value is 10")
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else
println("$(i) is bigger than 10")

end
end

end
0 is less than 5
5 is less than 10
the value is 10
15 is bigger than 10

Comprehensions

Similar to languages like Haskell and Python, Julia supports the use of simple loops in the construction of arrays
and dictionaries, called comprehensions.

A list of increasing integers:

julia> [i for i in 1:5]
5-element Vector{Int64}:
1
2
3
4
5

Matrices can be built by including multiple indices:

julia> [i * j for i in 1:5, j in 5:10]
5×6 Matrix{Int64}:
5 6 7 8 9 10
10 12 14 16 18 20
15 18 21 24 27 30
20 24 28 32 36 40
25 30 35 40 45 50

Conditional statements can be used to filter out some values:

julia> [i for i in 1:10 if i % 2 == 1]
5-element Vector{Int64}:
1
3
5
7
9

A similar syntax can be used for building dictionaries:

julia> Dict("$(i)" => i for i in 1:10 if i % 2 == 1)
Dict{String, Int64} with 5 entries:
"1" => 1
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"5" => 5
"7" => 7
"9" => 9
"3" => 3

Functions

A simple function is defined as follows:

julia> function print_hello()
return println("hello")

end
print_hello (generic function with 1 method)

julia> print_hello()
hello

Arguments can be added to a function:

julia> function print_it(x)
return println(x)

end
print_it (generic function with 1 method)

julia> print_it("hello")
hello

julia> print_it(1.234)
1.234

julia> print_it(:my_id)
my_id

Optional keyword arguments are also possible:

julia> function print_it(x; prefix = "value:")
return println("$(prefix) $(x)")

end
print_it (generic function with 1 method)

julia> print_it(1.234)
value: 1.234

julia> print_it(1.234; prefix = "val:")
val: 1.234

The keyword return is used to specify the return values of a function:



CHAPTER 4. GETTING STARTED 30

julia> function mult(x; y = 2.0)
return x * y

end
mult (generic function with 1 method)

julia> mult(4.0)
8.0

julia> mult(4.0; y = 5.0)
20.0

Anonymous functions

The syntax input -> output creates an anonymous function. These are most useful when passed to other
functions. For example:

julia> f = x -> x^2
#11 (generic function with 1 method)

julia> f(2)
4

julia> map(x -> x^2, 1:4)
4-element Vector{Int64}:
1
4
9
16

Type parameters

We can constrain the inputs to a function using type parameters, which are :: followed by the type of the
input we want. For example:

julia> function foo(x::Int)
return x^2

end
foo (generic function with 1 method)

julia> function foo(x::Float64)
return exp(x)

end
foo (generic function with 2 methods)

julia> function foo(x::Number)
return x + 1

end
foo (generic function with 3 methods)

julia> foo(2)
4
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julia> foo(2.0)
7.38905609893065

julia> foo(1 + 1im)
2 + 1im

But what happens if we call foo with something we haven't defined it for?

julia> foo([1, 2, 3])
MethodError: no method matching foo(::Vector{Int64})
The function `foo` exists, but no method is defined for this combination of argument types.

Closest candidates are:
foo(!Matched::Float64)
@ Main REPL[2]:1

foo(!Matched::Int64)
@ Main REPL[1]:1

foo(!Matched::Number)
@ Main REPL[3]:1

A MethodError means that you passed a function something that didn't match the type that it was expecting.
In this case, the error message says that it doesn't know how to handle an Vector{Int64}, but it does know
how to handle Float64, Int64, and Number.

Tip

Read the "Closest candidates" part of the error message carefully to get a hint as to what was expected.

Broadcasting

In the example above, we didn't define what to do if fwas passed a Vector. Luckily, Julia provides a convenient
syntax for mapping f element-wise over arrays. Just add a . between the name of the function and the opening
(. This works for any function, including functions with multiple arguments. For example:

julia> foo.([1, 2, 3])
3-element Vector{Int64}:
1
4
9

Tip

Get a MethodError when calling a function that takes a Vector, Matrix, or Array? Try broadcasting.

Mutable vs immutable objects

Some types in Julia are mutable, which means you can change the values inside them. A good example is an
array. You can modify the contents of an array without having to make a new array.

In contrast, types like Float64 are immutable. You cannot modify the contents of a Float64.
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This is something to be aware of when passing types into functions. For example:

julia> function mutability_example(mutable_type::Vector{Int}, immutable_type::Int)
mutable_type[1] += 1
immutable_type += 1
return

end
mutability_example (generic function with 1 method)

julia> mutable_type = [1, 2, 3]
3-element Vector{Int64}:
1
2
3

julia> immutable_type = 1
1

julia> mutability_example(mutable_type, immutable_type)

julia> println("mutable_type: $(mutable_type)")
mutable_type: [2, 2, 3]

julia> println("immutable_type: $(immutable_type)")
immutable_type: 1

Because Vector{Int} is a mutable type, modifying the variable inside the function changed the value outside
of the function. In contrast, the change to immutable_type didn't modify the value outside the function.

You can check mutability with the isimmutable function:

julia> isimmutable([1, 2, 3])
false

julia> isimmutable(1)
true

The package manager

Installing packages

No matter how wonderful Julia's base language is, at some point you will want to use an extension package.
Some of these are built-in, for example random number generation is available in the Random package in the
standard library. These packages are loaded with the commands using and import.

julia> using Random # The equivalent of Python's `from Random import *`

julia> import Random # The equivalent of Python's `import Random`

julia> Random.seed!(33)
Random.TaskLocalRNG()

julia> [rand() for i in 1:10]
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10-element Vector{Float64}:
0.4745319377345316
0.9650392357070774
0.8194019096093067
0.9297749959069098
0.3127122336048005
0.9684448191382753
0.9063743823581542
0.8386731983150535
0.5103924401614957
0.9296414851080324

The Package Manager is used to install packages that are not part of Julia's standard library.

For example the following can be used to install JuMP,

using Pkg
Pkg.add("JuMP")

For a complete list of registered Julia packages see the package listing at JuliaHub.

From time to you may wish to use a Julia package that is not registered. In this case a git repository URL can
be used to install the package.

using Pkg
Pkg.add("https://github.com/user-name/MyPackage.jl.git")

Package environments

By default, Pkg.add will add packages to Julia's global environment. However, Julia also has built-in support
for virtual environments.

Activate a virtual environment with:

import Pkg; Pkg.activate("/path/to/environment")

You can see what packages are installed in the current environment with Pkg.status().

Tip

We strongly recommend you create a Pkg environment for each project that you create in Julia, and
add only the packages that you need, instead of adding lots of packages to the global environment.
The Pkg manager documentation has more information on this topic.

4.3 Getting started with JuMP

This tutorial was generated using Literate.jl. Download the source as a .jl file.

This tutorial is aimed at providing a quick introduction to writing and solving optimization models with JuMP.

If you're new to Julia, start by reading Getting started with Julia.

https://juliahub.com
https://julialang.github.io/Pkg.jl/v1/environments/
https://github.com/fredrikekre/Literate.jl
tutorials/getting_started/getting_started_with_JuMP.jl
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What is JuMP?

JuMP ("Julia for Mathematical Programming") is an open-source modeling language that is embedded in Julia.
It allows users to formulate various classes of optimization problems (linear, mixed-integer, quadratic, conic
quadratic, semidefinite, and nonlinear) with easy-to-read code. These problems can then be solved using
state-of-the-art open-source and commercial solvers.

JuMP also makes advanced optimization techniques easily accessible from a high-level language.

What is a solver?

A solver is a software package that incorporates algorithms for finding solutions to one or more classes of
problem.

For example, HiGHS is a solver for linear programming (LP) and mixed integer programming (MIP) problems.
It incorporates algorithms such as the simplex method and the interior-point method.

The Supported-solvers table lists the open-source and commercial solvers that JuMP currently supports.

What is MathOptInterface?

Each solver has its own concepts and data structures for representing optimization models and obtaining
results.

MathOptInterface (MOI) is an abstraction layer that JuMP uses to convert from the problem written in JuMP to
the solver-specific data structures for each solver.

MOI can be used directly, or through a higher-level modeling interface like JuMP.

Because JuMP is built on top of MOI, you'll often see the MathOptInterface. prefix displayed when JuMP types
are printed. However, you'll only need to understand and interact with MOI to accomplish advanced tasks such
as creating solver-independent callbacks.

Installation

JuMP is a package for Julia. From Julia, JuMP is installed by using the built-in package manager.

import Pkg
Pkg.add("JuMP")

You also need to include a Julia packagewhich provides an appropriate solver. One such solver is HiGHS.Optimizer,
which is provided by the HiGHS.jl package.

import Pkg
Pkg.add("HiGHS")

See Installation Guide for a list of other solvers you can use.

An example

Let's solve the following linear programming problem using JuMP and HiGHS. We will first look at the complete
code to solve the problem and then go through it step by step.

Here's the problem:

https://github.com/jump-dev/MathOptInterface.jl
https://github.com/jump-dev/HiGHS.jl
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min 12x+ 20y

s.t. 6x+ 8y ≥ 100

7x+ 12y ≥ 120

x ≥ 0

y ∈ [0, 3]

And here's the code to solve this problem:

julia> using JuMP

julia> using HiGHS

julia> model = Model(HiGHS.Optimizer)
A JuMP Model
├ solver: HiGHS
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none

julia> @variable(model, x >= 0)
x

julia> @variable(model, 0 <= y <= 3)
y

julia> @objective(model, Min, 12x + 20y)
12 x + 20 y

julia> @constraint(model, c1, 6x + 8y >= 100)
c1 : 6 x + 8 y ≥ 100

julia> @constraint(model, c2, 7x + 12y >= 120)
c2 : 7 x + 12 y ≥ 120

julia> print(model)
Min 12 x + 20 y
Subject to
c1 : 6 x + 8 y ≥ 100
c2 : 7 x + 12 y ≥ 120
x ≥ 0
y ≥ 0
y ≤ 3

julia> optimize!(model)
Running HiGHS 1.10.0 (git hash: fd8665394e): Copyright (c) 2025 HiGHS under MIT licence terms
LP has 2 rows; 2 cols; 4 nonzeros
Coefficient ranges:
Matrix [6e+00, 1e+01]
Cost [1e+01, 2e+01]
Bound [3e+00, 3e+00]
RHS [1e+02, 1e+02]

Presolving model
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2 rows, 2 cols, 4 nonzeros 0s
2 rows, 2 cols, 4 nonzeros 0s
Presolve : Reductions: rows 2(-0); columns 2(-0); elements 4(-0) - Not reduced
Problem not reduced by presolve: solving the LP
Using EKK dual simplex solver - serial
Iteration Objective Infeasibilities num(sum)

0 0.0000000000e+00 Pr: 2(220) 0s
2 2.0500000000e+02 Pr: 0(0) 0s

Model status : Optimal
Simplex iterations: 2
Objective value : 2.0500000000e+02
Relative P-D gap : 1.3864248503e-16
HiGHS run time : 0.00

julia> termination_status(model)
OPTIMAL::TerminationStatusCode = 1

julia> primal_status(model)
FEASIBLE_POINT::ResultStatusCode = 1

julia> dual_status(model)
FEASIBLE_POINT::ResultStatusCode = 1

julia> objective_value(model)
204.99999999999997

julia> value(x)
15.000000000000005

julia> value(y)
1.249999999999996

julia> shadow_price(c1)
-0.24999999999999922

julia> shadow_price(c2)
-1.5000000000000007

Step-by-step

Once JuMP is installed, to use JuMP in your programs write:

julia> using JuMP

We also need to include a Julia package which provides an appropriate solver. We want to use HiGHS.Optimizer
here which is provided by the HiGHS.jl package:

julia> using HiGHS

JuMP builds problems incrementally in a Model object. Create a model by passing an optimizer to the Model
function:
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julia> model = Model(HiGHS.Optimizer)
A JuMP Model
├ solver: HiGHS
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none

Variables are modeled using @variable:

julia> @variable(model, x >= 0)
x

Info

The macro creates a new Julia object, x, in the current scope. We could have made this more explicit
by writing:

x = @variable(model, x >= 0)

but the macro does this automatically for us to save writing x twice.

Variables can have lower and upper bounds:

julia> @variable(model, 0 <= y <= 30)
y

The objective is set using @objective:

julia> @objective(model, Min, 12x + 20y)
12 x + 20 y

Constraints are modeled using @constraint. Here, c1 and c2 are the names of our constraint:

julia> @constraint(model, c1, 6x + 8y >= 100)
c1 : 6 x + 8 y ≥ 100

julia> @constraint(model, c2, 7x + 12y >= 120)
c2 : 7 x + 12 y ≥ 120

Call print to display the model:

julia> print(model)
Min 12 x + 20 y
Subject to
c1 : 6 x + 8 y ≥ 100
c2 : 7 x + 12 y ≥ 120
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x ≥ 0
y ≥ 0
y ≤ 30

To solve the optimization problem, call the optimize! function:

julia> optimize!(model)
Running HiGHS 1.10.0 (git hash: fd8665394e): Copyright (c) 2025 HiGHS under MIT licence terms
LP has 2 rows; 2 cols; 4 nonzeros
Coefficient ranges:
Matrix [6e+00, 1e+01]
Cost [1e+01, 2e+01]
Bound [3e+01, 3e+01]
RHS [1e+02, 1e+02]

Presolving model
2 rows, 2 cols, 4 nonzeros 0s
2 rows, 2 cols, 4 nonzeros 0s
Presolve : Reductions: rows 2(-0); columns 2(-0); elements 4(-0) - Not reduced
Problem not reduced by presolve: solving the LP
Using EKK dual simplex solver - serial
Iteration Objective Infeasibilities num(sum)

0 0.0000000000e+00 Pr: 2(220) 0s
2 2.0500000000e+02 Pr: 0(0) 0s

Model status : Optimal
Simplex iterations: 2
Objective value : 2.0500000000e+02
Relative P-D gap : 0.0000000000e+00
HiGHS run time : 0.00

Info

The ! after optimize is part of the name. It's nothing special. Julia has a convention that functions
which mutate their arguments should end in !. A common example is push!.

Now let's see what information we can query about the solution, starting with is_solved_and_feasible:

julia> is_solved_and_feasible(model)
true

We can get more information about the solution by querying the three types of statuses.

termination_status tells us why the solver stopped:

julia> termination_status(model)
OPTIMAL::TerminationStatusCode = 1

In this case, the solver found an optimal solution.

Check primal_status to see if the solver found a primal feasible point:
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julia> primal_status(model)
FEASIBLE_POINT::ResultStatusCode = 1

and dual_status to see if the solver found a dual feasible point:

julia> dual_status(model)
FEASIBLE_POINT::ResultStatusCode = 1

Now we know that our solver found an optimal solution, and that it has a primal and a dual solution to query.

Query the objective value using objective_value:

julia> objective_value(model)
205.0

the primal solution using value:

julia> value(x)
15.000000000000004

julia> value(y)
1.2499999999999976

and the dual solution using shadow_price:

julia> shadow_price(c1)
-0.24999999999999917

julia> shadow_price(c2)
-1.5000000000000007

Warning

You should always check whether the solver found a solution before calling solution functions like value
or objective_value. A common workflow is:

optimize!(model)
if !is_solved_and_feasible(model)

error("Solver did not find an optimal solution")
end

That's it for our simple model. In the rest of this tutorial, we expand on some of the basic JuMP operations.

Model basics

Create a model by passing an optimizer:



CHAPTER 4. GETTING STARTED 40

julia> model = Model(HiGHS.Optimizer)
A JuMP Model
├ solver: HiGHS
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none

Alternatively, call set_optimizer at any point before calling optimize!:

julia> model = Model()
A JuMP Model
├ solver: none
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none

julia> set_optimizer(model, HiGHS.Optimizer)

For some solvers, you can also use direct_model, which offers a more efficient connection to the underlying
solver:

julia> model = direct_model(HiGHS.Optimizer())
A JuMP Model
├ mode: DIRECT
├ solver: HiGHS
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none

Warning

Some solvers do not support direct_model!

Solver Options

Pass options to solvers with optimizer_with_attributes:

julia> model =
Model(optimizer_with_attributes(HiGHS.Optimizer, "output_flag" => false))

A JuMP Model
├ solver: HiGHS
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none
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Note

These options are solver-specific. To find out the various options available, see the GitHub README of
the individual solver packages. The link to each solver's GitHub page is in the Supported solvers table.

You can also pass options with set_attribute:

julia> model = Model(HiGHS.Optimizer)
A JuMP Model
├ solver: HiGHS
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none

julia> set_attribute(model, "output_flag", false)

Solution basics

We saw above how to use termination_status and primal_status to understand the solution returned by
the solver.

However, only query solution attributes like value and objective_value if there is an available solution. Here's
a recommended way to check:

julia> function solve_infeasible()
model = Model(HiGHS.Optimizer)
@variable(model, 0 <= x <= 1)
@variable(model, 0 <= y <= 1)
@constraint(model, x + y >= 3)
@objective(model, Max, x + 2y)
optimize!(model)
if !is_solved_and_feasible(model)

@warn("The model was not solved correctly.")
return

end
return value(x), value(y)

end
solve_infeasible (generic function with 1 method)

julia> solve_infeasible()
Running HiGHS 1.10.0 (git hash: fd8665394e): Copyright (c) 2025 HiGHS under MIT licence terms
LP has 1 rows; 2 cols; 2 nonzeros
Coefficient ranges:
Matrix [1e+00, 1e+00]
Cost [1e+00, 2e+00]
Bound [1e+00, 1e+00]
RHS [3e+00, 3e+00]

Presolving model
Problem status detected on presolve: Infeasible
Model status : Infeasible
Objective value : 0.0000000000e+00
HiGHS run time : 0.00
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Solving LP to try to compute dual ray
LP has 1 rows; 2 cols; 2 nonzeros
Coefficient ranges:
Matrix [1e+00, 1e+00]
Cost [0e+00, 0e+00]
Bound [1e+00, 1e+00]
RHS [3e+00, 3e+00]

Solving LP without presolve, or with basis, or unconstrained
Using EKK dual simplex solver - serial
Iteration Objective Infeasibilities num(sum)

0 -0.0000000000e+00 Pr: 1(3) 0s
2 -1.7393294116e-06 0s

Model status : Infeasible
Simplex iterations: 2
Objective value : 0.0000000000e+00
Relative P-D gap : 1.7393294116e-06
HiGHS run time : 0.00
Solving linear system to compute dual ray
┌ Warning: The model was not solved correctly.
└ @ Main REPL[1]:9

Variable basics

Let's create a new empty model to explain some of the variable syntax:

julia> model = Model()
A JuMP Model
├ solver: none
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none

Variable bounds

All of the variables we have created till now have had a bound. We can also create a free variable.

julia> @variable(model, free_x)
free_x

While creating a variable, instead of using the <= and >= syntax, we can also use the lower_bound and
upper_bound keyword arguments.

julia> @variable(model, keyword_x, lower_bound = 1, upper_bound = 2)
keyword_x

We can query whether a variable has a bound using the has_lower_bound and has_upper_bound functions.
The values of the bound can be obtained using the lower_bound and upper_bound functions.
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julia> has_upper_bound(keyword_x)
true

julia> upper_bound(keyword_x)
2.0

Note querying the value of a bound that does not exist will result in an error.

julia> lower_bound(free_x)
Variable free_x does not have a lower bound.

Containers

We have already seen how to add a single variable to a model using the @variable macro. Now let's look at
ways to add multiple variables to a model.

JuMP provides data structures for adding collections of variables to a model. These data structures are referred
to as containers and are of three types: Arrays, DenseAxisArrays, and SparseAxisArrays.

Arrays

JuMP arrays are created when you have integer indices that start at 1:

julia> @variable(model, a[1:2, 1:2])
2×2 Matrix{VariableRef}:
a[1,1] a[1,2]
a[2,1] a[2,2]

Index elements in a as follows:

julia> a[1, 1]
a[1,1]

julia> a[2, :]
2-element Vector{VariableRef}:
a[2,1]
a[2,2]

Create an n-dimensional variable x ∈ Rn with bounds l ≤ x ≤ u (l, u ∈ Rn) as follows:

julia> n = 10
10

julia> l = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

julia> u = [10, 11, 12, 13, 14, 15, 16, 17, 18, 19];

julia> @variable(model, l[i] <= x[i = 1:n] <= u[i])
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10-element Vector{VariableRef}:
x[1]
x[2]
x[3]
x[4]
x[5]
x[6]
x[7]
x[8]
x[9]
x[10]

We can also create variable bounds that depend upon the indices:

julia> @variable(model, y[i = 1:2, j = 1:2] >= 2i + j)
2×2 Matrix{VariableRef}:
y[1,1] y[1,2]
y[2,1] y[2,2]

DenseAxisArrays

DenseAxisArrays are used when the indices are not one-based integer ranges. The syntax is similar except
with an arbitrary vector as an index as opposed to a one-based range:

julia> @variable(model, z[i = 2:3, j = 1:2:3] >= 0)
2-dimensional DenseAxisArray{VariableRef,2,...} with index sets:

Dimension 1, 2:3
Dimension 2, 1:2:3

And data, a 2×2 Matrix{VariableRef}:
z[2,1] z[2,3]
z[3,1] z[3,3]

Indices do not have to be integers. They can be any Julia type:

julia> @variable(model, w[1:5, ["red", "blue"]] <= 1)
2-dimensional DenseAxisArray{VariableRef,2,...} with index sets:

Dimension 1, Base.OneTo(5)
Dimension 2, ["red", "blue"]

And data, a 5×2 Matrix{VariableRef}:
w[1,red] w[1,blue]
w[2,red] w[2,blue]
w[3,red] w[3,blue]
w[4,red] w[4,blue]
w[5,red] w[5,blue]

Index elements in a DenseAxisArray as follows:

julia> z[2, 1]
z[2,1]
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julia> w[2:3, ["red", "blue"]]
2-dimensional DenseAxisArray{VariableRef,2,...} with index sets:

Dimension 1, [2, 3]
Dimension 2, ["red", "blue"]

And data, a 2×2 Matrix{VariableRef}:
w[2,red] w[2,blue]
w[3,red] w[3,blue]

See Forcing the container type for more details.

SparseAxisArrays

SparseAxisArrays are created when the indices do not form a Cartesian product. For example, this applies
when indices have a dependence upon previous indices (called triangular indexing):

julia> @variable(model, u[i = 1:2, j = i:3])
SparseAxisArray{VariableRef, 2, Tuple{Int64, Int64}} with 5 entries:
[1, 1] = u[1,1]
[1, 2] = u[1,2]
[1, 3] = u[1,3]
[2, 2] = u[2,2]
[2, 3] = u[2,3]

We can also conditionally create variables by adding a comparison check that depends upon the named indices
and is separated from the indices by a semi-colon ;:

julia> @variable(model, v[i = 1:9; mod(i, 3) == 0])
SparseAxisArray{VariableRef, 1, Tuple{Int64}} with 3 entries:
[3] = v[3]
[6] = v[6]
[9] = v[9]

Index elements in a DenseAxisArray as follows:

julia> u[1, 2]
u[1,2]

julia> v[[3, 6]]
SparseAxisArray{VariableRef, 1, Tuple{Int64}} with 2 entries:
[3] = v[3]
[6] = v[6]

Integrality

JuMP can create binary and integer variables. Binary variables are constrained to the set {0, 1}, and integer
variables are constrained to the set Z.
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Integer variables

Create an integer variable by passing Int:

julia> @variable(model, integer_x, Int)
integer_x

or setting the integer keyword to true:

julia> @variable(model, integer_z, integer = true)
integer_z

Binary variables

Create a binary variable by passing Bin:

julia> @variable(model, binary_x, Bin)
binary_x

or setting the binary keyword to true:

julia> @variable(model, binary_z, binary = true)
binary_z

Constraint basics

We'll need a new model to explain some of the constraint basics:

julia> model = Model()
A JuMP Model
├ solver: none
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none

julia> @variable(model, x)
x

julia> @variable(model, y)
y

julia> @variable(model, z[1:10]);

Containers

Just as we had containers for variables, JuMP also provides Arrays, DenseAxisArrays, and SparseAxisArrays
for storing collections of constraints. Examples for each container type are given below.
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Arrays

Create an Array of constraints:

julia> @constraint(model, [i = 1:3], i * x <= i + 1)
3-element Vector{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.LessThan{Float64}}, ScalarShape}}:

↪→

↪→

x ≤ 2
2 x ≤ 3
3 x ≤ 4

DenseAxisArrays

Create an DenseAxisArray of constraints:

julia> @constraint(model, [i = 1:2, j = 2:3], i * x <= j + 1)
2-dimensional DenseAxisArray{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.LessThan{Float64}}, ScalarShape},2,...} with index sets:

↪→

↪→

Dimension 1, Base.OneTo(2)
Dimension 2, 2:3

And data, a 2×2 Matrix{ConstraintRef{Model,
MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.LessThan{Float64}}, ScalarShape}}:

↪→

↪→

x ≤ 3 x ≤ 4
2 x ≤ 3 2 x ≤ 4

SparseAxisArrays

Create an SparseAxisArray of constraints:

julia> @constraint(model, [i = 1:2, j = 1:2; i != j], i * x <= j + 1)
SparseAxisArray{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.LessThan{Float64}}, ScalarShape}, 2, Tuple{Int64, Int64}} with 2 entries:

↪→

↪→

[1, 2] = x ≤ 3
[2, 1] = 2 x ≤ 2

Constraints in a loop

We can add constraints using regular Julia loops:

julia> for i in 1:3
@constraint(model, 6x + 4y >= 5i)

end

or use for each loops inside the @constraint macro:
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julia> @constraint(model, [i in 1:3], 6x + 4y >= 5i)
3-element Vector{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.GreaterThan{Float64}}, ScalarShape}}:

↪→

↪→

6 x + 4 y ≥ 5
6 x + 4 y ≥ 10
6 x + 4 y ≥ 15

We can also create constraints such as
∑10

i=1 zi ≤ 1:

julia> @constraint(model, sum(z[i] for i in 1:10) <= 1)
z[1] + z[2] + z[3] + z[4] + z[5] + z[6] + z[7] + z[8] + z[9] + z[10] ≤ 1

Objective functions

Set an objective function with @objective:

julia> model = Model(HiGHS.Optimizer)
A JuMP Model
├ solver: HiGHS
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none

julia> @variable(model, x >= 0)
x

julia> @variable(model, y >= 0)
y

julia> @objective(model, Min, 2x + y)
2 x + y

Create a maximization objective using Max:

julia> @objective(model, Max, 2x + y)
2 x + y

Tip

Calling @objective multiple times will over-write the previous objective. This can be useful when you
want to solve the same problem with different objectives.

Vectorized syntax

We can also add constraints and an objective to JuMP using vectorized linear algebra. We'll illustrate this by
solving an LP in standard form that is,
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min cTx

s.t. Ax = b

x ≥ 0

julia> vector_model = Model(HiGHS.Optimizer)
A JuMP Model
├ solver: HiGHS
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none

julia> A = [1 1 9 5; 3 5 0 8; 2 0 6 13]
3×4 Matrix{Int64}:
1 1 9 5
3 5 0 8
2 0 6 13

julia> b = [7, 3, 5]
3-element Vector{Int64}:
7
3
5

julia> c = [1, 3, 5, 2]
4-element Vector{Int64}:
1
3
5
2

julia> @variable(vector_model, x[1:4] >= 0)
4-element Vector{VariableRef}:
x[1]
x[2]
x[3]
x[4]

julia> @constraint(vector_model, A * x .== b)
3-element Vector{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.EqualTo{Float64}}, ScalarShape}}:

↪→

↪→

x[1] + x[2] + 9 x[3] + 5 x[4] = 7
3 x[1] + 5 x[2] + 8 x[4] = 3
2 x[1] + 6 x[3] + 13 x[4] = 5

julia> @objective(vector_model, Min, c' * x)
x[1] + 3 x[2] + 5 x[3] + 2 x[4]

julia> optimize!(vector_model)
Running HiGHS 1.10.0 (git hash: fd8665394e): Copyright (c) 2025 HiGHS under MIT licence terms
LP has 3 rows; 4 cols; 10 nonzeros
Coefficient ranges:
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Matrix [1e+00, 1e+01]
Cost [1e+00, 5e+00]
Bound [0e+00, 0e+00]
RHS [3e+00, 7e+00]

Presolving model
3 rows, 4 cols, 10 nonzeros 0s
Dependent equations search running on 3 equations with time limit of 1000.00s
Dependent equations search removed 0 rows and 0 nonzeros in 0.00s (limit = 1000.00s)
3 rows, 4 cols, 10 nonzeros 0s
Presolve : Reductions: rows 3(-0); columns 4(-0); elements 10(-0) - Not reduced
Problem not reduced by presolve: solving the LP
Using EKK dual simplex solver - serial
Iteration Objective Infeasibilities num(sum)

0 0.0000000000e+00 Pr: 3(13.5) 0s
4 4.9230769231e+00 Pr: 0(0) 0s

Model status : Optimal
Simplex iterations: 4
Objective value : 4.9230769231e+00
Relative P-D gap : 0.0000000000e+00
HiGHS run time : 0.00

julia> assert_is_solved_and_feasible(vector_model)

julia> objective_value(vector_model)
4.923076923076922

4.4 Getting started with sets and indexing

This tutorial was generated using Literate.jl. Download the source as a .jl file.

Most introductory courses to linear programming will teach you to identify sets over which the decision vari-
ables and constraints are indexed. Therefore, it is common to write variables such as xi for all i ∈ I .

A common stumbling block for new users to JuMP is that JuMP does not provide specialized syntax for con-
structing and manipulating these sets.

We made this decision because Julia already provides a wealth of data structures for working with sets.

In contrast, because tools like AMPL are stand-alone software packages, they had to define their own syntax
for set construction and manipulation. Indeed, the AMPL Book has two entire chapters devoted to sets and
indexing (Chapter 5, "Simple Sets and Indexing," and Chapter 6, "Compound Sets and Indexing").

The purpose of this tutorial is to demonstrate a variety of ways in which you can construct and manipulate
sets for optimization models.

If you haven't already, you should first read Getting started with JuMP.

using JuMP

Unordered sets

Unordered sets are useful to describe non-numeric indices, such as the names of cities or types of products.

The most common way to construct a set is by creating a vector:

https://github.com/fredrikekre/Literate.jl
tutorials/getting_started/getting_started_with_sets_and_indexing.jl
https://ampl.com/resources/the-ampl-book/chapter-downloads/
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animals = ["dog", "cat", "chicken", "cow", "pig"]
model = Model()
@variable(model, x[animals])

1-dimensional DenseAxisArray{VariableRef,1,...} with index sets:
Dimension 1, ["dog", "cat", "chicken", "cow", "pig"]

And data, a 5-element Vector{VariableRef}:
x[dog]
x[cat]
x[chicken]
x[cow]
x[pig]

We can also use things like the keys of a dictionary:

weight_of_animals = Dict(
"dog" => 20.0,
"cat" => 5.0,
"chicken" => 2.0,
"cow" => 720.0,
"pig" => 150.0,

)
animal_keys = keys(weight_of_animals)
model = Model()
@variable(model, x[animal_keys])

1-dimensional DenseAxisArray{VariableRef,1,...} with index sets:
Dimension 1, ["cow", "chicken", "cat", "pig", "dog"]

And data, a 5-element Vector{VariableRef}:
x[cow]
x[chicken]
x[cat]
x[pig]
x[dog]

A third option is to use Julia's Set object.

animal_set = Set()
for animal in keys(weight_of_animals)

push!(animal_set, animal)
end
animal_set

Set{Any} with 5 elements:
"cow"
"chicken"
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"cat"
"pig"
"dog"

The nice thing about Sets is that they automatically remove duplicates:

push!(animal_set, "dog")
animal_set

Set{Any} with 5 elements:
"cow"
"chicken"
"cat"
"pig"
"dog"

Note how dog does not appear twice.

model = Model()
@variable(model, x[animal_set])

1-dimensional DenseAxisArray{VariableRef,1,...} with index sets:
Dimension 1, ["cow", "chicken", "cat", "pig", "dog"]

And data, a 5-element Vector{VariableRef}:
x[cow]
x[chicken]
x[cat]
x[pig]
x[dog]

Sets of numbers

Sets of numbers are useful to describe sets that are ordered, such as years or elements in a vector. The easiest
way to create sets of numbers is to use Julia's range syntax.

These can start at 1:

model = Model()
@variable(model, x[1:4])

4-element Vector{VariableRef}:
x[1]
x[2]
x[3]
x[4]
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but they don't have to:

model = Model()
@variable(model, x[2012:2021])

1-dimensional DenseAxisArray{VariableRef,1,...} with index sets:
Dimension 1, 2012:2021

And data, a 10-element Vector{VariableRef}:
x[2012]
x[2013]
x[2014]
x[2015]
x[2016]
x[2017]
x[2018]
x[2019]
x[2020]
x[2021]

Ranges also have a start:step:stop syntax. So the Olympic years are:

model = Model()
@variable(model, x[1896:4:2020])

1-dimensional DenseAxisArray{VariableRef,1,...} with index sets:
Dimension 1, 1896:4:2020

And data, a 32-element Vector{VariableRef}:
x[1896]
x[1900]
x[1904]
x[1908]
x[1912]
x[1916]
x[1920]
x[1924]
x[1928]
x[1932]
�
x[1988]
x[1992]
x[1996]
x[2000]
x[2004]
x[2008]
x[2012]
x[2016]
x[2020]
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Sets of other things

An important observation is that you can have any Julia type as the element of a set. It doesn't have to be a
String or a Number. For example, you can have tuples:

sources = ["A", "B", "C"]
sinks = ["D", "E"]
S = [(source, sink) for source in sources, sink in sinks]
model = Model()
@variable(model, x[S])

1-dimensional DenseAxisArray{VariableRef,1,...} with index sets:
Dimension 1, [("A", "D"), ("B", "D"), ("C", "D"), ("A", "E"), ("B", "E"), ("C", "E")]

And data, a 6-element Vector{VariableRef}:
x[("A", "D")]
x[("B", "D")]
x[("C", "D")]
x[("A", "E")]
x[("B", "E")]
x[("C", "E")]

x[("A", "D")]

x(”A”,”D”)

For multi-dimensional sets, you can use JuMP's syntax for constructing Containers:

model = Model()
@variable(model, x[sources, sinks])

2-dimensional DenseAxisArray{VariableRef,2,...} with index sets:
Dimension 1, ["A", "B", "C"]
Dimension 2, ["D", "E"]

And data, a 3×2 Matrix{VariableRef}:
x[A,D] x[A,E]
x[B,D] x[B,E]
x[C,D] x[C,E]

x["A", "D"]

xA,D

Info

Note how we indexed x["A", "D"] instead of x[("A", "D")] as above.
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Sets to watch out for

JuMP supports any sets which are iterable, that is, the set set supports a for-loop like: [i for i in set].
This causes a few common errors.

First, if T = 3, you may pass the integer T by mistake instead of a range like 1:T:

model = Model()
T = 3
@variable(model, x[T])

1-dimensional DenseAxisArray{VariableRef,1,...} with index sets:
Dimension 1, [3]

And data, a 1-element Vector{VariableRef}:
x[3]

This results in a single variable being created, instead of three as desired. Because this is a common error, a
warning is printed, advising you to pass a Vector{Int} instead:

@variable(model, x_fixed[[T]])

1-dimensional DenseAxisArray{VariableRef,1,...} with index sets:
Dimension 1, [3]

And data, a 1-element Vector{VariableRef}:
x_fixed[3]

Second, because Strings are iterable, passing a "index" as a singleton index is the same as passing ['i',
'n', 'd', 'e', 'x']:

@variable(model, y["index"])

1-dimensional DenseAxisArray{VariableRef,1,...} with index sets:
Dimension 1, ['i', 'n', 'd', 'e', 'x']

And data, a 5-element Vector{VariableRef}:
y[i]
y[n]
y[d]
y[e]
y[x]

This time, a warning is not printed, but the work-around is similar, pass a Vector{String} instead:

@variable(model, y_fixed[["index"]])

https://docs.julialang.org/en/v1/base/collections/
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1-dimensional DenseAxisArray{VariableRef,1,...} with index sets:
Dimension 1, ["index"]

And data, a 1-element Vector{VariableRef}:
y_fixed[index]

Tip

As a rule of thumb, if you want an index with one element, avoid confusion by passing [index] instead
of index.

Set operations

Julia has built-in support for set operations such as union, intersect, and setdiff.

Therefore, to create a set of all years in which the summer Olympics were held, we can use:

baseline = 1896:4:2020
cancelled = [1916, 1940, 1944, 2020]
off_year = [2021]
olympic_years = union(setdiff(baseline, cancelled), off_year)

29-element Vector{Int64}:
1896
1900
1904
1908
1912
1920
1924
1928
1932
1936

�
1988
1992
1996
2000
2004
2008
2012
2016
2021

You can also find the number of elements (that is, the cardinality) in a set using length:

length(olympic_years)
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29

Set membership operations

To compute membership of sets, use the in function.

2000 in olympic_years

true

2001 in olympic_years

false

Indexing expressions

Use Julia's generator syntax to compute new sets, such as the list of Olympic years that are divisible by 3:

olympic_3_years = [year for year in olympic_years if mod(year, 3) == 0]
model = Model()
@variable(model, x[olympic_3_years])

1-dimensional DenseAxisArray{VariableRef,1,...} with index sets:
Dimension 1, [1896, 1908, 1920, 1932, 1956, 1968, 1980, 1992, 2004, 2016]

And data, a 10-element Vector{VariableRef}:
x[1896]
x[1908]
x[1920]
x[1932]
x[1956]
x[1968]
x[1980]
x[1992]
x[2004]
x[2016]

Alternatively, use JuMP's syntax for constructing Containers:

model = Model()
@variable(model, x[year in olympic_years; mod(year, 3) == 0])
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SparseAxisArray{VariableRef, 1, Tuple{Int64}} with 10 entries:
[1896] = x[1896]
[1908] = x[1908]
[1920] = x[1920]
[1932] = x[1932]
[1956] = x[1956]
[1968] = x[1968]
[1980] = x[1980]
[1992] = x[1992]

�
[2004] = x[2004]
[2016] = x[2016]

Compound sets

Consider a transportation problem in which we need to ship goods between cities. We have been provided a
list of cities:

cities = ["Auckland", "Wellington", "Christchurch", "Dunedin"]

4-element Vector{String}:
"Auckland"
"Wellington"
"Christchurch"
"Dunedin"

and a distance matrix which records the shipping distance between pairs of cities. If we can't ship between
two cities, the distance is 0.

distances = [0 643 1071 1426; 0 0 436 790; 0 0 0 360; 1426 0 0 0]

4×4 Matrix{Int64}:
0 643 1071 1426
0 0 436 790
0 0 0 360

1426 0 0 0

Let's have a look at ways we could write a model with an objective function to minimize the total shipping cost.
For simplicity, we'll ignore all constraints.

Fix unused variables

One approach is to fix all variables that we can't use to zero. Most solvers are smart-enough to remove these
during a presolve phase, so it has a very small impact on performance:
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N = length(cities)
model = Model()
@variable(model, x[1:N, 1:N] >= 0)
for i in 1:N, j in 1:N

if distances[i, j] == 0
fix(x[i, j], 0.0; force = true)

end
end
@objective(model, Min, sum(distances[i, j] * x[i, j] for i in 1:N, j in 1:N))

643x1,2 + 1071x1,3 + 1426x1,4 + 436x2,3 + 790x2,4 + 360x3,4 + 1426x4,1

Filtered summation

Another approach is to define filters whenever we want to sum over our decision variables:

N = length(cities)
model = Model()
@variable(model, x[1:N, 1:N] >= 0)
@objective(

model,
Min,
sum(

distances[i, j] * x[i, j] for i in 1:N, j in 1:N if distances[i, j] > 0
),

)

643x1,2 + 1071x1,3 + 1426x1,4 + 436x2,3 + 790x2,4 + 360x3,4 + 1426x4,1

Filtered indexing

We could also use JuMP's support for Containers:

N = length(cities)
model = Model()
@variable(model, x[i = 1:N, j = 1:N; distances[i, j] > 0])
@objective(model, Min, sum(distances[i...] * x[i] for i in eachindex(x)))

643x1,2 + 1071x1,3 + 1426x1,4 + 436x2,3 + 790x2,4 + 360x3,4 + 1426x4,1

Note

The i... is called a "splat." It converts a tuple like (1, 2) into two indices like distances[1, 2].

Converting to a different data structure

Another approach, and one that is often the most readable, is to convert the data you have into something
that is easier to work with. Originally, we had a vector of strings and a matrix of distances. What we really
need is something that maps usable origin-destination pairs to distances. A dictionary is an obvious choice:
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routes = Dict(
(a, b) => distances[i, j] for
(i, a) in enumerate(cities), (j, b) in enumerate(cities) if
distances[i, j] > 0

)

Dict{Tuple{String, String}, Int64} with 7 entries:
("Auckland", "Wellington") => 643
("Wellington", "Christchurch") => 436
("Wellington", "Dunedin") => 790
("Christchurch", "Dunedin") => 360
("Auckland", "Dunedin") => 1426
("Dunedin", "Auckland") => 1426
("Auckland", "Christchurch") => 1071

Then, we can create our model like so:

model = Model()
@variable(model, x[keys(routes)])
@objective(model, Min, sum(v * x[k] for (k, v) in routes))

643x(”Auckland”,”Wellington”)+436x(”Wellington”,”Christchurch”)+790x(”Wellington”,”Dunedin”)+360x(”Christchurch”,”Dunedin”)+
1426x(”Auckland”,”Dunedin”) + 1426x(”Dunedin”,”Auckland”) + 1071x(”Auckland”,”Christchurch”)

This has a number of benefits over the other approaches, including a compacter algebraic model and variables
that are named in a more meaningful way.

Tip

If you're struggling to formulate a problem using the available syntax in JuMP, it's probably a sign that
you should convert your data into a different form.

Next steps

The purpose of this tutorial was to show how JuMP does not have specialized syntax for set creation and
manipulation. Instead, you should use the tools provided by Julia itself.

This is both an opportunity and a challenge, because you are free to pick the syntax and data structures that
best suit your problem, but for new users it can be daunting to decide which structure to use.

Read through some of the other JuMP tutorials to get inspiration and ideas for how you can use Julia's syntax
and data structures to your advantage.

4.5 Getting started with data and plotting

This tutorial was generated using Literate.jl. Download the source as a .jl file.

In this tutorial we will learn how to read tabular data into Julia, and some of the basics of plotting.

If you're new to Julia, start by reading Getting started with Julia and Getting started with JuMP first.

https://github.com/fredrikekre/Literate.jl
tutorials/getting_started/getting_started_with_data_and_plotting.jl
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Note

There are multiple ways to read the same kind of data into Julia. This tutorial focuses on DataFrames.jl
because it provides the ecosystem to work with most of the required file types in a straightforward
manner.

Before we get started, we need this constant to point to where the data files are.

import JuMP
const DATA_DIR = joinpath(

dirname(pathof(JuMP)),
joinpath("..", "docs", "src", "tutorials", "getting_started", "data"),

);

Where to get help

Read the documentation

• Plots.jl: http://docs.juliaplots.org/latest/

• CSV.jl: http://csv.juliadata.org/stable

• DataFrames.jl: https://dataframes.juliadata.org/stable/

Preliminaries

To get started, we need to install some packages.

DataFrames.jl

The DataFrames package provides a set of tools for working with tabular data. It is available through the Julia
package manager.

using Pkg
Pkg.add("DataFrames")

import DataFrames

What is a DataFrame?

A DataFrame is a data structure like a table or spreadsheet. You can use it for storing and exploring a
set of related data values. Think of it as a smarter array for holding tabular data.

Plots.jl

The Plots package provides a set of tools for plotting. It is available through the Julia package manager.

http://docs.juliaplots.org/latest/
http://csv.juliadata.org/stable
https://dataframes.juliadata.org/stable/
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using Pkg
Pkg.add("Plots")

import Plots

CSV .jl

CSV and other delimited text files can be read by the CSV.jl package.

Pkg.add("CSV")

import CSV

DataFrame basics

To read a CSV file into a DataFrame, we use the CSV.read function.

csv_df = CSV.read(joinpath(DATA_DIR, "StarWars.csv"), DataFrames.DataFrame)

Name Gender Height Weight Eyecolor Haircolor Skincolor Homeland Born Died Jedi Species Weapon
String31 String7 Float64 String7 String15 String7 String15 String15 String15 String15 String7 String15 String15

1 Anakin Skywalker male 1.88 84 blue blond fair Tatooine 41.9BBY 4ABY jedi human lightsaber
2 Padme Amidala female 1.65 45 brown brown light Naboo 46BBY 19BBY no_jedi human unarmed
3 Luke Skywalker male 1.72 77 blue blond fair Tatooine 19BBY unk_died jedi human lightsaber
4 Leia Skywalker female 1.5 49 brown brown light Alderaan 19BBY unk_died no_jedi human blaster
5 Qui-Gon Jinn male 1.93 88.5 blue brown light unk_planet 92BBY 32BBY jedi human lightsaber
6 Obi-Wan Kenobi male 1.82 77 bluegray auburn fair Stewjon 57BBY 0BBY jedi human lightsaber
7 Han Solo male 1.8 80 brown brown light Corellia 29BBY unk_died no_jedi human blaster
8 Sheev Palpatine male 1.73 75 blue red pale Naboo 82BBY 10ABY no_jedi human force-lightning
9 R2-D2 male 0.96 32 NA NA NA Naboo 33BBY unk_died no_jedi droid unarmed
10 C-3PO male 1.67 75 NA NA NA Tatooine 112BBY 3ABY no_jedi droid unarmed
11 Yoda male 0.66 17 brown brown green unk_planet 896BBY 4ABY jedi yoda lightsaber
12 Darth Maul male 1.75 80 yellow none red Dathomir 54BBY unk_died no_jedi dathomirian lightsaber
13 Dooku male 1.93 86 brown brown light Serenno 102BBY 19BBY jedi human lightsaber
14 Chewbacca male 2.28 112 blue brown NA Kashyyyk 200BBY 25ABY no_jedi wookiee bowcaster
15 Jabba male 3.9 NA yellow none tan-green Tatooine unk_born 4ABY no_jedi hutt unarmed
16 Lando Calrissian male 1.78 79 brown blank dark Socorro 31BBY unk_died no_jedi human blaster
17 Boba Fett male 1.83 78 brown black brown Kamino 31.5BBY unk_died no_jedi human blaster
18 Jango Fett male 1.83 79 brown black brown ConcordDawn 66BBY 22BBY no_jedi human blaster
19 Grievous male 2.16 159 gold black orange Kalee unk_born 19BBY no_jedi kaleesh slugthrower
20 Chief Chirpa male 1.0 50 black gray brown Endor unk_born 4ABY no_jedi ewok spear

Let's try plotting some of this data

Plots.scatter(
csv_df.Weight,
csv_df.Height;
xlabel = "Weight",
ylabel = "Height",

)
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That doesn't look right. What happened? If you look at the dataframe above, it read Weight in as a String
column because there are "NA" fields. Let's correct that, by telling CSV to consider "NA" as missing.

csv_df = CSV.read(
joinpath(DATA_DIR, "StarWars.csv"),
DataFrames.DataFrame;
missingstring = "NA",

)

Name Gender Height Weight Eyecolor Haircolor Skincolor Homeland Born Died Jedi Species Weapon
String31 String7 Float64 Float64? String15? String7? String15? String15 String15 String15 String7 String15 String15

1 Anakin Skywalker male 1.88 84.0 blue blond fair Tatooine 41.9BBY 4ABY jedi human lightsaber
2 Padme Amidala female 1.65 45.0 brown brown light Naboo 46BBY 19BBY no_jedi human unarmed
3 Luke Skywalker male 1.72 77.0 blue blond fair Tatooine 19BBY unk_died jedi human lightsaber
4 Leia Skywalker female 1.5 49.0 brown brown light Alderaan 19BBY unk_died no_jedi human blaster
5 Qui-Gon Jinn male 1.93 88.5 blue brown light unk_planet 92BBY 32BBY jedi human lightsaber
6 Obi-Wan Kenobi male 1.82 77.0 bluegray auburn fair Stewjon 57BBY 0BBY jedi human lightsaber
7 Han Solo male 1.8 80.0 brown brown light Corellia 29BBY unk_died no_jedi human blaster
8 Sheev Palpatine male 1.73 75.0 blue red pale Naboo 82BBY 10ABY no_jedi human force-lightning
9 R2-D2 male 0.96 32.0 missing missing missing Naboo 33BBY unk_died no_jedi droid unarmed
10 C-3PO male 1.67 75.0 missing missing missing Tatooine 112BBY 3ABY no_jedi droid unarmed
11 Yoda male 0.66 17.0 brown brown green unk_planet 896BBY 4ABY jedi yoda lightsaber
12 Darth Maul male 1.75 80.0 yellow none red Dathomir 54BBY unk_died no_jedi dathomirian lightsaber
13 Dooku male 1.93 86.0 brown brown light Serenno 102BBY 19BBY jedi human lightsaber
14 Chewbacca male 2.28 112.0 blue brown missing Kashyyyk 200BBY 25ABY no_jedi wookiee bowcaster
15 Jabba male 3.9 missing yellow none tan-green Tatooine unk_born 4ABY no_jedi hutt unarmed
16 Lando Calrissian male 1.78 79.0 brown blank dark Socorro 31BBY unk_died no_jedi human blaster
17 Boba Fett male 1.83 78.0 brown black brown Kamino 31.5BBY unk_died no_jedi human blaster
18 Jango Fett male 1.83 79.0 brown black brown ConcordDawn 66BBY 22BBY no_jedi human blaster
19 Grievous male 2.16 159.0 gold black orange Kalee unk_born 19BBY no_jedi kaleesh slugthrower
20 Chief Chirpa male 1.0 50.0 black gray brown Endor unk_born 4ABY no_jedi ewok spear

Then let's re-plot our data



CHAPTER 4. GETTING STARTED 64

Plots.scatter(
csv_df.Weight,
csv_df.Height;
title = "Height vs Weight of StarWars characters",
xlabel = "Weight",
ylabel = "Height",
label = false,
ylims = (0, 3),

)

That looks better.

Tip

Read the CSV documentation for other parsing options.

DataFrames.jl supports manipulation using functions similar to pandas. For example, split the dataframe into
groups based on eye-color:

by_eyecolor = DataFrames.groupby(csv_df, :Eyecolor)

GroupedDataFrame with 7 groups based on key: Eyecolor

First Group (5 rows): Eyecolor = ”blue”

https://csv.juliadata.org/stable/
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Name Gender Height Weight Eyecolor Haircolor Skincolor Homeland Born Died Jedi Species Weapon
String31 String7 Float64 Float64? String15? String7? String15? String15 String15 String15 String7 String15 String15

1 Anakin Skywalker male 1.88 84.0 blue blond fair Tatooine 41.9BBY 4ABY jedi human lightsaber
2 Luke Skywalker male 1.72 77.0 blue blond fair Tatooine 19BBY unk_died jedi human lightsaber
3 Qui-Gon Jinn male 1.93 88.5 blue brown light unk_planet 92BBY 32BBY jedi human lightsaber
4 Sheev Palpatine male 1.73 75.0 blue red pale Naboo 82BBY 10ABY no_jedi human force-lightning
5 Chewbacca male 2.28 112.0 blue brown missing Kashyyyk 200BBY 25ABY no_jedi wookiee bowcaster
. . .

Last Group (1 row): Eyecolor = ”black”

Name Gender Height Weight Eyecolor Haircolor Skincolor Homeland Born Died Jedi Species Weapon
String31 String7 Float64 Float64? String15? String7? String15? String15 String15 String15 String7 String15 String15

1 Chief Chirpa male 1.0 50.0 black gray brown Endor unk_born 4ABY no_jedi ewok spear

Then recombine into a single dataframe based on a function operating over the split dataframes:

eyecolor_count = DataFrames.combine(by_eyecolor) do df
return DataFrames.nrow(df)

end

Eyecolor x1
String15? Int64

1 blue 5
2 brown 8
3 bluegray 1
4 missing 2
5 yellow 2
6 gold 1
7 black 1

We can rename columns:

DataFrames.rename!(eyecolor_count, :x1 => :count)

Eyecolor count
String15? Int64

1 blue 5
2 brown 8
3 bluegray 1
4 missing 2
5 yellow 2
6 gold 1
7 black 1

Drop some missing rows:

DataFrames.dropmissing!(eyecolor_count, :Eyecolor)

Then we can visualize the data:
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Eyecolor count
String15 Int64

1 blue 5
2 brown 8
3 bluegray 1
4 yellow 2
5 gold 1
6 black 1

sort!(eyecolor_count, :count; rev = true)
Plots.bar(

eyecolor_count.Eyecolor,
eyecolor_count.count;
xlabel = "Eye color",
ylabel = "Number of characters",
label = false,

)

Other Delimited Files

We can also use the CSV.jl package to read any other delimited text file format.

By default, CSV.File will try to detect a file's delimiter from the first 10 lines of the file.

Candidate delimiters include ',', '\t', ' ', '|', ';', and ':'. If it can't auto-detect the delimiter, it will
assume ','.
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Let's take the example of space separated data.

ss_df = CSV.read(joinpath(DATA_DIR, "Cereal.txt"), DataFrames.DataFrame)

Name Cups Calories Carbs Fat Fiber Potassium Protein Sodium Sugars
String31 Float64 Int64 Float64 Int64 Float64 Int64 Int64 Int64 Int64

1 CapnCrunch 0.75 120 12.0 2 0.0 35 1 220 12
2 CocoaPuffs 1.0 110 12.0 1 0.0 55 1 180 13
3 Trix 1.0 110 13.0 1 0.0 25 1 140 12
4 AppleJacks 1.0 110 11.0 0 1.0 30 2 125 14
5 CornChex 1.0 110 22.0 0 0.0 25 2 280 3
6 CornFlakes 1.0 100 21.0 0 1.0 35 2 290 2
7 Nut&Honey 0.67 120 15.0 1 0.0 40 2 190 9
8 Smacks 0.75 110 9.0 1 1.0 40 2 70 15
9 MultiGrain 1.0 100 15.0 1 2.0 90 2 220 6
10 CracklinOat 0.5 110 10.0 3 4.0 160 3 140 7
11 GrapeNuts 0.25 110 17.0 0 3.0 90 3 179 3
12 HoneyNutCheerios 0.75 110 11.5 1 1.5 90 3 250 10
13 NutriGrain 0.67 140 21.0 2 3.0 130 3 220 7
14 Product19 1.0 100 20.0 0 1.0 45 3 320 3
15 TotalRaisinBran 1.0 140 15.0 1 4.0 230 3 190 14
16 WheatChex 0.67 100 17.0 1 3.0 115 3 230 3
17 Oatmeal 0.5 130 13.5 2 1.5 120 3 170 10
18 Life 0.67 100 12.0 2 2.0 95 4 150 6
19 Maypo 1.0 100 16.0 1 0.0 95 4 0 3
20 QuakerOats 0.5 100 14.0 1 2.0 110 4 135 6
21 Muesli 1.0 150 16.0 3 3.0 170 4 150 11
22 Cheerios 1.25 110 17.0 2 2.0 105 6 290 1
23 SpecialK 1.0 110 16.0 0 1.0 55 6 230 3

We can also specify the delimiter as follows:

delim_df = CSV.read(
joinpath(DATA_DIR, "Soccer.txt"),
DataFrames.DataFrame;
delim = "::",

)

Working with DataFrames

Now that we have read the required data into a DataFrame, let us look at some basic operations we can perform
on it.

Querying Basic Information

The size function gets us the dimensions of the DataFrame:

DataFrames.size(ss_df)

(23, 10)
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Team Played Wins Draws Losses Goals_for Goals_against
String31 Int64 Int64 Int64 Int64 String15 String15

1 Barcelona 38 30 4 4 110 goals 21 goals
2 Real Madrid 38 30 2 6 118 goals 38 goals
3 Atletico Madrid 38 23 9 6 67 goals 29 goals
4 Valencia 38 22 11 5 70 goals 32 goals
5 Seville 38 23 7 8 71 goals 45 goals
6 Villarreal 38 16 12 10 48 goals 37 goals
7 Athletic Bilbao 38 15 10 13 42 goals 41 goals
8 Celta Vigo 38 13 12 13 47 goals 44 goals
9 Malaga 38 14 8 16 42 goals 48 goals
10 Espanyol 38 13 10 15 47 goals 51 goals
11 Rayo Vallecano 38 15 4 19 46 goals 68 goals
12 Real Sociedad 38 11 13 14 44 goals 51 goals
13 Elche 38 11 8 19 35 goals 62 goals
14 Levante 38 9 10 19 34 goals 67 goals
15 Getafe 38 10 7 21 33 goals 64 goals
16 Deportivo La Coruna 38 7 14 17 35 goals 60 goals
17 Granada 38 7 14 17 29 goals 64 goals
18 Eibar 38 9 8 21 34 goals 55 goals
19 Almeria 38 8 8 22 35 goals 64 goals
20 Cordoba 38 3 11 24 22 goals 68 goals

We can also use the nrow and ncol functions to get the number of rows and columns respectively:

DataFrames.nrow(ss_df), DataFrames.ncol(ss_df)

(23, 10)

The describe function gives basic summary statistics of data in a DataFrame:

DataFrames.describe(ss_df)

variable mean min median max nmissing eltype
Symbol Union… Any Union… Any Int64 DataType

1 Name AppleJacks WheatChex 0 String31
2 Cups 0.823043 0.25 1.0 1.25 0 Float64
3 Calories 113.043 100 110.0 150 0 Int64
4 Carbs 15.0435 9.0 15.0 22.0 0 Float64
5 Fat 1.13043 0 1.0 3 0 Int64
6 Fiber 1.56522 0.0 1.5 4.0 0 Float64
7 Potassium 86.3043 25 90.0 230 0 Int64
8 Protein 2.91304 1 3.0 6 0 Int64
9 Sodium 189.957 0 190.0 320 0 Int64
10 Sugars 7.52174 1 7.0 15 0 Int64

Names of every column can be obtained by the names function:
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DataFrames.names(ss_df)

10-element Vector{String}:
"Name"
"Cups"
"Calories"
"Carbs"
"Fat"
"Fiber"
"Potassium"
"Protein"
"Sodium"
"Sugars"

Corresponding data types are obtained using the broadcasted eltype function:

eltype.(ss_df)

Name Cups Calories Carbs Fat Fiber Potassium Protein Sodium Sugars
DataType DataType DataType DataType DataType DataType DataType DataType DataType DataType

1 Char Float64 Int64 Float64 Int64 Float64 Int64 Int64 Int64 Int64
2 Char Float64 Int64 Float64 Int64 Float64 Int64 Int64 Int64 Int64
3 Char Float64 Int64 Float64 Int64 Float64 Int64 Int64 Int64 Int64
4 Char Float64 Int64 Float64 Int64 Float64 Int64 Int64 Int64 Int64
5 Char Float64 Int64 Float64 Int64 Float64 Int64 Int64 Int64 Int64
6 Char Float64 Int64 Float64 Int64 Float64 Int64 Int64 Int64 Int64
7 Char Float64 Int64 Float64 Int64 Float64 Int64 Int64 Int64 Int64
8 Char Float64 Int64 Float64 Int64 Float64 Int64 Int64 Int64 Int64
9 Char Float64 Int64 Float64 Int64 Float64 Int64 Int64 Int64 Int64
10 Char Float64 Int64 Float64 Int64 Float64 Int64 Int64 Int64 Int64
11 Char Float64 Int64 Float64 Int64 Float64 Int64 Int64 Int64 Int64
12 Char Float64 Int64 Float64 Int64 Float64 Int64 Int64 Int64 Int64
13 Char Float64 Int64 Float64 Int64 Float64 Int64 Int64 Int64 Int64
14 Char Float64 Int64 Float64 Int64 Float64 Int64 Int64 Int64 Int64
15 Char Float64 Int64 Float64 Int64 Float64 Int64 Int64 Int64 Int64
16 Char Float64 Int64 Float64 Int64 Float64 Int64 Int64 Int64 Int64
17 Char Float64 Int64 Float64 Int64 Float64 Int64 Int64 Int64 Int64
18 Char Float64 Int64 Float64 Int64 Float64 Int64 Int64 Int64 Int64
19 Char Float64 Int64 Float64 Int64 Float64 Int64 Int64 Int64 Int64
20 Char Float64 Int64 Float64 Int64 Float64 Int64 Int64 Int64 Int64
21 Char Float64 Int64 Float64 Int64 Float64 Int64 Int64 Int64 Int64
22 Char Float64 Int64 Float64 Int64 Float64 Int64 Int64 Int64 Int64
23 Char Float64 Int64 Float64 Int64 Float64 Int64 Int64 Int64 Int64

Accessing the Data

Similar to regular arrays, we use numerical indexing to access elements of a DataFrame:

csv_df[1, 1]
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"Anakin Skywalker"

The following are different ways to access a column:

csv_df[!, 1]

20-element Vector{InlineStrings.String31}:
"Anakin Skywalker"
"Padme Amidala"
"Luke Skywalker"
"Leia Skywalker"
"Qui-Gon Jinn"
"Obi-Wan Kenobi"
"Han Solo"
"Sheev Palpatine"
"R2-D2"
"C-3PO"
"Yoda"
"Darth Maul"
"Dooku"
"Chewbacca"
"Jabba"
"Lando Calrissian"
"Boba Fett"
"Jango Fett"
"Grievous"
"Chief Chirpa"

csv_df[!, :Name]

20-element Vector{InlineStrings.String31}:
"Anakin Skywalker"
"Padme Amidala"
"Luke Skywalker"
"Leia Skywalker"
"Qui-Gon Jinn"
"Obi-Wan Kenobi"
"Han Solo"
"Sheev Palpatine"
"R2-D2"
"C-3PO"
"Yoda"
"Darth Maul"
"Dooku"
"Chewbacca"
"Jabba"
"Lando Calrissian"
"Boba Fett"
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"Jango Fett"
"Grievous"
"Chief Chirpa"

csv_df.Name

20-element Vector{InlineStrings.String31}:
"Anakin Skywalker"
"Padme Amidala"
"Luke Skywalker"
"Leia Skywalker"
"Qui-Gon Jinn"
"Obi-Wan Kenobi"
"Han Solo"
"Sheev Palpatine"
"R2-D2"
"C-3PO"
"Yoda"
"Darth Maul"
"Dooku"
"Chewbacca"
"Jabba"
"Lando Calrissian"
"Boba Fett"
"Jango Fett"
"Grievous"
"Chief Chirpa"

csv_df[:, 1] # Note that this creates a copy.

20-element Vector{InlineStrings.String31}:
"Anakin Skywalker"
"Padme Amidala"
"Luke Skywalker"
"Leia Skywalker"
"Qui-Gon Jinn"
"Obi-Wan Kenobi"
"Han Solo"
"Sheev Palpatine"
"R2-D2"
"C-3PO"
"Yoda"
"Darth Maul"
"Dooku"
"Chewbacca"
"Jabba"
"Lando Calrissian"
"Boba Fett"
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"Jango Fett"
"Grievous"
"Chief Chirpa"

The following are different ways to access a row:

csv_df[1:1, :]

Name Gender Height Weight Eyecolor Haircolor Skincolor Homeland Born Died Jedi Species Weapon
String31 String7 Float64 Float64? String15? String7? String15? String15 String15 String15 String7 String15 String15

1 Anakin Skywalker male 1.88 84.0 blue blond fair Tatooine 41.9BBY 4ABY jedi human lightsaber

csv_df[1, :] # This produces a DataFrameRow.

Name Gender Height Weight Eyecolor Haircolor Skincolor Homeland Born Died Jedi Species Weapon
String31 String7 Float64 Float64? String15? String7? String15? String15 String15 String15 String7 String15 String15

1 Anakin Skywalker male 1.88 84.0 blue blond fair Tatooine 41.9BBY 4ABY jedi human lightsaber

We can change the values just as we normally assign values.

Assign a range to scalar:

csv_df[1:3, :Height] .= 1.83

3-element view(::Vector{Float64}, 1:3) with eltype Float64:
1.83
1.83
1.83

Assign a vector:

csv_df[4:6, :Height] = [1.8, 1.6, 1.8]

3-element Vector{Float64}:
1.8
1.6
1.8

csv_df

Tip

There are a lot more things which can be done with a DataFrame. Read the docs for more information.

For information on dplyr-type syntax:

https://juliadata.github.io/DataFrames.jl/stable/
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Name Gender Height Weight Eyecolor Haircolor Skincolor Homeland Born Died Jedi Species Weapon
String31 String7 Float64 Float64? String15? String7? String15? String15 String15 String15 String7 String15 String15

1 Anakin Skywalker male 1.83 84.0 blue blond fair Tatooine 41.9BBY 4ABY jedi human lightsaber
2 Padme Amidala female 1.83 45.0 brown brown light Naboo 46BBY 19BBY no_jedi human unarmed
3 Luke Skywalker male 1.83 77.0 blue blond fair Tatooine 19BBY unk_died jedi human lightsaber
4 Leia Skywalker female 1.8 49.0 brown brown light Alderaan 19BBY unk_died no_jedi human blaster
5 Qui-Gon Jinn male 1.6 88.5 blue brown light unk_planet 92BBY 32BBY jedi human lightsaber
6 Obi-Wan Kenobi male 1.8 77.0 bluegray auburn fair Stewjon 57BBY 0BBY jedi human lightsaber
7 Han Solo male 1.8 80.0 brown brown light Corellia 29BBY unk_died no_jedi human blaster
8 Sheev Palpatine male 1.73 75.0 blue red pale Naboo 82BBY 10ABY no_jedi human force-lightning
9 R2-D2 male 0.96 32.0 missing missing missing Naboo 33BBY unk_died no_jedi droid unarmed
10 C-3PO male 1.67 75.0 missing missing missing Tatooine 112BBY 3ABY no_jedi droid unarmed
11 Yoda male 0.66 17.0 brown brown green unk_planet 896BBY 4ABY jedi yoda lightsaber
12 Darth Maul male 1.75 80.0 yellow none red Dathomir 54BBY unk_died no_jedi dathomirian lightsaber
13 Dooku male 1.93 86.0 brown brown light Serenno 102BBY 19BBY jedi human lightsaber
14 Chewbacca male 2.28 112.0 blue brown missing Kashyyyk 200BBY 25ABY no_jedi wookiee bowcaster
15 Jabba male 3.9 missing yellow none tan-green Tatooine unk_born 4ABY no_jedi hutt unarmed
16 Lando Calrissian male 1.78 79.0 brown blank dark Socorro 31BBY unk_died no_jedi human blaster
17 Boba Fett male 1.83 78.0 brown black brown Kamino 31.5BBY unk_died no_jedi human blaster
18 Jango Fett male 1.83 79.0 brown black brown ConcordDawn 66BBY 22BBY no_jedi human blaster
19 Grievous male 2.16 159.0 gold black orange Kalee unk_born 19BBY no_jedi kaleesh slugthrower
20 Chief Chirpa male 1.0 50.0 black gray brown Endor unk_born 4ABY no_jedi ewok spear

• Read the DataFrames.jl documentation

• Check out DataFramesMeta.jl

Example: the passport problem

Let's now apply what we have learned to solve a real problem.

Data manipulation

The Passport Index Dataset lists travel visa requirements for 199 countries, in .csv format. Our task is to find
the minimum number of passports required to visit all countries.

passport_data = CSV.read(
joinpath(DATA_DIR, "passport-index-matrix.csv"),
DataFrames.DataFrame,

);

In this dataset, the first column represents a passport (=from) and each remaining column represents a foreign
country (=to).

The values in each cell are as follows:

• 3 = visa-free travel

• 2 = eTA is required

• 1 = visa can be obtained on arrival

• 0 = visa is required

• -1 is for all instances where passport and destination are the same

Our task is to find out the minimum number of passports needed to visit every country without requiring a
visa.

The values we are interested in are -1 and 3. Let's modify the dataframe so that the -1 and 3 are 1 (true), and
all others are 0 (false):

https://dataframes.juliadata.org/stable/man/querying_frameworks/
https://github.com/JuliaData/DataFramesMeta.jl
https://github.com/ilyankou/passport-index-dataset
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function modifier(x)
if x == -1 || x == 3

return 1
else

return 0
end

end

for country in passport_data.Passport
passport_data[!, country] = modifier.(passport_data[!, country])

end

The values in the cells now represent:

• 1 = no visa required for travel

• 0 = visa required for travel

JuMP Modeling

Tomodel the problem as amixed-integer linear program, we need a binary decision variable xc for each country
c. xc is 1 if we select passport c and 0 otherwise. Our objective is to minimize the sum

∑
xc over all countries.

Since we wish to visit all the countries, for every country, we must own at least one passport that lets us travel
to that country visa free. For one destination, this can be mathematically represented as

∑
c∈C ac,d · xd ≥ 1,

where a is the passport_data dataframe.

Thus, we can represent this problem using the following model:

min
∑
c∈C

xc

s.t.
∑
c∈C

ac,dxc ≥ 1 ∀d ∈ C

xc ∈ {0, 1} ∀c ∈ C.

We'll now solve the problem using JuMP:

using JuMP
import HiGHS

First, create the set of countries:

C = passport_data.Passport

199-element Vector{String}:
"Afghanistan"
"Albania"
"Algeria"
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"Andorra"
"Angola"
"Antigua and Barbuda"
"Argentina"
"Armenia"
"Australia"
"Austria"
�
"Uruguay"
"Uzbekistan"
"Vanuatu"
"Vatican"
"Venezuela"
"Viet Nam"
"Yemen"
"Zambia"
"Zimbabwe"

Then, create the model and initialize the decision variables:

model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, x[C], Bin)
@objective(model, Min, sum(x))
@constraint(model, [d in C], passport_data[!, d]' * x >= 1)
model

A JuMP Model
├ solver: HiGHS
├ objective_sense: MIN_SENSE
│ └ objective_function_type: AffExpr
├ num_variables: 199
├ num_constraints: 398
│ ├ AffExpr in MOI.GreaterThan{Float64}: 199
│ └ VariableRef in MOI.ZeroOne: 199
└ Names registered in the model
└ :x

Now optimize:

optimize!(model)

We can use the solution_summary function to get an overview of the solution:

solution_summary(model)
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solution_summary(; result = 1, verbose = false)
├ solver_name : HiGHS
├ Termination
│ ├ termination_status : OPTIMAL
│ ├ result_count : 1
│ ├ raw_status : kHighsModelStatusOptimal
│ └ objective_bound : 2.30000e+01
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : NO_SOLUTION
│ ├ objective_value : 2.30000e+01
│ ├ dual_objective_value : NaN
│ └ relative_gap : 0.00000e+00
└ Work counters
├ solve_time (sec) : 7.18999e-03
├ simplex_iterations : 26
├ barrier_iterations : -1
└ node_count : 1

Just to be sure, check that the solver found an optimal solution:

assert_is_solved_and_feasible(model)

Solution

Let's have a look at the solution in more detail:

println("Minimum number of passports needed: ", objective_value(model))

Minimum number of passports needed: 23.0

println("Optimal passports:")
for c in C

if value(x[c]) > 0.5
println(" * ", c)

end
end

Optimal passports:
* Afghanistan
* Chad
* Comoros
* Djibouti
* Georgia
* Hong Kong
* India
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* Luxembourg
* Madagascar
* Maldives
* Mali
* New Zealand
* North Korea
* Papua New Guinea
* Singapore
* Somalia
* Sri Lanka
* Tunisia
* Turkey
* Uganda
* United Arab Emirates
* United States
* Zimbabwe

We need some passports, like New Zealand and the United States, which have widespread access to a large
number of countries. However, we also need passports like North Korea which only have visa-free access to a
very limited number of countries.

Note

We use value(x[c]) > 0.5 rather than value(x[c]) == 1 to avoid excluding solutions like x[c] =
0.99999 that are "1" to some tolerance.

4.6 Debugging

This tutorial was generated using Literate.jl. Download the source as a .jl file.

Dealing with bugs is an unavoidable part of coding optimization models in any framework, including JuMP.
Sources of bugs include not only generic coding errors (method errors, typos, off-by-one issues), but also
semantic mistakes in the formulation of an optimization problem and the incorrect use of a solver.

This tutorial explains some common sources of bugs and modeling issues that you might encounter when
writing models in JuMP, and it suggests a variety of strategies to deal with them.

Tip

This tutorial is more advanced than the other "Getting started" tutorials. It's in the "Getting started"
section to give you an early preview of how to debug JuMP models. However, if you are new to JuMP,
youmay want to briefly skim the tutorial, and come back to it once you have written a few JuMPmodels.

julia> using JuMP

julia> import HiGHS

Getting help

Debugging can be a frustrating part of modeling, particularly if you're new to optimization and programming.
If you're stuck, join the community forum to search for answers to commonly asked questions.

https://github.com/fredrikekre/Literate.jl
tutorials/getting_started/debugging.jl
https://jump.dev/forum
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Before asking a new question, make sure to read the post Make it easier to help you, which contains a number
of tips on how to ask a good question.

Above all else, take time to simplify your code as much as possible. The fewer lines of code you can post that
reproduces the same issue, the faster someone can answer your question.

Debugging Julia code

Read the Debugging chapter in the book ThinkJulia.jl. It has a number of great tips and tricks for debugging
Julia code.

Solve failures

When a solver experiences an issue that prevents it from finding an optimal solution (or proving that one does
not exist), JuMP may return one of a number of termination_statuses.

For example, if the solver found a solution, but experienced numerical imprecision, it may return a status such
as ALMOST_OPTIMAL or ALMOST_LOCALLY_SOLVED indicating that the problem was solved to a relaxed set of tol-
erances. Alternatively, the solver may return a problematic status such as NUMERICAL_ERROR, SLOW_PROGRESS,
or OTHER_ERROR, indicating that it could not find a solution to the problem.

Most solvers can experience numerical imprecision because they use floating-point arithmetic to perform op-
erations such as addition, subtraction, and multiplication. These operations aren't exact, and small errors can
accrue between the theoretical value and the value that the computer computes. For example:

julia> 0.1 * 3 == 0.3
false

Tip

Read the Guidelines for numerical issues section of the Gurobi documentation, along with the Debug-
ging numerical problems section of the YALMIP documentation.

Common sources

Common sources of solve failures are:

• Very large numbers and very small numbers as problem coefficients. Exactly what "large" is depends
on the solver and the problem, but in general, values above 1e6 or smaller than 1e-6 cause problems.

• Nonlinear problems with functions that are not defined in parts of their domain. For example, minimizing
log(x) where x >= 0 is undefined when x = 0 (a common starting value).

Strategies

Strategies to debug sources of solve failures include:

• Rescale variables in the problem and their associated coefficients to make the magnitudes of all coef-
ficients in the 1e-4 to 1e4 range. For example, that might mean rescaling a variable from measuring
distance in centimeters to kilometers.

• Try a different solver. Some solvers might be more robust than others for a particular problem.

https://discourse.julialang.org/t/please-read-make-it-easier-to-help-you/14757
https://benlauwens.github.io/ThinkJulia.jl/latest/book.html#chap21
https://benlauwens.github.io/ThinkJulia.jl/latest/book.html
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://www.gurobi.com/documentation/9.5/refman/guidelines_for_numerical_i.html
https://yalmip.github.io/inside/debuggingnumerics/
https://yalmip.github.io/inside/debuggingnumerics/
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• Read the documentation of your solver, and try settings that encourage numerical robustness.

• Set bounds or add constraints so that all nonlinear functions are defined across all of the feasible region.
This particularly applies for functions like 1 / x and log(x) which are not defined for x = 0.

Incorrect results

Sometimes, you might find that the solver returns an "optimal" solution that is incorrect according to the model
you are trying to solve (perhaps the solution is suboptimal, or it doesn't satisfy some of the constraints).

Incorrect results can be hard to detect and debug, because the solver gives no hints that there is a problem.
Indeed, the termination_status will likely be OPTIMAL and a solution will be available.

Common sources

Common sources of incorrect results are:

• A modeling error, so that your JuMP model does not match the formulation you have on paper

• Not accounting for the tolerances that solvers use (for example, if x is binary, a value like x = 1.0000001
may still be considered feasible)

• A bug in JuMP or the solver.

The probability of the issue being a bug in JuMP or the solver is much smaller than a modeling error. When in
doubt, first assume there is a bug in your code before assuming that there is a bug in JuMP.

Strategies

Strategies to debug sources of incorrect results include:

• Print your JuMP model to see if it matches the formulation you have on paper. Look out for incorrect
signs + instead of -, and off-by-one errors such as x[t] instead of x[t-1].

• Check that you are not using exact comparisons like value(x) == 1.0; always use isapprox(value(x),
1.0; atol = 1e-6) where you manually specify the comparison tolerance.

• Try a different solver. If one solver succeeds where another doesn't this is a sign that the problem is a
numerical issue or a bug in the solver.

Debugging an infeasible model

A model is infeasible if there is no primal solution that satisfies all of the constraints. In general, an infeasible
model means one of two things:

• Your problem really has no feasible solution

• There is a mistake in your model.

Example

A simple example of an infeasible model is:
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julia> model = Model(HiGHS.Optimizer);

julia> set_silent(model)

julia> @variable(model, x >= 0)
x

julia> @objective(model, Max, 2x + 1)
2 x + 1

julia> @constraint(model, con, 2x - 1 <= -2)
con : 2 x ≤ -1

because the bound says that x >= 0, but we can rewrite the constraint to be x <= -1/2. When the problem
is infeasible, JuMP may return one of a number of statuses. The most common is INFEASIBLE:

julia> optimize!(model)

julia> termination_status(model)
INFEASIBLE::TerminationStatusCode = 2

Depending on the solver, you may also receive INFEASIBLE_OR_UNBOUNDED or LOCALLY_INFEASIBLE.

A termination status of INFEASIBLE_OR_UNBOUNDED means that the solver could not prove if the solver was
infeasible or unbounded, only that the model does not have a finite feasible optimal solution.

Nonlinear optimizers such as Ipopt may return the status LOCALLY_INFEASIBLE. This does not mean that the
solver proved no feasible solution exists, only that it could not find one. If you know a primal feasible point,
try providing it as a starting point using set_start_value and re-optimize.

Common sources

Common sources of infeasibility are:

• Incorrect units, for example, using a lower bound of megawatts and an upper bound of kilowatts

• Using + instead of - in a constraint

• Off-by-one and related errors, for example, using x[t] instead of x[t-1] in part of a constraint

• Otherwise invalid mathematical formulations

Strategies

Strategies to debug sources of infeasibility include:

• Iteratively comment out a constraint (or block of constraints) and re-solve the problem. When you find
a constraint that makes the problem infeasible when added, check the constraint carefully for errors.

• If the problem is still infeasible with all constraints commented out, check all variable bounds. Do they
use the right data?

• If you have a known feasible solution, use primal_feasibility_report to evaluate the constraints and
check for violations. You'll probably find that you have a typo in one of the constraints.
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• Try a different solver. Sometimes, solvers have bugs, and they can incorrectly report a problem as
infeasible when it isn't. If you find such a case where one solver reports the problem is infeasible and
another can find an optimal solution, please report it by opening an issue on the GitHub repository of
the solver that reports infeasibility.

Tip

Some solvers also have specialized support for debugging sources of infeasibility via an irreducible
infeasible subsystem. To see if your solver has support, try calling compute_conflict!:

julia> compute_conflict!(model)
ERROR: ArgumentError: The optimizer HiGHS.Optimizer does not support `compute_conflict!`

In this case, HiGHS does not support computing conflicts, but other solvers such as Gurobi and CPLEX
do. If the solver does support computing conflicts, read Conflicts for more details.

Penalty relaxation

Another strategy to debug sources of infeasibility is the relax_with_penalty! function.

The penalty relaxation modifies constraints of the form f(x) ∈ S into f(x) + y − z ∈ S, where y, z ≥ 0,
and then it introduces a penalty term into the objective of a × (y + z) (if minimizing, else −a), where a is a
penalty.

julia> map = relax_with_penalty!(model)
┌ Warning: Skipping PenaltyRelaxation for

ConstraintIndex{MathOptInterface.VariableIndex,MathOptInterface.GreaterThan{Float64}}↪→

└ @ MathOptInterface.Utilities
~/.julia/packages/MathOptInterface/ej37q/src/Utilities/penalty_relaxation.jl:289↪→

Dict{ConstraintRef{Model,
MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.LessThan{Float64}}, ScalarShape}, AffExpr} with 1 entry:

↪→

↪→

con : 2 x - _[2] ≤ -1 => _[2]

Here map is a dictionary which maps constraint indices to an affine expression representing (y + z).

If we optimize the relaxed model, this time we get a feasible solution:

julia> optimize!(model)

julia> termination_status(model)
OPTIMAL::TerminationStatusCode = 1

Iterate over the contents of map to see which constraints are violated:

julia> for (con, penalty) in map
violation = value(penalty)
if violation > 0

println("Constraint `$(name(con))` is violated by $violation")
end
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end
Constraint `con` is violated by 1.0

Once you find a violated constraint in the relaxed problem, take a look to see if there is a typo or other common
mistake in that particular constraint.

Consult the docstring relax_with_penalty! for information on how to modify the penalty cost term a, either
for every constraint in the model or a particular subset of the constraints.

When using relax_with_penalty!, you should be aware that:

• Variable bounds and integrality restrictions are not relaxed. If the problem is still infeasible after calling
relax_with_penalty!, check the variable bounds.

• You cannot undo the penalty relaxation. If you need an unmodified model, rebuild the problem, or call
copy_model before calling relax_with_penalty!.

Debugging an unbounded model

A model is unbounded if there is no limit on how good the objective value can get. Most often, an unbounded
model means that you have an error in your modeling, because all physical systems have limits. (You cannot
make an infinite amount of profit.)

Example

A simple example of an unbounded model is:

julia> model = Model(HiGHS.Optimizer);

julia> set_silent(model)

julia> @variable(model, x >= 0)
x

julia> @objective(model, Max, 2x + 1)
2 x + 1

because we can increase x without limit, and the objective value 2x + 1 gets better as x increases.

When the problem is unbounded, JuMPmay return one of a number of statuses. Themost common is DUAL_INFEASIBLE:

julia> optimize!(model)

julia> termination_status(model)
DUAL_INFEASIBLE::TerminationStatusCode = 3

Depending on the solver, you may also receive INFEASIBLE_OR_UNBOUNDED or an error code like NORM_LIMIT.
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Common sources

Common sources of unboundedness are:

• Using Max instead of Min

• Omitting variable bounds, such as 0 <= x <= 1

• Using + instead of - in a term of the objective function.

Strategies

Strategies to debug sources of unboundedness include:

• Double check whether you intended Min or Max in the @objective line.

• Print the objective function with print(objective_function(model)) and verify that the value and
sign of each coefficient is as you expect.

• Add large bounds to all variables that are free or have one-sided bounds, then re-solve the problem.
Because all variables are now bounded, the problem will have a finite optimal solution. Look at the
value of each variable in the optimal solution to see if it is at one of the new bounds. If it is, you either
need to specify a better bound for that variable, or there might be a mistake in the objective function
associated with that variable (for example, a + instead of a -).

If there are too many variables to add bounds to, or there are too many terms to examine by hand, another
strategy is to create a new variable with a large upper bound (if maximizing, lower bound if minimizing) and a
constraint that the variable must be less-than or equal to the expression of the objective function. For example:

julia> model = Model(HiGHS.Optimizer);

julia> set_silent(model)

julia> @variable(model, x >= 0)
# @objective(model, Max, 2x + 1)

x

julia> @variable(model, objective <= 10_000)
objective

julia> @constraint(model, objective <= 2x + 1)
-2 x + objective ≤ 1

julia> @objective(model, Max, objective)
objective

This new model has a finite optimal solution, so we can solve it and then look for variables with large positive
or negative values in the optimal solution.

julia> optimize!(model)

julia> assert_is_solved_and_feasible(model)
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julia> for var in all_variables(model)
if var == objective

continue
end
if abs(value(var)) > 1e3

println("Variable `$(name(var))` may be unbounded")
end

end
Variable `x` may be unbounded

Debugging performance problems

There are two common sources for a model that takes a long time to solve:

1. JuMP builds the problem quickly, but the solver takes a long time to run or prove optimality. This com-
monly happens for mixed-integer programs, and you should see the solver print logs indicating slow but
steady progress. There is no easy fix for this, other than choosing a different solver or reformulating
your model.

2. JuMP builds the problem slowly, and even if you wait a while, the solver may ever start running or
displaying output.

This section explains how to debug the second case.

As a rule of thumb, we never expect JuMP to be the bottleneck in the solution process. If your model takes
longer to build than to solve, or if it takes longer than a small number of minutes to build, then you have a
fixable performance problem. JuMP models should never take hours to build.

Common sources

Common sources of performance problems are:

• Writing Julia code that hasO(N2) or worse scaling behavior. As one common example, see Performance
problems with sum-if formulations.

• Building a model with a very large (> 108) number of variables or constraints. Here the most likely
cause of the performance problem is that you do not have enough memory to store the model. Use a
computer with more RAM.

Macro timing

JuMP has a built-in feature that can measure the time spent in each macro. Turn it on using set_macro_timing,
build the model, and then use print_macro_timing_summary to print a summary. Here's an example:

julia> begin
N = 200
demand = vcat(-1.0, zeros(N - 2), 1.0)
edges = [(i, j) for i in 1:N for j in 1:N if i < j]
model = Model()
set_macro_timing(model, true)
@variable(model, flows[e in edges] >= 0)
@constraint(
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model,
[n in 1:N],
sum(flows[(i, j)] for (i, j) in edges if j == n) -
sum(flows[(i, j)] for (i, j) in edges if i == n) == demand[n]

)
print_macro_timing_summary(model)

end
Total time inside macros: 1.59973e+00 seconds
│
├ 1.55133e+00 s [96.97%]
│ ├ REPL[1]:8
│ └ `@constraint(model, [n in 1:N], [...] edges if i == n)) == demand[n])`
│
└ 4.83940e-02 s [3.03%]
├ REPL[1]:7
└ `@variable(model, flows[e in edges] >= 0)`

In this case, you can see that the @constraint call dominates the runtime. If it isn't obvious why that is, read
the Performance problems with sum-if formulations tutorial.

Note that the macro timing feature measures only the time spent inside JuMP macros. It does not measure
regular Julia code outside the macros.

Other strategies

If the macro timing feature does not reveal the bottleneck, it means that your issue is in regular Julia code that
is not inside a JuMP macro.

The strategy to debug JuMP models that have performance problems depends on how long your model takes
to build.

As a first step, encapsulate everything you want to debug into a single function foo, so you can run it with
@time foo().

Can you run @time foo() in seconds to minutes?

If the answer is "yes," then you can use ProfileView.jl to find the bottleneck.

To use ProfileView, do:

julia> using ProfileView

julia> @profview foo(); # run once to trigger compilation. Ignore the output.

julia> @profview foo()

This will open a flamegraph. The x-axis of the graph is time, so that wider bars take more time. The bars are
stacked so that the foo() call is on the bottom, and subsequent calls within foo are stacked on top.

Reading a flamegraph can take some experience, but if you click on a bar it will print the line number to the
REPL. Hunt around until you find the widest bar that points to a line of code that you have written, then ask
yourself if it makes sense for this line to be the bottleneck.

If a wide bar points to code inside JuMP or a related Julia package, please open an issue on GitHub or post on
the community forum.

https://github.com/timholy/ProfileView.jl
https://jump.dev/forum
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If @time foo() takes longer than a few minutes to run, then either make the problem smaller by using a
smaller dataset, or do the following.

1. Comment out everything in the function, then, line by line (or block by block):

2. Un-comment some code and re-run @time foo()

3. If the time increases by a lot (from seconds or minutes to hours), look for O(N2) or worse scaling
behavior. Is there a better way to write the code that you are trying to execute?

4. If the time increases by more than expected, but it still takes seconds or minutes to execute, use
ProfileView to look for obvious bottlenecks.

4.7 Tolerances and numerical issues

This tutorial was generated using Literate.jl. Download the source as a .jl file.

Optimization solvers can seem like magic black boxes that take in an algebraic formulation of a problem and
return a solution. It is tempting to treat their solutions at face value, since we often have little ability to verify
that the solution is in fact optimal. However, like all numerical algorithms that use floating point arithmetic,
optimization solvers use tolerances to check whether a solution satisfies the constraints. In the best case,
the solution satisfies the original constraints to machine precision. In most cases, the solution satisfies the
constraints to some very small tolerance that has no noticeable impact on the quality of the optimal solution.
In the worst case, the solver can return a "wrong" solution, or fail to find one even if it exists. (The solution is
"wrong" only in the sense of user expectation. It will satisfy the solution to the tolerances that are provided.)

The purpose of this tutorial is to explain the various types of tolerances that are used in optimization solvers
and what you can reasonably expect from a solution.

There are a few sources of additional information:

• Ambros Gleixner has an excellent YouTube talk Numerics in LP & MIP Solvers

• Gurobi has a series of articles in their documentation called Guidelines for Numerical Issues

Tip

This tutorial is more advanced than the other "Getting started" tutorials. It's in the "Getting started"
section to give you an early preview of how tolerances affect JuMP models. However, if you are new to
JuMP, you may want to briefly skim the tutorial, and come back to it once you have written a few JuMP
models.

Required packages

This tutorial uses the following packages:

using JuMP
import HiGHS
import SCS

https://github.com/fredrikekre/Literate.jl
tutorials/getting_started/tolerances.jl
https://en.wikipedia.org/wiki/Machine_epsilon
https://youtu.be/rKcdF4Fgl-g?feature=shared
https://www.gurobi.com/documentation/current/refman/guidelines_for_numerical_i.html
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Background

Optimization solvers use tolerances to check the feasibility of constraints.

There are four main types of tolerances:

1. primal feasibility: controls how feasibility of the primal solution is measured

2. dual feasibility: controls how feasibility of the dual solution is measured

3. integrality: controls how feasibility of the binary and integer variables are measured

4. optimality: controls how close the primal and dual solutions must be.

Solvers may use absolute tolerances, relative tolerances, or some mixture of both. The definition and default
value of each tolerance is solver-dependent.

The dual feasibility tolerance is much the same as the primal feasibility tolerance, only that operates on the
space of dual solutions instead of the primal. HiGHS has dual_feasibility_tolerance, but some solvers
have only a single feasibility tolerance that uses the same value for both.

The optimality tolerance is a more technical tolerance that is used to test the equivalence of the primal and
dual objectives in the KKT system if you are solving a continuous problem via interior point. HiGHS has
ipm_optimality_tolerance, but some solvers will not have such a tolerance. Note that the optimality toler-
ance is different to the relative MIP gap that controls early termination of a MIP solution during branch-and-
bound.

Because the dual and optimality tolerances are less used, this tutorial focuses on the primal feasibility and
integrality tolerances.

Primal feasibility

The primal feasibility tolerance controls how primal constraints are evaluated. For example, the constraint
2x = 1 is actually implemented as |2x − 1| ≤ ε, where ε is a small solver-dependent primal feasibility
tolerance that is typically on the order of 1e-8.

Here's an example in practice. This model should be infeasible, since xmust be non-negative, but there is also
an equality constraint that x is equal to a small negative number. Yet when we solve this problem, we get:

model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, x >= 0)
@constraint(model, x == -1e-8)
optimize!(model)
is_solved_and_feasible(model)

true

value(x)
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0.0

In other words, HiGHS thinks that the solution x = 0 satisfies the constraint x == -1e-8. The value of ε in
HiGHS is controlled by the primal_feasibility_tolerance option. The default is 1e-7. If we set this to a
smaller value, HiGHS will now correctly deduce that the problem is infeasible:

set_attribute(model, "primal_feasibility_tolerance", 1e-10)
optimize!(model)
is_solved_and_feasible(model)

false

Realistic example

Here's a more realistic example, which was reported in the SCS.jl repository:

n, ε = 13, 0.0234
N = 2^n
model = Model(SCS.Optimizer)
@variable(model, x[1:N] >= 0)
@objective(model, Min, x[1])
@constraint(model, sum(x) == 1)
z = [(-1)^((i & (1 << j)) >> j) for j in 0:n-1, i in 0:N-1]
@constraint(model, z * x .>= 1 - ε)
optimize!(model)

------------------------------------------------------------------
^^I SCS v3.2.7 - Splitting Conic Solver
^^I(c) Brendan O'Donoghue, Stanford University, 2012
------------------------------------------------------------------
problem: variables n: 8192, constraints m: 8206
cones: ^^I z: primal zero / dual free vars: 1
^^I l: linear vars: 8205
settings: eps_abs: 1.0e-04, eps_rel: 1.0e-04, eps_infeas: 1.0e-07
^^I alpha: 1.50, scale: 1.00e-01, adaptive_scale: 1
^^I max_iters: 100000, normalize: 1, rho_x: 1.00e-06
^^I acceleration_lookback: 10, acceleration_interval: 10
^^I compiled with openmp parallelization enabled
lin-sys: sparse-direct-amd-qdldl
^^I nnz(A): 122880, nnz(P): 0
------------------------------------------------------------------
iter | pri res | dua res | gap | obj | scale | time (s)
------------------------------------------------------------------

0| 2.00e+01 1.00e+00 2.00e+01 -9.98e+00 1.00e-01 3.50e-02
100| 6.92e-05 7.92e-05 7.33e-06 2.41e-05 1.00e-01 9.30e-02

------------------------------------------------------------------
status: solved
timings: total: 9.31e-02s = setup: 3.39e-02s + solve: 5.92e-02s

https://github.com/jump-dev/SCS.jl/issues/297
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^^I lin-sys: 5.02e-02s, cones: 2.16e-03s, accel: 7.29e-04s
------------------------------------------------------------------
objective = 0.000024
------------------------------------------------------------------

SCS reports that it solved the problem to optimality:

is_solved_and_feasible(model)

true

and that the solution for x[1] is nearly zero:

value(x[1])

2.04406873858532e-5

However, the analytic solution for x[1] is:

1 - n * ε / 2

0.8479

The answer is very wrong, and there is no indication from the solver that anything untoward happened. What's
going on?

One useful debugging tool is primal_feasibility_report:

report = primal_feasibility_report(model)

Dict{Any, Float64} with 8192 entries:
x[3585] ≥ 0 => 1.25513e-5
x[4278] ≥ 0 => 1.71395e-5
x[6729] ≥ 0 => 1.56101e-5
x[3588] ≥ 0 => 1.56101e-5
x[7518] ≥ 0 => 2.17278e-5
x[7166] ≥ 0 => 2.47866e-5
x[4358] ≥ 0 => 1.40807e-5
x[5071] ≥ 0 => 2.01984e-5
x[1948] ≥ 0 => 2.01984e-5
x[3811] ≥ 0 => 1.8669e-5
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x[6649] ≥ 0 => 2.01984e-5
x[502] ≥ 0 => 1.8669e-5
x[2171] ≥ 0 => 1.71395e-5
x[2205] ≥ 0 => 1.56101e-5
x[4902] ≥ 0 => 1.71395e-5
x[6782] ≥ 0 => 2.17278e-5
x[7494] ≥ 0 => 1.8669e-5
x[1102] ≥ 0 => 1.56101e-5
x[5407] ≥ 0 => 1.8669e-5
� => �

report is a dictionary which maps constraints to the violation. The largest violation is approximately 1e-5:

maximum(values(report))

6.92133754155444e-5

This makes sense, because the default primal feasibility tolerance for SCS is 1e-4.

Most of the entries are lower bound constraints on the variables. Here are all the variables which violate their
lower bound:

violated_variables = filter(xi -> value(xi) < 0, x)

8178-element Vector{VariableRef}:
x[4]
x[6]
x[7]
x[8]
x[10]
x[11]
x[12]
x[13]
x[14]
x[15]
�
x[8184]
x[8185]
x[8186]
x[8187]
x[8188]
x[8189]
x[8190]
x[8191]
x[8192]

The first one is:
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y = first(violated_variables)

x4

It has a primal value of:

value(y)

-1.1021914231743998e-5

which matches the value in the feasibility report:

report[LowerBoundRef(y)]

1.1021914231743998e-5

Despite the small primal feasibility tolerance and the small actual violations of the constraints, our optimal
solution is very far from the theoretical optimum.

We can "fix" our model by decreasing eps_abs and eps_rel, which SCS uses to control the absolute and relative
feasibility tolerances. Now the solver finds the correct solution:

set_attribute(model, "eps_abs", 1e-5)
set_attribute(model, "eps_rel", 1e-5)
optimize!(model)

------------------------------------------------------------------
^^I SCS v3.2.7 - Splitting Conic Solver
^^I(c) Brendan O'Donoghue, Stanford University, 2012
------------------------------------------------------------------
problem: variables n: 8192, constraints m: 8206
cones: ^^I z: primal zero / dual free vars: 1
^^I l: linear vars: 8205
settings: eps_abs: 1.0e-05, eps_rel: 1.0e-05, eps_infeas: 1.0e-07
^^I alpha: 1.50, scale: 1.00e-01, adaptive_scale: 1
^^I max_iters: 100000, normalize: 1, rho_x: 1.00e-06
^^I acceleration_lookback: 10, acceleration_interval: 10
^^I compiled with openmp parallelization enabled
lin-sys: sparse-direct-amd-qdldl
^^I nnz(A): 122880, nnz(P): 0
------------------------------------------------------------------
iter | pri res | dua res | gap | obj | scale | time (s)
------------------------------------------------------------------

0| 2.00e+01 1.00e+00 2.00e+01 -9.98e+00 1.00e-01 3.42e-02
250| 2.01e-02 2.85e-04 2.00e-02 3.01e-02 3.86e-01 1.83e-01
500| 3.69e-04 5.93e-04 8.84e-05 8.48e-01 6.13e-01 3.34e-01
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550| 2.66e-06 6.58e-10 1.27e-05 8.48e-01 6.13e-01 3.64e-01
------------------------------------------------------------------
status: solved
timings: total: 3.64e-01s = setup: 3.31e-02s + solve: 3.31e-01s
^^I lin-sys: 2.71e-01s, cones: 1.16e-02s, accel: 5.70e-03s
------------------------------------------------------------------
objective = 0.847906
------------------------------------------------------------------

assert_is_solved_and_feasible(model)
value(x[1])

0.8479127435814551

Why you shouldn't use a small tolerance

There is no direct relationship between the size of feasibility tolerance and the quality of the solution.

You might surmise from this section that you should set the tightest feasibility tolerance possible. However,
tighter tolerances come at the cost of increased solve time.

For example, SCS is a first-order solver. This means it uses only local gradient information at update each
iteration. SCS took 100 iterations to solve the problem with the default tolerance of 1e-4, and 550 iterations
to solve the problem with 1e-5. SCS may not be able to find a solution to our problem with a tighter tolerance
in a reasonable amount of time.

Integrality

Integrality tolerances control how the solver decides if a variable satisfies an integrality or binary constraint.
The tolerance is typically defined as: |x− bx+0.5c| ≤ ε, which you can read as the absolute distance to the
nearest integer.

Here's a simple example:

model = Model(HiGHS.Optimizer)
set_silent(model)
set_attribute(model, "presolve", "off")
@variable(model, x == 1 + 1e-6, Int)
optimize!(model)
is_solved_and_feasible(model)

true

HiGHS found an optimal solution, and the value of x is:
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value(x)

1.000001

In other words, HiGHS thinks that the solution x = 1.000001 satisfies the constraint that xmust be an integer.
primal_feasibility_report shows that indeed, the integrality constraint is violated:

primal_feasibility_report(model)

Dict{Any, Float64} with 1 entry:
x integer => 1.0e-6

The value of ε in HiGHS is controlled by the mip_feasibility_tolerance option. The default is 1e-6. If we
set the attribute to a smaller value, HiGHS will now correctly deduce that the problem is infeasible:

set_attribute(model, "mip_feasibility_tolerance", 1e-10)
optimize!(model)
is_solved_and_feasible(model)

false

Realistic example

Integrality tolerances are particularly important when you have big-M type constraints. Small non-integer
values in the integer variables can cause "leakage" flows even when the big-M switch is "off." Consider this
example:

M = 1e6
model = Model()
@variable(model, x >= 0)
@variable(model, y, Bin)
@constraint(model, x <= M * y)
print(model)

Feasibility
Subject to
x - 1000000 y ≤ 0
x ≥ 0
y binary

This model has a feasible solution (to tolerances) of (x, y) = (1, 1e-6); there can be a non-zero value of x
even when y is (approximately) 0.



CHAPTER 4. GETTING STARTED 94

primal_feasibility_report(model, Dict(x => 1.0, y => 1e-6))

Dict{Any, Float64} with 1 entry:
y binary => 1.0e-6

Rounding the solution

Integrality tolerances are the reason why JuMP does not return ::Int for value(x) of an integer variable or
::Bool for value(x) of a binary variable.

In most cases, it is safe to post-process the solution using y_int = round(Int, value(y)). However, in
some cases "fixing" the integrality like this can cause violations in primal feasibility that exceed the primal
feasibility tolerance. For example, if we rounded our (x, y) = (1, 1e-6) solution to (x, y) = (1, 0), then
the constraint x <= M * y is now violated by a value of 1.0, which is much greater than a typical feasibility
tolerance of 1e-8.

primal_feasibility_report(model, Dict(x => 1.0, y => 0.0))

Dict{Any, Float64} with 1 entry:
x - 1000000 y ≤ 0 => 1.0

Why you shouldn't use a small tolerance

Just like primal feasibility tolerances, using a smaller value for the integrality tolerance can lead to greatly
increased solve times.

Contradictory results

The distinction between feasible and infeasible can be surprisingly nuanced. Solver Amight decide the problem
is feasible while solver B might decide it is infeasible. Different algorithms within solver A (like simplex and
barrier) may also come to different conclusions. Even changing settings like turning presolve on and off can
make a difference.

Here is an example where HiGHS reports the problem is infeasible, but there exists a feasible (to tolerance)
solution:

model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, x >= 0)
@variable(model, y >= 0)
@constraint(model, x + 1e8 * y == -1)
optimize!(model)
is_solved_and_feasible(model)
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false

The feasible solution (x, y) = (0.0, -1e-8) has a maximum primal violation of 1e-8 which is smaller than
the HiGHS feasibility tolerance:

primal_feasibility_report(model, Dict(x => 0.0, y => -1e-8))

Dict{Any, Float64} with 1 entry:
y ≥ 0 => 1.0e-8

This happens because there are two basic solutions. The first is infeasible at (x, y) = (-1, 0) and the second
is feasible (x, y) = (0, -1e-8). Different algorithms may terminate at either of these bases.

Another example is a variation on our integrality example, but this time, there are constraints that x >= 1 and
y <= 0.5:

M = 1e6
model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, x >= 1)
@variable(model, y, Bin)
@constraint(model, y <= 0.5)
@constraint(model, x <= M * y)
optimize!(model)
is_solved_and_feasible(model)

false

HiGHS reports the problem is infeasible, but there is a feasible (to tolerance) solution of:

primal_feasibility_report(model, Dict(x => 1.0, y => 1e-6))

Dict{Any, Float64} with 1 entry:
y binary => 1.0e-6

This happens because the presolve routine deduces that the y <= 0.5 constraint forces the binary variable y
to take the value 0. Substituting the value for y into the last constraint, presolve may also deduce that x <=
0, which violates the bound of x >= 1 and so the problem is infeasible.

We can work around this by providing HiGHS with the feasible starting solution:

set_start_value(x, 1)
set_start_value(y, 1e-6)



CHAPTER 4. GETTING STARTED 96

Now HiGHS will report that the problem is feasible:

optimize!(model)
is_solved_and_feasible(model)

true

Contradictory results are not a bug in the solver

These contradictory examples are not bugs in the HiGHS solver. They are an expected result of the interaction
between the tolerances and the solution algorithm. There will always be models in the gray boundary at the
edge of feasibility, for which the question of feasibility is not a clear true or false.

Problem scaling

Problem scaling refers to the absolute magnitudes of the data in your problem. The data is any numbers in
the objective, the constraints, or the variable bounds.

We say that a problem is poorly scaled if there are very small (< 10−3) or very large (> 106) coefficients in
the problem, or if the ratio of the largest to smallest coefficient is large.

Numerical issues related to the feasibility tolerances most commonly arise because of poor problem scaling.
The next examples assume a primal feasibility tolerance of 1e-8, but actual tolerances may vary from one
solver to another.

Small magnitudes

If the problem data is too small, then the feasibility tolerance can be too easily satisfied. For example, consider:

model = Model()
@variable(model, x)
@constraint(model, 1e-8 * x == 1e-4)

1.0× 10−8x = 0.0001

This should have the solution that x = 104, but because the feasibility tolerance of this constraint is |10−4 −
10−8x| < 10−8, it actually permits any value of x between 9999 and 10,001, which is a larger range of feasible
values than you might have expected.

Large magnitudes

If the problem data is too large, then the feasibility tolerance can be too difficult to satisfy.

model = Model()
@variable(model, x)
@constraint(model, 1e12 * x == 1e4)



CHAPTER 4. GETTING STARTED 97

1000000000000x = 10000

This should have the solution that x = 10−8, but because the feasibility tolerance of this constraint is |1012x−
104| < 10−8, it actually permits any value of x in 10−8 ± 10−20, which is a smaller range of feasible values
than you might have expected.

Large magnitude ratios

If the ratio of the smallest to the largest magnitude is too large, then the tolerances or small changes in the
input data can lead to large changes in the optimal solution. We have already seen an example with the
integrality tolerance, but we can exacerbate the behavior by putting a small coefficient on x:

model = Model()
@variable(model, x >= 0)
@variable(model, y, Bin)
@constraint(model, 1e-6x <= 1e6 * y)

1.0× 10−6x− 1000000y ≤ 0

This problem has a feasible (to tolerance) solution of:

primal_feasibility_report(model, Dict(x => 1_000_000.01, y => 1e-6))

Dict{Any, Float64} with 2 entries:
y binary => 1.0e-6
1.0e-6 x - 1000000 y ≤ 0 => 1.0e-8

If you intended the constraint to read that if x is non-zero then y = 1, this solution might be unexpected.

Recommended values

There are no hard rules that you must follow, and the interaction between tolerances, problem scaling, and the
solution is problem dependent. You should always check the solution returned by the solver to check it makes
sense for your application.

With that caveat in mind, a general rule of thumb to follow is:

Try to keep the ratio of the smallest to largest coefficient less than 106 in any row and column, and try to keep
most values between 10−3 and 106.

Choosing the correct units

The best way to fix problem scaling is by changing the units of your variables and constraints. Here's an
example. Suppose we are choosing the level of capacity investment in a new power plant. We can install up
to 1 GW of capacity at a cost of $1.78/W, and we have a budget of $200 million.

model = Model()
@variable(model, 0 <= x_capacity_W <= 10^9)
@constraint(model, 1.78 * x_capacity_W <= 200e6)
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1.78x_capacity_W ≤ 200000000

This constraint violates the recommendations because there are values greater than 106, and the ratio of the
coefficients in the constraint is 108.

One fix is the convert our capacity variable from Watts to Megawatts. This yields:

model = Model()
@variable(model, 0 <= x_capacity_MW <= 10^3)
@constraint(model, 1.78e6 * x_capacity_MW <= 200e6)

1780000x_capacity_MW ≤ 200000000

We can improve our model further by dividing the constraint by 106 to change the units from dollars to million
dollars.

model = Model()
@variable(model, 0 <= x_capacity_MW <= 10^3)
@constraint(model, 1.78 * x_capacity_MW <= 200)

1.78x_capacity_MW ≤ 200

This problem is equivalent to the original problem, but it has much better problem scaling.

As a general rule, to fix problem scaling you must simultaneously scale both variables and constraints. It is
usually not sufficient to scale variables or constraints in isolation.

4.8 Design patterns for larger models

This tutorial was generated using Literate.jl. Download the source as a .jl file.

JuMPmakes it easy to build and solve optimization models. However, once you start to construct larger models,
and especially ones that interact with external data sources or have customizable sets of variables and con-
straints based on client choices, you may find that your scripts become unwieldy. This tutorial demonstrates a
variety of ways in which you can structure larger JuMP models to improve their readability and maintainability.

Tip

This tutorial is more advanced than the other "Getting started" tutorials. It's in the "Getting started"
section to give you an early preview of how JuMP makes it easy to structure larger models. However,
if you are new to JuMP you may want to briefly skim the tutorial, and come back to it once you have
written a few JuMP models.

Overview

This tutorial uses explanation-by-example. We're going to start with a simple knapsackmodel, and then expand
it to add various features and structure.

https://github.com/fredrikekre/Literate.jl
tutorials/getting_started/design_patterns_for_larger_models.jl
https://en.wikipedia.org/wiki/Knapsack_problem
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A simple script

Your first prototype of a JuMP model is probably a script that uses a small set of hard-coded data.

using JuMP, HiGHS
profit = [5, 3, 2, 7, 4]
weight = [2, 8, 4, 2, 5]
capacity = 10
N = 5
model = Model(HiGHS.Optimizer)
@variable(model, x[1:N], Bin)
@objective(model, Max, sum(profit[i] * x[i] for i in 1:N))
@constraint(model, sum(weight[i] * x[i] for i in 1:N) <= capacity)
optimize!(model)
assert_is_solved_and_feasible(model)
value.(x)

5-element Vector{Float64}:
1.0
0.0
-0.0
1.0
1.0

The benefits of this approach are:

• it is quick to code

• it is quick to make changes.

The downsides include:

• all variables are global (read Performance tips)

• it is easy to introduce errors, for example, having profit and weight be vectors of different lengths, or
not match N

• the solution, x[i], is hard to interpret without knowing the order in which we provided the data.

Wrap the model in a function

A good next step is to wrap your model in a function. This is useful for a few reasons:

• it removes global variables

• it encapsulates the JuMP model and forces you to clarify your inputs and outputs

• we can add some error checking.

https://docs.julialang.org/en/v1/manual/performance-tips/
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function solve_knapsack_1(profit::Vector, weight::Vector, capacity::Real)
if length(profit) != length(weight)

throw(DimensionMismatch("profit and weight are different sizes"))
end
N = length(weight)
model = Model(HiGHS.Optimizer)
@variable(model, x[1:N], Bin)
@objective(model, Max, sum(profit[i] * x[i] for i in 1:N))
@constraint(model, sum(weight[i] * x[i] for i in 1:N) <= capacity)
optimize!(model)
assert_is_solved_and_feasible(model)
return value.(x)

end

solve_knapsack_1([5, 3, 2, 7, 4], [2, 8, 4, 2, 5], 10)

5-element Vector{Float64}:
1.0
0.0
-0.0
1.0
1.0

Create better data structures

Although we can check for errors like mis-matched vector lengths, if you start to develop models with a lot of
data, keeping track of vectors and lengths and indices is fragile and a common source of bugs. A good solution
is to use Julia's type system to create an abstraction over your data.

For example, we can create a struct that represents a single object, with a constructor that lets us validate
assumptions on the input data:

struct KnapsackObject
profit::Float64
weight::Float64
function KnapsackObject(profit::Float64, weight::Float64)

if weight < 0
throw(DomainError("Weight of object cannot be negative"))

end
return new(profit, weight)

end
end

as well as a struct that holds a dictionary of objects and the knapsack's capacity:

struct KnapsackData
objects::Dict{String,KnapsackObject}
capacity::Float64

end
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Here's what our data might look like now:

objects = Dict(
"apple" => KnapsackObject(5.0, 2.0),
"banana" => KnapsackObject(3.0, 8.0),
"cherry" => KnapsackObject(2.0, 4.0),
"date" => KnapsackObject(7.0, 2.0),
"eggplant" => KnapsackObject(4.0, 5.0),

)
data = KnapsackData(objects, 10.0)

Main.KnapsackData(Dict{String, Main.KnapsackObject}("cherry" => Main.KnapsackObject(2.0, 4.0),
"banana" => Main.KnapsackObject(3.0, 8.0), "date" => Main.KnapsackObject(7.0, 2.0), "eggplant"
=> Main.KnapsackObject(4.0, 5.0), "apple" => Main.KnapsackObject(5.0, 2.0)), 10.0)

↪→

↪→

If you want, you can add custom printing to make it easier to visualize:

function Base.show(io::IO, data::KnapsackData)
println(io, "A knapsack with capacity $(data.capacity) and possible items:")
for (k, v) in data.objects

println(
io,
" $(rpad(k, 8)) : profit = $(v.profit), weight = $(v.weight)",

)
end
return

end

data

A knapsack with capacity 10.0 and possible items:
cherry : profit = 2.0, weight = 4.0
banana : profit = 3.0, weight = 8.0
date : profit = 7.0, weight = 2.0
eggplant : profit = 4.0, weight = 5.0
apple : profit = 5.0, weight = 2.0

Then, we can re-write our solve_knapsack function to take our KnapsackData as input:

function solve_knapsack_2(data::KnapsackData)
model = Model(HiGHS.Optimizer)
@variable(model, x[keys(data.objects)], Bin)
@objective(model, Max, sum(v.profit * x[k] for (k, v) in data.objects))
@constraint(

model,
sum(v.weight * x[k] for (k, v) in data.objects) <= data.capacity,

)
optimize!(model)
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assert_is_solved_and_feasible(model)
return value.(x)

end

solve_knapsack_2(data)

1-dimensional DenseAxisArray{Float64,1,...} with index sets:
Dimension 1, ["cherry", "banana", "date", "eggplant", "apple"]

And data, a 5-element Vector{Float64}:
-0.0
0.0
1.0
1.0
1.0

Read in data from files

Having a data structure is a good step. But it is still annoying that we have to hard-code the data into Julia. A
good next step is to separate the data into an external file format; JSON is a common choice.

json_data = """
{

"objects": {
"apple": {"profit": 5.0, "weight": 2.0},
"banana": {"profit": 3.0, "weight": 8.0},
"cherry": {"profit": 2.0, "weight": 4.0},
"date": {"profit": 7.0, "weight": 2.0},
"eggplant": {"profit": 4.0, "weight": 5.0}

},
"capacity": 10.0

}
"""
temp_dir = mktempdir()
knapsack_json_filename = joinpath(temp_dir, "knapsack.json")
# Instead of writing a new file here you could replace `knapsack_json_filename`
# with the path to a local file.
write(knapsack_json_filename, json_data);

Now let's write a function that reads this file and builds a KnapsackData object:

import JSON

function read_data(filename)
d = JSON.parsefile(filename)
return KnapsackData(

Dict(
k => KnapsackObject(v["profit"], v["weight"]) for
(k, v) in d["objects"]

),
d["capacity"],
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)
end

data = read_data(knapsack_json_filename)

A knapsack with capacity 10.0 and possible items:
cherry : profit = 2.0, weight = 4.0
banana : profit = 3.0, weight = 8.0
date : profit = 7.0, weight = 2.0
eggplant : profit = 4.0, weight = 5.0
apple : profit = 5.0, weight = 2.0

Add options via if-else

At this point, we have data in a file format which we can load and solve a single problem. For many users, this
might be sufficient. However, at some point you may be asked to add features like "but what if we want to
take more than one of a particular item?"

If this is the first time that you've been asked to add a feature, adding options via if-else statements is a
good approach. For example, we might write:

function solve_knapsack_3(data::KnapsackData; binary_knapsack::Bool)
model = Model(HiGHS.Optimizer)
if binary_knapsack

@variable(model, x[keys(data.objects)], Bin)
else

@variable(model, x[keys(data.objects)] >= 0, Int)
end
@objective(model, Max, sum(v.profit * x[k] for (k, v) in data.objects))
@constraint(

model,
sum(v.weight * x[k] for (k, v) in data.objects) <= data.capacity,

)
optimize!(model)
assert_is_solved_and_feasible(model)
return value.(x)

end

solve_knapsack_3 (generic function with 1 method)

Now we can solve the binary knapsack:

solve_knapsack_3(data; binary_knapsack = true)
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1-dimensional DenseAxisArray{Float64,1,...} with index sets:
Dimension 1, ["cherry", "banana", "date", "eggplant", "apple"]

And data, a 5-element Vector{Float64}:
-0.0
0.0
1.0
1.0
1.0

And an integer knapsack where we can take more than one copy of each item:

solve_knapsack_3(data; binary_knapsack = false)

1-dimensional DenseAxisArray{Float64,1,...} with index sets:
Dimension 1, ["cherry", "banana", "date", "eggplant", "apple"]

And data, a 5-element Vector{Float64}:
0.0
0.0
5.0
0.0
0.0

Add configuration options via dispatch

If you get repeated requests to add different options, you'll quickly find yourself in a mess of different flags
and if-else statements. It's hard to write, hard to read, and hard to ensure you haven't introduced any bugs.
A good solution is to use Julia's type dispatch to control the configuration of the model. The easiest way to
explain this is by example.

First, start by defining a new abstract type, as well as new subtypes for each of our options. These types are
going to control the configuration of the knapsack model.

abstract type AbstractConfiguration end

struct BinaryKnapsackConfig <: AbstractConfiguration end

struct IntegerKnapsackConfig <: AbstractConfiguration end

Then, we rewrite our solve_knapsack function to take a config argument, andwe introduce an add_knapsack_variables
function to abstract the creation of our variables.

function solve_knapsack_4(data::KnapsackData, config::AbstractConfiguration)
model = Model(HiGHS.Optimizer)
x = add_knapsack_variables(model, data, config)
@objective(model, Max, sum(v.profit * x[k] for (k, v) in data.objects))
@constraint(

model,
sum(v.weight * x[k] for (k, v) in data.objects) <= data.capacity,



CHAPTER 4. GETTING STARTED 105

)
optimize!(model)
assert_is_solved_and_feasible(model)
return value.(x)

end

solve_knapsack_4 (generic function with 1 method)

For the binary knapsack problem, add_knapsack_variables looks like this:

function add_knapsack_variables(
model::Model,
data::KnapsackData,
::BinaryKnapsackConfig,

)
return @variable(model, x[keys(data.objects)], Bin)

end

add_knapsack_variables (generic function with 1 method)

For the integer knapsack problem, add_knapsack_variables looks like this:

function add_knapsack_variables(
model::Model,
data::KnapsackData,
::IntegerKnapsackConfig,

)
return @variable(model, x[keys(data.objects)] >= 0, Int)

end

add_knapsack_variables (generic function with 2 methods)

Now we can solve the binary knapsack:

solve_knapsack_4(data, BinaryKnapsackConfig())

1-dimensional DenseAxisArray{Float64,1,...} with index sets:
Dimension 1, ["cherry", "banana", "date", "eggplant", "apple"]

And data, a 5-element Vector{Float64}:
-0.0
0.0
1.0
1.0
1.0
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and the integer knapsack problem:

solve_knapsack_4(data, IntegerKnapsackConfig())

1-dimensional DenseAxisArray{Float64,1,...} with index sets:
Dimension 1, ["cherry", "banana", "date", "eggplant", "apple"]

And data, a 5-element Vector{Float64}:
0.0
0.0
5.0
0.0
0.0

The main benefit of the dispatch approach is that you can quickly add new options without needing to modify
the existing code. For example:

struct UpperBoundedKnapsackConfig <: AbstractConfiguration
limit::Int

end

function add_knapsack_variables(
model::Model,
data::KnapsackData,
config::UpperBoundedKnapsackConfig,

)
return @variable(model, 0 <= x[keys(data.objects)] <= config.limit, Int)

end

solve_knapsack_4(data, UpperBoundedKnapsackConfig(3))

1-dimensional DenseAxisArray{Float64,1,...} with index sets:
Dimension 1, ["cherry", "banana", "date", "eggplant", "apple"]

And data, a 5-element Vector{Float64}:
0.0
0.0
3.0
0.0
2.0

Generalize constraints and objectives

It's easy to extend the dispatch approach to constraints and objectives as well. The key points to notice in the
next two functions are that:

• we can access registered variables via model[:x]

• we can define generic functions which accept any AbstractConfiguration as a configuration argument.
That means we can implement a single method and have it apply to multiple configuration types.
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function add_knapsack_constraints(
model::Model,
data::KnapsackData,
::AbstractConfiguration,

)
x = model[:x]
@constraint(

model,
capacity_constraint,
sum(v.weight * x[k] for (k, v) in data.objects) <= data.capacity,

)
return

end

function add_knapsack_objective(
model::Model,
data::KnapsackData,
::AbstractConfiguration,

)
x = model[:x]
@objective(model, Max, sum(v.profit * x[k] for (k, v) in data.objects))
return

end

function solve_knapsack_5(data::KnapsackData, config::AbstractConfiguration)
model = Model(HiGHS.Optimizer)
add_knapsack_variables(model, data, config)
add_knapsack_constraints(model, data, config)
add_knapsack_objective(model, data, config)
optimize!(model)
assert_is_solved_and_feasible(model)
return value.(model[:x])

end

solve_knapsack_5(data, BinaryKnapsackConfig())

1-dimensional DenseAxisArray{Float64,1,...} with index sets:
Dimension 1, ["cherry", "banana", "date", "eggplant", "apple"]

And data, a 5-element Vector{Float64}:
-0.0
0.0
1.0
1.0
1.0

Function barriers

Querying a variable like x = model[:x] is not type stable. The lack of type stability means that Julia cannot
statically provewhat the type of xwill be within a function. As a consequence, the functions add_knapsack_constraints
and add_knapsack_objective are slower than they would be if Julia could prove that xwas a Containers.DenseAxisArray.

One solution to the problem of type stability is to use a function barrier:
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function add_knapsack_constraints(
model::Model,
data::KnapsackData,
config::AbstractConfiguration,

)
return add_knapsack_constraints_inner(model, data, config, model[:x])

end

function add_knapsack_constraints_inner(
model::Model,
data::KnapsackData,
::AbstractConfiguration,
x,

)
@constraint(

model,
capacity_constraint,
sum(v.weight * x[k] for (k, v) in data.objects) <= data.capacity,

)
return

end

add_knapsack_constraints_inner (generic function with 1 method)

Now, add_knapsack_constraints_inner is faster because Julia can compile a specific version that depends
on the type of x passed as an input argument.

The downside of function barriers is that they requiremore code. The upside is faster code and reducedmemory
allocations. In general, you should add a function barrier if you have a benchmark showing that the difference
is meaningful for your code base. Function barriers are more likely to be useful if the _inner function does a
lot of computational work, for example, it adds thousands of constraints or has a summation over thousands
of items.

Remove solver dependence, add error checks

Compared to where we started, our knapsack model is now significantly different. We've wrapped it in a
function, defined some data types, and introduced configuration options to control the variables and constraints
that get added. There are a few other steps we can do to further improve things:

• remove the dependence on HiGHS

• add checks that we found an optimal solution

• add a helper function to avoid the need to explicitly construct the data.

function solve_knapsack_6(
optimizer,
data::KnapsackData,
config::AbstractConfiguration,

)
model = Model(optimizer)
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add_knapsack_variables(model, data, config)
add_knapsack_constraints(model, data, config)
add_knapsack_objective(model, data, config)
optimize!(model)
if !is_solved_and_feasible(model)

@warn("Model not solved to optimality")
return nothing

end
return value.(model[:x])

end

function solve_knapsack_6(
optimizer,
data::String,
config::AbstractConfiguration,

)
return solve_knapsack_6(optimizer, read_data(data), config)

end

solution = solve_knapsack_6(
HiGHS.Optimizer,
knapsack_json_filename,
BinaryKnapsackConfig(),

)

1-dimensional DenseAxisArray{Float64,1,...} with index sets:
Dimension 1, ["cherry", "banana", "date", "eggplant", "apple"]

And data, a 5-element Vector{Float64}:
-0.0
0.0
1.0
1.0
1.0

Create a module

Now we're ready to expose our model to the wider world. That might be as part of a larger Julia project that
we're contributing to, or as a stand-alone script that we can run on-demand. In either case, it's good practice
to wrap everything in a module. This further encapsulates our code into a single namespace, and we can add
documentation in the form of docstrings.

Some good rules to follow when creating a module are:

• use import in a module instead of using to make it clear which functions are from which packages

• use _ to start function and type names that are considered private

• add docstrings to all public variables and functions.

https://docs.julialang.org/en/v1/manual/documentation/
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module KnapsackModel

import JuMP
import JSON

struct _KnapsackObject
profit::Float64
weight::Float64
function _KnapsackObject(profit::Float64, weight::Float64)

if weight < 0
throw(DomainError("Weight of object cannot be negative"))

end
return new(profit, weight)

end
end

struct _KnapsackData
objects::Dict{String,_KnapsackObject}
capacity::Float64

end

function _read_data(filename)
d = JSON.parsefile(filename)
return _KnapsackData(

Dict(
k => _KnapsackObject(v["profit"], v["weight"]) for
(k, v) in d["objects"]

),
d["capacity"],

)
end

abstract type _AbstractConfiguration end

"""
BinaryKnapsackConfig()

Create a binary knapsack problem where each object can be taken 0 or 1 times.
"""
struct BinaryKnapsackConfig <: _AbstractConfiguration end

"""
IntegerKnapsackConfig()

Create an integer knapsack problem where each object can be taken any number of
times.
"""
struct IntegerKnapsackConfig <: _AbstractConfiguration end

function _add_knapsack_variables(
model::JuMP.Model,
data::_KnapsackData,
::BinaryKnapsackConfig,

)
return JuMP.@variable(model, x[keys(data.objects)], Bin)
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end

function _add_knapsack_variables(
model::JuMP.Model,
data::_KnapsackData,
::IntegerKnapsackConfig,

)
return JuMP.@variable(model, x[keys(data.objects)] >= 0, Int)

end

function _add_knapsack_constraints(
model::JuMP.Model,
data::_KnapsackData,
config::_AbstractConfiguration,

)
return _add_knapsack_constraints_inner(model, data, config, model[:x])

end

function _add_knapsack_constraints_inner(
model::JuMP.Model,
data::_KnapsackData,
::_AbstractConfiguration,
x,

)
JuMP.@constraint(

model,
capacity_constraint,
sum(v.weight * x[k] for (k, v) in data.objects) <= data.capacity,

)
return

end

function _add_knapsack_objective(
model::JuMP.Model,
data::_KnapsackData,
config::_AbstractConfiguration,

)
return _add_knapsack_objective_inner(model, data, config, model[:x])

end

function _add_knapsack_objective_inner(
model::JuMP.Model,
data::_KnapsackData,
::_AbstractConfiguration,
x,

)
JuMP.@objective(model, Max, sum(v.profit * x[k] for (k, v) in data.objects))
return

end

function _solve_knapsack(
optimizer,
data::_KnapsackData,
config::_AbstractConfiguration,

)
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model = JuMP.Model(optimizer)
_add_knapsack_variables(model, data, config)
_add_knapsack_constraints(model, data, config)
_add_knapsack_objective(model, data, config)
JuMP.optimize!(model)
if !JuMP.is_solved_and_feasible(model)

@warn("Model not solved to optimality")
return nothing

end
return JuMP.value.(model[:x])

end

"""
solve_knapsack(

optimizer,
knapsack_json_filename::String,
config::_AbstractConfiguration,

)

Solve the knapsack problem and return the optimal primal solution

# Arguments

* `optimizer` : an object that can be passed to `JuMP.Model` to construct a new
JuMP model.

* `knapsack_json_filename` : the filename of a JSON file containing the data for the
problem.

* `config` : an object to control the type of knapsack model constructed.
Valid options are:
* `BinaryKnapsackConfig()`
* `IntegerKnapsackConfig()`

# Returns

* If an optimal solution exists: a `JuMP.DenseAxisArray` that maps the `String`
name of each object to the number of objects to pack into the knapsack.

* Otherwise, `nothing`, indicating that the problem does not have an optimal
solution.

# Example

```julia
solution = solve_knapsack(

HiGHS.Optimizer,
"path/to/data.json",
BinaryKnapsackConfig(),

)
```

```julia
solution = solve_knapsack(

MOI.OptimizerWithAttributes(HiGHS.Optimizer, "output_flag" => false),
"path/to/data.json",
IntegerKnapsackConfig(),

)
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```
"""
function solve_knapsack(

optimizer,
knapsack_json_filename::String,
config::_AbstractConfiguration,

)
data = _read_data(knapsack_json_filename)
return _solve_knapsack(optimizer, data, config)

end

end

Main.KnapsackModel

Finally, you can call your model:

import .KnapsackModel

KnapsackModel.solve_knapsack(
HiGHS.Optimizer,
knapsack_json_filename,
KnapsackModel.BinaryKnapsackConfig(),

)

1-dimensional DenseAxisArray{Float64,1,...} with index sets:
Dimension 1, ["cherry", "banana", "date", "eggplant", "apple"]

And data, a 5-element Vector{Float64}:
-0.0
0.0
1.0
1.0
1.0

Note

The . in .KnapsackModel denotes that it is a submodule and not a separate package that we installed
with Pkg.add. If you put the KnapsackModel in a separate file, load it with:

include("path/to/KnapsackModel.jl")
import .KnapsackModel

Add tests

As a final step, you should add tests for your model. This often means testing on a small problem for which you
can work out the optimal solution by hand. The Julia standard library Test has good unit-testing functionality.
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import .KnapsackModel
using Test

@testset "KnapsackModel" begin
@testset "feasible_binary_knapsack" begin

x = KnapsackModel.solve_knapsack(
HiGHS.Optimizer,
knapsack_json_filename,
KnapsackModel.BinaryKnapsackConfig(),

)
@test isapprox(x["apple"], 1, atol = 1e-5)
@test isapprox(x["banana"], 0, atol = 1e-5)
@test isapprox(x["cherry"], 0, atol = 1e-5)
@test isapprox(x["date"], 1, atol = 1e-5)
@test isapprox(x["eggplant"], 1, atol = 1e-5)

end
@testset "feasible_integer_knapsack" begin

x = KnapsackModel.solve_knapsack(
HiGHS.Optimizer,
knapsack_json_filename,
KnapsackModel.IntegerKnapsackConfig(),

)
@test isapprox(x["apple"], 0, atol = 1e-5)
@test isapprox(x["banana"], 0, atol = 1e-5)
@test isapprox(x["cherry"], 0, atol = 1e-5)
@test isapprox(x["date"], 5, atol = 1e-5)
@test isapprox(x["eggplant"], 0, atol = 1e-5)

end
@testset "infeasible_binary_knapsack" begin

dir = mktempdir()
infeasible_filename = joinpath(dir, "infeasible.json")
write(

infeasible_filename,
"""{

"objects": {
"apple": {"profit": 5.0, "weight": 2.0},
"banana": {"profit": 3.0, "weight": 8.0},
"cherry": {"profit": 2.0, "weight": 4.0},
"date": {"profit": 7.0, "weight": 2.0},
"eggplant": {"profit": 4.0, "weight": 5.0}

},
"capacity": -10.0

}""",
)
x = KnapsackModel.solve_knapsack(

HiGHS.Optimizer,
infeasible_filename,
KnapsackModel.BinaryKnapsackConfig(),

)
@test x === nothing

end
end
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Test.DefaultTestSet("KnapsackModel", Any[Test.DefaultTestSet("feasible_binary_knapsack", Any[], 5,
false, false, true, 1.747779948576879e9, 1.747779948578839e9, false,
"design_patterns_for_larger_models.md"), Test.DefaultTestSet("feasible_integer_knapsack",
Any[], 5, false, false, true, 1.747779948578863e9, 1.747779948751315e9, false,
"design_patterns_for_larger_models.md"), Test.DefaultTestSet("infeasible_binary_knapsack",
Any[], 1, false, false, true, 1.747779948751364e9, 1.747779948753238e9, false,
"design_patterns_for_larger_models.md")], 0, false, false, true, 1.747779948576843e9,
1.747779948753245e9, false, "design_patterns_for_larger_models.md")

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Tip

Place these tests in a separate file test_knapsack_model.jl so that you can run the tests by adding
include("test_knapsack_model.jl") to any file where needed.

Next steps

We've only briefly scratched the surface of ways to create and structure large JuMP models, so consider this
tutorial a starting point, rather than a comprehensive list of all the possible ways to structure JuMP models. If
you are embarking on a large project that uses JuMP, a good next step is to look at ways people have written
large JuMP projects "in the wild."

Here are some good examples (all co-incidentally related to energy):

• AnyMOD.jl

– JuMP-dev 2021 talk
– source code

• PowerModels.jl

– JuMP-dev 2021 talk
– source code

• PowerSimulations.jl

– JuliaCon 2021 talk
– source code

• UnitCommitment.jl

– JuMP-dev 2021 talk
– source code

4.9 Performance tips

This tutorial was generated using Literate.jl. Download the source as a .jl file.

By now you should have read the other "getting started" tutorials. You're almost ready to write your own
models, but before you do so there are some important things to be aware of.

The Julia manual has an excellent section on Performance tips. The purpose of this tutorial is to highlight a
number of performance issues that are specific to JuMP.

https://www.youtube.com/watch?v=QE_tNDER0F4
https://github.com/leonardgoeke/AnyMOD.jl
https://www.youtube.com/watch?v=POOt1FCA8LI
https://github.com/lanl-ansi/PowerModels.jl
https://www.youtube.com/watch?v=-ZoO3npjwYU
https://github.com/NREL-SIIP/PowerSimulations.jl
https://www.youtube.com/watch?v=rYUZK9kYeIY
https://github.com/ANL-CEEESA/UnitCommitment.jl
https://github.com/fredrikekre/Literate.jl
tutorials/getting_started/performance_tips.jl
https://docs.julialang.org/en/v1/manual/performance-tips/index.html
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Required packages

This tutorial uses the following packages:

julia> using JuMP

julia> import HiGHS

Use macros to build expressions

Use JuMP's macros to build expressions.

Constructing an expression outside the macro results in intermediate copies of the expression. For example,

x[1] + x[2] + x[3]

is equivalent to

a = x[1]
b = a + x[2]
c = b + x[3]

Since we only care about c, the a and b expressions are not needed and constructing them slows the program
down.

JuMP's macros rewrite the expressions to operate in-place and avoid these extra copies. Because they allocate
less memory, they are faster, particularly for large expressions.

Here's an example.

julia> model = Model()
A JuMP Model
├ solver: none
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none

julia> @variable(model, x[1:3])
3-element Vector{VariableRef}:
x[1]
x[2]
x[3]

Here's what happens if we construct the expression outside the macro:

julia> @allocated x[1] + x[2] + x[3]
1296
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Info

The @allocated measures how many bytes were allocated during the evaluation of an expression.
Fewer is better.

If we use the @expression macro, we get many fewer allocations:

julia> @allocated @expression(model, x[1] + x[2] + x[3])
736

Use add_to_expression! to build summations

If you don't want to use the expression macros, use add_to_expression! to build summations. For example,
instead of:

julia> expr = zero(AffExpr)
0

julia> for i in 1:3
expr += x[i]

end

julia> expr
x[1] + x[2] + x[3]

do

julia> expr = zero(AffExpr)
0

julia> for i in 1:3
add_to_expression!(expr, x[i])

end

julia> expr
x[1] + x[2] + x[3]

The former is equivalent to:

julia> expr0 = zero(AffExpr)
0

julia> expr1 = expr0 + x[1]
x[1]

julia> expr2 = expr1 + x[2]
x[1] + x[2]

julia> expr = expr2 + x[3]
x[1] + x[2] + x[3]
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which allocates four unique AffExpr objects. The latter efficiently updates expr in-place so that only one
AffExpr object is allocated.

The function add_to_expression! also supports terms like y += a * x where a is a constant. For example,
instead of:

julia> expr = zero(AffExpr)
0

julia> for i in 1:3
expr += i * x[i]

end

julia> expr
x[1] + 2 x[2] + 3 x[3]

do

julia> expr = zero(AffExpr)
0

julia> for i in 1:3
add_to_expression!(expr, i, x[i])

end

julia> expr
x[1] + 2 x[2] + 3 x[3]

Don't do this, because i * x[i] will allocate a new AffExpr in each iteration:

julia> expr = zero(AffExpr)
0

julia> for i in 1:3
add_to_expression!(expr, i * x[i])

end

julia> expr
x[1] + 2 x[2] + 3 x[3]

Disable string names

By default, JuMP creates String names for variables and constraints and passes these to the solver. The benefit
of passing names is that it improves the readability of log messages from the solver (for example, "variable
x has invalid bounds" instead of "variable v1203 has invalid bounds"), but for larger models the overhead of
passing names can be non-trivial.

Disable the creation of String names by setting set_string_name = false in the @variable and @constraint
macros, or by calling set_string_names_on_creation to disable all names for a particular model:
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julia> model = Model();

julia> set_string_names_on_creation(model, false)

julia> @variable(model, x)
_[1]

julia> @constraint(model, c, 2x <= 1)
2 _[1] ≤ 1

Note that this doesn't change how symbolic names and bindings are stored:

julia> x
_[1]

julia> model[:x]
_[1]

julia> x === model[:x]
true

But you can no longer look up the variable by the string name:

julia> variable_by_name(model, "x") === nothing
true

Info

For more information on the difference between string names, symbolic names, and bindings, see
String names, symbolic names, and bindings.

4.10 Performance problems with sum-if formulations

This tutorial was generated using Literate.jl. Download the source as a .jl file.

The purpose of this tutorial is to explain a common performance issue that can arise with summations like
sum(x[a] for a in list if condition(a)). This issue is particularly common in models with graph or
network structures.

Tip

This tutorial is more advanced than the other "Getting started" tutorials. It's in the "Getting started"
section because it is one of the most common causes of performance problems that users experience
when they first start using JuMP to write large scale programs. If you are new to JuMP, you may want
to briefly skim the tutorial and come back to it once you have written a few JuMP models.

Required packages

This tutorial uses the following packages

https://github.com/fredrikekre/Literate.jl
tutorials/getting_started/sum_if.jl
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using JuMP
import Plots

Data

As a motivating example, we consider a network flow problem, like the examples in Network flow problems or
The network multi-commodity flow problem.

Here is a function that builds a random graph. The specifics do not matter.

function build_random_graph(num_nodes::Int, num_edges::Int)
nodes = 1:num_nodes
edges = Pair{Int,Int}[i - 1 => i for i in 2:num_nodes]
while length(edges) < num_edges

edge = rand(nodes) => rand(nodes)
if !(edge in edges)

push!(edges, edge)
end

end
function demand(n)

if n == 1
return -1

elseif n == num_nodes
return 1

else
return 0

end
end
return nodes, edges, demand

end

nodes, edges, demand = build_random_graph(4, 8)

(1:4, [1 => 2, 2 => 3, 3 => 4, 2 => 2, 3 => 3, 1 => 1, 3 => 2, 1 => 4], Main.demand)

The goal is to decide the flow of a commodity along each edge in edges to satisfy the demand(n) of each node
n in nodes.

The mathematical formulation is:

s.t.
∑

(i,n)∈E

xi,n −
∑

(n,j)∈E

xn,j = dn ∀n ∈ N

xe ≥ 0 ∀e ∈ E

Naïve model

The first model you might write down is:
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model = Model()
@variable(model, flows[e in edges] >= 0)
@constraint(

model,
[n in nodes],
sum(flows[(i, j)] for (i, j) in edges if j == n) -
sum(flows[(i, j)] for (i, j) in edges if i == n) == demand(n)

);

The benefit of this formulation is that it looks very similar to the mathematical formulation of a network flow
problem.

The downside to this formulation is subtle. Behind the scenes, the JuMP @constraint macro expands to
something like:

model = Model()
@variable(model, flows[e in edges] >= 0)
for n in nodes

flow_in = AffExpr(0.0)
for (i, j) in edges

if j == n
add_to_expression!(flow_in, flows[(i, j)])

end
end
flow_out = AffExpr(0.0)
for (i, j) in edges

if i == n
add_to_expression!(flow_out, flows[(i, j)])

end
end
@constraint(model, flow_in - flow_out == demand(n))

end

This formulation includes two for-loops, with a loop over every edge (twice) for every node. The big-O notation
of the runtime is O(|nodes| × |edges|). If you have a large number of nodes and a large number of edges,
the runtime of this loop can be large.

Let's build a function to benchmark our formulation:

function build_naive_model(nodes, edges, demand)
model = Model()
@variable(model, flows[e in edges] >= 0)
@constraint(

model,
[n in nodes],
sum(flows[(i, j)] for (i, j) in edges if j == n) -
sum(flows[(i, j)] for (i, j) in edges if i == n) == demand(n)

)
return model

end

nodes, edges, demand = build_random_graph(1_000, 2_000)
@elapsed build_naive_model(nodes, edges, demand)

https://en.wikipedia.org/wiki/Big_O_notation
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0.125310643

A good way to benchmark is to measure the runtime across a wide range of input sizes. From our big-O analysis,
we should expect that doubling the number of nodes and edges results in a 4x increase in the runtime.

run_times = Float64[]
factors = 1:10
for factor in factors

graph = build_random_graph(1_000 * factor, 5_000 * factor)
push!(run_times, @elapsed build_naive_model(graph...))

end
Plots.plot(; xlabel = "Factor", ylabel = "Runtime [s]")
Plots.scatter!(factors, run_times; label = "Actual")
a, b = hcat(ones(10), factors .^ 2) \ run_times
Plots.plot!(factors, a .+ b * factors .^ 2; label = "Quadratic fit")

As expected, the runtimes demonstrate quadratic scaling: if we double the number of nodes and edges, the
runtime increases by a factor of four.

Caching

We can improve our formulation by caching the list of incoming and outgoing nodes for each node n:
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out_nodes = Dict(n => Int[] for n in nodes)
in_nodes = Dict(n => Int[] for n in nodes)
for (i, j) in edges

push!(out_nodes[i], j)
push!(in_nodes[j], i)

end

with the corresponding change to our model:

model = Model()
@variable(model, flows[e in edges] >= 0)
@constraint(

model,
[n in nodes],
sum(flows[(i, n)] for i in in_nodes[n]) -
sum(flows[(n, j)] for j in out_nodes[n]) == demand(n)

);

The benefit of this formulation is that we now loop over out_nodes[n] rather than edges for each node n, and
so the runtime is O(|edges|).

Let's build a new function to benchmark our formulation:

function build_cached_model(nodes, edges, demand)
out_nodes = Dict(n => Int[] for n in nodes)
in_nodes = Dict(n => Int[] for n in nodes)
for (i, j) in edges

push!(out_nodes[i], j)
push!(in_nodes[j], i)

end
model = Model()
@variable(model, flows[e in edges] >= 0)
@constraint(

model,
[n in nodes],
sum(flows[(i, n)] for i in in_nodes[n]) -
sum(flows[(n, j)] for j in out_nodes[n]) == demand(n)

)
return model

end

nodes, edges, demand = build_random_graph(1_000, 2_000)
@elapsed build_cached_model(nodes, edges, demand)

0.174810538

Analysis

Now we can analyse the difference in runtime of the two formulations:



CHAPTER 4. GETTING STARTED 124

run_times_naive = Float64[]
run_times_cached = Float64[]
factors = 1:10
for factor in factors

graph = build_random_graph(1_000 * factor, 5_000 * factor)
push!(run_times_naive, @elapsed build_naive_model(graph...))
push!(run_times_cached, @elapsed build_cached_model(graph...))

end
Plots.plot(; xlabel = "Factor", ylabel = "Runtime [s]")
Plots.scatter!(factors, run_times_naive; label = "Actual")
a, b = hcat(ones(10), factors .^ 2) \ run_times_naive
Plots.plot!(factors, a .+ b * factors .^ 2; label = "Quadratic fit")
Plots.scatter!(factors, run_times_cached; label = "Cached")
a, b = hcat(ones(10), factors) \ run_times_cached
Plots.plot!(factors, a .+ b * factors; label = "Linear fit")

Even though the cached model needs to build in_nodes and out_nodes, it is asymptotically faster than the
naïve model, scaling linearly with factor rather than quadratically.

Lesson

If you write code with sum-if type conditions, for example, @constraint(model, [a in set], sum(x[b]
for b in list if condition(a, b)), you can improve the performance by caching the elements for which
condition(a, b) is true.
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Finally, you should understand that this behavior is not specific to JuMP, and that it applies more generally to
all computer programs you might write. (Python programs that use Pyomo or gurobipy would similarly benefit
from this caching approach.)

Understanding big-O notation and algorithmic complexity is a useful debugging skill to have, regardless of the
type of program that you are writing.
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Transitioning

5.1 Transitioning from MATLAB

This tutorial was generated using Literate.jl. Download the source as a .jl file.

YALMIP and CVX are two packages for mathematical optimization in MATLAB®. They are independently devel-
oped and are in no way affiliated with JuMP.

The purpose of this tutorial is to help new users to JuMP who have previously used YALMIP or CVX by comparing
and contrasting their different features.

Tip

If you have not used Julia before, read the Getting started with Julia tutorial.

Namespaces

Julia has namespaces, which MATLAB lacks. Therefore one needs to either use the command:

using JuMP

in order bring all names exported by JuMP into scope, or:

import JuMP

in order to merely make the JuMP package available. import requires prefixing everything you use from JuMP
with JuMP.. In this tutorial we use the former.

Models

YALMIP and CVX have a single, implicit optimization model that you build by defining variables and constraints.

In JuMP, we create an explicit model first, and then, when you declare variables, constraints, or the objective
function, you specify to which model they are being added.

Create a new JuMP model with the command:
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https://github.com/fredrikekre/Literate.jl
tutorials/transitioning/transitioning_from_matlab.jl
https://yalmip.github.io/
https://cvxr.com/cvx/
https://mathworks.com/products/matlab.html
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model = Model()

A JuMP Model
├ solver: none
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none

Variables

In most cases there is a direct translation between variable declarations. The following table shows some
common examples:

JuMP YALMIP CVX

@variable(model, x) x = sdpvar variable x
@variable(model, x, Int) x = intvar variable x integer
@variable(model, x, Bin) x = binvar variable x binary
@variable(model, v[1:d]) v = sdpvar(d, 1) variable v(d)
@variable(model, m[1:d, 1:d]) m = sdpvar(d,d,'full') variable m(d, d)
@variable(model, m[1:d, 1:d] in
ComplexPlane())

m =
sdpvar(d,d,'full','complex')

variable m(d,d)
complex

@variable(model, m[1:d, 1:d],
Symmetric)

m = sdpvar(d) variable m(d,d)
symmetric

@variable(model, m[1:d, 1:d],
Hermitian)

m =
sdpvar(d,d,'hermitian','complex')

variable m(d,d)
hermitian

Like CVX, but unlike YALMIP, JuMP can also constrain variables upon creation:

JuMP CVX

@variable(model, v[1:d] >= 0) variable v(d) nonnegative
@variable(model, m[1:d, 1:d], PSD) variable m(d,d) semidefinite
@variable(model, m[1:d, 1:d] in PSDCone()) variable m(d,d) semidefinite
@variable(model, m[1:d, 1:d] in
HermitianPSDCone())

variable m(d,d) complex
semidefinite

JuMP can additionally set variable bounds, whichmay be handledmore efficiently by a solver than an equivalent
linear constraint. For example:

@variable(model, -1 <= x[i in 1:3] <= i)
upper_bound.(x)

3-element Vector{Float64}:
1.0
2.0
3.0
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A more interesting case is when you want to declare, for example, n real symmetric matrices. Both YALMIP and
CVX allow you to put the matrices as the slices of a 3-dimensional array, via the commands m = sdpvar(d,
d, n) and variable m(d, d, n) symmetric, respectively. With JuMP this is not possible. Instead, to achieve
the same result one needs to declare a vector of n matrices:

d, n = 3, 2
m = [@variable(model, [1:d, 1:d], Symmetric) for _ in 1:n]

2-element Vector{LinearAlgebra.Symmetric{VariableRef, Matrix{VariableRef}}}:
[_[4] _[5] _[7]; _[5] _[6] _[8]; _[7] _[8] _[9]]
[_[10] _[11] _[13]; _[11] _[12] _[14]; _[13] _[14] _[15]]

m[1]

3×3 LinearAlgebra.Symmetric{VariableRef, Matrix{VariableRef}}:
_[4] _[5] _[7]
_[5] _[6] _[8]
_[7] _[8] _[9]

m[2]

3×3 LinearAlgebra.Symmetric{VariableRef, Matrix{VariableRef}}:
_[10] _[11] _[13]
_[11] _[12] _[14]
_[13] _[14] _[15]

The analogous construct in MATLAB would be a cell array containing the optimization variables, which every
discerning programmer avoids as cell arrays are rather slow. This is not a problem in Julia: a vector of matrices
is almost as fast as a 3-dimensional array.

Constraints

As in the case of variables, in most cases there is a direct translation between the packages:

Like YALMIP and CVX, JuMP is smart enough to not generate redundant constraints when declaring equality
constraints between Symmetric or Hermitianmatrices. In these cases @constraint(model, m == c) will not
generate constraints for the lower diagonal and the imaginary part of the diagonal (in the complex case).

ExperiencedMATLAB users will probably be relieved to see that youmust pass PSDCone() or HermitianPSDCone()
to make amatrix positive semidefinite, because the >= ambiguity in YALMIP and CVX is common source of bugs.

Setting the objective

Like CVX, but unlike YALMIP, JuMP has a specific command for setting an objective function:
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JuMP YALMIP CVX

@constraint(model, v == c) v == c v == c
@constraint(model, v >= 0) v >= 0 v >= 0
@constraint(model, m >= 0, PSDCone()) m >= 0 m == semidefinite(length(m))
@constraint(model, m >= 0,
HermitianPSDCone())

m >= 0 m ==
hermitian_semidefinite(length(m))

@constraint(model, [t; v] in
SecondOrderCone())

cone(v, t) {v, t} == lorentz(length(v))

@constraint(model, [x, y, z] in
MOI.ExponentialCone())

expcone([x,
y, z])

{x, y, z} == exponential(1)

@objective(model, Min, sum(i * x[i] for i in 1:3))

x1 + 2x2 + 3x3

Here the third argument is any expression you want to optimize, and Min is an objective sense (the other
possibility is Max).

Setting solver and options

In order to set an optimizer with JuMP, do:

import Clarabel
set_optimizer(model, Clarabel.Optimizer)

where "Clarabel" is an example solver. See the list of Supported solvers for other choices.

To configure the solver options you use the command:

set_attribute(model, "verbose", true)

where verbose is an option specific to Clarabel.

A crucial difference is that with JuMP you must explicitly choose a solver before optimizing. Both YALMIP and
CVX allow you to leave it empty and will try to guess an appropriate solver for the problem.

Optimizing

Like YALMIP, but unlike CVX, with JuMP you need to explicitly start the optimization, with the command:

optimize!(model)

-------------------------------------------------------------
Clarabel.jl v0.10.0 - Clever Acronym

(c) Paul Goulart
University of Oxford, 2022

-------------------------------------------------------------
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problem:
variables = 15
constraints = 6
nnz(P) = 0
nnz(A) = 6
cones (total) = 1
: Nonnegative = 1, numel = 6

settings:
linear algebra: direct / qdldl, precision: Float64
max iter = 200, time limit = Inf, max step = 0.990
tol_feas = 1.0e-08, tol_gap_abs = 1.0e-08, tol_gap_rel = 1.0e-08,
static reg : on, ϵ1 = 1.0e-08, ϵ2 = 4.9e-32
dynamic reg: on, ϵ = 1.0e-13, δ = 2.0e-07
iter refine: on, reltol = 1.0e-13, abstol = 1.0e-12,

max iter = 10, stop ratio = 5.0
equilibrate: on, min_scale = 1.0e-04, max_scale = 1.0e+04

max iter = 10

iter pcost dcost gap pres dres k/t μ step
---------------------------------------------------------------------------------------------
0 1.0000e+01 -1.2500e+01 2.25e+00 0.00e+00 0.00e+00 1.00e+00 3.36e+00 ------
1 3.9744e+00 -5.5968e-01 4.53e+00 1.43e-16 1.27e-16 3.10e-01 6.92e-01 8.38e-01
2 1.1590e-01 -1.2437e-01 2.40e-01 4.88e-17 3.27e-17 2.81e-02 3.83e-02 9.73e-01
3 1.1746e-03 -1.2507e-03 2.43e-03 1.06e-16 7.36e-17 2.83e-04 3.87e-04 9.90e-01
4 1.1746e-05 -1.2507e-05 2.43e-05 1.44e-16 3.68e-17 2.83e-06 3.87e-06 9.90e-01
5 1.1746e-07 -1.2507e-07 2.43e-07 5.05e-15 4.78e-15 2.83e-08 3.87e-08 9.90e-01
6 1.1746e-09 -1.2507e-09 2.43e-09 1.59e-16 6.59e-17 2.83e-10 3.87e-10 9.90e-01

---------------------------------------------------------------------------------------------
Terminated with status = solved
solve time = 623μs

The exclamation mark here is a Julia-ism that means the function is modifying its argument, model.

Querying solution status

After the optimization is done, you should check for the solution status to see what solution (if any) the solver
found.

Like YALMIP and CVX, JuMP provides a solver-independent way to check it, via the command:

is_solved_and_feasible(model)

true

If the return value is false, you should investigate with termination_status, primal_status, and raw_status,
See Solutions for more details on how to query and interpret solution statuses.

Extracting variables

Like YALMIP, but unlike CVX, with JuMP you need to explicitly ask for the value of your variables after optimiza-
tion is done, with the function call value(x) to obtain the value of variable x.
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value.(m[1][1, 1])

0.0

A subtlety is that, unlike YALMIP, the function value is only defined for scalars. For vectors and matrices you
need to use Julia broadcasting: value.(v).

value.(m[1])

3×3 Matrix{Float64}:
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

There is also a specialized function for extracting the value of the objective, objective_value(model), which
is useful if your objective doesn't have a convenient expression.

objective_value(model)

-5.999999998825352

Dual variables

Like YALMIP and CVX, JuMP allows you to recover the dual variables. In order to do that, the simplest method is
to name the constraint you're interested in, for example, @constraint(model, bob, sum(v) == 1) and then,
after the optimzation is done, call dual(bob). See Duality for more details.

Reformulating problems

Perhaps the biggest difference between JuMP and YALMIP and CVX is how far the package is willing to go in
reformulating the problems you give to it.

CVX is happy to reformulate anything it can, even using approximations if your solver cannot handle the
problem.

YALMIP will only do exact reformulations, but is still fairly adventurous, for example, being willing to reformulate
a nonlinear objective in terms of conic constraints.

JuMP does no such thing: it only reformulates objectives into objectives, and constraints into constraints, and
is fairly conservative at that. As a result, you might need to do some reformulations manually, for which a
good guide is the Modeling with cones tutorial.



CHAPTER 5. TRANSITIONING 132

Vectorization

In MATLAB, it is absolutely essential to "vectorize" your code to obtain acceptable performance. This is because
MATLAB is a slow interpreted language, which sends your commands to fast libraries. When you "vectorize"
your code you are minimizing the MATLAB part of the work and sending it to the fast libraries instead.

There's no such duality with Julia.

Everything you write and most libraries you use will compile down to LLVM, so "vectorization" has no effect.

For example, if you are writing a linear program in MATLAB and instead of the usual constraints = [v >= 0]
you write:

for i = 1:n
constraints = [constraints, v(i) >= 0];

end

performance will be poor.

With Julia, on the other hand, there is hardly any difference between

@constraint(model, v >= 0)

and

for i in 1:n
@constraint(model, v[i] >= 0)

end

Symmetric and Hermitian matrices

Julia has specialized support for symmetric and Hermitian matrices in the LinearAlgebra package:

import LinearAlgebra

If you have a matrix that is numerically symmetric:

x = [1 2; 2 3]

2×2 Matrix{Int64}:
1 2
2 3

LinearAlgebra.issymmetric(x)
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true

then you can wrap it in a LinearAlgebra.Symmetric matrix to tell Julia's type system that the matrix is sym-
metric.

LinearAlgebra.Symmetric(x)

2×2 LinearAlgebra.Symmetric{Int64, Matrix{Int64}}:
1 2
2 3

Using a Symmetric matrix lets Julia and JuMP use more efficient algorithms when they are working with sym-
metric matrices.

If you have a matrix that is nearly but not exactly symmetric:

x = [1.0 2.0; 2.001 3.0]
LinearAlgebra.issymmetric(x)

false

then you could, as you might do in MATLAB, make it numerically symmetric as follows:

x_sym = 0.5 * (x + x')

2×2 Matrix{Float64}:
1.0 2.0005
2.0005 3.0

In Julia, you can explicitly choose whether to use the lower or upper triangle of the matrix:

x_sym = LinearAlgebra.Symmetric(x, :L)

2×2 LinearAlgebra.Symmetric{Float64, Matrix{Float64}}:
1.0 2.001
2.001 3.0

x_sym = LinearAlgebra.Symmetric(x, :U)
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2×2 LinearAlgebra.Symmetric{Float64, Matrix{Float64}}:
1.0 2.0
2.0 3.0

The same applies for Hermitianmatrices, using LinearAlgebra.Hermitian and LinearAlgebra.ishermitian.

Primal versus dual form

When you translate some optimization problems from YALMIP or CVX to JuMP, you might be surprised to see
it get much faster or much slower, even if you're using exactly the same solver. The most likely reason is
that YALMIP will always interpret the problem as the dual form, whereas CVX and JuMP will try to interpret the
problem in the form most appropriate to the solver. If the problem is more naturally formulated in the primal
form it is likely that YALMIP's performance will suffer, or if JuMP gets it wrong, its performance will suffer. It
might be worth trying both primal and dual forms if you're having trouble, which can be done automatically
with the package Dualization.jl.

For an in-depth explanation of this issue, see the Dualization tutorial.

Rosetta stone

In this section, we show a complete example of the same optimization problem being solved with JuMP, YALMIP,
and CVX. It is a semidefinite program that computes a lower bound on the random robustness of entanglement
using the partial transposition criterion.

The code is complete, apart from the function that does partial transposition. With both YALMIP and CVX we use
the function PartialTranspose fromQETLAB.With JuMP, we could use the function Convex.partialtranspose
from Convex.jl, but we reproduce it here for simplicity:

function partial_transpose(x::AbstractMatrix, sys::Int, dims::Vector)
@assert size(x, 1) == size(x, 2) == prod(dims)
@assert 1 <= sys <= length(dims)
n = length(dims)
s = n - sys + 1
p = collect(1:2n)
p[s], p[n+s] = n + s, s
r = reshape(x, (reverse(dims)..., reverse(dims)...))
return reshape(permutedims(r, p), size(x))

end

partial_transpose (generic function with 1 method)

JuMP

The JuMP code to solve this problem is:

using JuMP
import Clarabel
import LinearAlgebra

https://github.com/nathanieljohnston/QETLAB
https://jump.dev/Convex.jl/stable/
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function random_state_pure(d)
x = randn(Complex{Float64}, d)
y = x * x'
return LinearAlgebra.Hermitian(y / LinearAlgebra.tr(y))

end

function robustness_jump(d)
rho = random_state_pure(d^2)
id = LinearAlgebra.Hermitian(LinearAlgebra.I(d^2))
rhoT = LinearAlgebra.Hermitian(partial_transpose(rho, 1, [d, d]))
model = Model(Clarabel.Optimizer)
set_attribute(model, "verbose", false)
@variable(model, λ)
@constraint(model, PPT, rhoT + λ * id in HermitianPSDCone())
@objective(model, Min, λ)
optimize!(model)
assert_is_solved_and_feasible(model; allow_almost = true)
WT = dual(PPT)
return value(λ), real(LinearAlgebra.dot(WT, rhoT))

end

robustness_jump(3)

(0.43174978781546347, -0.43174978731622865)

YALMIP

The corresponding YALMIP code is:

function robustness_yalmip(d)
rho = random_state_pure(d^2);
% PartialTranspose from https://github.com/nathanieljohnston/QETLAB
rhoT = PartialTranspose(rho, 1, [d d]);
lambda = sdpvar;
constraints = [(rhoT + lambda*eye(d^2) >= 0):'PPT'];
ops = sdpsettings(sdpsettings, 'verbose', 0, 'solver', 'sedumi');
sol = optimize(constraints, lambda, ops);
if sol.problem == 0

WT = dual(constraints('PPT'));
value(lambda)
real(WT(:)' * rhoT(:))

else
display(['Something went wrong: ', sol.info])

end
end

function rho = random_state_pure(d)
x = randn(d, 1) + 1i * randn(d, 1);
y = x * x';
rho = y / trace(y);

end
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CVX

The corresponding CVX code is:

function robustness_cvx(d)
rho = random_state_pure(d^2);
% PartialTranspose from https://github.com/nathanieljohnston/QETLAB
rhoT = PartialTranspose(rho, 1, [d d]);
cvx_begin

variable lambda
dual variable WT
WT : rhoT + lambda * eye(d^2) == hermitian_semidefinite(d^2)
minimise lambda

cvx_end
if strcmp(cvx_status, 'Solved')

lambda
real(WT(:)' * rhoT(:))

else
display('Something went wrong.')

end
end

function rho = random_state_pure(d)
x = randn(d, 1) + 1i * randn(d, 1);
y = x * x';
rho = y / trace(y);

end
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Linear programs

6.1 Introduction

Linear programs (LPs) are a fundamental class of optimization problems of the form:

min
x∈Rn

n∑
i=1

cixi (6.1)

s.t.lj ≤
n∑

i=1

aijxi ≤ uj j = 1 . . .m (6.2)

li ≤ xi ≤ ui i = 1 . . . n. (6.3)

The most important thing to note is that all terms are of the form coefficient * variable, and that there
are no nonlinear terms or multiplications between variables.

Mixed-integer linear programs (MILPs) are extensions of linear programs in which some (or all) of the decision
variables take discrete values.

How to choose a solver

Almost all solvers support linear programs; look for "LP" in the list of Supported solvers. However, fewer
solvers support mixed-integer linear programs. Solvers supporting discrete variables start with "(MI)" in the
list of Supported solvers.

How these tutorials are structured

Having a high-level overview of how this part of the documentation is structured will help you know where to
look for certain things.

• The following tutorials are worked examples that present a problem in words, then formulate it in math-
ematics, and then solve it in JuMP. This usually involves some sort of visualization of the solution. Start
here if you are new to JuMP.

– The diet problem

– The cannery problem

– The facility location problem
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https://en.wikipedia.org/wiki/Linear_programming
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– Financial modeling problems

– Network flow problems

– N-Queens

– Sudoku

• The Tips and tricks tutorial contains a number of helpful reformulations and tricks you can use when
modeling linear programs. Look here if you are stuck trying to formulate a problem as a linear program.

• The Sensitivity analysis of a linear program tutorial explains how to create sensitivity reports like those
produced by the Excel Solver.

• The Callbacks tutorial explains how to write a variety of solver-independent callbacks. Look here if you
want to write a callback.

• The remaining tutorials are less verbose and styled in the form of short code examples. These tutorials
have less explanation, but may contain useful code snippets, particularly if they are similar to a problem
you are trying to solve.

6.2 The knapsack problem example

This tutorial was generated using Literate.jl. Download the source as a .jl file.

The purpose of this tutorial is to demonstrate how to formulate and solve a simple optimization problem.

Required packages

This tutorial requires the following packages:

using JuMP
import HiGHS

Formulation

The knapsack problem is a classical optimization problem: given a set of items and a container with a fixed
capacity, choose a subset of items having the greatest combined value that will fit within the container without
exceeding the capacity.

The name of the problem suggests its analogy to packing for a trip, where the baggage weight limit is the
capacity and the goal is to pack the most profitable combination of belongings.

We can formulate the knapsack problem as the integer linear program:

max
n∑

i=1

cixi

s.t.

n∑
i=1

wixi ≤ C,

xi ∈ {0, 1}, ∀i = 1, . . . , n,

whereC is the capacity, and there is a choice between n items, with item i having weightwi, profit ci. Decision
variable xi is equal to 1 if the item is chosen and 0 if not.

https://github.com/fredrikekre/Literate.jl
tutorials/linear/knapsack.jl
https://en.wikipedia.org/wiki/Knapsack_problem
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This formulation can be written more compactly as:

max c⊤x
s.t. w⊤x ≤ C

x binary .

Data

The data for the problem consists of two vectors (one for the profits and one for the weights) along with a
capacity.

There are five objects:

n = 5;

For our example, we use a capacity of 10 units:

capacity = 10.0;

and the profit and cost data:

profit = [5.0, 3.0, 2.0, 7.0, 4.0];
weight = [2.0, 8.0, 4.0, 2.0, 5.0];

JuMP formulation

Let's begin constructing the JuMP model for our knapsack problem.

First, we'll create a Model object for holding model elements as we construct each part. We'll also set the solver
that will ultimately be called to solve the model, once it's constructed.

model = Model(HiGHS.Optimizer)

A JuMP Model
├ solver: HiGHS
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none

Next we need the decision variables representing which items are chosen:

@variable(model, x[1:n], Bin)
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5-element Vector{VariableRef}:
x[1]
x[2]
x[3]
x[4]
x[5]

We now want to constrain those variables so that their combined weight is less than or equal to the given
capacity:

@constraint(model, sum(weight[i] * x[i] for i in 1:n) <= capacity)

2x1 + 8x2 + 4x3 + 2x4 + 5x5 ≤ 10

Finally, our objective is to maximize the combined profit of the chosen items:

@objective(model, Max, sum(profit[i] * x[i] for i in 1:n))

5x1 + 3x2 + 2x3 + 7x4 + 4x5

Let's print a human-readable description of the model and check that the model looks as expected:

print(model)

Max 5 x[1] + 3 x[2] + 2 x[3] + 7 x[4] + 4 x[5]
Subject to
2 x[1] + 8 x[2] + 4 x[3] + 2 x[4] + 5 x[5] ≤ 10
x[1] binary
x[2] binary
x[3] binary
x[4] binary
x[5] binary

We can now solve the optimization problem and inspect the results.

optimize!(model)
assert_is_solved_and_feasible(model)
solution_summary(model)

solution_summary(; result = 1, verbose = false)
├ solver_name : HiGHS
├ Termination
│ ├ termination_status : OPTIMAL
│ ├ result_count : 1
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│ ├ raw_status : kHighsModelStatusOptimal
│ └ objective_bound : 1.60000e+01
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : NO_SOLUTION
│ ├ objective_value : 1.60000e+01
│ ├ dual_objective_value : NaN
│ └ relative_gap : 0.00000e+00
└ Work counters
├ solve_time (sec) : 5.80549e-04
├ simplex_iterations : 1
├ barrier_iterations : -1
└ node_count : 1

The items chosen are

items_chosen = [i for i in 1:n if value(x[i]) > 0.5]

3-element Vector{Int64}:
1
4
5

Writing a function

After working interactively, it is good practice to implement your model in a function.

The function can be used to ensure that the model is given well-defined input data with validation checks, and
that the solution process went as expected.

function solve_knapsack_problem(;
profit::Vector{Float64},
weight::Vector{Float64},
capacity::Float64,

)
n = length(weight)
# The profit and weight vectors must be of equal length.
@assert length(profit) == n
model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, x[1:n], Bin)
@objective(model, Max, profit' * x)
@constraint(model, weight' * x <= capacity)
optimize!(model)
assert_is_solved_and_feasible(model)
println("Objective is: ", objective_value(model))
println("Solution is:")
for i in 1:n

print("x[$i] = ", round(Int, value(x[i])))
println(", c[$i] / w[$i] = ", profit[i] / weight[i])
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end
chosen_items = [i for i in 1:n if value(x[i]) > 0.5]
return chosen_items

end

solve_knapsack_problem(; profit = profit, weight = weight, capacity = capacity)

3-element Vector{Int64}:
1
4
5

We observe that the chosen items (1, 4, and 5) have the best profit to weight ratio in this particular example.

Next steps

Here are some things to try next:

• Call the function with different data. What happens as the capacity increases?

• What happens if the profit and weight vectors are different lengths?

• Instead of creating a binary variable with Bin, we could have written @variable(model, 0 <= x[1:n]
<= 1, Int). Verify that this formulation finds the same solution. What happens if we are allowed to
take more than one of each item?

6.3 The diet problem

This tutorial was generated using Literate.jl. Download the source as a .jl file.

The purpose of this tutorial is to demonstrate how to incorporate DataFrames into a JuMPmodel. As an example,
we use classic Stigler diet problem.

Required packages

This tutorial requires the following packages:

using JuMP
import CSV
import DataFrames
import HiGHS
import Test

Formulation

We wish to cook a nutritionally balanced meal by choosing the quantity of each food f to eat from a set of
foods F in our kitchen.

Each food f has a cost, cf , as well as a macro-nutrient profile am,f for each macro-nutrientm ∈M .

https://github.com/fredrikekre/Literate.jl
tutorials/linear/diet.jl
https://en.wikipedia.org/wiki/Stigler_diet
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Because we care about a nutritionally balanced meal, we set some minimum and maximum limits for each
nutrient, which we denote lm and um respectively.

Furthermore, because we are optimizers, we seek the minimum cost solution.

With a little effort, we can formulate our dinner problem as the following linear program:

min
∑
f∈F

cfxf

s.t. lm ≤
∑
f∈F

am,fxf ≤ um, ∀m ∈M

xf ≥ 0, ∀f ∈ F.

In the rest of this tutorial, we will create and solve this problem in JuMP, and learn what we should cook for
dinner.

Data

First, we need some data for the problem. For this tutorial, we'll write CSV files to a temporary directory from
Julia. If you have existing files, you could change the filenames to point to them instead.

dir = mktempdir()

"/tmp/jl_yP2LWr"

The first file is a list of foods with their macro-nutrient profile:

food_csv_filename = joinpath(dir, "diet_foods.csv")
open(food_csv_filename, "w") do io

write(
io,
"""
name,cost,calories,protein,fat,sodium
hamburger,2.49,410,24,26,730
chicken,2.89,420,32,10,1190
hot dog,1.50,560,20,32,1800
fries,1.89,380,4,19,270
macaroni,2.09,320,12,10,930
pizza,1.99,320,15,12,820
salad,2.49,320,31,12,1230
milk,0.89,100,8,2.5,125
ice cream,1.59,330,8,10,180
""",

)
return

end
foods = CSV.read(food_csv_filename, DataFrames.DataFrame)

Here, F is foods.name and cf is foods.cost. (We're also playing a bit loose the term "macro-nutrient" by
including calories and sodium.)
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name cost calories protein fat sodium
String15 Float64 Int64 Int64 Float64 Int64

1 hamburger 2.49 410 24 26.0 730
2 chicken 2.89 420 32 10.0 1190
3 hot dog 1.5 560 20 32.0 1800
4 fries 1.89 380 4 19.0 270
5 macaroni 2.09 320 12 10.0 930
6 pizza 1.99 320 15 12.0 820
7 salad 2.49 320 31 12.0 1230
8 milk 0.89 100 8 2.5 125
9 ice cream 1.59 330 8 10.0 180

We also need our minimum and maximum limits:

nutrient_csv_filename = joinpath(dir, "diet_nutrient.csv")
open(nutrient_csv_filename, "w") do io

write(
io,
"""
nutrient,min,max
calories,1800,2200
protein,91,
fat,0,65
sodium,0,1779
""",

)
return

end
limits = CSV.read(nutrient_csv_filename, DataFrames.DataFrame)

nutrient min max
String15 Int64 Int64?

1 calories 1800 2200
2 protein 91 missing
3 fat 0 65
4 sodium 0 1779

Protein is missing data for the maximum. Let's fix that using coalesce:

limits.max = coalesce.(limits.max, Inf)
limits

nutrient min max
String15 Int64 Real

1 calories 1800 2200
2 protein 91 Inf
3 fat 0 65
4 sodium 0 1779
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JuMP formulation

Now we're ready to convert our mathematical formulation into a JuMP model.

First, create a new JuMP model. Since we have a linear program, we'll use HiGHS as our optimizer:

model = Model(HiGHS.Optimizer)
set_silent(model)

Next, we create a set of decision variables x, with one element for each row in the DataFrame, and each x has
a lower bound of 0:

@variable(model, x[foods.name] >= 0)

1-dimensional DenseAxisArray{VariableRef,1,...} with index sets:
Dimension 1, InlineStrings.String15["hamburger", "chicken", "hot dog", "fries", "macaroni",

"pizza", "salad", "milk", "ice cream"]↪→

And data, a 9-element Vector{VariableRef}:
x[hamburger]
x[chicken]
x[hot dog]
x[fries]
x[macaroni]
x[pizza]
x[salad]
x[milk]
x[ice cream]

To simplify things later on, we store the vector as a new column x in the DataFrame foods. Since x is a
DenseAxisArray, we first need to convert it to an Array:

foods.x = Array(x)

9-element Vector{VariableRef}:
x[hamburger]
x[chicken]
x[hot dog]
x[fries]
x[macaroni]
x[pizza]
x[salad]
x[milk]
x[ice cream]

Our objective is to minimize the total cost of purchasing food:

@objective(model, Min, sum(foods.cost .* foods.x));
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For the next component, we need to add a constraint that our total intake of each component is within the
limits contained in the limits DataFrame:

@constraint(
model,
[row in eachrow(limits)],
row.min <= sum(foods[!, row.nutrient] .* foods.x) <= row.max,

);

What does our model look like?

print(model)

Min 2.49 x[hamburger] + 2.89 x[chicken] + 1.5 x[hot dog] + 1.89 x[fries] + 2.09 x[macaroni] + 1.99
x[pizza] + 2.49 x[salad] + 0.89 x[milk] + 1.59 x[ice cream]↪→

Subject to
410 x[hamburger] + 420 x[chicken] + 560 x[hot dog] + 380 x[fries] + 320 x[macaroni] + 320 x[pizza]

+ 320 x[salad] + 100 x[milk] + 330 x[ice cream] ∈ [1800, 2200]↪→

24 x[hamburger] + 32 x[chicken] + 20 x[hot dog] + 4 x[fries] + 12 x[macaroni] + 15 x[pizza] + 31
x[salad] + 8 x[milk] + 8 x[ice cream] ∈ [91, Inf]↪→

26 x[hamburger] + 10 x[chicken] + 32 x[hot dog] + 19 x[fries] + 10 x[macaroni] + 12 x[pizza] + 12
x[salad] + 2.5 x[milk] + 10 x[ice cream] ∈ [0, 65]↪→

730 x[hamburger] + 1190 x[chicken] + 1800 x[hot dog] + 270 x[fries] + 930 x[macaroni] + 820
x[pizza] + 1230 x[salad] + 125 x[milk] + 180 x[ice cream] ∈ [0, 1779]↪→

x[hamburger] ≥ 0
x[chicken] ≥ 0
x[hot dog] ≥ 0
x[fries] ≥ 0
x[macaroni] ≥ 0
x[pizza] ≥ 0
x[salad] ≥ 0
x[milk] ≥ 0
x[ice cream] ≥ 0

Solution

Let's optimize and take a look at the solution:

optimize!(model)
assert_is_solved_and_feasible(model)
solution_summary(model)

solution_summary(; result = 1, verbose = false)
├ solver_name : HiGHS
├ Termination
│ ├ termination_status : OPTIMAL
│ ├ result_count : 1
│ ├ raw_status : kHighsModelStatusOptimal
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│ └ objective_bound : 1.18289e+01
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : FEASIBLE_POINT
│ ├ objective_value : 1.18289e+01
│ ├ dual_objective_value : 1.18289e+01
│ └ relative_gap : 0.00000e+00
└ Work counters
├ solve_time (sec) : 2.11477e-04
├ simplex_iterations : 6
├ barrier_iterations : 0
└ node_count : -1

We found an optimal solution. Let's see what the optimal solution is:

for row in eachrow(foods)
println(row.name, " = ", value(row.x))

end

hamburger = 0.6045138888888871
chicken = 0.0
hot dog = 0.0
fries = 0.0
macaroni = 0.0
pizza = 0.0
salad = 0.0
milk = 6.9701388888888935
ice cream = 2.5913194444444447

That's a lot of milk and ice cream, and sadly, we only get 0.6 of a hamburger.

We can also use the function Containers.rowtable to easily convert the result into a DataFrame:

table = Containers.rowtable(value, x; header = [:food, :quantity])
solution = DataFrames.DataFrame(table)

food quantity
String15 Float64

1 hamburger 0.604514
2 chicken 0.0
3 hot dog 0.0
4 fries 0.0
5 macaroni 0.0
6 pizza 0.0
7 salad 0.0
8 milk 6.97014
9 ice cream 2.59132

This makes it easy to perform analyses our solution:
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filter!(row -> row.quantity > 0.0, solution)

food quantity
String15 Float64

1 hamburger 0.604514
2 milk 6.97014
3 ice cream 2.59132

Problem modification

JuMP makes it easy to take an existing model and modify it by adding extra constraints. Let's see what happens
if we add a constraint that we can buy at most 6 units of milk or ice cream combined.

dairy_foods = ["milk", "ice cream"]
is_dairy = map(name -> name in dairy_foods, foods.name)
dairy_constraint = @constraint(model, sum(foods[is_dairy, :x]) <= 6)
optimize!(model)
Test.@test !is_solved_and_feasible(model)
Test.@test termination_status(model) == INFEASIBLE
Test.@test primal_status(model) == NO_SOLUTION
solution_summary(model)

solution_summary(; result = 1, verbose = false)
├ solver_name : HiGHS
├ Termination
│ ├ termination_status : INFEASIBLE
│ ├ result_count : 1
│ ├ raw_status : kHighsModelStatusInfeasible
│ └ objective_bound : 0.00000e+00
├ Solution (result = 1)
│ ├ primal_status : NO_SOLUTION
│ ├ dual_status : INFEASIBILITY_CERTIFICATE
│ ├ objective_value : 1.18289e+01
│ ├ dual_objective_value : 3.56146e+00
│ └ relative_gap : Inf
└ Work counters
├ solve_time (sec) : 1.45435e-04
├ simplex_iterations : 0
├ barrier_iterations : 0
└ node_count : -1

There exists no feasible solution to our problem. Looks like we're stuck eating ice cream for dinner.

Next steps

• You can delete a constraint using delete(model, dairy_constraint). Can you add a different con-
straint to provide a diet with less dairy?

• Some food items (like hamburgers) are discrete. You can use set_integer to force a variable to take
integer values. What happens to the solution if you do?
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6.4 The cannery problem

This tutorial was generated using Literate.jl. Download the source as a .jl file.

This tutorial was originally contributed by Louis Luangkesorn.

This tutorial solves the cannery problem from Dantzig, Linear Programming and Extensions, Princeton Univer-
sity Press, Princeton, NJ, 1963. This class of problem is known as a transshipment problem.

The purpose of this tutorial is to demonstrate how to use JSON data in the formulation of a JuMP model.

Required packages

This tutorial requires the following packages:

using JuMP
import HiGHS
import JSON
import Test

Formulation

The cannery problem assumes we are optimizing the shipment of cases of cans from production plants p ∈ P
to marketsm ∈M .

Each production plant p has a capacity cp, and each marketm has a demand dm. The shipping cost per case
of cans from plant p to marketm is dp,m.

We wish to find the distribution plan xp,m, the number of cases of cans to ship from plant p to marketm, for
p ∈ P and m ∈ M that minimizes the shipping costs. We can formulate our problem as the following linear
program:

min
∑
p∈P

∑
m∈M

dp,mxp,m

s.t.
∑
m∈M

xp,m ≤ cp, ∀p ∈ P∑
p∈P

xp,m ≥ dm, ∀m ∈M

xp,m ≥ 0, ∀p ∈ P,m ∈M

Data

A key feature of the tutorial is to demonstrate how to load data from JSON.

For simplicity, we've hard-coded it below. But if the data was available as a .json file, we could use data =
JSON.parsefile(filename) to read in the data.

data = JSON.parse("""
{

"plants": {
"Seattle": {"capacity": 350},
"San-Diego": {"capacity": 600}

},

https://github.com/fredrikekre/Literate.jl
tutorials/linear/cannery.jl
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"markets": {
"New-York": {"demand": 300},
"Chicago": {"demand": 300},
"Topeka": {"demand": 300}

},
"distances": {

"Seattle => New-York": 2.5,
"Seattle => Chicago": 1.7,
"Seattle => Topeka": 1.8,
"San-Diego => New-York": 2.5,
"San-Diego => Chicago": 1.8,
"San-Diego => Topeka": 1.4

}
}
""")

Dict{String, Any} with 3 entries:
"plants" => Dict{String, Any}("Seattle"=>Dict{String, Any}("capacity"=>350…
"distances" => Dict{String, Any}("San-Diego => New-York"=>2.5, "Seattle => To…
"markets" => Dict{String, Any}("Chicago"=>Dict{String, Any}("demand"=>300),…

Create the set of plants:

P = keys(data["plants"])

KeySet for a Dict{String, Any} with 2 entries. Keys:
"Seattle"
"San-Diego"

Create the set of markets:

M = keys(data["markets"])

KeySet for a Dict{String, Any} with 3 entries. Keys:
"Chicago"
"Topeka"
"New-York"

We also need a function to compute the distance from plant to market:

distance(p::String, m::String) = data["distances"]["$(p) => $(m)"]
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distance (generic function with 1 method)

JuMP formulation

Now we're ready to convert our mathematical formulation into a JuMP model.

First, create a new JuMP model. Since we have a linear program, we'll use HiGHS as our optimizer:

model = Model(HiGHS.Optimizer)

A JuMP Model
├ solver: HiGHS
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none

Our decision variables are indexed over the set of plants and markets:

@variable(model, x[P, M] >= 0)

2-dimensional DenseAxisArray{VariableRef,2,...} with index sets:
Dimension 1, ["Seattle", "San-Diego"]
Dimension 2, ["Chicago", "Topeka", "New-York"]

And data, a 2×3 Matrix{VariableRef}:
x[Seattle,Chicago] x[Seattle,Topeka] x[Seattle,New-York]
x[San-Diego,Chicago] x[San-Diego,Topeka] x[San-Diego,New-York]

We need a constraint that each plant can ship no more than its capacity:

@constraint(model, [p in P], sum(x[p, :]) <= data["plants"][p]["capacity"])

1-dimensional DenseAxisArray{ConstraintRef{Model,
MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.LessThan{Float64}}, ScalarShape},1,...} with index sets:

↪→

↪→

Dimension 1, ["Seattle", "San-Diego"]
And data, a 2-element Vector{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.LessThan{Float64}}, ScalarShape}}:

↪→

↪→

x[Seattle,Chicago] + x[Seattle,Topeka] + x[Seattle,New-York] ≤ 350
x[San-Diego,Chicago] + x[San-Diego,Topeka] + x[San-Diego,New-York] ≤ 600

and each market must receive at least its demand:
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@constraint(model, [m in M], sum(x[:, m]) >= data["markets"][m]["demand"])

1-dimensional DenseAxisArray{ConstraintRef{Model,
MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.GreaterThan{Float64}}, ScalarShape},1,...} with index sets:

↪→

↪→

Dimension 1, ["Chicago", "Topeka", "New-York"]
And data, a 3-element Vector{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.GreaterThan{Float64}}, ScalarShape}}:

↪→

↪→

x[Seattle,Chicago] + x[San-Diego,Chicago] ≥ 300
x[Seattle,Topeka] + x[San-Diego,Topeka] ≥ 300
x[Seattle,New-York] + x[San-Diego,New-York] ≥ 300

Finally, our objective is to minimize the transportation distance:

@objective(model, Min, sum(distance(p, m) * x[p, m] for p in P, m in M));

Solution

Let's optimize and look at the solution:

optimize!(model)
solution_summary(model)

solution_summary(; result = 1, verbose = false)
├ solver_name : HiGHS
├ Termination
│ ├ termination_status : OPTIMAL
│ ├ result_count : 1
│ ├ raw_status : kHighsModelStatusOptimal
│ └ objective_bound : 1.68000e+03
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : FEASIBLE_POINT
│ ├ objective_value : 1.68000e+03
│ ├ dual_objective_value : 1.68000e+03
│ └ relative_gap : 0.00000e+00
└ Work counters
├ solve_time (sec) : 2.07663e-04
├ simplex_iterations : 3
├ barrier_iterations : 0
└ node_count : -1

What's the optimal shipment?



CHAPTER 6. LINEAR PROGRAMS 153

assert_is_solved_and_feasible(model)
for p in P, m in M

println(p, " => ", m, ": ", value(x[p, m]))
end

Seattle => Chicago: 300.0
Seattle => Topeka: 0.0
Seattle => New-York: 0.0
San-Diego => Chicago: 0.0
San-Diego => Topeka: 300.0
San-Diego => New-York: 300.0

6.5 The factory schedule example

This tutorial was generated using Literate.jl. Download the source as a .jl file.

This tutorial was originally contributed by @Crghilardi.

This tutorial is a Julia translation of Part 5 from Introduction to Linear Programming with Python.

The purpose of this tutorial is to demonstrate how to use DataFrames and delimited files, and to structure your
code that is robust to infeasibilities and permits running with different datasets.

Required packages

This tutorial requires the following packages:

using JuMP
import CSV
import DataFrames
import HiGHS
import StatsPlots

Formulation

The Factory Scheduling Problem assumes we are optimizing the production of a good from factories f ∈ F
over the course of 12 monthsm ∈M .

If a factory f runs during a monthm, a fixed cost of af is incurred, the factory must produce xm,f units that
is within some minimum and maximum production levels lf and uf respectively, and each unit of production
incurs a variable cost cf . Otherwise, the factory can be shut for the month with zero production and no fixed-
cost is incurred. We denote the run/not-run decision by zm,f ∈ {0, 1}, where zm,f is 1 if factory f runs in
monthm. The factory must produce enough units to satisfy demand dm.

With a little effort, we can formulate our problem as the following linear program:

https://github.com/fredrikekre/Literate.jl
tutorials/linear/factory_schedule.jl
https://github.com/benalexkeen/Introduction-to-linear-programming
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min
∑

f∈F,m∈M

afzm,f + cfxm,f

s.t.xm,f ≤ ufzm,f ∀f ∈ F,m ∈M

xm,f ≥ lfzm,f ∀f ∈ F,m ∈M∑
f∈F

xm,f = dm ∀f ∈ F,m ∈M

zm,f ∈ {0, 1} ∀f ∈ F,m ∈M.

However, this formulation has a problem: if demand is too high, we may be unable to satisfy the demand
constraint, and the problem will be infeasible.

Tip

When modeling, consider ways to formulate your model such that it always has a feasible solution.
This greatly simplifies debugging data errors that would otherwise result in an infeasible solution. In
practice, most practical decisions have a feasible solution. In our case, we could satisfy demand (at a
high cost) by buying replacement items for the buyer, or running the factories in overtime to make up
the difference.

We can improve our model by adding a new variable, δm, which represents the quantity of unmet demand in
each monthm. We penalize δm by an arbitrarily large value of $10,000/unit in the objective.

min
∑

f∈F,m∈M

afzm,f + cfxm,f +
∑
m∈M

10000δm

s.t.xm,f ≤ ufzm,f ∀f ∈ F,m ∈M

xm,f ≥ lfzm,f ∀f ∈ F,m ∈M∑
f∈F

xm,f − δm = dm ∀f ∈ F,m ∈M

zm,f ∈ {0, 1} ∀f ∈ F,m ∈M

δm ≥ 0 ∀m ∈M.

Data

The JuMP GitHub repository contains two text files with the data we need for this tutorial.

The first file contains a dataset of our factories, A and B, with their production and cost levels for each month.
For the documentation, the file is located at:

factories_filename = joinpath(@__DIR__, "factory_schedule_factories.txt");

To run locally, download factory_schedule_factories.txt and update factories_filename appropriately.

The file has the following contents:

print(read(factories_filename, String))

tutorials/linear/factory_schedule_factories.txt
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factory month min_production max_production fixed_cost variable_cost
A 1 20000 100000 500 10
A 2 20000 110000 500 11
A 3 20000 120000 500 12
A 4 20000 145000 500 9
A 5 20000 160000 500 8
A 6 20000 140000 500 8
A 7 20000 155000 500 5
A 8 20000 200000 500 7
A 9 20000 210000 500 9
A 10 20000 197000 500 10
A 11 20000 80000 500 8
A 12 20000 150000 500 8
B 1 20000 50000 600 5
B 2 20000 55000 600 4
B 3 20000 60000 600 3
B 4 20000 100000 600 5
B 5 0 0 0 0
B 6 20000 70000 600 6
B 7 20000 60000 600 4
B 8 20000 100000 600 6
B 9 20000 100000 600 8
B 10 20000 100000 600 11
B 11 20000 120000 600 10
B 12 20000 150000 600 12

We use the CSV and DataFrames packages to read it into Julia:

factory_df = CSV.read(
factories_filename,
DataFrames.DataFrame;
delim = ' ',
ignorerepeated = true,

)

The second file contains the demand data by month:

demand_filename = joinpath(@__DIR__, "factory_schedule_demand.txt");

To run locally, download factory_schedule_demand.txt and update demand_filename appropriately.

demand_df = CSV.read(
demand_filename,
DataFrames.DataFrame;
delim = ' ',
ignorerepeated = true,

)

tutorials/linear/factory_schedule_demand.txt
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factory month min_production max_production fixed_cost variable_cost
String1 Int64 Int64 Int64 Int64 Int64

1 A 1 20000 100000 500 10
2 A 2 20000 110000 500 11
3 A 3 20000 120000 500 12
4 A 4 20000 145000 500 9
5 A 5 20000 160000 500 8
6 A 6 20000 140000 500 8
7 A 7 20000 155000 500 5
8 A 8 20000 200000 500 7
9 A 9 20000 210000 500 9
10 A 10 20000 197000 500 10
11 A 11 20000 80000 500 8
12 A 12 20000 150000 500 8
13 B 1 20000 50000 600 5
14 B 2 20000 55000 600 4
15 B 3 20000 60000 600 3
16 B 4 20000 100000 600 5
17 B 5 0 0 0 0
18 B 6 20000 70000 600 6
19 B 7 20000 60000 600 4
20 B 8 20000 100000 600 6
21 B 9 20000 100000 600 8
22 B 10 20000 100000 600 11
23 B 11 20000 120000 600 10
24 B 12 20000 150000 600 12

month demand
Int64 Int64

1 1 120000
2 2 100000
3 3 130000
4 4 130000
5 5 140000
6 6 130000
7 7 150000
8 8 170000
9 9 200000
10 10 190000
11 11 140000
12 12 100000

Data validation

Before moving on, it's always good practice to validate the data you read from external sources. The more
effort you spend here, the fewer issues you will have later. The following function contains a few simple checks,
but we could add more. For example, you might want to check that none of the values are too large (or too
small), which might indicate a typo or a unit conversion issue (perhaps the variable costs are in $/1000 units
instead of $/unit).
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function valiate_data(
demand_df::DataFrames.DataFrame,
factory_df::DataFrames.DataFrame,

)
# Minimum production must not exceed maximum production.
@assert all(factory_df.min_production .<= factory_df.max_production)
# Demand, minimum production, fixed costs, and variable costs must all be
# non-negative.
@assert all(demand_df.demand .>= 0)
@assert all(factory_df.min_production .>= 0)
@assert all(factory_df.fixed_cost .>= 0)
@assert all(factory_df.variable_cost .>= 0)
return

end

valiate_data(demand_df, factory_df)

JuMP formulation

Next, we need to code our JuMP formulation. As shown in Design patterns for larger models, it's always good
practice to code your model in a function that accepts well-defined input and returns well-defined output.

function solve_factory_scheduling(
demand_df::DataFrames.DataFrame,
factory_df::DataFrames.DataFrame,

)
# Even though we validated the data above, it's good practice to do it here
# too.
valiate_data(demand_df, factory_df)
months, factories = unique(factory_df.month), unique(factory_df.factory)
model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, status[months, factories], Bin)
@variable(model, production[months, factories], Int)
@variable(model, unmet_demand[months] >= 0)
# We use `eachrow` to loop through the rows of the dataframe and add the
# relevant constraints.
for r in eachrow(factory_df)

m, f = r.month, r.factory
@constraint(model, production[m, f] <= r.max_production * status[m, f])
@constraint(model, production[m, f] >= r.min_production * status[m, f])

end
@constraint(

model,
[r in eachrow(demand_df)],
sum(production[r.month, :]) + unmet_demand[r.month] == r.demand,

)
@objective(

model,
Min,
10_000 * sum(unmet_demand) + sum(

r.fixed_cost * status[r.month, r.factory] +
r.variable_cost * production[r.month, r.factory] for
r in eachrow(factory_df)
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)
)
optimize!(model)
assert_is_solved_and_feasible(model)
schedules = Dict{Symbol,Vector{Float64}}(

Symbol(f) => value.(production[:, f]) for f in factories
)
schedules[:unmet_demand] = value.(unmet_demand)
return (

termination_status = termination_status(model),
cost = objective_value(model),
# This `select` statement re-orders the columns in the DataFrame.
schedules = DataFrames.select(

DataFrames.DataFrame(schedules),
[:unmet_demand, :A, :B],

),
)

end

solve_factory_scheduling (generic function with 1 method)

Solution

Now we can call our solve_factory_scheduling function using the data we read in above.

solution = solve_factory_scheduling(demand_df, factory_df);

Let's see what solution contains:

solution.termination_status

OPTIMAL::TerminationStatusCode = 1

solution.cost

1.29064e7

solution.schedules

These schedules will be easier to visualize as a graph:
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unmet_demand A B
Float64 Float64 Float64

1 0.0 70000.0 50000.0
2 0.0 45000.0 55000.0
3 0.0 70000.0 60000.0
4 0.0 30000.0 100000.0
5 0.0 140000.0 -0.0
6 0.0 60000.0 70000.0
7 0.0 90000.0 60000.0
8 0.0 70000.0 100000.0
9 0.0 100000.0 100000.0
10 0.0 190000.0 -0.0
11 0.0 80000.0 60000.0
12 0.0 100000.0 -0.0

StatsPlots.groupedbar(
Matrix(solution.schedules);
bar_position = :stack,
labels = ["unmet demand" "A" "B"],
xlabel = "Month",
ylabel = "Production",
legend = :topleft,
color = ["#20326c" "#4063d8" "#a0b1ec"],

)
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Note that we don't have any unmet demand.

What happens if demand increases?

Let's run an experiment by increasing the demand by 50% in all time periods:

demand_df.demand .*= 1.5

12-element Vector{Float64}:
180000.0
150000.0
195000.0
195000.0
210000.0
195000.0
225000.0
255000.0
300000.0
285000.0
210000.0
150000.0

Now we resolve the problem:

high_demand_solution = solve_factory_scheduling(demand_df, factory_df);

and visualize the solution:

StatsPlots.groupedbar(
Matrix(high_demand_solution.schedules);
bar_position = :stack,
labels = ["unmet demand" "A" "B"],
xlabel = "Month",
ylabel = "Production",
legend = :topleft,
color = ["#20326c" "#4063d8" "#a0b1ec"],

)
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Uh oh, we can't satisfy all of the demand.

How sensitive is the solution to changes in variable cost?

Let's run another experiment, this time seeing how the optimal objective value changes as we vary the variable
costs of each factory.

First though, let's reset the demand to it's original level:

demand_df.demand ./= 1.5;

For our experiment, we're going to scale the variable costs of both factories by a set of values from 0.0 to 1.5:

scale_factors = 0:0.1:1.5

0.0:0.1:1.5

At a high level, we're going to loop over the scale factors for A, then the scale factors for B, rescale the input
data, call our solve_factory_scheduling example, and then store the optimal objective value in the following
cost matrix:

cost = zeros(length(scale_factors), length(scale_factors));
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Because we're modifying factory_df in-place, we need to store the original variable costs in a new column:

factory_df[!, :old_variable_cost] = copy(factory_df.variable_cost);

Then, we need a function to scale the :variable_cost column for a particular factory by a value scale:

function scale_variable_cost(df, factory, scale)
rows = df.factory .== factory
df[rows, :variable_cost] .=

round.(Int, df[rows, :old_variable_cost] .* scale)
return

end

scale_variable_cost (generic function with 1 method)

Our experiment is just a nested for-loop, modifying A and B and storing the cost:

for (j, a) in enumerate(scale_factors)
scale_variable_cost(factory_df, "A", a)
for (i, b) in enumerate(scale_factors)

scale_variable_cost(factory_df, "B", b)
cost[i, j] = solve_factory_scheduling(demand_df, factory_df).cost

end
end

Let's visualize the cost matrix:

StatsPlots.contour(
scale_factors,
scale_factors,
cost;
xlabel = "Scale of factory A",
ylabel = "Scale of factory B",

)
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What can you infer from the solution?

Info

The Power Systems tutorial explains a number of other ways you can structure a problem to perform a
parametric analysis of the solution. In particular, you can use in-place modification to reduce the time
it takes to build and solve the resulting models.

6.6 The multi-commodity flow problem

This tutorial was generated using Literate.jl. Download the source as a .jl file.

This tutorial was originally contributed by Louis Luangkesorn.

This tutorial is a JuMP implementation of the multi-commodity transportation model described in AMPL: A
Modeling Language for Mathematical Programming, by R. Fourer, D.M. Gay and B.W. Kernighan.

The purpose of this tutorial is to demonstrate creating a JuMP model from an SQLite database.

Required packages

This tutorial uses the following packages

using JuMP
import DataFrames
import HiGHS
import SQLite

https://github.com/fredrikekre/Literate.jl
tutorials/linear/multi.jl
https://ampl.com/resources/the-ampl-book/
https://ampl.com/resources/the-ampl-book/
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import Tables
import Test

const DBInterface = SQLite.DBInterface

DBInterface

Formulation

The multi-commondity flow problem is a simple extension of The transportation problem to multiple types of
products. Briefly, we start with the formulation of the transportation problem:

min
∑

i∈O,j∈D

ci,jxi,j

s.t.
∑
j∈D

xi,j ≤ si ∀i ∈ O

∑
i∈O

xi,j = dj ∀j ∈ D

xi,j ≥ 0 ∀i ∈ O, j ∈ D

but introduce a set of products P , resulting in:

min
∑

i∈O,j∈D,k∈P

ci,j,kxi,j,k

s.t.
∑
j∈D

xi,j,k ≤ si,k ∀i ∈ O, k ∈ P

∑
i∈O

xi,j,k = dj,k ∀j ∈ D, k ∈ P

xi,j,k ≥ 0 ∀i ∈ O, j ∈ D, k ∈ P∑
k∈P

xi,j,k ≤ ui,j ∀i ∈ O, j ∈ D

Note that the last constraint is new; it says that there is a maximum quantity of goods (of any type) that can
be transported from origin i to destination j.

Data

For the purpose of this tutorial, the JuMP repository contains an example database called multi.sqlite.

filename = joinpath(@__DIR__, "multi.sqlite");

To run locally, download multi.sqlite and update filename appropriately.

Load the database using SQLite.DB:

tutorials/linear/multi.sqlite
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db = SQLite.DB(filename)

SQLite.DB("/home/runner/work/JuMP.jl/JuMP.jl/docs/latex_build/tutorials/linear/multi.sqlite")

A quick way to see the schema of the database is via SQLite.tables:

SQLite.tables(db)

5-element Vector{SQLite.DBTable}:
SQLite.DBTable("locations", Tables.Schema:
:location Union{Missing, String}
:type Union{Missing, String})
SQLite.DBTable("products", Tables.Schema:
:product Union{Missing, String})
SQLite.DBTable("supply", Tables.Schema:
:origin Union{Missing, String}
:product Union{Missing, String}
:supply Union{Missing, Float64})
SQLite.DBTable("demand", Tables.Schema:
:destination Union{Missing, String}
:product Union{Missing, String}
:demand Union{Missing, Float64})
SQLite.DBTable("cost", Tables.Schema:
:origin Union{Missing, String}
:destination Union{Missing, String}
:product Union{Missing, String}
:cost Union{Missing, Float64})

We interact with the database by executing queries, and then piping the results to an appropriate table. One
example is a DataFrame:

DBInterface.execute(db, "SELECT * FROM locations") |> DataFrames.DataFrame

location type
String String

1 GARY origin
2 CLEV origin
3 PITT origin
4 FRA destination
5 DET destination
6 LAN destination
7 WIN destination
8 STL destination
9 FRE destination
10 LAF destination
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But other table types are supported, such as Tables.rowtable:

DBInterface.execute(db, "SELECT * FROM locations") |> Tables.rowtable

10-element Vector{@NamedTuple{location::String, type::String}}:
(location = "GARY", type = "origin")
(location = "CLEV", type = "origin")
(location = "PITT", type = "origin")
(location = "FRA", type = "destination")
(location = "DET", type = "destination")
(location = "LAN", type = "destination")
(location = "WIN", type = "destination")
(location = "STL", type = "destination")
(location = "FRE", type = "destination")
(location = "LAF", type = "destination")

A rowtable is a Vector of NamedTuples.

You can construct more complicated SQL queries:

origins =
DBInterface.execute(

db,
"SELECT location FROM locations WHERE type = \"origin\"",

) |> Tables.rowtable

3-element Vector{@NamedTuple{location::String}}:
(location = "GARY",)
(location = "CLEV",)
(location = "PITT",)

But for our purpose, we just want the list of strings:

origins = map(y -> y.location, origins)

3-element Vector{String}:
"GARY"
"CLEV"
"PITT"

We can compose these two operations to get a list of destinations:

destinations =
DBInterface.execute(

db,
"SELECT location FROM locations WHERE type = \"destination\"",
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) |>
Tables.rowtable |>
x -> map(y -> y.location, x)

7-element Vector{String}:
"FRA"
"DET"
"LAN"
"WIN"
"STL"
"FRE"
"LAF"

And a list of products from our products table:

products =
DBInterface.execute(db, "SELECT product FROM products") |>
Tables.rowtable |>
x -> map(y -> y.product, x)

3-element Vector{String}:
"bands"
"coils"
"plate"

JuMP formulation

We start by creating a model and our decision variables:

model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, x[origins, destinations, products] >= 0)

3-dimensional DenseAxisArray{VariableRef,3,...} with index sets:
Dimension 1, ["GARY", "CLEV", "PITT"]
Dimension 2, ["FRA", "DET", "LAN", "WIN", "STL", "FRE", "LAF"]
Dimension 3, ["bands", "coils", "plate"]

And data, a 3×7×3 Array{VariableRef, 3}:
[:, :, "bands"] =
x[GARY,FRA,bands] x[GARY,DET,bands] … x[GARY,LAF,bands]
x[CLEV,FRA,bands] x[CLEV,DET,bands] x[CLEV,LAF,bands]
x[PITT,FRA,bands] x[PITT,DET,bands] x[PITT,LAF,bands]

[:, :, "coils"] =
x[GARY,FRA,coils] x[GARY,DET,coils] … x[GARY,LAF,coils]
x[CLEV,FRA,coils] x[CLEV,DET,coils] x[CLEV,LAF,coils]
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x[PITT,FRA,coils] x[PITT,DET,coils] x[PITT,LAF,coils]

[:, :, "plate"] =
x[GARY,FRA,plate] x[GARY,DET,plate] … x[GARY,LAF,plate]
x[CLEV,FRA,plate] x[CLEV,DET,plate] x[CLEV,LAF,plate]
x[PITT,FRA,plate] x[PITT,DET,plate] x[PITT,LAF,plate]

One approach when working with databases is to extract all of the data into a Julia datastructure. For example,
let's pull the cost table into a DataFrame and then construct our objective by iterating over the rows of the
DataFrame:

cost = DBInterface.execute(db, "SELECT * FROM cost") |> DataFrames.DataFrame
@objective(

model,
Max,
sum(r.cost * x[r.origin, r.destination, r.product] for r in eachrow(cost)),

);

If we don't want to use a DataFrame, we can use a Tables.rowtable instead:

supply = DBInterface.execute(db, "SELECT * FROM supply") |> Tables.rowtable
for r in supply

@constraint(model, sum(x[r.origin, :, r.product]) <= r.supply)
end

Another approach is to execute the query, and then to iterate through the rows of the query using Tables.rows:

demand = DBInterface.execute(db, "SELECT * FROM demand")
for r in Tables.rows(demand)

@constraint(model, sum(x[:, r.destination, r.product]) == r.demand)
end

Warning

Iterating through the rows of a query result works by incrementing a cursor inside the database. As a
consequence, you cannot call Tables.rows twice on the same query result.

The SQLite queries can be arbitrarily complex. For example, here's a query which builds every possible origin-
destination pair:

od_pairs = DBInterface.execute(
db,
"""
SELECT a.location as 'origin',

b.location as 'destination'
FROM locations a
INNER JOIN locations b
ON a.type = 'origin' AND b.type = 'destination'
""",

)
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SQLite.Query{false}(SQLite.Stmt(SQLite.DB("/home/runner/work/JuMP.jl/JuMP.jl/docs/latex_build/tutorials/linear/multi.sqlite"),
Base.RefValue{Ptr{SQLite.C.sqlite3_stmt}}(Ptr{SQLite.C.sqlite3_stmt} @0x00000000515cb9d8),
Dict{Int64, Any}()), Base.RefValue{Int32}(100), [:origin, :destination], Type[Union{Missing,
String}, Union{Missing, String}], Dict(:origin => 1, :destination => 2),
Base.RefValue{Int64}(0))

↪→

↪→

↪→

↪→

With a constraint that we cannot send more than 625 units between each pair:

for r in Tables.rows(od_pairs)
@constraint(model, sum(x[r.origin, r.destination, :]) <= 625)

end

Solution

Finally, we can optimize the model:

optimize!(model)
assert_is_solved_and_feasible(model)
solution_summary(model)

solution_summary(; result = 1, verbose = false)
├ solver_name : HiGHS
├ Termination
│ ├ termination_status : OPTIMAL
│ ├ result_count : 1
│ ├ raw_status : kHighsModelStatusOptimal
│ └ objective_bound : 2.25700e+05
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : FEASIBLE_POINT
│ ├ objective_value : 2.25700e+05
│ ├ dual_objective_value : 2.25700e+05
│ └ relative_gap : 0.00000e+00
└ Work counters
├ solve_time (sec) : 8.02755e-04
├ simplex_iterations : 54
├ barrier_iterations : 0
└ node_count : -1

and print the solution:

begin
println(" ", join(products, ' '))
for o in origins, d in destinations

v = lpad.([round(Int, value(x[o, d, p])) for p in products], 5)
println(o, " ", d, " ", join(replace.(v, " 0" => " . "), " "))

end
end
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bands coils plate
GARY FRA 25 500 100
GARY DET 125 . 50
GARY LAN . . .
GARY WIN . . 50
GARY STL 250 300 .
GARY FRE . . .
GARY LAF . . .
CLEV FRA 275 . .
CLEV DET 100 200 50
CLEV LAN 100 . .
CLEV WIN . . .
CLEV STL . 625 .
CLEV FRE 225 400 .
CLEV LAF . 375 250
PITT FRA . . .
PITT DET 75 550 .
PITT LAN . 400 .
PITT WIN 75 250 .
PITT STL 400 25 200
PITT FRE . 450 100
PITT LAF 250 125 .

6.7 The network multi-commodity flow problem

This tutorial was generated using Literate.jl. Download the source as a .jl file.

This tutorial is a variation of The multi-commodity flow problem where the graph is a network instead of a
bipartite graph.

The purpose of this tutorial is to demonstrate a style of modeling that uses relational algebra.

Required packages

This tutorial uses the following packages:

using JuMP
import DataFrames
import HiGHS
import SQLite
import SQLite.DBInterface
import Test

Formulation

The network multi-commondity flow problem is an extension of the The multi-commodity flow problem, where
instead of having a bipartite graph of supply and demand nodes, the graph can contains a set of nodes, i ∈ N
, which each have a (potentially zero) supply capacity, usi,p, and (potentially zero) a demand, di,p for each
commodity p ∈ P . The nodes are connected by a set of edges (i, j) ∈ E , which have a shipment cost cxi,j,p
and a total flow capacity of uxi,j .

https://github.com/fredrikekre/Literate.jl
tutorials/linear/multi_commodity_network.jl


CHAPTER 6. LINEAR PROGRAMS 171

Our take is to choose an optimal supply for each node si,p, as well as the optimal transshipment xi,j,p that
minimizes the total cost.

The mathematical formulation is:

min
∑

(i,j)∈E,p∈P

cxi,j,pxi,j,p +
∑

i∈N ,p∈P

csi,psi,p

s.t. si,p +
∑

(j,i)∈E

xj,i,p −
∑

(i,j)∈E

xi,j,p = di,p ∀i ∈ N , p ∈ P

xi,j,p ≥ 0 ∀(i, j) ∈ E , p ∈ P∑
p∈P

xi,j,p ≤ uxi,j ∀(i, j) ∈ E

0 ≤ si,p ≤ usi,p ∀i ∈ N , p ∈ P.

The purpose of this tutorial is to demonstrate how this model can be built using relational algebra instead of a
direct math-to-code translation of the summations.

Data

For the purpose of this tutorial, the JuMP repository contains an example database called commodity_nz.db:

filename = joinpath(@__DIR__, "commodity_nz.db");

To run locally, download commodity_nz.db and update filename appropriately.

Load the database using SQLite.DB:

db = SQLite.DB(filename)

SQLite.DB("/home/runner/work/JuMP.jl/JuMP.jl/docs/latex_build/tutorials/linear/commodity_nz.db")

A quick way to see the schema of the database is via SQLite.tables:

SQLite.tables(db)

4-element Vector{SQLite.DBTable}:
SQLite.DBTable("products", Tables.Schema:
:product Union{Missing, String}
:cost_per_km Union{Missing, Float64})
SQLite.DBTable("shipping", Tables.Schema:
:origin Union{Missing, String}
:destination Union{Missing, String}
:product Union{Missing, String}
:distance_km Union{Missing, Float64})
SQLite.DBTable("supply", Tables.Schema:

tutorials/linear/commodity_nz.db
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:origin Union{Missing, String}
:product Union{Missing, String}
:capacity Union{Missing, Float64}
:cost Union{Missing, Float64})
SQLite.DBTable("demand", Tables.Schema:
:destination Union{Missing, String}
:product Union{Missing, String}
:demand Union{Missing, Float64})

We interact with the database by executing queries and then loading the results into a DataFrame:

function get_table(db, table)
query = DBInterface.execute(db, "SELECT * FROM $table")
return DataFrames.DataFrame(query)

end

get_table (generic function with 1 method)

The shipping table contains the set of arcs and their distances:

df_shipping = get_table(db, "shipping")

origin destination product distance_km
String String String Float64

1 auckland waikato milk 112.0
2 auckland tauranga milk 225.0
3 auckland christchurch milk 1070.0
4 waikato auckland milk 112.0
5 waikato tauranga milk 107.0
6 waikato wellington milk 392.0
7 tauranga auckland milk 225.0
8 tauranga waikato milk 107.0
9 christchurch auckland milk 1070.0
10 auckland waikato kiwifruit 112.0
11 auckland christchurch kiwifruit 1070.0
12 waikato auckland kiwifruit 112.0
13 waikato wellington kiwifruit 392.0
14 tauranga auckland kiwifruit 225.0
15 tauranga waikato kiwifruit 107.0
16 christchurch auckland kiwifruit 1070.0

The products table contains the shipping cost per kilometer of each product:

df_products = get_table(db, "products")

The supply table contains the supply capacity of each node, as well as the cost:
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product cost_per_km
String Float64

1 milk 0.001
2 kiwifruit 0.01

df_supply = get_table(db, "supply")

origin product capacity cost
String String Float64 Float64

1 waikato milk 10.0 0.5
2 tauranga milk 6.0 1.0
3 tauranga kiwifruit 26.0 1.0
4 christchurch milk 10.0 0.6

The demand table contains the demand of each node:

df_demand = get_table(db, "demand")

destination product demand
String String Float64

1 auckland milk 16.0
2 auckland kiwifruit 16.0
3 tauranga milk 2.0
4 tauranga kiwifruit 2.0
5 wellington milk 2.0
6 wellington kiwifruit 2.0
7 christchurch milk 4.0
8 christchurch kiwifruit 4.0

JuMP formulation

We start by creating a model and our decision variables:

model = Model(HiGHS.Optimizer)
set_silent(model)

For the shipping decisions, we create a new column in df_shipping called x_flow, which has one non-negative
decision variable for each row:

df_shipping.x_flow = @variable(model, x[1:size(df_shipping, 1)] >= 0)
df_shipping

For the supply, we add a variable to each row, and then set the upper bound to the capacity of each supply
node:
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origin destination product distance_km x_flow
String String String Float64 GenericV…

1 auckland waikato milk 112.0 x1
2 auckland tauranga milk 225.0 x2
3 auckland christchurch milk 1070.0 x3
4 waikato auckland milk 112.0 x4
5 waikato tauranga milk 107.0 x5
6 waikato wellington milk 392.0 x6
7 tauranga auckland milk 225.0 x7
8 tauranga waikato milk 107.0 x8
9 christchurch auckland milk 1070.0 x9
10 auckland waikato kiwifruit 112.0 x10
11 auckland christchurch kiwifruit 1070.0 x11
12 waikato auckland kiwifruit 112.0 x12
13 waikato wellington kiwifruit 392.0 x13
14 tauranga auckland kiwifruit 225.0 x14
15 tauranga waikato kiwifruit 107.0 x15
16 christchurch auckland kiwifruit 1070.0 x16

df_supply.x_supply = @variable(model, s[1:size(df_supply, 1)] >= 0)
set_upper_bound.(df_supply.x_supply, df_supply.capacity)
df_supply

origin product capacity cost x_supply
String String Float64 Float64 GenericV…

1 waikato milk 10.0 0.5 s1
2 tauranga milk 6.0 1.0 s2
3 tauranga kiwifruit 26.0 1.0 s3
4 christchurch milk 10.0 0.6 s4

Our objective is to minimize the shipping cost plus the supply cost. To compute the flow cost, we need to join
the shipping table, which contains distance_km with the products table, which contains cost_per_km:

df_cost = DataFrames.leftjoin(df_shipping, df_products; on = [:product])
df_cost.flow_cost = df_cost.cost_per_km .* df_cost.distance_km
df_cost

Then we can use linear algebra to compute the inner product between two columns:

@objective(
model,
Min,
df_cost.flow_cost' * df_shipping.x_flow +
df_supply.cost' * df_supply.x_supply

);

For the flow capacities on each arc, we use DataFrames.groupby to partition the flow variables based on
:origin and :destination, and then we constrain their sum to be less than a fixed capacity.



CHAPTER 6. LINEAR PROGRAMS 175

origin destination product distance_km x_flow cost_per_km flow_cost
String String String Float64 GenericV… Float64? Float64

1 auckland waikato milk 112.0 x1 0.001 0.112
2 auckland tauranga milk 225.0 x2 0.001 0.225
3 auckland christchurch milk 1070.0 x3 0.001 1.07
4 waikato auckland milk 112.0 x4 0.001 0.112
5 waikato tauranga milk 107.0 x5 0.001 0.107
6 waikato wellington milk 392.0 x6 0.001 0.392
7 tauranga auckland milk 225.0 x7 0.001 0.225
8 tauranga waikato milk 107.0 x8 0.001 0.107
9 christchurch auckland milk 1070.0 x9 0.001 1.07
10 auckland waikato kiwifruit 112.0 x10 0.01 1.12
11 auckland christchurch kiwifruit 1070.0 x11 0.01 10.7
12 waikato auckland kiwifruit 112.0 x12 0.01 1.12
13 waikato wellington kiwifruit 392.0 x13 0.01 3.92
14 tauranga auckland kiwifruit 225.0 x14 0.01 2.25
15 tauranga waikato kiwifruit 107.0 x15 0.01 1.07
16 christchurch auckland kiwifruit 1070.0 x16 0.01 10.7

capacity = 30
for df in DataFrames.groupby(df_shipping, [:origin, :destination])

@constraint(model, sum(df.x_flow) <= capacity)
end

For each node in the graph, we need to compute a mass balance constraint which says that for each product,
the supply, plus the flow into the node, and less the flow out of the node is equal to the demand.

We can compute an expression for the flow out of each node using DataFrames.groupby on the origin and
product columns of the df_shipping table:

df_flow_out = DataFrames.DataFrame(
(node = i.origin, product = i.product, x_flow_out = sum(df.x_flow)) for
(i, df) in pairs(DataFrames.groupby(df_shipping, [:origin, :product]))

)

node product x_flow_out
String String AffExpr

1 auckland milk x1 + x2 + x3
2 waikato milk x4 + x5 + x6
3 tauranga milk x7 + x8
4 christchurch milk x9
5 auckland kiwifruit x10 + x11
6 waikato kiwifruit x12 + x13
7 tauranga kiwifruit x14 + x15
8 christchurch kiwifruit x16

We can compute an expression for the flow into each node using DataFrames.groupby on the destination
and product columns of the df_shipping table:
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df_flow_in = DataFrames.DataFrame(
(node = i.destination, product = i.product, x_flow_in = sum(df.x_flow))
for (i, df) in
pairs(DataFrames.groupby(df_shipping, [:destination, :product]))

)

node product x_flow_in
String String AffExpr

1 waikato milk x1 + x8
2 tauranga milk x2 + x5
3 christchurch milk x3
4 auckland milk x4 + x7 + x9
5 wellington milk x6
6 waikato kiwifruit x10 + x15
7 christchurch kiwifruit x11
8 auckland kiwifruit x12 + x14 + x16
9 wellington kiwifruit x13

We can join the two tables together using DataFrames.outerjoin. We need to use outerjoin here because
there might be missing rows.

df = DataFrames.outerjoin(df_flow_in, df_flow_out; on = [:node, :product])

node product x_flow_in x_flow_out
String String AffExpr? AffExpr?

1 waikato milk x1 + x8 x4 + x5 + x6
2 tauranga milk x2 + x5 x7 + x8
3 christchurch milk x3 x9
4 auckland milk x4 + x7 + x9 x1 + x2 + x3
5 waikato kiwifruit x10 + x15 x12 + x13
6 christchurch kiwifruit x11 x16
7 auckland kiwifruit x12 + x14 + x16 x10 + x11
8 wellington milk x6 missing
9 wellington kiwifruit x13 missing
10 tauranga kiwifruit missing x14 + x15

Next, we need to join the supply column:

df = DataFrames.leftjoin(
df,
DataFrames.select(df_supply, [:origin, :product, :x_supply]);
on = [:node => :origin, :product],

)

and then the demand column

df = DataFrames.leftjoin(
df,
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node product x_flow_in x_flow_out x_supply
String String AffExpr? AffExpr? GenericV…?

1 waikato milk x1 + x8 x4 + x5 + x6 s1
2 tauranga milk x2 + x5 x7 + x8 s2
3 christchurch milk x3 x9 s4
4 tauranga kiwifruit missing x14 + x15 s3
5 auckland milk x4 + x7 + x9 x1 + x2 + x3 missing
6 waikato kiwifruit x10 + x15 x12 + x13 missing
7 christchurch kiwifruit x11 x16 missing
8 auckland kiwifruit x12 + x14 + x16 x10 + x11 missing
9 wellington milk x6 missing missing
10 wellington kiwifruit x13 missing missing

DataFrames.select(df_demand, [:destination, :product, :demand]);
on = [:node => :destination, :product],

)

node product x_flow_in x_flow_out x_supply demand
String String AffExpr? AffExpr? GenericV…? Float64?

1 tauranga milk x2 + x5 x7 + x8 s2 2.0
2 christchurch milk x3 x9 s4 4.0
3 tauranga kiwifruit missing x14 + x15 s3 2.0
4 auckland milk x4 + x7 + x9 x1 + x2 + x3 missing 16.0
5 christchurch kiwifruit x11 x16 missing 4.0
6 auckland kiwifruit x12 + x14 + x16 x10 + x11 missing 16.0
7 wellington milk x6 missing missing 2.0
8 wellington kiwifruit x13 missing missing 2.0
9 waikato milk x1 + x8 x4 + x5 + x6 s1 missing
10 waikato kiwifruit x10 + x15 x12 + x13 missing missing

Now we're ready to add our mass balance constraint. Because some rows contain missing values, we need to
use coalesce to convert any missing into a numeric value:

@constraint(
model,
[r in eachrow(df)],
coalesce(r.x_supply, 0.0) + coalesce(r.x_flow_in, 0.0) -
coalesce(r.x_flow_out, 0.0) == coalesce(r.demand, 0.0),

);

Solution

Finally, we can optimize the model:

optimize!(model)
assert_is_solved_and_feasible(model)
solution_summary(model)
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solution_summary(; result = 1, verbose = false)
├ solver_name : HiGHS
├ Termination
│ ├ termination_status : OPTIMAL
│ ├ result_count : 1
│ ├ raw_status : kHighsModelStatusOptimal
│ └ objective_bound : 1.43228e+02
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : FEASIBLE_POINT
│ ├ objective_value : 1.43228e+02
│ ├ dual_objective_value : 1.43228e+02
│ └ relative_gap : 3.96874e-16
└ Work counters
├ solve_time (sec) : 3.64065e-04
├ simplex_iterations : 8
├ barrier_iterations : 0
└ node_count : -1

update the solution in the DataFrames:

df_shipping.x_flow = value.(df_shipping.x_flow)
df_supply.x_supply = value.(df_supply.x_supply);

and display the optimal solution for flows:

DataFrames.select(
filter!(row -> row.x_flow > 0.0, df_shipping),
[:origin, :destination, :product, :x_flow],

)

origin destination product x_flow
String String String Float64

1 waikato auckland milk 10.0
2 waikato wellington milk 2.0
3 tauranga auckland milk 2.0
4 tauranga waikato milk 2.0
5 christchurch auckland milk 4.0
6 auckland christchurch kiwifruit 4.0
7 waikato auckland kiwifruit 20.0
8 waikato wellington kiwifruit 2.0
9 tauranga waikato kiwifruit 22.0

6.8 Tips and tricks

This tutorial was generated using Literate.jl. Download the source as a .jl file.

This tutorial was originally contributed by Arpit Bhatia.

https://github.com/fredrikekre/Literate.jl
tutorials/linear/tips_and_tricks.jl
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Tip

A good source of tips is the Mosek Modeling Cookbook.

This tutorial collates some tips and tricks you can use when formulating mixed-integer programs. It uses the
following packages:

julia> using JuMP

Absolute value

To model the absolute value function t ≥ |x|, there are a few options. In all cases, these reformulations only
work if you are minimizing t "down" into |x|. They do not work if you are trying to maximize |x|.

Option 1

This option adds two linear inequality constraints:

julia> model = Model();

julia> @variable(model, x)
x

julia> @variable(model, t)
t

julia> @constraint(model, t >= x)
-x + t ≥ 0

julia> @constraint(model, t >= -x)
x + t ≥ 0

Option 2

This option uses two non-negative variables and forms expressions for x and t:

julia> model = Model();

julia> @variable(model, z[1:2] >= 0)
2-element Vector{VariableRef}:
z[1]
z[2]

julia> @expression(model, t, z[1] + z[2])
z[1] + z[2]

julia> @expression(model, x, z[1] - z[2])
z[1] - z[2]

https://docs.mosek.com/modeling-cookbook/mio.html
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Option 3

This option uses MOI.NormOneCone and lets JuMP choose the reformulation:

julia> model = Model();

julia> @variable(model, x)
x

julia> @variable(model, t)
t

julia> @constraint(model, [t; x] in MOI.NormOneCone(2))
[t, x] ∈ MathOptInterface.NormOneCone(2)

L1-norm

To model min ||x||1, that is, min
∑
i

|xi|, use the MOI.NormOneCone:

julia> model = Model();

julia> @variable(model, x[1:3])
3-element Vector{VariableRef}:
x[1]
x[2]
x[3]

julia> @variable(model, t)
t

julia> @constraint(model, [t; x] in MOI.NormOneCone(1 + length(x)))
[t, x[1], x[2], x[3]] ∈ MathOptInterface.NormOneCone(4)

julia> @objective(model, Min, t)
t

Infinity-norm

To model min ||x||∞, that is, min max
i

|xi|, use the MOI.NormInfinityCone:

julia> model = Model();

julia> @variable(model, x[1:3])
3-element Vector{VariableRef}:
x[1]
x[2]
x[3]

julia> @variable(model, t)
t

julia> @constraint(model, [t; x] in MOI.NormInfinityCone(1 + length(x)))
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[t, x[1], x[2], x[3]] ∈ MathOptInterface.NormInfinityCone(4)

julia> @objective(model, Min, t)
t

Max

To model t ≥ max{x, y}, do:

julia> model = Model();

julia> @variable(model, t)
t

julia> @variable(model, x)
x

julia> @variable(model, y)
y

julia> @constraint(model, t >= x)
t - x ≥ 0

julia> @constraint(model, t >= y)
t - y ≥ 0

This reformulation does not work for t ≥ min{x, y}.

Min

To model t ≤ min{x, y}, do:

julia> model = Model();

julia> @variable(model, t)
t

julia> @variable(model, x)
x

julia> @variable(model, y)
y

julia> @constraint(model, t <= x)
t - x ≤ 0

julia> @constraint(model, t <= y)
t - y ≤ 0

This reformulation does not work for t ≤ max{x, y}.
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Modulo

To model y = x mod n, where n is a constant modulus, we use the relationship x = n · z + y, where z ∈ Z+

is the number of times that n can be divided by x and y is the remainder.

julia> n = 4
4

julia> model = Model();

julia> @variable(model, x >= 0, Int)
x

julia> @variable(model, 0 <= y <= n - 1, Int)
y

julia> @variable(model, z >= 0, Int)
z

julia> @constraint(model, x == n * z + y)
x - y - 4 z = 0

The modulo reformulation is often useful for subdividing a time increment into units of time like hours and
days:

julia> model = Model();

julia> @variable(model, t >= 0, Int)
t

julia> @variable(model, 0 <= hours <= 23, Int)
hours

julia> @variable(model, days >= 0, Int)
days

julia> @constraint(model, t == 24 * days + hours)
t - hours - 24 days = 0

Boolean operators

Binary variables can be used to construct logical operators. Here are some example.

Or

x3 = x1 ∨ x2

julia> model = Model();

julia> @variable(model, x[1:3], Bin)
3-element Vector{VariableRef}:
x[1]
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x[2]
x[3]

julia> @constraints(model, begin
x[1] <= x[3]
x[2] <= x[3]
x[3] <= x[1] + x[2]

end)
(x[1] - x[3] ≤ 0, x[2] - x[3] ≤ 0, -x[1] - x[2] + x[3] ≤ 0)

And

x3 = x1 ∧ x2

julia> model = Model();

julia> @variable(model, x[1:3], Bin)
3-element Vector{VariableRef}:
x[1]
x[2]
x[3]

julia> @constraints(model, begin
x[3] <= x[1]
x[3] <= x[2]
x[3] >= x[1] + x[2] - 1

end)
(-x[1] + x[3] ≤ 0, -x[2] + x[3] ≤ 0, -x[1] - x[2] + x[3] ≥ -1)

Not

x1¬x2

julia> model = Model();

julia> @variable(model, x[1:2], Bin)
2-element Vector{VariableRef}:
x[1]
x[2]

julia> @constraint(model, x[1] == 1 - x[2])
x[1] + x[2] = 1

Implies

x1 =⇒ x2
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julia> model = Model();

julia> @variable(model, x[1:2], Bin)
2-element Vector{VariableRef}:
x[1]
x[2]

julia> @constraint(model, x[1] <= x[2])
x[1] - x[2] ≤ 0

Disjunctions

Problem

Suppose that we have two constraints a⊤x ≤ b and c⊤x ≤ d, and we want at least one to hold.

Trick 1

Use an indicator constraint.

Example Either x1 ≤ 1 or x2 ≤ 2.

julia> model = Model();

julia> @variable(model, x[1:2])
2-element Vector{VariableRef}:
x[1]
x[2]

julia> @variable(model, y[1:2], Bin)
2-element Vector{VariableRef}:
y[1]
y[2]

julia> @constraint(model, y[1] --> {x[1] <= 1})
y[1] --> {x[1] ≤ 1}

julia> @constraint(model, y[2] --> {x[2] <= 2})
y[2] --> {x[2] ≤ 2}

julia> @constraint(model, sum(y) == 1) # Exactly one branch must be true
y[1] + y[2] = 1

Trick 2

Introduce a "big-M" multiplied by a binary variable to relax one of the constraints.

Example Either x1 ≤ 1 or x2 ≤ 2.

julia> model = Model();

julia> @variable(model, x[1:2] <= 10)
2-element Vector{VariableRef}:
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x[1]
x[2]

julia> @variable(model, y[1:2], Bin)
2-element Vector{VariableRef}:
y[1]
y[2]

julia> M = 100
100

julia> @constraint(model, x[1] <= 1 + M * y[1])
x[1] - 100 y[1] ≤ 1

julia> @constraint(model, x[2] <= 2 + M * y[2])
x[2] - 100 y[2] ≤ 2

julia> @constraint(model, sum(y) == 1)
y[1] + y[2] = 1

Warning

If M is too small, the solution may be suboptimal. If M is too big, the solver may encounter numerical
issues. Try to use domain knowledge to choose an M that is just right. Gurobi has a good documentation
section on this topic.

Indicator constraints

Problem

Suppose we want to model that a certain linear inequality must be satisfied when some other event occurs,
that is, for a binary variable z, we want to model the implication:

z = 1 =⇒ a⊤x ≤ b

Trick 1

Some solvers have native support for indicator constraints. In addition, if the variables involved have finite
domains, then JuMP can automatically reformulate an indicator into a mixed-integer program.

Example x1 + x2 ≤ 1 if z = 1.

julia> model = Model();

julia> @variable(model, 0 <= x[1:2] <= 10)
2-element Vector{VariableRef}:
x[1]
x[2]

julia> @variable(model, z, Bin)
z

https://docs.gurobi.com/projects/optimizer/en/current/concepts/numericguide/tolerances_scaling.html#dealing-with-big-m-constraints
https://docs.gurobi.com/projects/optimizer/en/current/concepts/numericguide/tolerances_scaling.html#dealing-with-big-m-constraints
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julia> @constraint(model, z --> {sum(x) <= 1})
z --> {x[1] + x[2] ≤ 1}

Example x1 + x2 ≤ 1 if z = 0.

julia> model = Model();

julia> @variable(model, 0 <= x[1:2] <= 10)
2-element Vector{VariableRef}:
x[1]
x[2]

julia> @variable(model, z, Bin)
z

julia> @constraint(model, !z --> {sum(x) <= 1})
!z --> {x[1] + x[2] ≤ 1}

Trick 2

If the solver doesn't support indicator constraints and the variables do not have a finite domain, you can use
the big-M trick.

Example x1 + x2 ≤ 1 if z = 1.

julia> model = Model();

julia> @variable(model, x[1:2] <= 10)
2-element Vector{VariableRef}:
x[1]
x[2]

julia> @variable(model, z, Bin)
z

julia> M = 100
100

julia> @constraint(model, sum(x) <= 1 + M * (1 - z))
x[1] + x[2] + 100 z ≤ 101

Example x1 + x2 ≤ 1 if z = 0.

julia> model = Model();

julia> @variable(model, x[1:2] <= 10)
2-element Vector{VariableRef}:
x[1]
x[2]

julia> @variable(model, z, Bin)
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z

julia> M = 100
100

julia> @constraint(model, sum(x) <= 1 + M * z)
x[1] + x[2] - 100 z ≤ 1

Semi-continuous variables

A semi-continuous variable is a continuous variable between bounds [l, u] that also can assume the value zero,
that is: x ∈ {0} ∪ [l, u].

Example x ∈ {0} ∪ [1, 2]

julia> model = Model();

julia> @variable(model, x in Semicontinuous(1.0, 2.0))
x

You can also represent a semi-continuous variable using the reformulation:

julia> model = Model();

julia> @variable(model, x)
x

julia> @variable(model, z, Bin)
z

julia> @constraint(model, x <= 2 * z)
x - 2 z ≤ 0

julia> @constraint(model, x >= 1 * z)
x - z ≥ 0

When z = 0 the two constraints are equivalent to 0 <= x <= 0. When z = 1, the two constraints are equiva-
lent to 1 <= x <= 2.

Semi-integer variables

A semi-integer variable is a variable which assumes integer values between bounds [l, u] and can also assume
the value zero: x ∈ {0} ∪ [l, u] ∩ Z.

julia> model = Model();

julia> @variable(model, x in Semiinteger(5.0, 10.0))
x

You can also represent a semi-integer variable using the reformulation:
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julia> model = Model();

julia> @variable(model, x, Int)
x

julia> @variable(model, z, Bin)
z

julia> @constraint(model, x <= 10 * z)
x - 10 z ≤ 0

julia> @constraint(model, x >= 5 * z)
x - 5 z ≥ 0

When z = 0 the two constraints are equivalent to 0 <= x <= 0. When z = 1, the two constraints are equiva-
lent to 5 <= x <= 10.

Special Ordered Sets of Type 1

A Special Ordered Set of Type 1 is a set of variables, at most one of which can take a non-zero value, all others
being at 0.

They most frequently apply where a set of variables are actually binary variables. In other words, we have to
choose at most one from a set of possibilities.

julia> model = Model();

julia> @variable(model, x[1:3], Bin)
3-element Vector{VariableRef}:
x[1]
x[2]
x[3]

julia> @constraint(model, x in SOS1())
[x[1], x[2], x[3]] ∈ MathOptInterface.SOS1{Float64}([1.0, 2.0, 3.0])

You can optionally pass SOS1 a weight vector like

julia> @constraint(model, x in SOS1([0.2, 0.5, 0.3]))
[x[1], x[2], x[3]] ∈ MathOptInterface.SOS1{Float64}([0.2, 0.5, 0.3])

If the decision variables are related and have a physical ordering, then the weight vector, although not used
directly in the constraint, can help the solver make a better decision in the solution process.

Special Ordered Sets of Type 2

A Special Ordered Set of type 2 is a set of non-negative variables, of which at most two can be non-zero, and
if two are non-zero these must be consecutive in their ordering.

julia> model = Model();
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julia> @variable(model, x[1:3])
3-element Vector{VariableRef}:
x[1]
x[2]
x[3]

julia> @constraint(model, x in SOS2([3.0, 1.0, 2.0]))
[x[1], x[2], x[3]] ∈ MathOptInterface.SOS2{Float64}([3.0, 1.0, 2.0])

The ordering provided by the weight vector is more important in this case as the variables need to be consec-
utive according to the ordering. For example, in the above constraint, the possible pairs are:

• Consecutive

– (x[1] and x[3]) as they correspond to 3 and 2 resp. and thus can be non-zero

– (x[2] and x[3]) as they correspond to 1 and 2 resp. and thus can be non-zero

• Non-consecutive

– (x[1] and x[2]) as they correspond to 3 and 1 resp. and thus cannot be non-zero

Piecewise linear approximations

SOSII constraints are most often used to form piecewise linear approximations of a function.

Given a set of points for x:

julia> x̂ = -1:0.5:2
-1.0:0.5:2.0

and a set of corresponding points for y:

julia> ŷ = x̂ .^ 2
7-element Vector{Float64}:
1.0
0.25
0.0
0.25
1.0
2.25
4.0

the piecewise linear approximation is constructed by representing x and y as convex combinations of x̂ and ŷ.

julia> N = length(x̂)
7

julia> model = Model();

julia> @variable(model, -1 <= x <= 2)
x
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julia> @variable(model, y)
y

julia> @variable(model, 0 <= λ[1:N] <= 1)
7-element Vector{VariableRef}:
λ[1]
λ[2]
λ[3]
λ[4]
λ[5]
λ[6]
λ[7]

julia> @objective(model, Max, y)
y

julia> @constraints(model, begin
x == sum(x̂[i] * λ[i] for i in 1:N)
y == sum(ŷ[i] * λ[i] for i in 1:N)
sum(λ) == 1
λ in SOS2()

end)
(x + λ[1] + 0.5 λ[2] - 0.5 λ[4] - λ[5] - 1.5 λ[6] - 2 λ[7] = 0, y - λ[1] - 0.25 λ[2] - 0.25 λ[4] -

λ[5] - 2.25 λ[6] - 4 λ[7] = 0, λ[1] + λ[2] + λ[3] + λ[4] + λ[5] + λ[6] + λ[7] = 1, [λ[1], λ[2],
λ[3], λ[4], λ[5], λ[6], λ[7]] ∈ MathOptInterface.SOS2{Float64}([1.0, 2.0, 3.0, 4.0, 5.0, 6.0,
7.0]))

↪→

↪→

↪→

6.9 Approximating nonlinear functions

This tutorial was generated using Literate.jl. Download the source as a .jl file.

The purpose of this tutorial is to explain how to approximate nonlinear functions with a mixed-integer linear
program.

This tutorial uses the following packages:

using JuMP
import HiGHS
import Plots

Minimizing a convex function (outer approximation)

If the function you are approximating is convex, and you want to minimize "down" onto it, then you can use
an outer approximation.

For example, f(x) = x2 is a convex function:

f(x) = x^2
∇f(x) = 2 * x
plot = Plots.plot(f, -2:0.01:2; ylims = (-0.5, 4), label = false, width = 3)

https://github.com/fredrikekre/Literate.jl
tutorials/linear/piecewise_linear.jl
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Because f is convex, we know that for any xk, we have: f(x) ≥ f(xk) +∇f(xk) · (x− xk)

for x_k in -2:1:2 ## Tip: try changing the number of points x_k
g = x -> f(x_k) + ∇f(x_k) * (x - x_k)
Plots.plot!(plot, g, -2:0.01:2; color = :red, label = false, width = 3)

end
plot
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We can use these tangent planes as constraints in our model to create an outer approximation of the function.
As we add more planes, the error between the true function and the piecewise linear outer approximation
decreases.

Here is the model in JuMP:

function outer_approximate_x_squared(x̄)
f(x) = x^2
∇f(x) = 2x
model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, -2 <= x <= 2)
@variable(model, y)
# Tip: try changing the number of points x_k
@constraint(model, [x_k in -2:1:2], y >= f(x_k) + ∇f(x_k) * (x - x_k))
@objective(model, Min, y)
@constraint(model, x == x̄) # <-- a trivial constraint just for testing.
optimize!(model)
assert_is_solved_and_feasible(model)
return value(y)

end

outer_approximate_x_squared (generic function with 1 method)

Here are a few values:
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for x̄ in range(; start = -2, stop = 2, length = 15)
ȳ = outer_approximate_x_squared(x̄)
Plots.scatter!(plot, [x̄], [ȳ]; label = false, color = :black)

end
plot

Note

This formulation does not work if we want to maximize y.

Maximizing a concave function (outer approximation)

The outer approximation also works if we want to maximize "up" into a concave function.

f(x) = log(x)
∇f(x) = 1 / x
X = 0.1:0.1:1.6
plot = Plots.plot(

f,
X;
xlims = (0.1, 1.6),
ylims = (-3, log(1.6)),
label = false,
width = 3,

)
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for x_k in 0.1:0.5:1.6 ## Tip: try changing the number of points x_k
g = x -> f(x_k) + ∇f(x_k) * (x - x_k)
Plots.plot!(plot, g, X; color = :red, label = false, width = 3)

end
plot

Here is the model in JuMP:

function outer_approximate_log(x̄)
f(x) = log(x)
∇f(x) = 1 / x
model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, 0.1 <= x <= 1.6)
@variable(model, y)
# Tip: try changing the number of points x_k
@constraint(model, [x_k in 0.1:0.5:2], y <= f(x_k) + ∇f(x_k) * (x - x_k))
@objective(model, Max, y)
@constraint(model, x == x̄) # <-- a trivial constraint just for testing.
optimize!(model)
assert_is_solved_and_feasible(model)
return value(y)

end
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outer_approximate_log (generic function with 1 method)

Here are a few values:

for x̄ in range(; start = 0.1, stop = 1.6, length = 15)
ȳ = outer_approximate_log(x̄)
Plots.scatter!(plot, [x̄], [ȳ]; label = false, color = :black)

end
plot

Note

This formulation does not work if we want to minimize y.

Minimizing a convex function (inner approximation)

Instead of creating an outer approximation, we can also create an inner approximation. For example, given
f(x) = x2, we may want to approximate the true function by the red piecewise linear function:

f(x) = x^2
x̂ = -2:0.8:2 ## Tip: try changing the number of points in x̂
plot = Plots.plot(f, -2:0.01:2; ylims = (-0.5, 4), label = false, linewidth = 3)
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Plots.plot!(plot, f, x̂; label = false, color = :red, linewidth = 3)
plot

To do so, we represent the decision variables (x, y) by the convex combination of a set of discrete points
{xk, yk}Kk=1:

x =

K∑
k=1

λkxk

y =

K∑
k=1

λkyk

K∑
k=1

λk = 1

λk ≥ 0, k = 1, . . . , k

The feasible region of the convex combination actually allows any (x, y) point inside this shaded region:

I = [1, 2, 3, 4, 5, 6, 1]
Plots.plot!(x̂[I], f.(x̂[I]); fill = (0, 0, "#f004"), width = 0, label = false)
plot
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Thus, this formulation does not work if we want to maximize y.

Here is the model in JuMP:

function inner_approximate_x_squared(x̄)
f(x) = x^2
∇f(x) = 2x
x̂ = -2:0.8:2 ## Tip: try changing the number of points in x̂
ŷ = f.(x̂)
n = length(x̂)
model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, -2 <= x <= 2)
@variable(model, y)
@variable(model, 0 <= λ[1:n] <= 1)
@constraint(model, x == sum(λ[i] * x̂[i] for i in 1:n))
@constraint(model, y == sum(λ[i] * ŷ[i] for i in 1:n))
@constraint(model, sum(λ) == 1)
@objective(model, Min, y)
@constraint(model, x == x̄) # <-- a trivial constraint just for testing.
optimize!(model)
assert_is_solved_and_feasible(model)
return value(y)

end
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inner_approximate_x_squared (generic function with 1 method)

Here are a few values:

for x̄ in range(; start = -2, stop = 2, length = 15)
ȳ = inner_approximate_x_squared(x̄)
Plots.scatter!(plot, [x̄], [ȳ]; label = false, color = :black)

end
plot

Maximizing a convex function (inner approximation)

The inner approximation also works if we want to maximize "up" into a concave function.

f(x) = log(x)
x̂ = 0.1:0.5:1.6 ## Tip: try changing the number of points in x̂
plot = Plots.plot(f, 0.1:0.01:1.6; label = false, linewidth = 3)
Plots.plot!(x̂, f.(x̂); linewidth = 3, color = :red, label = false)
I = [1, 2, 3, 4, 1]
Plots.plot!(x̂[I], f.(x̂[I]); fill = (0, 0, "#f004"), width = 0, label = false)
plot
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Here is the model in JuMP:

function inner_approximate_log(x̄)
f(x) = log(x)
x̂ = 0.1:0.5:1.6 ## Tip: try changing the number of points in x̂
ŷ = f.(x̂)
n = length(x̂)
model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, 0.1 <= x <= 1.6)
@variable(model, y)
@variable(model, 0 <= λ[1:n] <= 1)
@constraint(model, sum(λ) == 1)
@constraint(model, x == sum(λ[i] * x̂[i] for i in 1:n))
@constraint(model, y == sum(λ[i] * ŷ[i] for i in 1:n))
@objective(model, Max, y)
@constraint(model, x == x̄) # <-- a trivial constraint just for testing.
optimize!(model)
assert_is_solved_and_feasible(model)
return value(y)

end

inner_approximate_log (generic function with 1 method)

Here are a few values:
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for x̄ in range(; start = 0.1, stop = 1.6, length = 15)
ȳ = inner_approximate_log(x̄)
Plots.scatter!(plot, [x̄], [ȳ]; label = false, color = :black)

end
plot

Piecewise linear approximation

If the model is non-convex (or non-concave), then we cannot use an outer approximation, and the inner ap-
proximation allows a solution far from the true function. For example, for f(x) = sin(x), we have:

f(x) = sin(x)
plot = Plots.plot(f, 0:0.01:2π; label = false)
x̂ = range(; start = 0, stop = 2π, length = 7)
Plots.plot!(x̂, f.(x̂); linewidth = 3, color = :red, label = false)
I = [1, 5, 6, 7, 3, 2, 1]
Plots.plot!(x̂[I], f.(x̂[I]); fill = (0, 0, "#f004"), width = 0, label = false)
plot
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We can force the inner approximation to stay on the red line by adding the constraint λ in SOS2(). The SOS2
set is a Special Ordered Set of Type 2, and it ensures that at most two elements of λ can be non-zero, and if
they are, that they must be adjacent. This prevents the model from taking a convex combination of points 1
and 5 to end up on the lower boundary of the shaded red area.

Here is the model in JuMP:

function piecewise_linear_sin(x̄)
f(x) = sin(x)
# Tip: try changing the number of points in x̂
x̂ = range(; start = 0, stop = 2π, length = 7)
ŷ = f.(x̂)
n = length(x̂)
model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, 0 <= x <= 2π)
@variable(model, y)
@variable(model, 0 <= λ[1:n] <= 1)
@constraints(model, begin

x == sum(λ[i] * x̂[i] for i in 1:n)
y == sum(λ[i] * ŷ[i] for i in 1:n)
sum(λ) == 1
λ in SOS2() # <-- this is new

end)
@constraint(model, x == x̄) # <-- a trivial constraint just for testing.
optimize!(model)
assert_is_solved_and_feasible(model)
return value(y)
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end

piecewise_linear_sin (generic function with 1 method)

Here are a few values:

for x̄ in range(; start = 0, stop = 2π, length = 15)
ȳ = piecewise_linear_sin(x̄)
Plots.scatter!(plot, [x̄], [ȳ]; label = false, color = :black)

end
plot

6.10 The facility location problem

This tutorial was generated using Literate.jl. Download the source as a .jl file.

This tutorial was originally contributed by Mathieu Tanneau and Alexis Montoison.

Required packages

This tutorial requires the following packages:

https://github.com/fredrikekre/Literate.jl
tutorials/linear/facility_location.jl
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using JuMP
import HiGHS
import LinearAlgebra
import Plots
import Random

Uncapacitated facility location

Problem description

We are given

• A setM = {1, . . . ,m} of clients

• A set N = {1, . . . , n} of sites where a facility can be built

Decision variables Decision variables are split into two categories:

• Binary variable yj indicates whether facility j is built or not

• Binary variable xi,j indicates whether client i is assigned to facility j

Objective The objective is to minimize the total cost of serving all clients. This costs breaks down into two
components:

• Fixed cost of building a facility.

In this example, this cost is fj = 1, ∀j.

• Cost of serving clients from the assigned facility.

In this example, the cost ci,j of serving client i from facility j is the Euclidean distance between the two.

Constraints

• Each customer must be served by exactly one facility

• A facility cannot serve any client unless it is open

MILP formulation

The problem can be formulated as the following MILP:

min
x,y

∑
i,j

ci,jxi,j +
∑
j

fjyj

s.t.
∑
j

xi,j = 1, ∀i ∈M

xi,j ≤ yj , ∀i ∈M, j ∈ N

xi,j , yj ∈ {0, 1}, ∀i ∈M, j ∈ N

where the first set of constraints ensures that each client is served exactly once, and the second set of con-
straints ensures that no client is served from an unopened facility.
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Problem data

To ensure reproducibility, we set the random number seed:

Random.seed!(314)

Random.TaskLocalRNG()

Here's the data we need:

# Number of clients
m = 12
# Number of facility locations
n = 5

# Clients' locations
x_c, y_c = rand(m), rand(m)

# Facilities' potential locations
x_f, y_f = rand(n), rand(n)

# Fixed costs
f = ones(n);

# Distance
c = zeros(m, n)
for i in 1:m

for j in 1:n
c[i, j] = LinearAlgebra.norm([x_c[i] - x_f[j], y_c[i] - y_f[j]], 2)

end
end

Display the data

Plots.scatter(
x_c,
y_c;
label = "Clients",
markershape = :circle,
markercolor = :blue,

)
Plots.scatter!(

x_f,
y_f;
label = "Facility",
markershape = :square,
markercolor = :white,
markersize = 6,
markerstrokecolor = :red,
markerstrokewidth = 2,

)
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JuMP implementation

Create a JuMP model

model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, y[1:n], Bin);
@variable(model, x[1:m, 1:n], Bin);
# Each client is served exactly once
@constraint(model, client_service[i in 1:m], sum(x[i, j] for j in 1:n) == 1);
# A facility must be open to serve a client
@constraint(model, open_facility[i in 1:m, j in 1:n], x[i, j] <= y[j]);
@objective(model, Min, f' * y + sum(c .* x));

Solve the uncapacitated facility location problem with HiGHS

optimize!(model)
assert_is_solved_and_feasible(model)
println("Optimal value: ", objective_value(model))

Optimal value: 5.7018394545724185
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Visualizing the solution

The threshold 1e-5 ensure that edges between clients and facilities are drawn when x[i, j] ≈ 1.

x_is_selected = isapprox.(value.(x), 1; atol = 1e-5);
y_is_selected = isapprox.(value.(y), 1; atol = 1e-5);

p = Plots.scatter(
x_c,
y_c;
markershape = :circle,
markercolor = :blue,
label = nothing,

)

Plots.scatter!(
x_f,
y_f;
markershape = :square,
markercolor = [(y_is_selected[j] ? :red : :white) for j in 1:n],
markersize = 6,
markerstrokecolor = :red,
markerstrokewidth = 2,
label = nothing,

)

for i in 1:m, j in 1:n
if x_is_selected[i, j]

Plots.plot!(
[x_c[i], x_f[j]],
[y_c[i], y_f[j]];
color = :black,
label = nothing,

)
end

end

p
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Capacitated facility location

Problem formulation

The capacitated variant introduces a capacity constraint on each facility, that is, clients have a certain level of
demand to be served, while each facility only has finite capacity which cannot be exceeded.

Specifically,

• The demand of client i is denoted by ai ≥ 0

• The capacity of facility j is denoted by qj ≥ 0

The capacity constraints then write

∑
i

aixi,j ≤ qjyj ∀j ∈ N

Note that, if yj is set to 0, the capacity constraint above automatically forces xi,j to 0.

Thus, the capacitated facility location can be formulated as follows
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min
x,y

∑
i,j

ci,jxi,j +
∑
j

fjyj

s.t.
∑
j

xi,j = 1, ∀i ∈M

∑
i

aixi,j ≤ qjyj , ∀j ∈ N

xi,j , yj ∈ {0, 1}, ∀i ∈M, j ∈ N

For simplicity, we will assume that there is enough capacity to serve the demand, that is, there exists at least
one feasible solution.

We need some new data:

# Demands
a = rand(1:3, m);

# Capacities
q = rand(5:10, n);

Display the data

Plots.scatter(
x_c,
y_c;
label = nothing,
markershape = :circle,
markercolor = :blue,
markersize = 2 .* (2 .+ a),

)

Plots.scatter!(
x_f,
y_f;
label = nothing,
markershape = :rect,
markercolor = :white,
markersize = q,
markerstrokecolor = :red,
markerstrokewidth = 2,

)
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JuMP implementation

Create a JuMP model

model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, y[1:n], Bin);
@variable(model, x[1:m, 1:n], Bin);
# Each client is served exactly once
@constraint(model, client_service[i in 1:m], sum(x[i, :]) == 1);
# Capacity constraint
@constraint(model, capacity, x' * a .<= (q .* y));
# Objective
@objective(model, Min, f' * y + sum(c .* x));

Solve the problem

optimize!(model)
assert_is_solved_and_feasible(model)
println("Optimal value: ", objective_value(model))

Optimal value: 6.1980444155009975
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Visualizing the solution

The threshold 1e-5 ensure that edges between clients and facilities are drawn when x[i, j] ≈ 1.

x_is_selected = isapprox.(value.(x), 1; atol = 1e-5);
y_is_selected = isapprox.(value.(y), 1; atol = 1e-5);

Display the solution

p = Plots.scatter(
x_c,
y_c;
label = nothing,
markershape = :circle,
markercolor = :blue,
markersize = 2 .* (2 .+ a),

)

Plots.scatter!(
x_f,
y_f;
label = nothing,
markershape = :rect,
markercolor = [(y_is_selected[j] ? :red : :white) for j in 1:n],
markersize = q,
markerstrokecolor = :red,
markerstrokewidth = 2,

)

for i in 1:m, j in 1:n
if x_is_selected[i, j]

Plots.plot!(
[x_c[i], x_f[j]],
[y_c[i], y_f[j]];
color = :black,
label = nothing,

)
end

end

p
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6.11 Financial modeling problems

This tutorial was generated using Literate.jl. Download the source as a .jl file.

This tutorial was originally contributed by Arpit Bhatia.

Optimization models play an increasingly important role in financial decisions. Many computational finance
problems can be solved efficiently using modern optimization techniques.

In this tutorial we will discuss two such examples taken from (Cornuéjols et al., 2018).

This tutorial uses the following packages

using JuMP
import HiGHS

Short-term financing

Corporations routinely face the problem of financing short term cash commitments such as the following:

Month Jan Feb Mar Apr May Jun

Net Cash Flow -150 -100 200 -200 50 300

Net cash flow requirements are given in thousands of dollars. The company has the following sources of funds:

• A line of credit of up to $100K at an interest rate of 1% per month,

https://github.com/fredrikekre/Literate.jl
tutorials/linear/finance.jl
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• In any one of the first three months, it can issue 90-day commercial paper bearing a total interest of 2%
for the 3-month period,

• Excess funds can be invested at an interest rate of 0.3% per month.

Our task is to find out the most economical way to use these 3 sources such that we end up with the most
amount of money at the end of June.

We model this problem in the following manner:

We will use the following decision variables:

• the amount ui drawn from the line of credit in month i

• the amount vi of commercial paper issued in month i

• the excess funds wi in month i

Here we have three types of constraints:

1. for every month, cash inflow = cash outflow for each month

2. upper bounds on ui

3. nonnegativity of the decision variables ui, vi and wi.

Our objective will be to simplymaximize the company's wealth in June, which say we represent with the variable
m.

financing = Model(HiGHS.Optimizer)

@variables(financing, begin
0 <= u[1:5] <= 100
0 <= v[1:3]
0 <= w[1:5]
m

end)

@objective(financing, Max, m)

@constraints(
financing,
begin

u[1] + v[1] - w[1] == 150 # January
u[2] + v[2] - w[2] - 1.01u[1] + 1.003w[1] == 100 # February
u[3] + v[3] - w[3] - 1.01u[2] + 1.003w[2] == -200 # March
u[4] - w[4] - 1.02v[1] - 1.01u[3] + 1.003w[3] == 200 # April
u[5] - w[5] - 1.02v[2] - 1.01u[4] + 1.003w[4] == -50 # May
-m - 1.02v[3] - 1.01u[5] + 1.003w[5] == -300 # June

end
)

optimize!(financing)
assert_is_solved_and_feasible(financing)
objective_value(financing)
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92.49694915254233

Combinatorial auctions

In many auctions, the value that a bidder has for a set of items may not be the sum of the values that he has
for individual items.

Examples are equity trading, electricity markets, pollution right auctions and auctions for airport landing slots.

To take this into account, combinatorial auctions allow the bidders to submit bids on combinations of items.

LetM = {1, 2, . . . ,m} be the set of items that the auctioneer has to sell. A bid is a pairBj = (Sj , pj) where
Sj ⊆M is a nonempty set of items and pj is the price offer for this set.

Suppose that the auctioneer has received n bids B1, B2, . . . , Bn. The goal of this problem is to help an auc-
tioneer determine the winners in order to maximize his revenue.

We model this problem by taking a decision variable yj for every bid. We add a constraint that each item i is
sold at most once. This gives us the following model:

max
n∑

i=1

pjyj

s.t.
∑

j:i∈Sj

yj ≤ 1 ∀i = {1, 2 . . .m}

yj ∈ {0, 1} ∀j ∈ {1, 2 . . . n}

bid_values = [6 3 12 12 8 16]
bid_items = [[1], [2], [3 4], [1 3], [2 4], [1 3 4]]

auction = Model(HiGHS.Optimizer)
@variable(auction, y[1:6], Bin)
@objective(auction, Max, sum(y' .* bid_values))
for i in 1:6

@constraint(auction, sum(y[j] for j in 1:6 if i in bid_items[j]) <= 1)
end
optimize!(auction)
assert_is_solved_and_feasible(auction)
objective_value(auction)

21.0

value.(y)
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6-element Vector{Float64}:
1.0
1.0
1.0
-0.0
-0.0
0.0

6.12 Geographical clustering

This tutorial was generated using Literate.jl. Download the source as a .jl file.

This tutorial was originally contributed by Matthew Helm and Mathieu Tanneau.

The goal of this exercise is to cluster n cities into k groups, minimizing the total pairwise distance between
cities and ensuring that the variance in the total populations of each group is relatively small.

This tutorial uses the following packages:

using JuMP
import DataFrames
import HiGHS
import LinearAlgebra

For this example, we'll use the 20 most populous cities in the United States.

cities = DataFrames.DataFrame(
Union{String,Float64}[

"New York, NY" 8.405 40.7127 -74.0059
"Los Angeles, CA" 3.884 34.0522 -118.2436
"Chicago, IL" 2.718 41.8781 -87.6297
"Houston, TX" 2.195 29.7604 -95.3698
"Philadelphia, PA" 1.553 39.9525 -75.1652
"Phoenix, AZ" 1.513 33.4483 -112.0740
"San Antonio, TX" 1.409 29.4241 -98.4936
"San Diego, CA" 1.355 32.7157 -117.1610
"Dallas, TX" 1.257 32.7766 -96.7969
"San Jose, CA" 0.998 37.3382 -121.8863
"Austin, TX" 0.885 30.2671 -97.7430
"Indianapolis, IN" 0.843 39.7684 -86.1580
"Jacksonville, FL" 0.842 30.3321 -81.6556
"San Francisco, CA" 0.837 37.7749 -122.4194
"Columbus, OH" 0.822 39.9611 -82.9987
"Charlotte, NC" 0.792 35.2270 -80.8431
"Fort Worth, TX" 0.792 32.7554 -97.3307
"Detroit, MI" 0.688 42.3314 -83.0457
"El Paso, TX" 0.674 31.7775 -106.4424
"Memphis, TN" 0.653 35.1495 -90.0489

],
["city", "population", "lat", "lon"],

)

https://github.com/fredrikekre/Literate.jl
tutorials/linear/geographic_clustering.jl
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city population lat lon
Union… Union… Union… Union…

1 New York, NY 8.405 40.7127 -74.0059
2 Los Angeles, CA 3.884 34.0522 -118.244
3 Chicago, IL 2.718 41.8781 -87.6297
4 Houston, TX 2.195 29.7604 -95.3698
5 Philadelphia, PA 1.553 39.9525 -75.1652
6 Phoenix, AZ 1.513 33.4483 -112.074
7 San Antonio, TX 1.409 29.4241 -98.4936
8 San Diego, CA 1.355 32.7157 -117.161
9 Dallas, TX 1.257 32.7766 -96.7969
10 San Jose, CA 0.998 37.3382 -121.886
11 Austin, TX 0.885 30.2671 -97.743
12 Indianapolis, IN 0.843 39.7684 -86.158
13 Jacksonville, FL 0.842 30.3321 -81.6556
14 San Francisco, CA 0.837 37.7749 -122.419
15 Columbus, OH 0.822 39.9611 -82.9987
16 Charlotte, NC 0.792 35.227 -80.8431
17 Fort Worth, TX 0.792 32.7554 -97.3307
18 Detroit, MI 0.688 42.3314 -83.0457
19 El Paso, TX 0.674 31.7775 -106.442
20 Memphis, TN 0.653 35.1495 -90.0489

Model Specifics

We will cluster these 20 cities into 3 different groups and we will assume that the ideal or target population P
for a group is simply the total population of the 20 cities divided by 3:

n = size(cities, 1)
k = 3
P = sum(cities.population) / k

11.038333333333334

Obtaining the distances between each city

Let's compute the pairwise Haversine distance between each of the cities in our data set and store the result
in a variable we'll call dm:

"""
haversine(lat1, long1, lat2, long2, r = 6372.8)

Compute the haversine distance between two points on a sphere of radius `r`,
where the points are given by the latitude/longitude pairs `lat1/long1` and
`lat2/long2` (in degrees).
"""
function haversine(lat1, long1, lat2, long2, r = 6372.8)

lat1, long1 = deg2rad(lat1), deg2rad(long1)
lat2, long2 = deg2rad(lat2), deg2rad(long2)
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hav(a, b) = sin((b - a) / 2)^2
inner_term = hav(lat1, lat2) + cos(lat1) * cos(lat2) * hav(long1, long2)
d = 2 * r * asin(sqrt(inner_term))
# Round distance to nearest kilometer.
return round(Int, d)

end

Main.haversine

Our distancematrix is symmetric so we'll convert it to a LowerTriangularmatrix so that we can better interpret
the objective value of our model:

dm = LinearAlgebra.LowerTriangular([
haversine(cities.lat[i], cities.lon[i], cities.lat[j], cities.lon[j])
for i in 1:n, j in 1:n

])

20×20 LinearAlgebra.LowerTriangular{Int64, Matrix{Int64}}:
0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ … ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

3937 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1145 2805 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
2282 2207 1516 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
130 3845 1068 2157 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
3445 574 2337 1633 3345 0 ⋅ … ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
2546 1934 1695 304 2423 1363 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
3908 179 2787 2094 3812 481 1813 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
2206 1993 1295 362 2089 1424 406 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
4103 492 2958 2588 4023 989 2336 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
2432 1972 1577 235 2310 1398 118 … ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1036 2907 265 1394 938 2409 1609 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1345 3450 1391 1321 1221 2883 1626 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
4130 559 2986 2644 4052 1051 2394 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
767 3177 444 1598 668 2679 1834 0 ⋅ ⋅ ⋅ ⋅ ⋅
855 3405 946 1490 725 2863 1777 … 560 0 ⋅ ⋅ ⋅ ⋅
2251 1944 1327 382 2134 1375 387 1511 1543 0 ⋅ ⋅ ⋅
774 3186 382 1780 711 2716 1994 264 813 1646 0 ⋅ ⋅
3054 1130 2010 1081 2945 559 804 2292 2398 864 2374 0 ⋅
1534 2576 777 780 1415 2028 1017 820 837 722 1003 1565 0

Build the model

Now that we have the basics taken care of, we can set up our model, create decision variables, add constraints,
and then solve.

First, we'll set up a model that leverages the Cbc solver. Next, we'll set up a binary variable xi,k that takes
the value 1 if city i is in group k and 0 otherwise. Each city must be in a group, so we'll add the constraint∑

k xi,k = 1 for every i.
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model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, x[1:n, 1:k], Bin)
@constraint(model, [i = 1:n], sum(x[i, :]) == 1);
# To reduce symmetry, we fix the first city to belong to the first group.
fix(x[1, 1], 1; force = true)

The total population of a group k is Qk =
∑

i xi,kqi where qi is simply the i-th value from the population
column in our cities DataFrame. Let's add constraints so that α ≤ (Qk − P ) ≤ β. We'll set α equal to
−3 million and β equal to 3. By adjusting these thresholds you'll find that there is a tradeoff between having
relatively even populations between groups and having geographically close cities within each group. In other
words, the larger the absolute values of α and β, the closer together the cities in a group will be but the
variance between the group populations will be higher.

@variable(model, -3 <= population_diff[1:k] <= 3)
@constraint(model, population_diff .== x' * cities.population .- P)

3-element Vector{ConstraintRef{Model,
MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.EqualTo{Float64}}, ScalarShape}}:

↪→

↪→

-8.405 x[1,1] - 3.884 x[2,1] - 2.718 x[3,1] - 2.195 x[4,1] - 1.553 x[5,1] - 1.513 x[6,1] - 1.409
x[7,1] - 1.355 x[8,1] - 1.257 x[9,1] - 0.998 x[10,1] - 0.885 x[11,1] - 0.843 x[12,1] - 0.842
x[13,1] - 0.837 x[14,1] - 0.822 x[15,1] - 0.792 x[16,1] - 0.792 x[17,1] - 0.688 x[18,1] -
0.674 x[19,1] - 0.653 x[20,1] + population_diff[1] = -11.038333333333334

↪→

↪→

↪→

-8.405 x[1,2] - 3.884 x[2,2] - 2.718 x[3,2] - 2.195 x[4,2] - 1.553 x[5,2] - 1.513 x[6,2] - 1.409
x[7,2] - 1.355 x[8,2] - 1.257 x[9,2] - 0.998 x[10,2] - 0.885 x[11,2] - 0.843 x[12,2] - 0.842
x[13,2] - 0.837 x[14,2] - 0.822 x[15,2] - 0.792 x[16,2] - 0.792 x[17,2] - 0.688 x[18,2] -
0.674 x[19,2] - 0.653 x[20,2] + population_diff[2] = -11.038333333333334

↪→

↪→

↪→

-8.405 x[1,3] - 3.884 x[2,3] - 2.718 x[3,3] - 2.195 x[4,3] - 1.553 x[5,3] - 1.513 x[6,3] - 1.409
x[7,3] - 1.355 x[8,3] - 1.257 x[9,3] - 0.998 x[10,3] - 0.885 x[11,3] - 0.843 x[12,3] - 0.842
x[13,3] - 0.837 x[14,3] - 0.822 x[15,3] - 0.792 x[16,3] - 0.792 x[17,3] - 0.688 x[18,3] -
0.674 x[19,3] - 0.653 x[20,3] + population_diff[3] = -11.038333333333334

↪→

↪→

↪→

Now we need to add one last binary variable zi,j to our model that we'll use to compute the total distance
between the cities in our groups, defined as

∑
i,j di,jzi,j . Variable zi,j will equal 1 if cities i and j are in the

same group, and 0 if they are not in the same group.

To ensure that zi,j = 1 if and only if cities i and j are in the same group, we add the constraints zi,j ≥
xi,k + xj,k − 1 for every pair i, j and every k:

@variable(model, z[i = 1:n, j = 1:i], Bin)
for k in 1:k, i in 1:n, j in 1:i

@constraint(model, z[i, j] >= x[i, k] + x[j, k] - 1)
end

We can now add an objective to our model which will simply be to minimize the dot product of z and our
distance matrix, dm.
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@objective(model, Min, sum(dm[i, j] * z[i, j] for i in 1:n, j in 1:i));

We can then call optimize! and review the results.

optimize!(model)
assert_is_solved_and_feasible(model)

Reviewing the Results

Now that we have results, we can add a column to our cities DataFrame for the group and then loop through
our x variable to assign each city to its group. Once we have that, we can look at the total population for each
group and also look at the cities in each group to verify that they are grouped by geographic proximity.

cities.group = zeros(n)

for i in 1:n, j in 1:k
if round(Int, value(x[i, j])) == 1

cities.group[i] = j
end

end

for group in DataFrames.groupby(cities, :group)
@show group
println("")
@show sum(group.population)
println("")

end

group = 7×5 SubDataFrame
Row │ city population lat lon group

│ Union… Union… Union… Union… Float64
─────┼──────────────────────────────────────────────────────────

1 │ New York, NY 8.405 40.7127 -74.0059 1.0
2 │ Philadelphia, PA 1.553 39.9525 -75.1652 1.0
3 │ Indianapolis, IN 0.843 39.7684 -86.158 1.0
4 │ Jacksonville, FL 0.842 30.3321 -81.6556 1.0
5 │ Columbus, OH 0.822 39.9611 -82.9987 1.0
6 │ Charlotte, NC 0.792 35.227 -80.8431 1.0
7 │ Detroit, MI 0.688 42.3314 -83.0457 1.0

sum(group.population) = 13.944999999999999

group = 7×5 SubDataFrame
Row │ city population lat lon group

│ Union… Union… Union… Union… Float64
─────┼─────────────────────────────────────────────────────────

1 │ Chicago, IL 2.718 41.8781 -87.6297 2.0
2 │ Houston, TX 2.195 29.7604 -95.3698 2.0
3 │ San Antonio, TX 1.409 29.4241 -98.4936 2.0
4 │ Dallas, TX 1.257 32.7766 -96.7969 2.0



CHAPTER 6. LINEAR PROGRAMS 219

5 │ Austin, TX 0.885 30.2671 -97.743 2.0
6 │ Fort Worth, TX 0.792 32.7554 -97.3307 2.0
7 │ Memphis, TN 0.653 35.1495 -90.0489 2.0

sum(group.population) = 9.909

group = 6×5 SubDataFrame
Row │ city population lat lon group

│ Union… Union… Union… Union… Float64
─────┼───────────────────────────────────────────────────────────

1 │ Los Angeles, CA 3.884 34.0522 -118.244 3.0
2 │ Phoenix, AZ 1.513 33.4483 -112.074 3.0
3 │ San Diego, CA 1.355 32.7157 -117.161 3.0
4 │ San Jose, CA 0.998 37.3382 -121.886 3.0
5 │ San Francisco, CA 0.837 37.7749 -122.419 3.0
6 │ El Paso, TX 0.674 31.7775 -106.442 3.0

sum(group.population) = 9.261000000000001

6.13 Network flow problems

This tutorial was generated using Literate.jl. Download the source as a .jl file.

This tutorial was originally contributed by Arpit Bhatia.

In graph theory, a flow network (also known as a transportation network) is a directed graph where each edge
has a capacity and each edge receives a flow. The amount of flow on an edge cannot exceed the capacity of
the edge.

Often in operations research, a directed graph is called a network, the vertices are called nodes and the edges
are called arcs.

A flow must satisfy the restriction that the amount of flow into a node equals the amount of flow out of it,
unless it is a source, which has only outgoing flow, or sink, which has only incoming flow.

A network can be used tomodel traffic in a computer network, circulation with demands, fluids in pipes, currents
in an electrical circuit, or anything similar in which something travels through a network of nodes.

This tutorial requires the following packages:

using JuMP
import HiGHS

The shortest path problem

Suppose that each arc (i, j) of a graph is assigned a scalar cost ai,j , and suppose that we define the cost of
a forward path to be the sum of the costs of its arcs.

Given a pair of nodes, the shortest path problem is to find a forward path that connects these nodes and has
minimum cost.

https://github.com/fredrikekre/Literate.jl
tutorials/linear/network_flows.jl
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min
∑

∀e(i,j)∈E

ai,j × xi,j

s.t.
∑
j

xij −
∑
k

xki = bi ∀i

xe ∈ {0, 1} ∀e ∈ E

where bi is 1 if i is the starting node, −1 if i is the ending node, and 0 otherwise.

G = [
0 100 30 0 0
0 0 20 0 0
0 0 0 10 60
0 15 0 0 50
0 0 0 0 0

]
n = size(G)[1]
b = [1, -1, 0, 0, 0]
shortest_path = Model(HiGHS.Optimizer)
set_silent(shortest_path)
@variable(shortest_path, x[1:n, 1:n], Bin)
# Arcs with zero cost are not a part of the path as they do no exist
@constraint(shortest_path, [i = 1:n, j = 1:n; G[i, j] == 0], x[i, j] == 0)
# Flow conservation constraint
@constraint(shortest_path, [i = 1:n], sum(x[i, :]) - sum(x[:, i]) == b[i],)
@objective(shortest_path, Min, sum(G .* x))
optimize!(shortest_path)
assert_is_solved_and_feasible(shortest_path)
objective_value(shortest_path)

55.0

value.(x)

5×5 Matrix{Float64}:
0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0
0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0

The assignment problem

Suppose that there are n persons and n objects that we have to match on a one-to-one basis. There is a benefit
or value ai,j for matching person i with object j, and we want to assign persons to objects so as to maximize
the total benefit.
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There is also a restriction that person i can be assigned to object j only if (i, j) belongs to a given set of pairs
A.

Mathematically, we want to find a set of person-object pairs (1, j1), ..., (n, jn) from A such that the objects
j1, ..., jn are all distinct, and the total benefit

∑y
i=1 aiji is maximized.

max
∑

(i,j)∈A

ai,j × yi,j

s.t.
∑

{j|(i,j)∈A}

yi,j = 1 ∀i = {1, 2....n}

∑
{i|(i,j)∈A}

yi,j = 1 ∀j = {1, 2....n}

yi,j ∈ {0, 1} ∀(i, j) ∈ {1, 2...k}

G = [
6 4 5 0
0 3 6 0
5 0 4 3
7 5 5 5

]
n = size(G)[1]
assignment = Model(HiGHS.Optimizer)
set_silent(assignment)
@variable(assignment, y[1:n, 1:n], Bin)
# One person can only be assigned to one object
@constraint(assignment, [i = 1:n], sum(y[:, i]) == 1)
# One object can only be assigned to one person
@constraint(assignment, [j = 1:n], sum(y[j, :]) == 1)
@objective(assignment, Max, sum(G .* y))
optimize!(assignment)
assert_is_solved_and_feasible(assignment)
objective_value(assignment)

20.0

value.(y)

4×4 Matrix{Float64}:
-0.0 1.0 -0.0 0.0
0.0 0.0 1.0 0.0
1.0 0.0 0.0 -0.0
-0.0 0.0 0.0 1.0
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The max-flow problem

In the max-flow problem, we have a graph with two special nodes: the source, denoted by s, and the sink,
denoted by t.

The objective is to move as much flow as possible from s into t while observing the capacity constraints.

max
∑

v:(s,v)∈E

f(s, v)

s.t.
∑

u:(u,v)∈E

f(u, v) =
∑

w:(v,w)∈E

f(v, w) ∀v ∈ V − {s, t}

f(u, v) ≤ c(u, v) ∀(u, v) ∈ E

f(u, v) ≥ 0 ∀(u, v) ∈ E

G = [
0 3 2 2 0 0 0 0
0 0 0 0 5 1 0 0
0 0 0 0 1 3 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 4
0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 4
0 0 0 0 0 0 0 0

]
n = size(G)[1]
max_flow = Model(HiGHS.Optimizer)
@variable(max_flow, f[1:n, 1:n] >= 0)
# Capacity constraints
@constraint(max_flow, [i = 1:n, j = 1:n], f[i, j] <= G[i, j])
# Flow conservation constraints
@constraint(max_flow, [i = 1:n; i != 1 && i != 8], sum(f[i, :]) == sum(f[:, i]))
@objective(max_flow, Max, sum(f[1, :]))
optimize!(max_flow)
assert_is_solved_and_feasible(max_flow)
objective_value(max_flow)

6.0

value.(f)

8×8 Matrix{Float64}:
-0.0 3.0 2.0 1.0 -0.0 -0.0 -0.0 -0.0
0.0 0.0 0.0 0.0 2.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 -0.0 1.0 0.0
-0.0 -0.0 -0.0 0.0 -0.0 1.0 -0.0 -0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0



CHAPTER 6. LINEAR PROGRAMS 223

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

6.14 The transportation problem

This tutorial was generated using Literate.jl. Download the source as a .jl file.

This tutorial was originally contributed by Louis Luangkesorn.

This tutorial is an adaptation of the transportation problem described in AMPL: A Modeling Language for Math-
ematical Programming, by R. Fourer, D.M. Gay and B.W. Kernighan.

The purpose of this tutorial is to demonstrate how to create a JuMP model from an ad-hoc structured text file.

Required packages

This tutorial uses the following packages:

using JuMP
import DelimitedFiles
import HiGHS

Formulation

Suppose that we have a set of factories that produce pogo sticks, and a set of retail stores in which to sell
them. Each factory has a maximum number of pogo sticks that it can produce, and each retail store has a
demand of pogo sticks that it can sell.

In the transportation problem, we want to choose the number of pogo sticks to make and ship from each factory
to each retail store that minimizes the total shipping cost.

Mathematically, we represent our set of factories by a set of origins i ∈ O and our retail stores by a set of
destinations j ∈ D. The maximum supply at each factory is si and the demand from each retail store is dj .
The cost of shipping one pogo stick from i to j is ci,j .

With a little effort, we can model the transportation problem as the following linear program:

min
∑

i∈O,j∈D

ci,jxi,j

s.t.
∑
j∈D

xi,j ≤ si ∀i ∈ O

∑
i∈O

xi,j = dj ∀j ∈ D

xi,j ≥ 0 ∀i ∈ O, j ∈ D

Data

We assume our data is in the form of a text file that has the following form. In practice, we would obtain this
text file from the user as input, but for the purpose of this tutorial we're going to create it from Julia.

https://github.com/fredrikekre/Literate.jl
tutorials/linear/transp.jl
https://ampl.com/resources/the-ampl-book/
https://ampl.com/resources/the-ampl-book/
https://en.wikipedia.org/wiki/Pogo_stick
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open(joinpath(@__DIR__, "transp.txt"), "w") do io
print(

io,
"""

. FRA DET LAN WIN STL FRE LAF SUPPLY
GARY 39 14 11 14 16 82 8 1400
CLEV 27 . 12 . 26 95 17 2600
PITT 24 14 17 13 28 99 20 2900

DEMAND 900 1200 600 400 1700 1100 1000 0
""",

)
return

end

Here the rows are the origins, the columns are the destinations, and the values are the cost of shipping one
pogo stick from the origin to the destination. If pogo stick cannot be transported from a source to a destination,
then the value is .. The final row and final column are the demand and supply of each location respectively.

We didn't account for arcs which do not exist in our formulation, but we can make a small change and fix
xi,j = 0 if ci,j = ”.”.
Our first step is to convert this text format into an appropriate Julia datastructure that we can work with. Since
our data is tabular with named rows and columns, one option is JuMP's Containers.DenseAxisArray object:

function read_data(filename::String)
data = DelimitedFiles.readdlm(filename)
rows, columns = data[2:end, 1], data[1, 2:end]
return Containers.DenseAxisArray(data[2:end, 2:end], rows, columns)

end

data = read_data(joinpath(@__DIR__, "transp.txt"))

2-dimensional DenseAxisArray{Any,2,...} with index sets:
Dimension 1, Any["GARY", "CLEV", "PITT", "DEMAND"]
Dimension 2, Any["FRA", "DET", "LAN", "WIN", "STL", "FRE", "LAF", "SUPPLY"]

And data, a 4×8 Matrix{Any}:
39 14 11 14 16 82 8 1400
27 "." 12 "." 26 95 17 2600
24 14 17 13 28 99 20 2900
900 1200 600 400 1700 1100 1000 0

JuMP formulation

Following Design patterns for larger models, we code our JuMP model as a function which takes in an input. In
this example, we print the output to stdout:

function solve_transportation_problem(data::Containers.DenseAxisArray)
# Get the set of supplies and demands
O, D = axes(data)
# Drop the SUPPLY and DEMAND nodes from our sets
O, D = setdiff(O, ["DEMAND"]), setdiff(D, ["SUPPLY"])
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model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, x[o in O, d in D] >= 0)
# Remove arcs with "." cost by fixing them to 0.0.
for o in O, d in D

if data[o, d] == "."
fix(x[o, d], 0.0; force = true)

end
end
@objective(

model,
Min,
sum(data[o, d] * x[o, d] for o in O, d in D if data[o, d] != "."),

)
@constraint(model, [o in O], sum(x[o, :]) <= data[o, "SUPPLY"])
@constraint(model, [d in D], sum(x[:, d]) == data["DEMAND", d])
optimize!(model)
assert_is_solved_and_feasible(model)
# Pretty print the solution in the format of the input
print(" ", join(lpad.(D, 7, ' ')))
for o in O

print("\n", o)
for d in D

if isapprox(value(x[o, d]), 0.0; atol = 1e-6)
print(" .")

else
print(" ", lpad(value(x[o, d]), 6, ' '))

end
end

end
return

end

solve_transportation_problem (generic function with 1 method)

Solution

Let's solve and view the solution:

solve_transportation_problem(data)

FRA DET LAN WIN STL FRE LAF
GARY . . . . 300.0 1100.0 .
CLEV . . 600.0 . 1000.0 . 1000.0
PITT 900.0 1200.0 . 400.0 400.0 . .



CHAPTER 6. LINEAR PROGRAMS 226

6.15 Multi-objective knapsack

This tutorial was generated using Literate.jl. Download the source as a .jl file.

The purpose of this tutorial is to demonstrate how to create and solve a multi-objective linear program. In
addition, it demonstrates how to work with solvers which return multiple solutions.

Required packages

This tutorial requires the following packages:

using JuMP
import HiGHS
import MultiObjectiveAlgorithms as MOA
import Plots

MultiObjectiveAlgorithms.jl is a package which implements a variety of algorithms for solving multi-objective
optimization problems. Because it is a long package name, we import it instead as MOA.

Formulation

The knapsack problem is a classic problem in mixed-integer programming. Given a collection of items i ∈ I ,
each of which has an associated weight, wi, and profit, pi, the knapsack problem determines which profit-
maximizing subset of items to pack into a knapsack such that the total weight is less than a capacity c. The
mathematical formulation is:

max
∑
i∈I

pixi

s.t.
∑
i∈I

wixi ≤ c

xi ∈ {0, 1} ∀i ∈ I

where xi is 1 if we pack item i into the knapsack and 0 otherwise.

For this tutorial, we extend the single-objective knapsack problem by adding another objective: given a desir-
ability rating, ri, we wish to maximize the total desirability of the items in our knapsack. Thus, our mathemat-
ical formulation is now:

max
∑
i∈I

pixi∑
i∈I

rixi

s.t.
∑
i∈I

wixi ≤ c

xi ∈ {0, 1} ∀i ∈ I

Data

The data for this example was taken from vOptGeneric, and the original author was @xgandibleux.

https://github.com/fredrikekre/Literate.jl
tutorials/linear/multi_objective_knapsack.jl
https://en.wikipedia.org/wiki/Knapsack_problem
https://github.com/vOptSolver/vOptGeneric.jl
https://github.com/xgandibleux
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profit = [77, 94, 71, 63, 96, 82, 85, 75, 72, 91, 99, 63, 84, 87, 79, 94, 90]
desire = [65, 90, 90, 77, 95, 84, 70, 94, 66, 92, 74, 97, 60, 60, 65, 97, 93]
weight = [80, 87, 68, 72, 66, 77, 99, 85, 70, 93, 98, 72, 100, 89, 67, 86, 91]
capacity = 900
N = length(profit)

17

Comparing the capacity to the total weight of all the items:

capacity / sum(weight)

0.6428571428571429

shows that we can take approximately 64% of the items.

Plotting the items, we see that there are a range of items with different profits and desirability. Some items
have a high profit and a high desirability, others have a low profit and a high desirability (and vice versa).

Plots.scatter(
profit,
desire;
xlabel = "Profit",
ylabel = "Desire",
legend = false,

)
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The goal of the bi-objective knapsack problem is to choose a subset which maximizes both objectives.

JuMP formulation

Our JuMP formulation is a direct translation of the mathematical formulation:

model = Model()
@variable(model, x[1:N], Bin)
@constraint(model, sum(weight[i] * x[i] for i in 1:N) <= capacity)
@expression(model, profit_expr, sum(profit[i] * x[i] for i in 1:N))
@expression(model, desire_expr, sum(desire[i] * x[i] for i in 1:N))
@objective(model, Max, [profit_expr, desire_expr])

2-element Vector{AffExpr}:
77 x[1] + 94 x[2] + 71 x[3] + 63 x[4] + 96 x[5] + 82 x[6] + 85 x[7] + 75 x[8] + 72 x[9] + 91 x[10]

+ 99 x[11] + 63 x[12] + 84 x[13] + 87 x[14] + 79 x[15] + 94 x[16] + 90 x[17]↪→

65 x[1] + 90 x[2] + 90 x[3] + 77 x[4] + 95 x[5] + 84 x[6] + 70 x[7] + 94 x[8] + 66 x[9] + 92 x[10]
+ 74 x[11] + 97 x[12] + 60 x[13] + 60 x[14] + 65 x[15] + 97 x[16] + 93 x[17]↪→

Note how we form a multi-objective program by passing a vector of scalar objective functions.

Solution

To solve our model, we need an optimizer which supports multi-objective linear programs. One option is to use
the MultiObjectiveAlgorithms.jl package.
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set_optimizer(model, () -> MOA.Optimizer(HiGHS.Optimizer))
set_silent(model)

MultiObjectiveAlgorithms.jl supports many different algorithms for solving multiobjective optimization prob-
lems. One option is the epsilon-constraint method:

set_attribute(model, MOA.Algorithm(), MOA.EpsilonConstraint())

Let's solve the problem and see the solution

optimize!(model)
assert_is_solved_and_feasible(model)
solution_summary(model)

solution_summary(; result = 1, verbose = false)
├ solver_name : MOA[algorithm=MultiObjectiveAlgorithms.EpsilonConstraint, optimizer=HiGHS]
├ Termination
│ ├ termination_status : OPTIMAL
│ ├ result_count : 9
│ ├ raw_status : Solve complete. Found 9 solution(s)
│ └ objective_bound : [9.55000e+02,9.83000e+02]
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : NO_SOLUTION
│ └ objective_value : [9.18000e+02,9.83000e+02]
└ Work counters
└ solve_time (sec) : 9.27551e-02

There are 9 solutions available. We can also use result_count to see how many solutions are available:

result_count(model)

9

Accessing multiple solutions

Access the nine different solutions in the model using the result keyword to solution_summary, value, and
objective_value:

solution_summary(model; result = 5)
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solution_summary(; result = 5, verbose = false)
└ Solution (result = 5)
├ primal_status : FEASIBLE_POINT
├ dual_status : NO_SOLUTION
└ objective_value : [9.36000e+02,9.42000e+02]

@assert primal_status(model; result = 5) == FEASIBLE_POINT

assert_is_solved_and_feasible(model; result = 5)

objective_value(model; result = 5)

2-element Vector{Float64}:
936.0
942.0

Note that because we set a vector of two objective functions, the objective value is a vector with two elements.
We can also query the value of each objective separately:

value(profit_expr; result = 5)

936.0

Visualizing objective space

Unlike single-objective optimization problems, multi-objective optimization problems do not have a single opti-
mal solution. Instead, the solutions returned represent possible trade-offs that the decision maker can choose
between the two objectives. A common way to visualize this is by plotting the objective values of each of the
solutions:

plot = Plots.scatter(
[value(profit_expr; result = i) for i in 1:result_count(model)],
[value(desire_expr; result = i) for i in 1:result_count(model)];
xlabel = "Profit",
ylabel = "Desire",
title = "Objective space",
label = "",
xlims = (915, 960),

)
for i in 1:result_count(model)

y = objective_value(model; result = i)
Plots.annotate!(y[1] - 1, y[2], (i, 10))
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end
ideal_point = objective_bound(model)
Plots.scatter!([ideal_point[1]], [ideal_point[2]]; label = "Ideal point")

Visualizing the objective space lets the decision maker choose a solution that suits their personal preferences.
For example, result #7 is close to the maximum value of profit, but offers significantly higher desirability com-
pared with solutions #8 and #9.

The set of items that are chosen in solution #7 are:

items_chosen = [i for i in 1:N if value(x[i]; result = 7) > 0.9]

11-element Vector{Int64}:
1
2
3
5
6
8
10
11
15
16
17
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Next steps

MultiObjectiveAlgorithms.jl implements a number of different algorithms. Try solving the same problem using
MOA.Dichotomy(). Does it find the same solution?

6.16 Simple multi-objective examples

This tutorial was generated using Literate.jl. Download the source as a .jl file.

This tutorial contains a number of examples of multi-objective programs from the literature.

Required packages

This tutorial requires the following packages:

using JuMP
import HiGHS
import MultiObjectiveAlgorithms as MOA

Bi-objective linear problem

This example is taken from Example 6.3 (from Steuer, 1985), page 154 of Ehrgott, M. (2005). Multicriteria
Optimization. Springer, Berlin. The code was adapted from an example in vOptGeneric by @xgandibleux.

model = Model()
set_silent(model)
@variable(model, x1 >= 0)
@variable(model, 0 <= x2 <= 3)
@objective(model, Min, [3x1 + x2, -x1 - 2x2])
@constraint(model, 3x1 - x2 <= 6)
set_optimizer(model, () -> MOA.Optimizer(HiGHS.Optimizer))
set_attribute(model, MOA.Algorithm(), MOA.Lexicographic())
optimize!(model)
solution_summary(model)

solution_summary(; result = 1, verbose = false)
├ solver_name : MOA[algorithm=MultiObjectiveAlgorithms.Lexicographic, optimizer=HiGHS]
├ Termination
│ ├ termination_status : OPTIMAL
│ ├ result_count : 2
│ ├ raw_status : Solve complete. Found 2 solution(s)
│ └ objective_bound : [0.00000e+00,-9.00000e+00]
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : NO_SOLUTION
│ └ objective_value : [0.00000e+00,0.00000e+00]
└ Work counters
└ solve_time (sec) : 1.22094e-03

https://github.com/fredrikekre/Literate.jl
tutorials/linear/multi_objective_examples.jl
https://github.com/vOptSolver/vOptGeneric.jl
https://github.com/xgandibleux
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for i in 1:result_count(model)
assert_is_solved_and_feasible(model; result = i)
print(i, ": z = ", round.(Int, objective_value(model; result = i)), " | ")
println("x = ", value.([x1, x2]; result = i))

end

1: z = [0, 0] | x = [0.0, -0.0]
2: z = [12, -9] | x = [3.0, 3.0]

Bi-objective linear assignment problem

This example is taken from Example 9.38 (from Ulungu and Teghem, 1994), page 255 of Ehrgott, M. (2005).
Multicriteria Optimization. Springer, Berlin. The code was adapted from an example in vOptGeneric by
@xgandibleux.

C1 = [5 1 4 7; 6 2 2 6; 2 8 4 4; 3 5 7 1]
C2 = [3 6 4 2; 1 3 8 3; 5 2 2 3; 4 2 3 5]
n = size(C2, 1)
model = Model()
set_silent(model)
@variable(model, x[1:n, 1:n], Bin)
@objective(model, Min, [sum(C1 .* x), sum(C2 .* x)])
@constraint(model, [i = 1:n], sum(x[i, :]) == 1)
@constraint(model, [j = 1:n], sum(x[:, j]) == 1)
set_optimizer(model, () -> MOA.Optimizer(HiGHS.Optimizer))
set_attribute(model, MOA.Algorithm(), MOA.EpsilonConstraint())
optimize!(model)
solution_summary(model)

solution_summary(; result = 1, verbose = false)
├ solver_name : MOA[algorithm=MultiObjectiveAlgorithms.EpsilonConstraint, optimizer=HiGHS]
├ Termination
│ ├ termination_status : OPTIMAL
│ ├ result_count : 6
│ ├ raw_status : Solve complete. Found 6 solution(s)
│ └ objective_bound : [6.00000e+00,7.00000e+00]
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : NO_SOLUTION
│ └ objective_value : [6.00000e+00,2.40000e+01]
└ Work counters
└ solve_time (sec) : 6.44803e-03

for i in 1:result_count(model)
assert_is_solved_and_feasible(model; result = i)
print(i, ": z = ", round.(Int, objective_value(model; result = i)), " | ")
println("x = ", round.(Int, value.(x; result = i)))

end

https://github.com/vOptSolver/vOptGeneric.jl
https://github.com/xgandibleux
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1: z = [6, 24] | x = [0 1 0 0; 0 0 1 0; 1 0 0 0; 0 0 0 1]
2: z = [9, 17] | x = [0 0 1 0; 0 1 0 0; 1 0 0 0; 0 0 0 1]
3: z = [12, 13] | x = [1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1]
4: z = [16, 11] | x = [0 0 0 1; 0 1 0 0; 0 0 1 0; 1 0 0 0]
5: z = [19, 10] | x = [0 0 1 0; 1 0 0 0; 0 0 0 1; 0 1 0 0]
6: z = [22, 7] | x = [0 0 0 1; 1 0 0 0; 0 0 1 0; 0 1 0 0]

Bi-objective shortest path problem

This example is taken from Exercise 9.5 page 269 of Ehrgott, M. (2005). Multicriteria Optimization. Springer,
Berlin. The code was adapted from an example in vOptGeneric by @xgandibleux.

M = 50
C1 = [

M 4 5 M M M
M M 2 1 2 7
M M M 5 2 M
M M 5 M M 3
M M M M M 4
M M M M M M

]
C2 = [

M 3 1 M M M
M M 1 4 2 2
M M M 1 7 M
M M 1 M M 2
M M M M M 2
M M M M M M

]
n = size(C2, 1)
model = Model()
set_silent(model)
@variable(model, x[1:n, 1:n], Bin)
@objective(model, Min, [sum(C1 .* x), sum(C2 .* x)])
@constraint(model, sum(x[1, :]) == 1)
@constraint(model, sum(x[:, n]) == 1)
@constraint(model, [i = 2:n-1], sum(x[i, :]) - sum(x[:, i]) == 0)
set_optimizer(model, () -> MOA.Optimizer(HiGHS.Optimizer))
set_attribute(model, MOA.Algorithm(), MOA.EpsilonConstraint())
optimize!(model)
solution_summary(model)

solution_summary(; result = 1, verbose = false)
├ solver_name : MOA[algorithm=MultiObjectiveAlgorithms.EpsilonConstraint, optimizer=HiGHS]
├ Termination
│ ├ termination_status : OPTIMAL
│ ├ result_count : 4
│ ├ raw_status : Solve complete. Found 4 solution(s)
│ └ objective_bound : [8.00000e+00,4.00000e+00]
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT

https://github.com/vOptSolver/vOptGeneric.jl
https://github.com/xgandibleux
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│ ├ dual_status : NO_SOLUTION
│ └ objective_value : [8.00000e+00,9.00000e+00]
└ Work counters
└ solve_time (sec) : 4.02594e-03

for i in 1:result_count(model)
assert_is_solved_and_feasible(model; result = i)
print(i, ": z = ", round.(Int, objective_value(model; result = i)), " | ")
X = round.(Int, value.(x; result = i))
print("Path:")
for ind in findall(val -> val ≈ 1, X)

i, j = ind.I
print(" $i->$j")

end
println()

end

1: z = [8, 9] | Path: 1->2 2->4 4->6
2: z = [10, 7] | Path: 1->2 2->5 5->6
3: z = [11, 5] | Path: 1->2 2->6
4: z = [13, 4] | Path: 1->3 3->4 4->6

6.17 Sudoku

This tutorial was generated using Literate.jl. Download the source as a .jl file.

This tutorial was originally contributed by Iain Dunning.

Sudoku is a popular number puzzle. The goal is to place the digits 1 to 9 on a nine-by-nine grid, with some of
the digits already filled in. Your solution must satisfy the following rules:

• The numbers 1 to 9 must appear in each 3x3 square

• The numbers 1 to 9 must appear in each row

• The numbers 1 to 9 must appear in each column

Here is a partially solved Sudoku problem:

Solving a Sudoku isn't an optimization problem with an objective; its actually a feasibility problem: we wish
to find a feasible solution that satisfies these rules. You can think of it as an optimization problem with an
objective of 0.

Mixed-integer linear programming formulation

We can model this problem using 0-1 integer programming: a problem where all the decision variables are
binary. We'll use JuMP to create the model, and then we can solve it with any integer programming solver.

https://github.com/fredrikekre/Literate.jl
tutorials/linear/sudoku.jl
http://en.wikipedia.org/wiki/Sudoku
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Figure 6.1: Partially solved Sudoku

using JuMP
using HiGHS

We will define a binary variable (a variable that is either 0 or 1) for each possible number in each possible
cell. The meaning of each variable is as follows: x[i,j,k] = 1 if and only if cell (i,j) has number
k, where i is the row and j is the column.

Create a model

sudoku = Model(HiGHS.Optimizer)
set_silent(sudoku)

Create our variables
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@variable(sudoku, x[i = 1:9, j = 1:9, k = 1:9], Bin);

Now we can begin to add our constraints. We'll actually start with something obvious to us as humans, but
what we need to enforce: that there can be only one number per cell.

for i in 1:9 # For each row
for j in 1:9 # and each column

# Sum across all the possible digits. One and only one of the digits
# can be in this cell, so the sum must be equal to one.
@constraint(sudoku, sum(x[i, j, k] for k in 1:9) == 1)

end
end

Next we'll add the constraints for the rows and the columns. These constraints are all very similar, so much so
that we can actually add them at the same time.

for ind in 1:9 # Each row, OR each column
for k in 1:9 # Each digit

# Sum across columns (j) - row constraint
@constraint(sudoku, sum(x[ind, j, k] for j in 1:9) == 1)
# Sum across rows (i) - column constraint
@constraint(sudoku, sum(x[i, ind, k] for i in 1:9) == 1)

end
end

Finally, we have the to enforce the constraint that each digit appears once in each of the nine 3x3 sub-grids.
Our strategy will be to index over the top-left corners of each 3x3 square with for loops, then sum over the
squares.

for i in 1:3:7
for j in 1:3:7

for k in 1:9
# i is the top left row, j is the top left column.
# We'll sum from i to i+2, for example, i=4, r=4, 5, 6.
@constraint(

sudoku,
sum(x[r, c, k] for r in i:(i+2), c in j:(j+2)) == 1

)
end

end
end

The final step is to add the initial solution as a set of constraints. We'll solve the problem that is in the picture
at the start of the tutorial. We'll put a 0 if there is no digit in that location.

The given digits

init_sol = [
5 3 0 0 7 0 0 0 0
6 0 0 1 9 5 0 0 0
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0 9 8 0 0 0 0 6 0
8 0 0 0 6 0 0 0 3
4 0 0 8 0 3 0 0 1
7 0 0 0 2 0 0 0 6
0 6 0 0 0 0 2 8 0
0 0 0 4 1 9 0 0 5
0 0 0 0 8 0 0 7 9

]
for i in 1:9

for j in 1:9
# If the space isn't empty
if init_sol[i, j] != 0

# Then the corresponding variable for that digit and location must
# be 1.
fix(x[i, j, init_sol[i, j]], 1; force = true)

end
end

end

solve problem

optimize!(sudoku)
assert_is_solved_and_feasible(sudoku)

Extract the values of x

x_val = value.(x);

Create a matrix to store the solution

sol = zeros(Int, 9, 9) # 9x9 matrix of integers
for i in 1:9

for j in 1:9
for k in 1:9

# Integer programs are solved as a series of linear programs so the
# values might not be precisely 0 and 1. We can round them to
# the nearest integer to make it easier.
if round(Int, x_val[i, j, k]) == 1

sol[i, j] = k
end

end
end

end

Display the solution

sol
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Figure 6.2: Solved Sudoku

9×9 Matrix{Int64}:
5 3 4 6 7 8 9 1 2
6 7 2 1 9 5 3 4 8
1 9 8 3 4 2 5 6 7
8 5 9 7 6 1 4 2 3
4 2 6 8 5 3 7 9 1
7 1 3 9 2 4 8 5 6
9 6 1 5 3 7 2 8 4
2 8 7 4 1 9 6 3 5
3 4 5 2 8 6 1 7 9

Which is the correct solution:
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Constraint programming formulation

We can also model this problem using constraint programming and the all-different constraint, which says that
no two elements of a vector can take the same value.

Because of the reformulation system in MathOptInterface, we can still solve this problem using HiGHS.

model = Model(HiGHS.Optimizer)
set_silent(model)
# HiGHS v1.2 has a bug in presolve which causes the problem to be classified as
# infeasible.
set_attribute(model, "presolve", "off")

Instead of the binary variables, we directly define a 9x9 grid of integer values between 1 and 9:

@variable(model, 1 <= x[1:9, 1:9] <= 9, Int);

Then, we enforce that the values in each row must be all-different:

@constraint(model, [i = 1:9], x[i, :] in MOI.AllDifferent(9));

That the values in each column must be all-different:

@constraint(model, [j = 1:9], x[:, j] in MOI.AllDifferent(9));

And that the values in each 3x3 sub-grid must be all-different:

for i in (0, 3, 6), j in (0, 3, 6)
@constraint(model, vec(x[i.+(1:3), j.+(1:3)]) in MOI.AllDifferent(9))

end

Finally, as before we set the initial solution and optimize:

for i in 1:9, j in 1:9
if init_sol[i, j] != 0

fix(x[i, j], init_sol[i, j]; force = true)
end

end

optimize!(model)
assert_is_solved_and_feasible(model)

Display the solution

csp_sol = round.(Int, value.(x))
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9×9 Matrix{Int64}:
5 3 4 6 7 8 9 1 2
6 7 2 1 9 5 3 4 8
1 9 8 3 4 2 5 6 7
8 5 9 7 6 1 4 2 3
4 2 6 8 5 3 7 9 1
7 1 3 9 2 4 8 5 6
9 6 1 5 3 7 2 8 4
2 8 7 4 1 9 6 3 5
3 4 5 2 8 6 1 7 9

Which is the same as we found before:

sol == csp_sol

true

6.18 N-Queens

This tutorial was generated using Literate.jl. Download the source as a .jl file.

This tutorial was originally contributed by Matthew Helm and Mathieu Tanneau.

The N-Queens problem involves placing N queens on an N x N chessboard such that none of the queens attacks
another. In chess, a queen can move vertically, horizontally, and diagonally so there cannot be more than one
queen on any given row, column, or diagonal.

Note that none of the queens above are able to attack any other as a result of their careful placement.

using JuMP
import HiGHS
import LinearAlgebra

N-Queens

N = 8

model = Model(HiGHS.Optimizer)
set_silent(model)

Next, let's create an N x N chessboard of binary values. 0 will represent an empty space on the board and 1
will represent a space occupied by one of our queens:

@variable(model, x[1:N, 1:N], Bin);

Now we can add our constraints:

There must be exactly one queen in a given row/column

https://github.com/fredrikekre/Literate.jl
tutorials/linear/n-queens.jl
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Figure 6.3: Four Queens

for i in 1:N
@constraint(model, sum(x[i, :]) == 1)
@constraint(model, sum(x[:, i]) == 1)

end

There can only be one queen on any given diagonal

for i in -(N - 1):(N-1)
@constraint(model, sum(LinearAlgebra.diag(x, i)) <= 1)
@constraint(model, sum(LinearAlgebra.diag(reverse(x; dims = 1), i)) <= 1)

end

We are ready to put our model to work and see if it is able to find a feasible solution:

optimize!(model)
assert_is_solved_and_feasible(model)

We can now review the solution that our model found:

solution = round.(Int, value.(x))

8×8 Matrix{Int64}:
0 0 0 0 1 0 0 0
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0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0

6.19 Constraint programming

This tutorial was generated using Literate.jl. Download the source as a .jl file.

JuMP supports a range of constraint-programming type constraints via the corresponding sets in MathOptInter-
face. For most constraints, there are reformulations built-in that convert the constraint programming constraint
into a mixed-integer programming equivalent.

Because of this reformulation, all variables must be integer, and they must typically have finite bounds. An
error will be thrown if the reformulation requires finiteness and you have a variable with non-finite bounds.

This tutorial uses the following packages:

using JuMP
import HiGHS

AllDifferent

The MOI.AllDifferent set ensures that every element in a list takes a different integer value.

model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, 1 <= x[1:4] <= 4, Int)
@constraint(model, x in MOI.AllDifferent(4))
optimize!(model)
assert_is_solved_and_feasible(model)
value.(x)

4-element Vector{Float64}:
1.0
4.0
3.0000000000000004
1.9999999999999996

BinPacking

The MOI.BinPacking set can be used to divide up a set of items into different groups, such that the sum of
their weights does not exceed the capacity of a bin.

https://github.com/fredrikekre/Literate.jl
tutorials/linear/constraint_programming.jl
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weights, capacity = Float64[1, 1, 2, 2, 3], 3.0;
number_of_bins = 3
model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, 1 <= x[1:length(weights)] <= number_of_bins, Int)
@constraint(model, x in MOI.BinPacking(capacity, weights))
optimize!(model)
assert_is_solved_and_feasible(model)
value.(x)

5-element Vector{Float64}:
2.0
1.0
2.0
1.0
3.0

Here, the value of x[i] is the bin that item i was placed into.

Circuit

The MOI.Circuit set is used to construct a tour of a list of N variables. They will each be assigned an integer
from 1 to N, that describes the successor to each variable in the list:

model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, x[1:4], Int)
@constraint(model, x in MOI.Circuit(4))
optimize!(model)
assert_is_solved_and_feasible(model)

Let's see what tour was found, starting at node number 1:

y = round.(Int, value.(x))
tour = Int[1]
while length(tour) < length(y)

push!(tour, y[tour[end]])
end
tour

4-element Vector{Int64}:
1
4
3
2
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CountAtLeast

The MOI.CountAtLeast set is used to ensure that at least n elements in a set of variables belong to a set of
values.

For example, here is a model with three variables, constrained between 0 and 5:

model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, 0 <= x[1:3] <= 5, Int)

3-element Vector{VariableRef}:
x[1]
x[2]
x[3]

If we want to ensure that at least one element of each set {x[1], x[2]} and {x[2], x[3]} is in the set {3},
then we create a list of variables by concatenating the sets together:

variables = [x[1], x[2], x[2], x[3]]

4-element Vector{VariableRef}:
x[1]
x[2]
x[2]
x[3]

Then we need a partition list that contains the number of elements in each set of variables:

partitions = [2, 2]

2-element Vector{Int64}:
2
2

Finally, we need a set of values that the elements must be a part of:

values = Set([3])

Set{Int64} with 1 element:
3

And the number of elements that must be part of the set values:
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n = 1

1

The constraint is:

@constraint(model, variables in MOI.CountAtLeast(n, partitions, values))

[x1, x2, x2, x3] ∈ MathOptInterface.CountAtLeast(1, [2, 2], Set([3]))

To ensure the uniqueness of the solution, we'll add a constraint that x[2] must be <= 2. This ensures that the
only feasible solution is for x[1] and x[3] to be 3:

@constraint(model, x[2] <= 2)

x2 ≤ 2

Let's check that we found a valid solution:

optimize!(model)
assert_is_solved_and_feasible(model)
value.(x)

3-element Vector{Float64}:
3.0
0.0
3.0

CountBelongs

The MOI.CountBelongs set is used to count how many elements in a set of variables belong to a set of values.

For example, to count how many elements in a set of 4 variables belong to the set {2, 3}, do:

model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, 0 <= x[i = 1:4] <= i, Int)
@variable(model, n, Int)
@objective(model, Max, sum(x))
set = Set([2, 3])
@constraint(model, [n; x] in MOI.CountBelongs(1 + length(x), set))
optimize!(model)
assert_is_solved_and_feasible(model)
value(n), value.(x)
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(2.0, [1.0, 2.0, 3.0, 4.0])

CountDistinct

The MOI.CountDistinct set is used to count the number of distinct elements in a set of variables.

model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, 0 <= x[i = 1:4] <= i, Int)
@variable(model, n, Int)
@objective(model, Max, sum(x))
@constraint(model, [n; x] in MOI.CountDistinct(1 + length(x)))
optimize!(model)
assert_is_solved_and_feasible(model)
value(n), value.(x)

(4.0, [1.0, 2.0, 3.0, 4.0])

CountGreaterThan

The MOI.CountGreaterThan set is used to strictly upper-bound the number of distinct elements in a set of
variables that have a value equal to another variable.

For example, to count the number n of times that y appears in the vector x, use:

model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, 0 <= x[i = 1:4] <= i, Int)
@variable(model, n, Int)
@variable(model, 3 <= y <= 4, Int)
@objective(model, Max, sum(x))
@constraint(model, [n; y; x] in MOI.CountGreaterThan(1 + 1 + length(x)))
optimize!(model)
assert_is_solved_and_feasible(model)
value(n), value(y), value.(x)

(2.0, 3.0, [1.0, 2.0, 3.0, 4.0])

Here n is strictly greater than the count, and there is no limit on how large n could be. For example, n = 100
is also a feasible solution. The only constraint is that n cannot be equal to or smaller than the number of times
that y appears.

Table

The MOI.Table set is used to select a single row from a matrix of values.

For example, given a matrix:
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table = Float64[1 1 0; 0 1 1; 1 0 1; 1 1 1]

4×3 Matrix{Float64}:
1.0 1.0 0.0
0.0 1.0 1.0
1.0 0.0 1.0
1.0 1.0 1.0

we can constraint a 3-element vector x to equal one of the rows in table via:

model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, x[i = 1:3], Int)
@constraint(model, x in MOI.Table(table))
optimize!(model)
assert_is_solved_and_feasible(model)
value.(x)

3-element Vector{Float64}:
1.0
1.0
1.0

6.20 Callbacks

This tutorial was generated using Literate.jl. Download the source as a .jl file.

The purpose of the tutorial is to demonstrate the various solver-independent and solver-dependent callbacks
that are supported by JuMP.

The tutorial uses the following packages:

using JuMP
import Gurobi
import Random
import Test

Info

This tutorial uses the MathOptInterface API. By default, JuMP exports the MOI symbol as an alias for
the MathOptInterface.jl package. We recommend making this more explicit in your code by adding the
following lines:

import MathOptInterface as MOI

https://github.com/fredrikekre/Literate.jl
tutorials/linear/callbacks.jl
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Lazy constraints

An example using a lazy constraint callback.

function example_lazy_constraint()
model = Model(Gurobi.Optimizer)
set_silent(model)
@variable(model, 0 <= x <= 2.5, Int)
@variable(model, 0 <= y <= 2.5, Int)
@objective(model, Max, y)
lazy_called = false
function my_callback_function(cb_data)

lazy_called = true
x_val = callback_value(cb_data, x)
y_val = callback_value(cb_data, y)
println("Called from (x, y) = ($x_val, $y_val)")
status = callback_node_status(cb_data, model)
if status == MOI.CALLBACK_NODE_STATUS_FRACTIONAL

println(" - Solution is integer infeasible!")
elseif status == MOI.CALLBACK_NODE_STATUS_INTEGER

println(" - Solution is integer feasible!")
else

@assert status == MOI.CALLBACK_NODE_STATUS_UNKNOWN
println(" - I don't know if the solution is integer feasible :(")

end
if y_val - x_val > 1 + 1e-6

con = @build_constraint(y - x <= 1)
println("Adding $(con)")
MOI.submit(model, MOI.LazyConstraint(cb_data), con)

elseif y_val + x_val > 3 + 1e-6
con = @build_constraint(y + x <= 3)
println("Adding $(con)")
MOI.submit(model, MOI.LazyConstraint(cb_data), con)

end
return

end
set_attribute(model, MOI.LazyConstraintCallback(), my_callback_function)
optimize!(model)
assert_is_solved_and_feasible(model)
Test.@test lazy_called
Test.@test value(x) == 1
Test.@test value(y) == 2
println("Optimal solution (x, y) = ($(value(x)), $(value(y)))")
return

end

example_lazy_constraint()

Set parameter WLSAccessID
Set parameter WLSSecret
Set parameter LicenseID to value 722777
WLS license 722777 - registered to JuMP Development
Called from (x, y) = (-0.0, 2.0)
- Solution is integer feasible!
Adding ScalarConstraint{AffExpr, MathOptInterface.LessThan{Float64}}(y - x,

MathOptInterface.LessThan{Float64}(1.0))↪→
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Called from (x, y) = (2.0, 2.0)
- Solution is integer feasible!
Adding ScalarConstraint{AffExpr, MathOptInterface.LessThan{Float64}}(y + x,

MathOptInterface.LessThan{Float64}(3.0))↪→

Called from (x, y) = (2.0, 2.0)
- Solution is integer feasible!
Adding ScalarConstraint{AffExpr, MathOptInterface.LessThan{Float64}}(y + x,

MathOptInterface.LessThan{Float64}(3.0))↪→

Called from (x, y) = (2.0, 2.0)
- Solution is integer feasible!
Adding ScalarConstraint{AffExpr, MathOptInterface.LessThan{Float64}}(y + x,

MathOptInterface.LessThan{Float64}(3.0))↪→

Called from (x, y) = (-0.0, 2.0)
- Solution is integer feasible!
Adding ScalarConstraint{AffExpr, MathOptInterface.LessThan{Float64}}(y - x,

MathOptInterface.LessThan{Float64}(1.0))↪→

Called from (x, y) = (1.0, 2.0)
- Solution is integer feasible!
Optimal solution (x, y) = (1.0, 2.0)

User-cuts

An example using a user-cut callback.

function example_user_cut_constraint()
Random.seed!(1)
N = 30
item_weights, item_values = rand(N), rand(N)
model = Model(Gurobi.Optimizer)
set_silent(model)
# Turn off "Cuts" parameter so that our new one must be called. In real
# models, you should leave "Cuts" turned on.
set_attribute(model, "Cuts", 0)
@variable(model, x[1:N], Bin)
@constraint(model, sum(item_weights[i] * x[i] for i in 1:N) <= 10)
@objective(model, Max, sum(item_values[i] * x[i] for i in 1:N))
callback_called = false
function my_callback_function(cb_data)

callback_called = true
x_vals = callback_value.(Ref(cb_data), x)
accumulated = sum(item_weights[i] for i in 1:N if x_vals[i] > 1e-4)
println("Called with accumulated = $(accumulated)")
n_terms = sum(1 for i in 1:N if x_vals[i] > 1e-4)
if accumulated > 10

con = @build_constraint(
sum(x[i] for i in 1:N if x_vals[i] > 0.5) <= n_terms - 1

)
println("Adding $(con)")
MOI.submit(model, MOI.UserCut(cb_data), con)

end
end
set_attribute(model, MOI.UserCutCallback(), my_callback_function)
optimize!(model)
assert_is_solved_and_feasible(model)
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Test.@test callback_called
@show callback_called
return

end

example_user_cut_constraint()

Set parameter WLSAccessID
Set parameter WLSSecret
Set parameter LicenseID to value 722777
WLS license 722777 - registered to JuMP Development
Called with accumulated = 10.37975831721494
Adding ScalarConstraint{AffExpr, MathOptInterface.LessThan{Float64}}(x[1] + x[2] + x[3] + x[4] +

x[5] + x[7] + x[8] + x[9] + x[10] + x[11] + x[12] + x[13] + x[14] + x[16] + x[17] + x[18] +
x[20] + x[22] + x[23] + x[25] + x[26] + x[28] + x[29] + x[30],
MathOptInterface.LessThan{Float64}(23.0))

↪→

↪→

↪→

Called with accumulated = 10.37975831721494
Adding ScalarConstraint{AffExpr, MathOptInterface.LessThan{Float64}}(x[1] + x[2] + x[3] + x[4] +

x[5] + x[7] + x[8] + x[9] + x[10] + x[12] + x[13] + x[14] + x[16] + x[17] + x[18] + x[20] +
x[22] + x[23] + x[25] + x[26] + x[28] + x[29] + x[30],
MathOptInterface.LessThan{Float64}(23.0))

↪→

↪→

↪→

Called with accumulated = 10.37975831721494
Adding ScalarConstraint{AffExpr, MathOptInterface.LessThan{Float64}}(x[1] + x[2] + x[3] + x[4] +

x[5] + x[7] + x[8] + x[9] + x[10] + x[11] + x[12] + x[13] + x[14] + x[16] + x[17] + x[18] +
x[20] + x[22] + x[23] + x[25] + x[26] + x[29] + x[30],
MathOptInterface.LessThan{Float64}(23.0))

↪→

↪→

↪→

Called with accumulated = 10.37975831721494
Adding ScalarConstraint{AffExpr, MathOptInterface.LessThan{Float64}}(x[1] + x[2] + x[3] + x[4] +

x[5] + x[7] + x[8] + x[9] + x[10] + x[12] + x[13] + x[14] + x[16] + x[17] + x[18] + x[20] +
x[22] + x[23] + x[25] + x[26] + x[28] + x[29] + x[30],
MathOptInterface.LessThan{Float64}(23.0))

↪→

↪→

↪→

Called with accumulated = 10.37975831721494
Adding ScalarConstraint{AffExpr, MathOptInterface.LessThan{Float64}}(x[1] + x[2] + x[3] + x[4] +

x[5] + x[7] + x[8] + x[9] + x[10] + x[12] + x[13] + x[14] + x[16] + x[17] + x[18] + x[20] +
x[22] + x[23] + x[25] + x[26] + x[28] + x[29] + x[30],
MathOptInterface.LessThan{Float64}(23.0))

↪→

↪→

↪→

Called with accumulated = 10.37975831721494
Adding ScalarConstraint{AffExpr, MathOptInterface.LessThan{Float64}}(x[1] + x[2] + x[3] + x[4] +

x[5] + x[7] + x[8] + x[9] + x[10] + x[12] + x[13] + x[14] + x[16] + x[17] + x[18] + x[20] +
x[22] + x[23] + x[25] + x[26] + x[28] + x[29] + x[30],
MathOptInterface.LessThan{Float64}(23.0))

↪→

↪→

↪→

Called with accumulated = 10.585271197221452
Adding ScalarConstraint{AffExpr, MathOptInterface.LessThan{Float64}}(x[1] + x[2] + x[3] + x[4] +

x[5] + x[7] + x[8] + x[9] + x[10] + x[11] + x[12] + x[13] + x[14] + x[16] + x[17] + x[18] +
x[20] + x[22] + x[23] + x[25] + x[26] + x[29] + x[30],
MathOptInterface.LessThan{Float64}(23.0))

↪→

↪→

↪→

Called with accumulated = 10.37975831721494
Adding ScalarConstraint{AffExpr, MathOptInterface.LessThan{Float64}}(x[1] + x[2] + x[3] + x[4] +

x[5] + x[7] + x[8] + x[9] + x[10] + x[12] + x[13] + x[14] + x[16] + x[17] + x[18] + x[20] +
x[22] + x[23] + x[25] + x[26] + x[28] + x[29] + x[30],
MathOptInterface.LessThan{Float64}(23.0))

↪→

↪→

↪→

callback_called = true
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Heuristic solutions

An example using a heuristic solution callback.

function example_heuristic_solution()
Random.seed!(1)
N = 30
item_weights, item_values = rand(N), rand(N)
model = Model(Gurobi.Optimizer)
set_silent(model)
# Turn off "Heuristics" parameter so that our new one must be called. In
# real models, you should leave "Heuristics" turned on.
set_attribute(model, "Heuristics", 0)
@variable(model, x[1:N], Bin)
@constraint(model, sum(item_weights[i] * x[i] for i in 1:N) <= 10)
@objective(model, Max, sum(item_values[i] * x[i] for i in 1:N))
callback_called = false
function my_callback_function(cb_data)

callback_called = true
x_vals = callback_value.(Ref(cb_data), x)
ret =

MOI.submit(model, MOI.HeuristicSolution(cb_data), x, floor.(x_vals))
println("Heuristic solution status = $(ret)")
Test.@test ret in (

MOI.HEURISTIC_SOLUTION_ACCEPTED,
MOI.HEURISTIC_SOLUTION_REJECTED,

)
end
set_attribute(model, MOI.HeuristicCallback(), my_callback_function)
optimize!(model)
assert_is_solved_and_feasible(model)
Test.@test callback_called
return

end

example_heuristic_solution()

Set parameter WLSAccessID
Set parameter WLSSecret
Set parameter LicenseID to value 722777
WLS license 722777 - registered to JuMP Development
Heuristic solution status = HEURISTIC_SOLUTION_ACCEPTED
Heuristic solution status = HEURISTIC_SOLUTION_REJECTED

Gurobi solver-dependent callback

An example using Gurobi's solver-dependent callback.

function example_solver_dependent_callback()
model = direct_model(Gurobi.Optimizer())
@variable(model, 0 <= x <= 2.5, Int)
@variable(model, 0 <= y <= 2.5, Int)
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@objective(model, Max, y)
cb_calls = Cint[]
function my_callback_function(cb_data, cb_where::Cint)

# You can reference variables outside the function as normal
push!(cb_calls, cb_where)
# You can select where the callback is run
if cb_where == Gurobi.GRB_CB_MIPNODE

# You can query a callback attribute using GRBcbget
resultP = Ref{Cint}()
Gurobi.GRBcbget(

cb_data,
cb_where,
Gurobi.GRB_CB_MIPNODE_STATUS,
resultP,

)
if resultP[] != Gurobi.GRB_OPTIMAL

return # Solution is something other than optimal.
end

elseif cb_where != Gurobi.GRB_CB_MIPSOL
return

end
# Before querying `callback_value`, you must call:
Gurobi.load_callback_variable_primal(cb_data, cb_where)
x_val = callback_value(cb_data, x)
y_val = callback_value(cb_data, y)
# You can submit solver-independent MathOptInterface attributes such as
# lazy constraints, user-cuts, and heuristic solutions.
if y_val - x_val > 1 + 1e-6

con = @build_constraint(y - x <= 1)
MOI.submit(model, MOI.LazyConstraint(cb_data), con)

elseif y_val + x_val > 3 + 1e-6
con = @build_constraint(y + x <= 3)
MOI.submit(model, MOI.LazyConstraint(cb_data), con)

end
# You can terminate the callback as follows:
Gurobi.GRBterminate(backend(model))
return

end
# You _must_ set this parameter if using lazy constraints.
set_attribute(model, "LazyConstraints", 1)
set_attribute(model, Gurobi.CallbackFunction(), my_callback_function)
optimize!(model)
Test.@test termination_status(model) == MOI.INTERRUPTED
return

end

example_solver_dependent_callback()

Set parameter WLSAccessID
Set parameter WLSSecret
Set parameter LicenseID to value 722777
WLS license 722777 - registered to JuMP Development
Set parameter LazyConstraints to value 1
Gurobi Optimizer version 12.0.2 build v12.0.2rc0 (linux64 - "Ubuntu 24.04.2 LTS")
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CPU model: AMD EPYC 7763 64-Core Processor, instruction set [SSE2|AVX|AVX2]
Thread count: 2 physical cores, 4 logical processors, using up to 4 threads

Non-default parameters:
LazyConstraints 1

WLS license 722777 - registered to JuMP Development
Optimize a model with 0 rows, 2 columns and 0 nonzeros
Model fingerprint: 0x1cb4e750
Variable types: 0 continuous, 2 integer (0 binary)
Coefficient statistics:
Matrix range [0e+00, 0e+00]
Objective range [1e+00, 1e+00]
Bounds range [2e+00, 2e+00]
RHS range [0e+00, 0e+00]

Presolve time: 0.00s

Explored 0 nodes (0 simplex iterations) in 0.00 seconds (0.00 work units)
Thread count was 1 (of 4 available processors)

Solution count 0

Solve interrupted
Best objective -, best bound -, gap -

User-callback calls 31, time in user-callback 0.03 sec

6.21 Sensitivity analysis of a linear program

This tutorial was generated using Literate.jl. Download the source as a .jl file.

This tutorial explains how to use the lp_sensitivity_report function to create sensitivity reports like those
that are produced by the Excel Solver. This is most often used in introductory classes to linear programming.

In brief, sensitivity analysis of a linear program is about asking two questions:

1. Given an optimal solution, how much can the objective coefficients change by before a different solution
becomes optimal?

2. Given an optimal solution, how much can the right-hand side of a linear constraint change by before a
different solution becomes optimal?

JuMP provides a function, lp_sensitivity_report, to help us compute these values, but this tutorial extends
that to create more informative tables in the form of a DataFrame.

Setup

This tutorial uses the following packages:

using JuMP
import HiGHS
import DataFrames

https://github.com/fredrikekre/Literate.jl
tutorials/linear/lp_sensitivity.jl
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as well as this small linear program:

model = Model(HiGHS.Optimizer)
@variable(model, x >= 0)
@variable(model, 0 <= y <= 3)
@variable(model, z <= 1)
@objective(model, Min, 12x + 20y - z)
@constraint(model, c1, 6x + 8y >= 100)
@constraint(model, c2, 7x + 12y >= 120)
@constraint(model, c3, x + y <= 20)
optimize!(model)
assert_is_solved_and_feasible(model)
solution_summary(model; verbose = true)

solution_summary(; result = 1, verbose = true)
├ solver_name : HiGHS
├ Termination
│ ├ termination_status : OPTIMAL
│ ├ result_count : 1
│ ├ raw_status : kHighsModelStatusOptimal
│ └ objective_bound : 2.04000e+02
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : FEASIBLE_POINT
│ ├ objective_value : 2.04000e+02
│ ├ dual_objective_value : 2.04000e+02
│ ├ relative_gap : 0.00000e+00
│ ├ value
│ │ ├ x : 1.50000e+01
│ │ ├ y : 1.25000e+00
│ │ └ z : 1.00000e+00
│ └ dual
│ ├ c1 : 2.50000e-01
│ ├ c2 : 1.50000e+00
│ └ c3 : 0.00000e+00
└ Work counters
├ solve_time (sec) : 2.57969e-04
├ simplex_iterations : 2
├ barrier_iterations : 0
└ node_count : -1

Can you identify:

• The objective coefficient of each variable?

• The right-hand side of each constraint?

• The optimal primal and dual solutions?

Sensitivity reports

Now let's call lp_sensitivity_report:
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report = lp_sensitivity_report(model)

SensitivityReport{Float64}(Dict{ConstraintRef, Tuple{Float64, Float64}}(c3 : x + y ≤ 20 => (-3.75,
Inf), y ≥ 0 => (-Inf, 1.25), z ≤ 1 => (-Inf, Inf), c1 : 6 x + 8 y ≥ 100 => (-4.0,
2.857142857142857), c2 : 7 x + 12 y ≥ 120 => (-3.3333333333333335, 4.666666666666667), x ≥ 0 =>
(-Inf, 15.0), y ≤ 3 => (-1.75, Inf)), Dict{VariableRef, Tuple{Float64, Float64}}(y => (-4.0,
0.5714285714285714), x => (-0.3333333333333333, 3.0), z => (-Inf, 1.0)))

↪→

↪→

↪→

↪→

It returns a SensitivityReport object, which maps:

• Every variable reference to a tuple (d_lo, d_hi)::Tuple{Float64,Float64}, explaining howmuch the
objective coefficient of the corresponding variable can change by, such that the original basis remains
optimal.

• Every constraint reference to a tuple (d_lo, d_hi)::Tuple{Float64,Float64}, explaining how much
the right-hand side of the corresponding constraint can change by, such that the basis remains optimal.

Both tuples are relative, rather than absolute. So, given an objective coefficient of 1.0 and a tuple (-0.5,
0.5), the objective coefficient can range between 1.0 - 0.5 an 1.0 + 0.5.

For example:

report[x]

(-0.3333333333333333, 3.0)

indicates that the objective coefficient on x, that is, 12, can decrease by -0.333 or increase by 3.0 and the
primal solution (15, 1.25) will remain optimal. In addition:

report[c1]

(-4.0, 2.857142857142857)

means that the right-hand side of the c1 constraint (100), can decrease by 4 units, or increase by 2.85 units,
and the primal solution (15, 1.25) will remain optimal.

Variable sensitivity

By themselves, the tuples aren't informative. Let's put them in context by collating a range of other information
about a variable:



CHAPTER 6. LINEAR PROGRAMS 257

function variable_report(xi)
return (

name = name(xi),
lower_bound = has_lower_bound(xi) ? lower_bound(xi) : -Inf,
value = value(xi),
upper_bound = has_upper_bound(xi) ? upper_bound(xi) : Inf,
reduced_cost = reduced_cost(xi),
obj_coefficient = coefficient(objective_function(model), xi),
allowed_decrease = report[xi][1],
allowed_increase = report[xi][2],

)
end

variable_report (generic function with 1 method)

Calling our function on x:

x_report = variable_report(x)

(name = "x", lower_bound = 0.0, value = 15.0, upper_bound = Inf, reduced_cost = 0.0,
obj_coefficient = 12.0, allowed_decrease = -0.3333333333333333, allowed_increase = 3.0)↪→

That's a bit hard to read, so let's call this on every variable in the model and put things into a DataFrame:

variable_df =
DataFrames.DataFrame(variable_report(xi) for xi in all_variables(model))

name lower_bound value upper_bound reduced_cost obj_coefficient allowed_decrease allowed_increase
String Float64 Float64 Float64 Float64 Float64 Float64 Float64

1 x 0.0 15.0 Inf 0.0 12.0 -0.333333 3.0
2 y 0.0 1.25 3.0 0.0 20.0 -4.0 0.571429
3 z -Inf 1.0 1.0 -1.0 -1.0 -Inf 1.0

Constraint sensitivity

We can do something similar with constraints:

function constraint_report(c::ConstraintRef)
return (

name = name(c),
value = value(c),
rhs = normalized_rhs(c),
slack = normalized_rhs(c) - value(c),
shadow_price = shadow_price(c),
allowed_decrease = report[c][1],
allowed_increase = report[c][2],
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)
end

c1_report = constraint_report(c1)

(name = "c1", value = 100.0, rhs = 100.0, slack = 0.0, shadow_price = -0.25, allowed_decrease =
-4.0, allowed_increase = 2.857142857142857)↪→

That's a bit hard to read, so let's call this on every variable in the model and put things into a DataFrame:

constraint_df = DataFrames.DataFrame(
constraint_report(ci) for (F, S) in list_of_constraint_types(model) for
ci in all_constraints(model, F, S) if F == AffExpr

)

name value rhs slack shadow_price allowed_decrease allowed_increase
String Float64 Float64 Float64 Float64 Float64 Float64

1 c1 100.0 100.0 0.0 -0.25 -4.0 2.85714
2 c2 120.0 120.0 0.0 -1.5 -3.33333 4.66667
3 c3 16.25 20.0 3.75 0.0 -3.75 Inf

Analysis questions

Now we can use these dataframes to ask questions of the solution.

For example, we can find basic variables by looking for variables with a reduced cost of 0:

basic = filter(row -> iszero(row.reduced_cost), variable_df)

name lower_bound value upper_bound reduced_cost obj_coefficient allowed_decrease allowed_increase
String Float64 Float64 Float64 Float64 Float64 Float64 Float64

1 x 0.0 15.0 Inf 0.0 12.0 -0.333333 3.0
2 y 0.0 1.25 3.0 0.0 20.0 -4.0 0.571429

and non-basic variables by looking for non-zero reduced costs:

non_basic = filter(row -> !iszero(row.reduced_cost), variable_df)

name lower_bound value upper_bound reduced_cost obj_coefficient allowed_decrease allowed_increase
String Float64 Float64 Float64 Float64 Float64 Float64 Float64

1 z -Inf 1.0 1.0 -1.0 -1.0 -Inf 1.0

we can also find constraints that are binding by looking for zero slacks:

binding = filter(row -> iszero(row.slack), constraint_df)
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name value rhs slack shadow_price allowed_decrease allowed_increase
String Float64 Float64 Float64 Float64 Float64 Float64

1 c1 100.0 100.0 0.0 -0.25 -4.0 2.85714
2 c2 120.0 120.0 0.0 -1.5 -3.33333 4.66667

or non-zero shadow prices:

binding2 = filter(row -> !iszero(row.shadow_price), constraint_df)

name value rhs slack shadow_price allowed_decrease allowed_increase
String Float64 Float64 Float64 Float64 Float64 Float64

1 c1 100.0 100.0 0.0 -0.25 -4.0 2.85714
2 c2 120.0 120.0 0.0 -1.5 -3.33333 4.66667

6.22 Basis matrices

This tutorial was generated using Literate.jl. Download the source as a .jl file.

This tutorial explains how to query the basis of a linear program.

Setup

This tutorial uses the following packages:

using JuMP
import HiGHS

Standard form example

Consider the following example, which is from the Wikipedia article on Basic feasible solutions:

max 0

s.t. 1x1 + 5x2 + 3x3 + 4x4 + 6x5 = 14

0x1 + 1x2 + 3x3 + 5x4 + 6x5 = 7

xi ≥ 0, ∀i = 1, . . . , 5.

The A matrix is:

A = [1 5 3 4 6; 0 1 3 5 6]

2×5 Matrix{Int64}:
1 5 3 4 6
0 1 3 5 6

https://github.com/fredrikekre/Literate.jl
tutorials/linear/basis.jl
https://en.wikipedia.org/wiki/Basic_feasible_solution
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and the right-hand side b vector is:

b = [14, 7]

2-element Vector{Int64}:
14
7

We can create and optimize the problem in the standard form:

n = size(A, 2)
model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, x[1:n] >= 0)
@constraint(model, A * x == b)
optimize!(model)
assert_is_solved_and_feasible(model)

This has a solution:

value.(x)

5-element Vector{Float64}:
0.0
2.0
0.0
1.0
0.0

Query the basis status of a variable using MOI.VariableBasisStatus:

get_attribute(x[1], MOI.VariableBasisStatus())

NONBASIC_AT_LOWER::BasisStatusCode = 2

the result is a MOI.BasisStatusCode. Query all of the basis statuses with the broadcast get_attribute.(:

get_attribute.(x, MOI.VariableBasisStatus())
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5-element Vector{MathOptInterface.BasisStatusCode}:
NONBASIC_AT_LOWER::BasisStatusCode = 2
BASIC::BasisStatusCode = 0
NONBASIC_AT_LOWER::BasisStatusCode = 2
BASIC::BasisStatusCode = 0
NONBASIC_AT_LOWER::BasisStatusCode = 2

For this problem, the values are either MOI.NONBASIC_AT_LOWER or MOI.BASIC. All of the MOI.NONBASIC_AT_LOWER
variables have a value at their lower bound. The MOI.BASIC variables correspond to the columns of the optimal
basis.

Get the columns using:

indices = get_attribute.(x, MOI.VariableBasisStatus()) .== MOI.BASIC

5-element BitVector:
0
1
0
1
0

Filter the basis matrix from A:

B = A[:, indices]

2×2 Matrix{Int64}:
5 4
1 5

Since the basis matrix is non-singular, solving the system Bx = bmust yield the optimal primal solution of the
basic variables:

B \ b

2-element Vector{Float64}:
2.0
0.9999999999999998

value.(x[indices])
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2-element Vector{Float64}:
2.0
1.0

A more complicated example

Often, you may want to work with the basis of a model that is not in a nice standard form. For example:

model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, x >= 0)
@variable(model, 0 <= y <= 3)
@variable(model, z <= 1)
@objective(model, Min, 12x + 20y - z)
@constraint(model, c1, 6x + 8y >= 100)
@constraint(model, c2, 7x + 12y >= 120)
@constraint(model, c3, x + y <= 20)
optimize!(model)
assert_is_solved_and_feasible(model)

A common way to query the basis status of every variable is:

v_basis = Dict(
xi => get_attribute(xi, MOI.VariableBasisStatus()) for
xi in all_variables(model)

)

Dict{VariableRef, MathOptInterface.BasisStatusCode} with 3 entries:
y => BASIC
x => BASIC
z => NONBASIC_AT_UPPER

Despite the model having three constraints, there are only two basic variables. Since the basis matrix must
be square, where is the other basic variable?

The answer is that solvers will reformulate inequality constraints:

Ax ≤ b

into the system:

Ax+ Is = b

Thus, for every inequality constraint there is a slack variable s.

Query the basis status of the slack variables associated with a constraint using MOI.ConstraintBasisStatus:
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c_basis = Dict(
ci => get_attribute(ci, MOI.ConstraintBasisStatus()) for ci in
all_constraints(model; include_variable_in_set_constraints = false)

)

Dict{ConstraintRef{Model, C, ScalarShape} where C, MathOptInterface.BasisStatusCode} with 3
entries:↪→

c3 : x + y ≤ 20 => BASIC
c2 : 7 x + 12 y ≥ 120 => NONBASIC
c1 : 6 x + 8 y ≥ 100 => NONBASIC

Thus, the basis is formed by x, y, and the slack associated with c3.

A simple way to get the A matrix of an unstructured linear program is with lp_matrix_data:

matrix = lp_matrix_data(model)
matrix.A

3×3 SparseArrays.SparseMatrixCSC{Float64, Int64} with 6 stored entries:
6.0 8.0 ⋅
7.0 12.0 ⋅
1.0 1.0 ⋅

You can check the permutation of the rows and columns using

matrix.variables

3-element Vector{VariableRef}:
x
y
z

and

matrix.affine_constraints

3-element Vector{ConstraintRef}:
c1 : 6 x + 8 y ≥ 100
c2 : 7 x + 12 y ≥ 120
c3 : x + y ≤ 20

We can construct the slack column associated with c3 as:
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s_column = zeros(size(matrix.A, 1))
s_column[3] = 1.0

1.0

The full basis matrix is therefore:

B = hcat(matrix.A[:, [1, 2]], s_column)

3×3 SparseArrays.SparseMatrixCSC{Float64, Int64} with 7 stored entries:
6.0 8.0 ⋅
7.0 12.0 ⋅
1.0 1.0 1.0

lp_matrix_data returns separate vectors for the lower and upper row bounds. Convert to a single right-hand
side vector by taking the finite elements:

b = ifelse.(isfinite.(matrix.b_lower), matrix.b_lower, matrix.b_upper)

3-element Vector{Float64}:
100.0
120.0
20.0

Solving the Basis system as before yields:

B \ b

3-element Vector{Float64}:
14.999999999999995
1.250000000000004
3.75

which is the value of x, y, and the slack associated with c3.

Identifying degenerate variables

Another common task is identifying degenerate variables. A degenerate variable is a basic variable that has
an optimal value at its lower or upper bound.

Here is a function that computes whether a variable is degenerate:
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function is_degenerate(x)
if get_attribute(x, MOI.VariableBasisStatus()) == MOI.BASIC

return (has_lower_bound(x) && ≈(value(x), lower_bound(x))) ||
(has_upper_bound(x) && ≈(value(x), upper_bound(x)))

end
return false

end

is_degenerate (generic function with 1 method)

A simple example of a linear program with a degenerate solution is:

A, b, c = [1 1; 0 1], [1, 1], [1, 1]
model = Model(HiGHS.Optimizer);
set_silent(model)
@variable(model, x[1:2] >= 0)
@objective(model, Min, c' * x)
@constraint(model, A * x == b)
optimize!(model)
degenerate_variables = filter(is_degenerate, all_variables(model))

1-element Vector{VariableRef}:
x[1]

The solution is degenerate because:

value(x[1])

-0.0

and

get_attribute(x[1], MOI.VariableBasisStatus())

BASIC::BasisStatusCode = 0

6.23 Computing the duals of a mixed-integer program

This tutorial was generated using Literate.jl. Download the source as a .jl file.

This tutorial explains how to compute the duals of a mixed-integer linear program by fixing the discrete vari-
ables to their optimal solution and resolving as a linear program.

https://github.com/fredrikekre/Literate.jl
tutorials/linear/mip_duality.jl
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This tutorial uses the following packages:

using JuMP
import HiGHS

The model

Our example model is the unit commitment example from Unit commitment. The details are unimportant,
other than to note that there are two types of continuous variables, g and w, representing the quantity of
generation from thermal and wind plants, and a discrete variable dispatch, which is 1 if plant i is operating,
and 0 if not.

We are interested in the "dual" of the power_balance constraint, because it represents the marginal price of
electricity that consumers should pay for their consumption.

generators = [
(min = 0.0, max = 1000.0, fixed_cost = 1000.0, variable_cost = 50.0),
(min = 300.0, max = 1000.0, fixed_cost = 0.0, variable_cost = 100.0),

]
N = length(generators)
model = Model(HiGHS.Optimizer)
set_silent(model)
@variables(model, begin

generators[i].min <= g[i = 1:N] <= generators[i].max
0 <= w <= 200
dispatch[i = 1:N], Bin

end)
@constraints(model, begin

power_balance, sum(g[i] for i in 1:N) + w == 1500
[i = 1:N], g[i] <= generators[i].max * dispatch[i]
[i = 1:N], g[i] >= generators[i].min * dispatch[i]

end)
@objective(

model,
Min,
sum(

generators[i].fixed_cost * dispatch[i] +
generators[i].variable_cost * g[i] for i in 1:N

)
)
print(model)

Min 1000 dispatch[1] + 50 g[1] + 100 g[2]
Subject to
power_balance : g[1] + g[2] + w = 1500
g[1] ≥ 0
g[2] - 300 dispatch[2] ≥ 0
g[1] - 1000 dispatch[1] ≤ 0
g[2] - 1000 dispatch[2] ≤ 0
g[1] ≥ 0
g[2] ≥ 300
w ≥ 0
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g[1] ≤ 1000
g[2] ≤ 1000
w ≤ 200
dispatch[1] binary
dispatch[2] binary

Manually fix the variables

If we optimize this model, we obtain a dual_status of NO_SOLUTION:

optimize!(model)
assert_is_solved_and_feasible(model)
dual_status(model)

NO_SOLUTION::ResultStatusCode = 0

This is because HiGHS cannot compute the duals of a mixed-integer program. We can work around this problem
by fixing the integer variables to their optimal solution, relaxing integrality, and re-solving as a linear program.

discrete_values = value.(dispatch)
fix.(dispatch, discrete_values; force = true)
unset_binary.(dispatch)
print(model)

Min 1000 dispatch[1] + 50 g[1] + 100 g[2]
Subject to
power_balance : g[1] + g[2] + w = 1500
g[1] ≥ 0
g[2] - 300 dispatch[2] ≥ 0
g[1] - 1000 dispatch[1] ≤ 0
g[2] - 1000 dispatch[2] ≤ 0
dispatch[1] = 1
dispatch[2] = 1
g[1] ≥ 0
g[2] ≥ 300
w ≥ 0
g[1] ≤ 1000
g[2] ≤ 1000
w ≤ 200

Now if we re-solve the problem, we obtain a FEASIBLE_POINT for the dual:

optimize!(model)
assert_is_solved_and_feasible(model)
dual_status(model)
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FEASIBLE_POINT::ResultStatusCode = 1

and a marginal price of electricity of $100/MWh:

dual(power_balance)

100.0

To reset the problem back to a mixed-integer linear program, we need to unfix and call set_binary:

unfix.(dispatch)
set_binary.(dispatch)
print(model)

Min 1000 dispatch[1] + 50 g[1] + 100 g[2]
Subject to
power_balance : g[1] + g[2] + w = 1500
g[1] ≥ 0
g[2] - 300 dispatch[2] ≥ 0
g[1] - 1000 dispatch[1] ≤ 0
g[2] - 1000 dispatch[2] ≤ 0
g[1] ≥ 0
g[2] ≥ 300
w ≥ 0
g[1] ≤ 1000
g[2] ≤ 1000
w ≤ 200
dispatch[1] binary
dispatch[2] binary

Use fix_discrete_variables

Manually choosing the variables to relax and fix works for our small example, but it becomes more difficult in
problems with a larger number of binary and integer variables. To automate the process we just did manually,
JuMP provides the fix_discrete_variables function:

optimize!(model)
assert_is_solved_and_feasible(model)
dual_status(model)

NO_SOLUTION::ResultStatusCode = 0
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undo = fix_discrete_variables(model);

Here undo is a function that, when called with no arguments, returns the model to the original mixed-integer
formulation.

Tip

After calling fix_discrete_variables, you can set a new solver with set_optimizer if your mixed-
integer solver does not support computing a dual solution.

print(model)

Min 1000 dispatch[1] + 50 g[1] + 100 g[2]
Subject to
power_balance : g[1] + g[2] + w = 1500
g[1] ≥ 0
g[2] - 300 dispatch[2] ≥ 0
g[1] - 1000 dispatch[1] ≤ 0
g[2] - 1000 dispatch[2] ≤ 0
dispatch[1] = 1
dispatch[2] = 1
g[1] ≥ 0
g[2] ≥ 300
w ≥ 0
g[1] ≤ 1000
g[2] ≤ 1000
w ≤ 200

optimize!(model)
assert_is_solved_and_feasible(model)
dual_status(model)

FEASIBLE_POINT::ResultStatusCode = 1

dual(power_balance)

100.0

Finally, call undo to revert the reformulation
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undo()
print(model)

Min 1000 dispatch[1] + 50 g[1] + 100 g[2]
Subject to
power_balance : g[1] + g[2] + w = 1500
g[1] ≥ 0
g[2] - 300 dispatch[2] ≥ 0
g[1] - 1000 dispatch[1] ≤ 0
g[2] - 1000 dispatch[2] ≤ 0
g[1] ≥ 0
g[2] ≥ 300
w ≥ 0
g[1] ≤ 1000
g[2] ≤ 1000
w ≤ 200
dispatch[1] binary
dispatch[2] binary

6.24 Finding multiple feasible solutions

This tutorial was generated using Literate.jl. Download the source as a .jl file.

Author: James Foster (@jd-foster)

This tutorial demonstrates how to formulate and solve a combinatorial problem with multiple feasible solutions.
In fact, we will see how to find all feasible solutions to our problem. We will also see how to enforce an "all-
different" constraint on a set of integer variables.

Required packages

This tutorial uses the following packages:

using JuMP
import Gurobi
import Test

Warning

This tutorial uses Gurobi.jl as the solver because it supports returning multiple feasible solutions, some-
thing that open-source MIP solvers such as HiGHS do not currently support. Gurobi is a commercial
solver and requires a paid license. However, there are free licenses available for academic and student
users. See Gurobi.jl for more details.

Symmetric number squares

Symmetric number squares and their sums often arise in recreational mathematics. Here are a few examples:

https://github.com/fredrikekre/Literate.jl
tutorials/linear/multiple_solutions.jl
https://www.futilitycloset.com/2012/12/05/number-squares/
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1 5 2 9 2 3 1 8 5 2 1 9
5 8 3 7 3 7 9 0 2 3 8 4

+ 2 3 4 0 + 1 9 5 6 + 1 8 6 7
= 9 7 0 6 = 8 0 6 4 = 9 4 7 0

Notice how all the digits 0 to 9 are used at least once, the first three rows sum to the last row, the columns in
each are the same as the corresponding rows (forming a symmetric matrix), and 0 does not appear in the first
column.

We will answer the question: how many such squares are there?

JuMP model

We now encode the symmetric number square as a JuMP model. First, we need a symmetric matrix of decision
variables between 0 and 9 to represent each number:

n = 4
optimizer = Gurobi.Optimizer
model = Model(optimizer)
set_silent(model)
@variable(model, 0 <= x_digits[row in 1:n, col in 1:n] <= 9, Int, Symmetric)

4×4 LinearAlgebra.Symmetric{VariableRef, Matrix{VariableRef}}:
x_digits[1,1] x_digits[1,2] x_digits[1,3] x_digits[1,4]
x_digits[1,2] x_digits[2,2] x_digits[2,3] x_digits[2,4]
x_digits[1,3] x_digits[2,3] x_digits[3,3] x_digits[3,4]
x_digits[1,4] x_digits[2,4] x_digits[3,4] x_digits[4,4]

We modify the lower bound to ensure that the first column cannot contain 0:

set_lower_bound.(x_digits[:, 1], 1)

4-element Vector{Nothing}:
nothing
nothing
nothing
nothing

Then, we need a constraint that the sum of the first three rows equals the last row:

@expression(model, x_base_10, x_digits * [1_000, 100, 10, 1]);
@constraint(model, sum(x_base_10[i] for i in 1:n-1) == x_base_10[n])

1000x_digits1,1+1100x_digits1,2+100x_digits2,2+1010x_digits1,3+110x_digits2,3+10x_digits3,3−999x_digits1,4−99x_digits2,4−9x_digits3,4−x_digits4,4 = 0
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And we use MOI.AllDifferent to ensure that each digit is used exactly once in the upper triangle matrix of
x_digits:

x_digits_upper = [x_digits[i, j] for j in 1:n for i in 1:j]
@constraint(model, x_digits_upper in MOI.AllDifferent(length(x_digits_upper)));

If we optimize this model, we find that Gurobi has returned one solution:

optimize!(model)
assert_is_solved_and_feasible(model)
Test.@test result_count(model) == 1
solution_summary(model)

solution_summary(; result = 1, verbose = false)
├ solver_name : Gurobi
├ Termination
│ ├ termination_status : OPTIMAL
│ ├ result_count : 1
│ ├ raw_status : Model was solved to optimality (subject to tolerances), and an optimal

solution is available.↪→

│ └ objective_bound : 0.00000e+00
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : NO_SOLUTION
│ ├ objective_value : 0.00000e+00
│ └ relative_gap : 0.00000e+00
└ Work counters
├ solve_time (sec) : 6.02641e-02
├ simplex_iterations : 1587
├ barrier_iterations : 0
└ node_count : 255

To return multiple solutions, we need to set Gurobi-specific parameters to enable the solution pool. Moreover,
there is a bug in Gurobi that means the solution pool is not activated if we have already solved the model once.
To work around the bug, we need to reset the optimizer. If you turn the solution pool options on before the first
solve you do not need to reset the optimizer.

set_optimizer(model, optimizer)

Set parameter WLSAccessID
Set parameter WLSSecret
Set parameter LicenseID to value 722777
WLS license 722777 - registered to JuMP Development

The first option turns on the exhaustive search mode for multiple solutions:

https://docs.gurobi.com/projects/optimizer/en/current/features/solutionpool.html
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set_attribute(model, "PoolSearchMode", 2)

The second option sets a limit for the number of solutions found:

set_attribute(model, "PoolSolutions", 100)

Here the value 100 is an "arbitrary but large enough" whole number for our particular model (and in general
will depend on the application).

We can then call optimize! and view the results.

optimize!(model)
assert_is_solved_and_feasible(model)
solution_summary(model)

solution_summary(; result = 1, verbose = false)
├ solver_name : Gurobi
├ Termination
│ ├ termination_status : OPTIMAL
│ ├ result_count : 20
│ ├ raw_status : Model was solved to optimality (subject to tolerances), and an optimal

solution is available.↪→

│ └ objective_bound : 0.00000e+00
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : NO_SOLUTION
│ ├ objective_value : 0.00000e+00
│ └ relative_gap : 0.00000e+00
└ Work counters
├ solve_time (sec) : 3.73439e-01
├ simplex_iterations : 19526
├ barrier_iterations : 0
└ node_count : 4661

Now Gurobi has found 20 solutions:

result_count(model)

20

Viewing the Results

Access the various feasible solutions by using the value function with the result keyword:
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solutions =
[round.(Int, value.(x_digits; result = i)) for i in 1:result_count(model)];

Here we have converted the solution to an integer after rounding off very small numerical tolerances.

An example of one feasible solution is:

solutions[1]

4×4 Matrix{Int64}:
1 5 2 9
5 8 3 7
2 3 4 0
9 7 0 6

and we can nicely print out all the feasible solutions with

function solution_string(x::Matrix)
header = [" ", " ", "+", "="]
return join([join(vcat(header[i], x[i, :]), " ") for i in 1:4], "\n")

end

for i in 1:result_count(model)
println("Solution $i: \n", solution_string(solutions[i]), "\n")

end

Solution 1:
1 5 2 9
5 8 3 7

+ 2 3 4 0
= 9 7 0 6

Solution 2:
1 5 2 9
5 7 4 6

+ 2 4 0 8
= 9 6 8 3

Solution 3:
1 3 2 7
3 6 5 4

+ 2 5 0 8
= 7 4 8 9

Solution 4:
2 3 1 7
3 5 6 4

+ 1 6 0 8
= 7 4 8 9
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Solution 5:
2 1 4 8
1 9 6 7

+ 4 6 3 5
= 8 7 5 0

Solution 6:
3 2 1 7
2 9 4 5

+ 1 4 0 6
= 7 5 6 8

Solution 7:
1 2 3 7
2 9 6 8

+ 3 6 4 5
= 7 8 5 0

Solution 8:
2 3 1 8
3 7 9 0

+ 1 9 5 6
= 8 0 6 4

Solution 9:
5 1 3 9
1 0 4 6

+ 3 4 8 7
= 9 6 7 2

Solution 10:
5 2 1 9
2 6 8 7

+ 1 8 3 4
= 9 7 4 0

Solution 11:
5 2 1 9
2 3 8 4

+ 1 8 6 7
= 9 4 7 0

Solution 12:
2 1 6 9
1 3 0 5

+ 6 0 7 4
= 9 5 4 8

Solution 13:
1 2 5 9
2 6 4 3

+ 5 4 7 8
= 9 3 8 0
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Solution 14:
1 2 5 9
2 4 3 0

+ 5 3 8 7
= 9 0 7 6

Solution 15:
2 1 4 8
1 5 6 3

+ 4 6 7 9
= 8 3 9 0

Solution 16:
5 2 1 9
2 7 4 3

+ 1 4 0 6
= 9 3 6 8

Solution 17:
5 1 3 9
1 4 0 6

+ 3 0 8 2
= 9 6 2 7

Solution 18:
1 2 3 7
2 5 6 4

+ 3 6 8 9
= 7 4 9 0

Solution 19:
1 4 2 8
4 7 5 6

+ 2 5 0 9
= 8 6 9 3

Solution 20:
3 2 1 6
2 0 4 7

+ 1 4 9 5
= 6 7 5 8

The result is the full list of feasible solutions. So the answer to "how many such squares are there?" turns out
to be 20.
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Nonlinear programs

7.1 Introduction

Nonlinear programs (NLPs) are a class of optimization problems in which some of the constraints or the objective
function are nonlinear:

min
x∈Rn

f0(x) (7.1)

s.t.lj ≤ fj(x) ≤ uj j = 1 . . .m (7.2)

li ≤ xi ≤ ui i = 1 . . . n. (7.3)

Mixed-integer nonlinear linear programs (MINLPs) are extensions of nonlinear programs in which some (or all)
of the decision variables take discrete values.

How to choose a solver

JuMP supports a range of nonlinear solvers; look for "NLP" in the list of Supported solvers. However, very
few solvers support mixed-integer nonlinear linear programs. Solvers supporting discrete variables start with
"(MI)" in the list of Supported solvers.

If the only nonlinearities in your model are quadratic terms (that is, multiplication between two decision vari-
ables), you can also use second-order cone solvers, which are indicated by "SOCP." In most cases, these solvers
are restricted to convex quadratic problems and will error if you pass a nonconvex quadratic function; however,
Gurobi has the ability to solve nonconvex quadratic terms.

How these tutorials are structured

Having a high-level overview of how this part of the documentation is structured will help you know where to
look for certain things.

• The following tutorials are worked examples that present a problem in words, then formulate it in math-
ematics, and then solve it in JuMP. This usually involves some sort of visualization of the solution. Start
here if you are new to JuMP.

– Example: nonlinear optimal control of a rocket

– Example: optimal control for a Space Shuttle reentry trajectory

– Example: portfolio optimization

277

https://en.wikipedia.org/wiki/Nonlinear_programming
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• The Computing Hessians is an advanced tutorial which explains how to compute the Hessian of the
Lagrangian of a nonlinear program. This is useful only in particular cases.

• The remaining tutorials are less verbose and styled in the form of short code examples. These tutorials
have less explanation, but may contain useful code snippets, particularly if they are similar to a problem
you are trying to solve.

7.2 Simple examples

This tutorial was generated using Literate.jl. Download the source as a .jl file.

This tutorial is a collection of examples of small nonlinear programs.

Required packages

This tutorial uses the following packages:

using JuMP
import Ipopt
import Random
import Statistics
import Test

The Rosenbrock function

A nonlinear example of the classical Rosenbrock function.

function example_rosenbrock()
model = Model(Ipopt.Optimizer)
set_silent(model)
@variable(model, x)
@variable(model, y)
@objective(model, Min, (1 - x)^2 + 100 * (y - x^2)^2)
optimize!(model)
assert_is_solved_and_feasible(model)
Test.@test objective_value(model) ≈ 0.0 atol = 1e-10
Test.@test value(x) ≈ 1.0
Test.@test value(y) ≈ 1.0
return

end

example_rosenbrock()

The clnlbeam problem

Based on an AMPL model by Hande Y. Benson

Copyright (C) 2001 Princeton University All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without
fee is hereby granted, provided that the above copyright notice appear in all copies and that the copyright
notice and this permission notice appear in all supporting documentation.

https://github.com/fredrikekre/Literate.jl
tutorials/nonlinear/simple_examples.jl
https://en.wikipedia.org/wiki/Rosenbrock_function
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Source:

H. Maurer and H.D. Mittelman, "The non-linear beam via optimal control with bound state variables," Optimal
Control Applications and Methods 12, pp. 19-31, 1991.

function example_clnlbeam()
N = 1000
h = 1 / N
alpha = 350
model = Model(Ipopt.Optimizer)
@variables(model, begin

-1 <= t[1:(N+1)] <= 1
-0.05 <= x[1:(N+1)] <= 0.05
u[1:(N+1)]

end)
@objective(

model,
Min,
sum(

0.5 * h * (u[i+1]^2 + u[i]^2) +
0.5 * alpha * h * (cos(t[i+1]) + cos(t[i])) for i in 1:N

),
)
@constraint(

model,
[i = 1:N],
x[i+1] - x[i] - 0.5 * h * (sin(t[i+1]) + sin(t[i])) == 0,

)
@constraint(

model,
[i = 1:N],
t[i+1] - t[i] - 0.5 * h * u[i+1] - 0.5 * h * u[i] == 0,

)
optimize!(model)
println("""
termination_status = $(termination_status(model))
primal_status = $(primal_status(model))
objective_value = $(objective_value(model))
""")
assert_is_solved_and_feasible(model)
return

end

example_clnlbeam()

This is Ipopt version 3.14.17, running with linear solver MUMPS 5.7.3.

Number of nonzeros in equality constraint Jacobian...: 8000
Number of nonzeros in inequality constraint Jacobian.: 0
Number of nonzeros in Lagrangian Hessian.............: 4002

Total number of variables............................: 3003
variables with only lower bounds: 0

variables with lower and upper bounds: 2002
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variables with only upper bounds: 0
Total number of equality constraints.................: 2000
Total number of inequality constraints...............: 0

inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 0

inequality constraints with only upper bounds: 0

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
0 3.5000000e+02 0.00e+00 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0
1 3.5000000e+02 0.00e+00 0.00e+00 -1.7 0.00e+00 - 1.00e+00 1.00e+00 0
2 3.5000000e+02 0.00e+00 0.00e+00 -3.8 0.00e+00 -2.0 1.00e+00 1.00e+00T 0
3 3.5000000e+02 0.00e+00 0.00e+00 -5.7 0.00e+00 0.2 1.00e+00 1.00e+00T 0
4 3.5000000e+02 0.00e+00 0.00e+00 -8.6 0.00e+00 -0.2 1.00e+00 1.00e+00T 0

Number of Iterations....: 4

(scaled) (unscaled)
Objective...............: 3.5000000000000318e+02 3.5000000000000318e+02
Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00
Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00
Variable bound violation: 0.0000000000000000e+00 0.0000000000000000e+00
Complementarity.........: 2.5059035596802450e-09 2.5059035596802450e-09
Overall NLP error.......: 2.5059035596802450e-09 2.5059035596802450e-09

Number of objective function evaluations = 5
Number of objective gradient evaluations = 5
Number of equality constraint evaluations = 5
Number of inequality constraint evaluations = 0
Number of equality constraint Jacobian evaluations = 5
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 4
Total seconds in IPOPT = 0.032

EXIT: Optimal Solution Found.
termination_status = LOCALLY_SOLVED
primal_status = FEASIBLE_POINT
objective_value = 350.0000000000032

Maximum likelihood estimation

This example uses nonlinear optimization to compute the maximum likelihood estimate (MLE) of the parame-
ters of a normal distribution, a.k.a., the sample mean and variance.

function example_mle()
n = 1_000
Random.seed!(1234)
data = randn(n)
model = Model(Ipopt.Optimizer)
set_silent(model)
@variable(model, μ, start = 0.0)
@variable(model, σ >= 0.0, start = 1.0)
@objective(
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model,
Max,
n / 2 * log(1 / (2 * π * σ^2)) -
sum((data[i] - μ)^2 for i in 1:n) / (2 * σ^2)

)
optimize!(model)
assert_is_solved_and_feasible(model)
println("μ = ", value(μ))
println("mean(data) = ", Statistics.mean(data))
println("σ^2 = ", value(σ)^2)
println("var(data) = ", Statistics.var(data))
println("MLE objective = ", objective_value(model))
Test.@test value(μ) ≈ Statistics.mean(data) atol = 1e-3
Test.@test value(σ)^2 ≈ Statistics.var(data) atol = 1e-2
# You can even do constrained MLE!
@constraint(model, μ == σ^2)
optimize!(model)
assert_is_solved_and_feasible(model)
Test.@test value(μ) ≈ value(σ)^2
println()
println("With constraint μ == σ^2:")
println("μ = ", value(μ))
println("σ^2 = ", value(σ)^2)
println("Constrained MLE objective = ", objective_value(model))
return

end

example_mle()

μ = -0.0215521734290741
mean(data) = -0.021552173429074114
σ^2 = 1.100101397871862
var(data) = 1.1012026004695599
MLE objective = -1466.6397109231782

With constraint μ == σ^2:
μ = 0.6621385003734601
σ^2 = 0.66213850037346
Constrained MLE objective = -1896.4889420749978

Quadratically constrained programs

A simple quadratically constrained program based on an example from Gurobi.

function example_qcp()
model = Model(Ipopt.Optimizer)
set_silent(model)
@variable(model, x)
@variable(model, y >= 0)
@variable(model, z >= 0)
@objective(model, Max, x)
@constraint(model, x + y + z == 1)

https://www.gurobi.com/documentation/9.0/examples/qcp_c_c.html
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@constraint(model, x * x + y * y - z * z <= 0)
@constraint(model, x * x - y * z <= 0)
optimize!(model)
assert_is_solved_and_feasible(model)
print(model)
println("Objective value: ", objective_value(model))
println("x = ", value(x))
println("y = ", value(y))
Test.@test objective_value(model) ≈ 0.32699 atol = 1e-5
Test.@test value(x) ≈ 0.32699 atol = 1e-5
Test.@test value(y) ≈ 0.25707 atol = 1e-5
return

end

example_qcp()

Max x
Subject to
x + y + z = 1
x² + y² - z² ≤ 0
x² - y*z ≤ 0
y ≥ 0
z ≥ 0
Objective value: 0.32699283491387243
x = 0.32699283491387243
y = 0.2570658388068964

7.3 User-defined operators with vector outputs

This tutorial was generated using Literate.jl. Download the source as a .jl file.

The purpose of this tutorial is to demonstrate how to write a user-defined operator with a vector-valued output.

Required packages

This tutorial uses the following packages:

using JuMP
import Ipopt
import Test

Motivation

A common situation is to have a user-defined operator like the following that returns multiple outputs (we
define function_calls to keep track of how many times we call this method):

function_calls = 0
function foo(x, y)

global function_calls += 1

https://github.com/fredrikekre/Literate.jl
tutorials/nonlinear/tips_and_tricks.jl
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common_term = x^2 + y^2
term_1 = sqrt(1 + common_term)
term_2 = common_term
return term_1, term_2

end

foo (generic function with 1 method)

For example, the first term might be used in the objective, and the second term might be used in a constraint,
and often they share work that is expensive to evaluate.

This is a problem for JuMP, because it requires user-defined operators to return a single number. One option is
to define two separate functions, the first returning the first argument, and the second returning the second
argument.

foo_1(x, y) = foo(x, y)[1]
foo_2(x, y) = foo(x, y)[2]

foo_2 (generic function with 1 method)

However, if the common term is expensive to compute, this approach is wasteful because it will evaluate the
expensive term twice. Let's have a look at how many times we evaluate x^2 + y^2 during a solve:

model = Model(Ipopt.Optimizer)
set_silent(model)
@variable(model, x[1:2] >= 0, start = 0.1)
@operator(model, op_foo_1, 2, foo_1)
@operator(model, op_foo_2, 2, foo_2)
@objective(model, Max, op_foo_1(x[1], x[2]))
@constraint(model, op_foo_2(x[1], x[2]) <= 2)
function_calls = 0
optimize!(model)
assert_is_solved_and_feasible(model)
Test.@test objective_value(model) ≈ √3 atol = 1e-4
Test.@test value.(x) ≈ [1.0, 1.0] atol = 1e-4
println("Naive approach: function calls = $(function_calls)")

Naive approach: function calls = 44

Memoization

An alternative approach is to use memoization, which uses a cache to store the result of function evaluations.
We can write a memoization function as follows:
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"""
memoize(foo::Function, n_outputs::Int)

Take a function `foo` and return a vector of length `n_outputs`, where element
`i` is a function that returns the equivalent of `foo(x...)[i]`.

To avoid duplication of work, cache the most-recent evaluations of `foo`.
Because `foo_i` is auto-differentiated with ForwardDiff, our cache needs to
work when `x` is a `Float64` and a `ForwardDiff.Dual`.
"""
function memoize(foo::Function, n_outputs::Int)

last_x, last_f = nothing, nothing
last_dx, last_dfdx = nothing, nothing
function foo_i(i, x::T...) where {T<:Real}

if T == Float64
if x !== last_x

last_x, last_f = x, foo(x...)
end
return last_f[i]::T

else
if x !== last_dx

last_dx, last_dfdx = x, foo(x...)
end
return last_dfdx[i]::T

end
end
return [(x...) -> foo_i(i, x...) for i in 1:n_outputs]

end

Main.memoize

Let's see how it works. First, construct the memoized versions of foo:

memoized_foo = memoize(foo, 2)

2-element Vector{Main.var"#4#7"{Int64, Main.var"#foo_i#5"{typeof(Main.foo)}}}:
#4 (generic function with 1 method)
#4 (generic function with 1 method)

Now try evaluating the first element of memoized_foo.

function_calls = 0
memoized_foo[1](1.0, 1.0)
println("function_calls = ", function_calls)
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function_calls = 1

As expected, this evaluated the function once. However, if we call the function again, we hit the cache instead
of needing to re-compute foo and function_calls is still 1!

memoized_foo[1](1.0, 1.0)
println("function_calls = ", function_calls)

function_calls = 1

Now let's see how this works during a real solve:

model = Model(Ipopt.Optimizer)
set_silent(model)
@variable(model, x[1:2] >= 0, start = 0.1)
@operator(model, op_foo_1, 2, memoized_foo[1])
@operator(model, op_foo_2, 2, memoized_foo[2])
@objective(model, Max, op_foo_1(x[1], x[2]))
@constraint(model, op_foo_2(x[1], x[2]) <= 2)
function_calls = 0
optimize!(model)
assert_is_solved_and_feasible(model)
Test.@test objective_value(model) ≈ √3 atol = 1e-4
Test.@test value.(x) ≈ [1.0, 1.0] atol = 1e-4
println("Memoized approach: function_calls = $(function_calls)")

Memoized approach: function_calls = 22

Compared to the naive approach, the memoized approach requires half as many function evaluations.

7.4 Automatic differentiation of user-defined operators

This tutorial was generated using Literate.jl. Download the source as a .jl file.

The purpose of this tutorial is to demonstrate how to apply automatic differentiation to User-defined operators.

Tip

This tutorial is for advanced users. As an alternative, consider using Function tracing instead of creating
an operator, and if an operator is necessary, consider using the default of @operator(model, op_f,
N, f) instead of passing explicit Gradients and Hessians.

https://github.com/fredrikekre/Literate.jl
tutorials/nonlinear/operator_ad.jl
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Required packages

This tutorial uses the following packages:

using JuMP
import DifferentiationInterface
import Enzyme
import ForwardDiff
import Ipopt
import Test

Primal function

As a simple example, we consider the Rosenbrock function:

f(x::T...) where {T} = (1 - x[1])^2 + 100 * (x[2] - x[1]^2)^2

f (generic function with 1 method)

Here's the value at a random point:

x = rand(2)

2-element Vector{Float64}:
0.8809678954777748
0.5901641516460916

f(x...)

3.4715474597921627

Analytic derivative

If expressions are simple enough, you can provide analytic functions for the gradient and Hessian.

Gradient

The Rosenbrock function has the gradient vector:

function analytic_∇f(g::AbstractVector, x...)
g[1] = 400 * x[1]^3 - 400 * x[1] * x[2] + 2 * x[1] - 2
g[2] = 200 * (x[2] - x[1]^2)
return

end
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analytic_∇f (generic function with 1 method)

Let's evaluate it at the same vector x:

analytic_g = zeros(2)
analytic_∇f(analytic_g, x...)
analytic_g

2-element Vector{Float64}:
65.28490308207542
-37.18805624328958

Hessian

The Hessian matrix is:

function analytic_∇²f(H::AbstractMatrix, x...)
H[1, 1] = 1200 * x[1]^2 - 400 * x[2] + 2
# H[1, 2] = -400 * x[1] <-- not needed because Hessian is symmetric
H[2, 1] = -400 * x[1]
H[2, 2] = 200.0
return

end

analytic_∇²f (generic function with 1 method)

Note that because the Hessian is symmetric, JuMP requires that we fill in only the lower triangle.

analytic_H = zeros(2, 2)
analytic_∇²f(analytic_H, x...)
analytic_H

2×2 Matrix{Float64}:
697.26 0.0
-352.387 200.0

JuMP example

Putting our analytic functions together, we get:
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function analytic_rosenbrock()
model = Model(Ipopt.Optimizer)
set_silent(model)
@variable(model, x[1:2])
@operator(model, op_rosenbrock, 2, f, analytic_∇f, analytic_∇²f)
@objective(model, Min, op_rosenbrock(x[1], x[2]))
optimize!(model)
assert_is_solved_and_feasible(model)
return value.(x)

end

analytic_rosenbrock()

2-element Vector{Float64}:
0.9999999999999655
0.9999999999999305

ForwardDiff

Instead of analytic functions, you can use ForwardDiff.jl to compute derivatives.

Info

If you do not specify a gradient or Hessian, JuMP will use ForwardDiff.jl to compute derivatives by
default. We provide this section as a worked example of what is going on under the hood.

Pros and cons

The main benefit of ForwardDiff is that it is simple, robust, and works with a broad range of Julia syntax.

The main downside is that fmust be a function that accepts arguments of x::Real.... See Common mistakes
when writing a user-defined operator for more details.

Gradient

The gradient can be computed using ForwardDiff.gradient!. Note that ForwardDiff expects a single Vector{T}
argument, but we receive x as a tuple, so we need y -> f(y...) and collect(x) to get things in the right
format.

function fdiff_∇f(g::AbstractVector{T}, x::Vararg{T,N}) where {T,N}
ForwardDiff.gradient!(g, y -> f(y...), collect(x))
return

end

fdiff_∇f (generic function with 1 method)

Let's check that we find the analytic solution:

https://github.com/JuliaDiff/ForwardDiff.jl
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fdiff_g = zeros(2)
fdiff_∇f(fdiff_g, x...)
Test.@test ≈(analytic_g, fdiff_g)

Test Passed

Hessian

The Hessian is a bit more complicated, but code to implement it is:

function fdiff_∇²f(H::AbstractMatrix{T}, x::Vararg{T,N}) where {T,N}
h = ForwardDiff.hessian(y -> f(y...), collect(x))
for i in 1:N, j in 1:i

H[i, j] = h[i, j]
end
return

end

fdiff_∇²f (generic function with 1 method)

Let's check that we find the analytic solution:

fdiff_H = zeros(2, 2)
fdiff_∇²f(fdiff_H, x...)
Test.@test ≈(analytic_H, fdiff_H)

Test Passed

JuMP example

The code for computing the gradient and Hessian using ForwardDiff can be re-used for many operators. Thus,
it is helpful to encapsulate it into the function:

"""
fdiff_derivatives(f::Function) -> Tuple{Function,Function}

Return a tuple of functions that evaluate the gradient and Hessian of `f` using
ForwardDiff.jl.
"""
function fdiff_derivatives(f::Function)

function ∇f(g::AbstractVector{T}, x::Vararg{T,N}) where {T,N}
ForwardDiff.gradient!(g, y -> f(y...), collect(x))
return

end
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function ∇²f(H::AbstractMatrix{T}, x::Vararg{T,N}) where {T,N}
h = ForwardDiff.hessian(y -> f(y...), collect(x))
for i in 1:N, j in 1:i

H[i, j] = h[i, j]
end
return

end
return ∇f, ∇²f

end

Main.fdiff_derivatives

Here's an example using fdiff_derivatives:

function fdiff_rosenbrock()
model = Model(Ipopt.Optimizer)
set_silent(model)
@variable(model, x[1:2])
@operator(model, op_rosenbrock, 2, f, fdiff_derivatives(f)...)
@objective(model, Min, op_rosenbrock(x[1], x[2]))
optimize!(model)
assert_is_solved_and_feasible(model)
return value.(x)

end

fdiff_rosenbrock()

2-element Vector{Float64}:
0.9999999999999899
0.9999999999999792

Enzyme

Another library for automatic differentiation in Julia is Enzyme.jl.

Pros and cons

The main benefit of Enzyme is that it can produce fast derivatives for functions with many input arguments.

The main downsides are that it may throw unusual errors if your code uses an unsupported feature of Julia and
that it may have large compile times.

Warning

The JuMP developers cannot help you debug error messages related to Enzyme. If the operator works,
it works. If not, we suggest you try a different automatic differentiation library. See juliadiff.org for
details.

https://github.com/EnzymeAD/Enzyme.jl
https://juliadiff.org/
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Gradient

The gradient can be computed using Enzyme.autodiff with the Enzyme.Reverse mode. We need to wrap x
in Enzyme.Active to indicate that we want to compute the derivatives with respect to these arguments.

function enzyme_∇f(g::AbstractVector{T}, x::Vararg{T,N}) where {T,N}
g .= Enzyme.autodiff(Enzyme.Reverse, f, Enzyme.Active.(x)...)[1]
return

end

enzyme_∇f (generic function with 1 method)

Let's check that we find the analytic solution:

enzyme_g = zeros(2)
enzyme_∇f(enzyme_g, x...)
Test.@test ≈(analytic_g, enzyme_g)

Test Passed

Hessian

We can compute the Hessian in Enzyme using forward-over-reverse automatic differentiation.

The code to implement the Hessian in Enzyme is complicated, so we will not explain it in detail; see the Enzyme
documentation.

function enzyme_∇²f(H::AbstractMatrix{T}, x::Vararg{T,N}) where {T,N}
# direction(i) returns a tuple with a `1` in the `i`'th entry and `0`
# otherwise
direction(i) = ntuple(j -> Enzyme.Active(T(i == j)), N)
# As the inner function, compute the gradient using Reverse mode
∇f(x...) = Enzyme.autodiff(Enzyme.Reverse, f, Enzyme.Active, x...)[1]
# For the outer autodiff, use Forward mode.
hess = Enzyme.autodiff(

Enzyme.Forward,
∇f,
# Compute multiple evaluations of Forward mode, each time using `x` but
# initializing with a different direction.
Enzyme.BatchDuplicated.(Enzyme.Active.(x), ntuple(direction, N))...,

)[1]
# Unpack Enzyme's `hess` data structure into the matrix `H` expected by
# JuMP.
for j in 1:N, i in 1:j

H[j, i] = hess[j][i]
end
return

end

https://enzymead.github.io/Enzyme.jl/stable/generated/autodiff/#Vector-forward-over-reverse
https://enzymead.github.io/Enzyme.jl/stable/generated/autodiff/#Vector-forward-over-reverse
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enzyme_∇²f (generic function with 1 method)

Let's check that we find the analytic solution:

enzyme_H = zeros(2, 2)
enzyme_∇²f(enzyme_H, x...)
Test.@test ≈(analytic_H, enzyme_H)

Test Passed

JuMP example

The code for computing the gradient and Hessian using Enzyme can be re-used for many operators. Thus, it
is helpful to encapsulate it into the function:

"""
enzyme_derivatives(f::Function) -> Tuple{Function,Function}

Return a tuple of functions that evaluate the gradient and Hessian of `f` using
Enzyme.jl.
"""
function enzyme_derivatives(f::Function)

function ∇f(g::AbstractVector{T}, x::Vararg{T,N}) where {T,N}
g .= Enzyme.autodiff(Enzyme.Reverse, f, Enzyme.Active.(x)...)[1]
return

end
function ∇²f(H::AbstractMatrix{T}, x::Vararg{T,N}) where {T,N}

direction(i) = ntuple(j -> Enzyme.Active(T(i == j)), N)
∇f(x...) = Enzyme.autodiff(Enzyme.Reverse, f, Enzyme.Active, x...)[1]
hess = Enzyme.autodiff(

Enzyme.Forward,
∇f,
Enzyme.BatchDuplicated.(Enzyme.Active.(x), ntuple(direction, N))...,

)[1]
for j in 1:N, i in 1:j

H[j, i] = hess[j][i]
end
return

end
return ∇f, ∇²f

end

Main.enzyme_derivatives

Here's an example using enzyme_derivatives:
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function enzyme_rosenbrock()
model = Model(Ipopt.Optimizer)
set_silent(model)
@variable(model, x[1:2])
@operator(model, op_rosenbrock, 2, f, enzyme_derivatives(f)...)
@objective(model, Min, op_rosenbrock(x[1], x[2]))
optimize!(model)
assert_is_solved_and_feasible(model)
return value.(x)

end

enzyme_rosenbrock()

2-element Vector{Float64}:
0.9999999999999899
0.9999999999999792

DifferentiationInterface

Julia offers many different autodiff packages. DifferentiationInterface.jl is a package that provides an abstrac-
tion layer across a few underlying autodiff libraries.

Warning

The JuMP developers cannot help you debug error messages related to DifferentiationInterface. If the
operator works, it works. If not, we suggest you directly try using a different automatic differentiation
library rather than the DI wrapper. See juliadiff.org for details.

All the necessary information about your choice of underlying autodiff package is encoded in a "backend object"
like this one:

DifferentiationInterface.AutoForwardDiff()

ADTypes.AutoForwardDiff()

This type comes from another package called ADTypes.jl, but DifferentiationInterface re-exports it. Other op-
tions include AutoZygote() and AutoFiniteDiff().

Gradient

Apart from providing the backend object, the syntax below remains very similar:

function di_∇f(
g::AbstractVector{T},
x::Vararg{T,N};
backend = DifferentiationInterface.AutoForwardDiff(),

) where {T,N}

https://juliadiff.org/
https://github.com/gdalle/DifferentiationInterface.jl
https://juliadiff.org/
https://github.com/SciML/ADTypes.jl
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DifferentiationInterface.gradient!(splat(f), g, backend, collect(x))
return

end

di_∇f (generic function with 1 method)

Let's check that we find the analytic solution:

di_g = zeros(2)
di_∇f(di_g, x...)
Test.@test ≈(analytic_g, di_g)

Test Passed

Hessian

The Hessian follows exactly the same logic, except we need only the lower triangle.

function di_∇²f(
H::AbstractMatrix{T},
x::Vararg{T,N};
backend = DifferentiationInterface.AutoForwardDiff(),

) where {T,N}
H_dense = DifferentiationInterface.hessian(splat(f), backend, collect(x))
for i in 1:N, j in 1:i

H[i, j] = H_dense[i, j]
end
return

end

di_∇²f (generic function with 1 method)

Let's check that we find the analytic solution:

di_H = zeros(2, 2)
di_∇²f(di_H, x...)
Test.@test ≈(analytic_H, di_H)

Test Passed
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JuMP example

The code for computing the gradient and Hessian using DifferentiationInterface can be re-used for many op-
erators. Thus, it is helpful to encapsulate it into the function:

"""
di_derivatives(f::Function; backend) -> Tuple{Function,Function}

Return a tuple of functions that evaluate the gradient and Hessian of `f` using
DifferentiationInterface.jl with any given `backend`.
"""
function di_derivatives(f::Function; backend)

function ∇f(g::AbstractVector{T}, x::Vararg{T,N}) where {T,N}
DifferentiationInterface.gradient!(splat(f), g, backend, collect(x))
return

end
function ∇²f(H::AbstractMatrix{T}, x::Vararg{T,N}) where {T,N}

H_dense =
DifferentiationInterface.hessian(splat(f), backend, collect(x))

for i in 1:N, j in 1:i
H[i, j] = H_dense[i, j]

end
return

end
return ∇f, ∇²f

end

Main.di_derivatives

Here's an example using di_derivatives:

function di_rosenbrock(; backend)
model = Model(Ipopt.Optimizer)
set_silent(model)
@variable(model, x[1:2])
@operator(model, op_rosenbrock, 2, f, di_derivatives(f; backend)...)
@objective(model, Min, op_rosenbrock(x[1], x[2]))
optimize!(model)
assert_is_solved_and_feasible(model)
return value.(x)

end

di_rosenbrock(; backend = DifferentiationInterface.AutoForwardDiff())

2-element Vector{Float64}:
0.9999999999999899
0.9999999999999792
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7.5 User-defined Hessians

This tutorial was generated using Literate.jl. Download the source as a .jl file.

In this tutorial, we explain how to write a user-defined operator (see User-defined operators) with a Hessian
matrix explicitly provided by the user.

For a more advanced example, see Nested optimization problems.

Required packages

This tutorial uses the following packages:

using JuMP
import Ipopt

Rosenbrock example

As a simple example, we consider the Rosenbrock function:

rosenbrock(x...) = (1 - x[1])^2 + 100 * (x[2] - x[1]^2)^2

rosenbrock (generic function with 1 method)

which has the gradient vector:

function ∇rosenbrock(g::AbstractVector, x...)
g[1] = 400 * x[1]^3 - 400 * x[1] * x[2] + 2 * x[1] - 2
g[2] = 200 * (x[2] - x[1]^2)
return

end

∇rosenbrock (generic function with 1 method)

and the Hessian matrix:

function ∇²rosenbrock(H::AbstractMatrix, x...)
H[1, 1] = 1200 * x[1]^2 - 400 * x[2] + 2
# H[1, 2] = -400 * x[1] <-- not needed because Hessian is symmetric
H[2, 1] = -400 * x[1]
H[2, 2] = 200.0
return

end

https://github.com/fredrikekre/Literate.jl
tutorials/nonlinear/user_defined_hessians.jl
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∇²rosenbrock (generic function with 1 method)

You may assume the Hessian matrix H is initialized with zeros, and because it is symmetric you need only to
fill in the non-zero of the lower-triangular terms.

The matrix type passed in as H depends on the automatic differentiation system, so make sure the first argu-
ment to the Hessian function supports an AbstractMatrix (it may be something other than Matrix{Float64}).
However, you may assume only that H supports size(H) and setindex!.

Now that we have the function, its gradient, and its Hessian, we can construct a JuMP model, add the operator,
and use it in a macro:

model = Model(Ipopt.Optimizer)
@variable(model, x[1:2])
@operator(model, op_rosenbrock, 2, rosenbrock, ∇rosenbrock, ∇²rosenbrock)
@objective(model, Min, op_rosenbrock(x[1], x[2]))
optimize!(model)
assert_is_solved_and_feasible(model)
solution_summary(model; verbose = true)

solution_summary(; result = 1, verbose = true)
├ solver_name : Ipopt
├ Termination
│ ├ termination_status : LOCALLY_SOLVED
│ ├ result_count : 1
│ └ raw_status : Solve_Succeeded
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : FEASIBLE_POINT
│ ├ objective_value : 1.21190e-27
│ ├ dual_objective_value : 0.00000e+00
│ └ value
│ ├ x[1] : 1.00000e+00
│ └ x[2] : 1.00000e+00
└ Work counters
├ solve_time (sec) : 3.67939e-02
└ barrier_iterations : 14

7.6 Nested optimization problems

This tutorial was generated using Literate.jl. Download the source as a .jl file.

The purpose of this tutorial is to show how to solve a nested optimization problem, where an upper problem
uses the results from the optimization of a lower subproblem.

To model the problem, we define a user-defined operator to handle the decomposition of the lower problem
inside the upper one. Finally, we show how to improve the performance by using a cache that avoids resolving
the lower problem.

For a simpler example of writing a user-defined operator, see the User-defined Hessians tutorial.

https://github.com/fredrikekre/Literate.jl
tutorials/nonlinear/nested_problems.jl
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Info

The JuMP extension BilevelJuMP.jl can also be used to model and solve bilevel optimization problems.

Required packages

This tutorial uses the following packages:

using JuMP
import Ipopt

Formulation

In the rest of this tutorial, our goal is to solve the bilevel optimization problem:

min
x,z

x21 + x22 + z

s.t.
z = max

y
x21y1 + x22y2 − x1y

4
1 − 2x2y

4
2

s.t. (y1 − 10)2 + (y2 − 10)2 ≤ 25
x ≥ 0.

This bilevel optimization problem is composed of two nested optimization problems. An upper level, involving
variables x, and a lower level, involving variables y. From the perspective of the lower-level problem, the
values of x are fixed parameters, and so the model optimizes y given those fixed parameters. Simultaneously,
the upper-level problem optimizes x and z given the response of y.

Decomposition

There are a few ways to solve this problem, but we are going to use a nonlinear decomposition method. The
first step is to write a function to compute the lower-level problem:

V (x1, x2) = max
y

x21y1 + x22y2 − x1y
4
1 − 2x2y

4
2

s.t. (y1 − 10)2 + (y2 − 10)2 ≤ 25

function solve_lower_level(x...)
model = Model(Ipopt.Optimizer)
set_silent(model)
@variable(model, y[1:2])
@objective(

model,
Max,
x[1]^2 * y[1] + x[2]^2 * y[2] - x[1] * y[1]^4 - 2 * x[2] * y[2]^4,

)
@constraint(model, (y[1] - 10)^2 + (y[2] - 10)^2 <= 25)
optimize!(model)
assert_is_solved_and_feasible(model)
return objective_value(model), value.(y)

end

packages/BilevelJuMP.md
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solve_lower_level (generic function with 1 method)

The next function takes a value of x and returns the optimal lower-level objective-value and the optimal re-
sponse y. The reason why we need both the objective and the optimal y will be made clear shortly, but for
now let us define:

function V(x...)
f, _ = solve_lower_level(x...)
return f

end

V (generic function with 1 method)

Then, we can substitute V into our full problem to create:

min
x

x21 + x22 + V (x1, x2)

s.t. x ≥ 0.

This looks like a nonlinear optimization problem with a user-defined operator V ! However, because V solves
an optimization problem internally, we can't use automatic differentiation to compute the first and second
derivatives. Instead, we can use JuMP's ability to pass callback functions for the gradient and Hessian instead.

First up, we need to define the gradient of V with respect to x. In general, this may be difficult to compute,
but because x appears only in the objective, we can just differentiate the objective function with respect to x,
giving:

function ∇V(g::AbstractVector, x...)
_, y = solve_lower_level(x...)
g[1] = 2 * x[1] * y[1] - y[1]^4
g[2] = 2 * x[2] * y[2] - 2 * y[2]^4
return

end

∇V (generic function with 1 method)

Second, we need to define the Hessian of V with respect to x. This is a symmetric matrix, but in our example
only the diagonal elements are non-zero:

function ∇²V(H::AbstractMatrix, x...)
_, y = solve_lower_level(x...)
H[1, 1] = 2 * y[1]
H[2, 2] = 2 * y[2]
return

end
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∇²V (generic function with 1 method)

Info

Providing an explicit Hessian function is optional if first derivatives are already available.

We now have enough to define our bilevel optimization problem:

model = Model(Ipopt.Optimizer)
@variable(model, x[1:2] >= 0)
@operator(model, op_V, 2, V, ∇V, ∇²V)
@objective(model, Min, x[1]^2 + x[2]^2 + op_V(x[1], x[2]))
optimize!(model)
assert_is_solved_and_feasible(model)
solution_summary(model)

solution_summary(; result = 1, verbose = false)
├ solver_name : Ipopt
├ Termination
│ ├ termination_status : LOCALLY_SOLVED
│ ├ result_count : 1
│ └ raw_status : Solve_Succeeded
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : FEASIBLE_POINT
│ ├ objective_value : -4.18983e+05
│ └ dual_objective_value : 0.00000e+00
└ Work counters
├ solve_time (sec) : 5.09679e-01
└ barrier_iterations : 32

The optimal objective value is:

objective_value(model)

-418983.48680640775

and the optimal upper-level decision variables x are:

value.(x)

2-element Vector{Float64}:
154.97862337234338
180.0096143098799
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To compute the optimal lower-level decision variables, we need to call solve_lower_level with the optimal
upper-level decision variables:

_, y = solve_lower_level(value.(x)...)
y

2-element Vector{Float64}:
7.072593961143734
5.94656989283847

Improving performance

Our solution approach works, but it has a performance problem: every time we need to compute the value,
gradient, or Hessian of V , we have to re-solve the lower-level optimization problem. This is wasteful, because
we will often call the gradient and Hessian at the same point, and so solving the problem twice with the same
input repeats work unnecessarily.

We can work around this by using a cache:

mutable struct Cache
x::Any
f::Float64
y::Vector{Float64}

end

with a function to update the cache if needed:

function _update_if_needed(cache::Cache, x...)
if cache.x !== x

cache.f, cache.y = solve_lower_level(x...)
cache.x = x

end
return

end

_update_if_needed (generic function with 1 method)

Then, we define cached versions of out three functions which call _updated_if_needed and return values from
the cache.

function cached_f(cache::Cache, x...)
_update_if_needed(cache, x...)
return cache.f

end

function cached_∇f(cache::Cache, g::AbstractVector, x...)
_update_if_needed(cache, x...)
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g[1] = 2 * x[1] * cache.y[1] - cache.y[1]^4
g[2] = 2 * x[2] * cache.y[2] - 2 * cache.y[2]^4
return

end

function cached_∇²f(cache::Cache, H::AbstractMatrix, x...)
_update_if_needed(cache, x...)
H[1, 1] = 2 * cache.y[1]
H[2, 2] = 2 * cache.y[2]
return

end

cached_∇²f (generic function with 1 method)

Now we're ready to setup and solve the upper level optimization problem:

model = Model(Ipopt.Optimizer)
@variable(model, x[1:2] >= 0)
cache = Cache(Float64[], NaN, Float64[])
@operator(

model,
op_cached_f,
2,
(x...) -> cached_f(cache, x...),
(g, x...) -> cached_∇f(cache, g, x...),
(H, x...) -> cached_∇²f(cache, H, x...),

)
@objective(model, Min, x[1]^2 + x[2]^2 + op_cached_f(x[1], x[2]))
optimize!(model)
assert_is_solved_and_feasible(model)
solution_summary(model)

solution_summary(; result = 1, verbose = false)
├ solver_name : Ipopt
├ Termination
│ ├ termination_status : LOCALLY_SOLVED
│ ├ result_count : 1
│ └ raw_status : Solve_Succeeded
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : FEASIBLE_POINT
│ ├ objective_value : -4.18983e+05
│ └ dual_objective_value : 0.00000e+00
└ Work counters
├ solve_time (sec) : 1.92476e-01
└ barrier_iterations : 32

an we can check we get the same objective value:
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objective_value(model)

-418983.48680640775

and upper-level decision variable x:

value.(x)

2-element Vector{Float64}:
154.97862337234338
180.0096143098799

7.7 Computing Hessians

This tutorial was generated using Literate.jl. Download the source as a .jl file.

The purpose of this tutorial is to demonstrate how to compute the Hessian of the Lagrangian of a nonlinear
program.

Warning

This is an advanced tutorial that interacts with the low-level nonlinear interface of MathOptInterface.

By default, JuMP exports the MOI symbol as an alias for the MathOptInterface.jl package. We recom-
mend making this more explicit in your code by adding the following lines:

import MathOptInterface as MOI

Given a nonlinear program:

min
x∈Rn

f(x) (7.4)

s.t. l ≤ gi(x) ≤ u (7.5)

the Hessian of the Lagrangian is computed as:

H(x, σ, µ) = σ∇2f(x) +

m∑
i=1

µi∇2gi(x)

where x is a primal point, σ is a scalar (typically 1), and µ is a vector of weights corresponding to the Lagrangian
dual of the constraints.

https://github.com/fredrikekre/Literate.jl
tutorials/nonlinear/querying_hessians.jl
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Required packages

This tutorial uses the following packages:

using JuMP
import Ipopt
import LinearAlgebra
import Random
import SparseArrays

The basic model

To demonstrate how to interact with the lower-level nonlinear interface, we need an example model. The
exact model isn't important; we use the model from The Rosenbrock function tutorial, with some additional
constraints to demonstrate various features of the lower-level interface.

model = Model(Ipopt.Optimizer)
set_silent(model)
@variable(model, x[i = 1:2], start = -i)
@constraint(model, g_1, x[1]^2 <= 1)
@constraint(model, g_2, (x[1] + x[2])^2 <= 2)
@objective(model, Min, (1 - x[1])^2 + 100 * (x[2] - x[1]^2)^2)
optimize!(model)
assert_is_solved_and_feasible(model)

The analytic solution

With a little work, it is possible to analytically derive the correct hessian:

function analytic_hessian(x, σ, μ)
g_1_H = [2.0 0.0; 0.0 0.0]
g_2_H = [2.0 2.0; 2.0 2.0]
f_H = zeros(2, 2)
f_H[1, 1] = 2.0 + 1200.0 * x[1]^2 - 400.0 * x[2]
f_H[1, 2] = f_H[2, 1] = -400.0 * x[1]
f_H[2, 2] = 200.0
return σ * f_H + μ' * [g_1_H, g_2_H]

end

analytic_hessian (generic function with 1 method)

Here are various points:

analytic_hessian([1, 1], 0, [0, 0])

2×2 Matrix{Float64}:
0.0 0.0
0.0 0.0
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analytic_hessian([1, 1], 0, [1, 0])

2×2 Matrix{Float64}:
2.0 0.0
0.0 0.0

analytic_hessian([1, 1], 0, [0, 1])

2×2 Matrix{Float64}:
2.0 2.0
2.0 2.0

analytic_hessian([1, 1], 1, [0, 0])

2×2 Matrix{Float64}:
802.0 -400.0
-400.0 200.0

Create a nonlinear model

JuMP delegates automatic differentiation to the MOI.Nonlinear submodule. Therefore, to compute the Hessian
of the Lagrangian, we need to create a MOI.Nonlinear.Model object:

rows = Any[]
nlp = MOI.Nonlinear.Model()
for (F, S) in list_of_constraint_types(model)

if F <: VariableRef
continue # Skip variable bounds

end
for ci in all_constraints(model, F, S)

push!(rows, ci)
object = constraint_object(ci)
MOI.Nonlinear.add_constraint(nlp, object.func, object.set)

end
end
MOI.Nonlinear.set_objective(nlp, objective_function(model))
nlp

A Nonlinear.Model with:
1 objective
0 parameters
0 expressions
2 constraints



CHAPTER 7. NONLINEAR PROGRAMS 306

It is important that we save the constraint indices in a vector rows, so that we know the order of the constraints
in the nonlinear model.

Next, we need to convert our model into an MOI.Nonlinear.Evaluator, specifying an automatic differentiation
backend. In this case, we use MOI.Nonlinear.SparseReverseMode:

evaluator = MOI.Nonlinear.Evaluator(
nlp,
MOI.Nonlinear.SparseReverseMode(),
index.(all_variables(model)),

)

Nonlinear.Evaluator with available features:
* :Grad
* :Jac
* :JacVec
* :Hess
* :HessVec
* :ExprGraph

Before computing anything with the evaluator, we need to initialize it. Use MOI.features_available to see
what we can query:

MOI.features_available(evaluator)

6-element Vector{Symbol}:
:Grad
:Jac
:JacVec
:Hess
:HessVec
:ExprGraph

Consult the MOI documentation for specifics, but to obtain the Hessian matrix, we need to initialize :Hess:

MOI.initialize(evaluator, [:Hess])

MOI represents the Hessian as a sparse matrix. Get the sparsity pattern as follows:

hessian_sparsity = MOI.hessian_lagrangian_structure(evaluator)

7-element Vector{Tuple{Int64, Int64}}:
(1, 1)
(2, 2)
(2, 1)
(1, 1)
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(1, 1)
(2, 2)
(2, 1)

The sparsity pattern has a few properties of interest:

• Each element (i, j) indicates a structural non-zero in row i and column j

• The list may contain duplicates, in which case we should add the values together

• The list does not need to be sorted

• The list may contain any mix of lower- or upper-triangular indices

This format matches Julia's sparse-triplet form of a SparseArray, so we can convert from the sparse Hessian
representation to a Julia SparseArray as follows:

I = [i for (i, _) in hessian_sparsity]
J = [j for (_, j) in hessian_sparsity]
V = zeros(length(hessian_sparsity))
n = num_variables(model)
H = SparseArrays.sparse(I, J, V, n, n)

2×2 SparseArrays.SparseMatrixCSC{Float64, Int64} with 3 stored entries:
0.0 ⋅
0.0 0.0

Of course, knowing where the zeros are isn't very interesting. We really want to compute the value of the
Hessian matrix at a point.

MOI.eval_hessian_lagrangian(evaluator, V, ones(n), 1.0, ones(length(rows)))
H = SparseArrays.sparse(I, J, V, n, n)

2×2 SparseArrays.SparseMatrixCSC{Float64, Int64} with 3 stored entries:
806.0 ⋅
-398.0 202.0

In practice, we often want to compute the value of the hessian at the optimal solution.

First, we compute the primal solution. To do so, we need a vector of the variables in the order that they were
passed to the solver:

x = all_variables(model)
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2-element Vector{VariableRef}:
x[1]
x[2]

Here x[1] is the variable that corresponds to column 1, and so on. Here's the optimal primal solution:

x_optimal = value.(x)

2-element Vector{Float64}:
0.7903587565231842
0.6238546272155127

Next, we need the optimal dual solution associated with the nonlinear constraints (this is where it is important
to record the order of the constraints as we added them to nlp):

y_optimal = dual.(rows)

2-element Vector{Float64}:
-8.038451738599348e-8
-0.05744089305771262

Now we can compute the Hessian at the optimal primal-dual point:

MOI.eval_hessian_lagrangian(evaluator, V, x_optimal, 1.0, y_optimal)
H = SparseArrays.sparse(I, J, V, n, n)

2×2 SparseArrays.SparseMatrixCSC{Float64, Int64} with 3 stored entries:
501.944 ⋅
-316.258 199.885

However, this Hessian isn't quite right because it isn't symmetric. We can fix this by filling in the appropriate
off-diagonal terms:

function fill_off_diagonal(H)
ret = H + H'
row_vals = SparseArrays.rowvals(ret)
non_zeros = SparseArrays.nonzeros(ret)
for col in 1:size(ret, 2)

for i in SparseArrays.nzrange(ret, col)
if col == row_vals[i]

non_zeros[i] /= 2
end

end
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end
return ret

end

fill_off_diagonal(H)

2×2 SparseArrays.SparseMatrixCSC{Float64, Int64} with 4 stored entries:
501.944 -316.258
-316.258 199.885

Putting everything together:

function compute_optimal_hessian(model::Model)
rows = Any[]
nlp = MOI.Nonlinear.Model()
for (F, S) in list_of_constraint_types(model)

for ci in all_constraints(model, F, S)
push!(rows, ci)
object = constraint_object(ci)
MOI.Nonlinear.add_constraint(nlp, object.func, object.set)

end
end
MOI.Nonlinear.set_objective(nlp, objective_function(model))
x = all_variables(model)
backend = MOI.Nonlinear.SparseReverseMode()
evaluator = MOI.Nonlinear.Evaluator(nlp, backend, index.(x))
MOI.initialize(evaluator, [:Hess])
hessian_sparsity = MOI.hessian_lagrangian_structure(evaluator)
I = [i for (i, _) in hessian_sparsity]
J = [j for (_, j) in hessian_sparsity]
V = zeros(length(hessian_sparsity))
MOI.eval_hessian_lagrangian(evaluator, V, value.(x), 1.0, dual.(rows))
H = SparseArrays.sparse(I, J, V, length(x), length(x))
return Matrix(fill_off_diagonal(H))

end

H_star = compute_optimal_hessian(model)

2×2 Matrix{Float64}:
501.944 -316.258
-316.258 199.885

If we compare our solution against the analytical solution:

analytic_hessian(value.(x), 1.0, dual.([g_1, g_2]))
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2×2 Matrix{Float64}:
501.944 -316.258
-316.258 199.885

If we look at the eigenvalues of the Hessian:

LinearAlgebra.eigvals(H_star)

2-element Vector{Float64}:
0.4443995924983142

701.3843426037456

we see that they are all positive. Therefore, the Hessian is positive definite, and so the solution found by Ipopt
is a local minimizer.

Jacobians

In addition to the Hessian, it is also possible to query other parts of the nonlinear model. For example, the Jaco-
bian of the constraints can be queried using MOI.jacobian_structure and MOI.eval_constraint_jacobian.

function compute_optimal_jacobian(model::Model)
rows = Any[]
nlp = MOI.Nonlinear.Model()
for (F, S) in list_of_constraint_types(model)

for ci in all_constraints(model, F, S)
if !(F <: VariableRef)

push!(rows, ci)
object = constraint_object(ci)
MOI.Nonlinear.add_constraint(nlp, object.func, object.set)

end
end

end
MOI.Nonlinear.set_objective(nlp, objective_function(model))
x = all_variables(model)
backend = MOI.Nonlinear.SparseReverseMode()
evaluator = MOI.Nonlinear.Evaluator(nlp, backend, index.(x))
# Initialize the Jacobian
MOI.initialize(evaluator, [:Jac])
# Query the Jacobian structure
sparsity = MOI.jacobian_structure(evaluator)
I, J, V = first.(sparsity), last.(sparsity), zeros(length(sparsity))
# Query the Jacobian values
MOI.eval_constraint_jacobian(evaluator, V, value.(x))
return SparseArrays.sparse(I, J, V, length(rows), length(x))

end

compute_optimal_jacobian(model)
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2×2 SparseArrays.SparseMatrixCSC{Float64, Int64} with 3 stored entries:
1.58072 ⋅
2.82843 2.82843

Compare that to the analytic solution:

y = value.(x)
[2y[1] 0; 2y[1]+2y[2] 2y[1]+2y[2]]

2×2 Matrix{Float64}:
1.58072 0.0
2.82843 2.82843

7.8 Example: mixed complementarity problems

This tutorial was generated using Literate.jl. Download the source as a .jl file.

The purpose of this tutorial is to provide a collection of mixed complementarity programs.

Required packages

This tutorial uses the following packages:

using JuMP
import PATHSolver

Background

A mixed complementarity problem has the form:

Fi(x) ⊥ xii = 1 . . . n (7.6)

li ≤ xi ≤ uii = 1 . . . n. (7.7)

where the ⊥ constraint enforces the following relations:

• If li < xi < ui, then Fi(x) = 0

• If li = xi, then Fi(x) ≥ 0

• If xi = ui, then Fi(x) ≤ 0

You may have seen a complementarity problem written as 0 ≤ F (x) ⊥ x ≥ 0. This is a special case of a
mixed complementarity problem in which li = 0 and ui = ∞.

Importantly, a mixed complementarity problem does not have an objective, and no other constraint types are
present.

https://github.com/fredrikekre/Literate.jl
tutorials/nonlinear/complementarity.jl
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Linear complementarity

Form a mixed complementarity problem using the perp symbol ⟂ (type \perp<tab> in the REPL).

M = [0 0 -1 -1; 0 0 1 -2; 1 -1 2 -2; 1 2 -2 4]
q = [2, 2, -2, -6]
model = Model(PATHSolver.Optimizer)
set_silent(model)
@variable(model, 0 <= x[1:4] <= 10, start = 0)
@constraint(model, M * x + q ⟂ x)
optimize!(model)
assert_is_solved_and_feasible(model)
value.(x)

4-element Vector{Float64}:
2.8
0.0
0.8
1.2

Other ways of writing linear complementarity problems

You do not need to use a single vector of variables, and the complementarity constraints can be given in any
order. In addition, you can use the perp symbol, the complements(F, x) syntax, or the MOI.Complements set.

model = Model(PATHSolver.Optimizer)
set_silent(model)
@variable(model, 0 <= w <= 10, start = 0)
@variable(model, 0 <= x <= 10, start = 0)
@variable(model, 0 <= y <= 10, start = 0)
@variable(model, 0 <= z <= 10, start = 0)
@constraint(model, complements(y - 2z + 2, x))
@constraint(model, [-y - z + 2, w] in MOI.Complements(2))
@constraint(model, w + 2x - 2y + 4z - 6 ⟂ z)
@constraint(model, w - x + 2y - 2z - 2 ⟂ y)
optimize!(model)
assert_is_solved_and_feasible(model)
value.([w, x, y, z])

4-element Vector{Float64}:
2.8
0.0
0.8
1.2

Transportation

This example is a reformulation of the transportation problem from Chapter 3.3 of Dantzig, G.B. (1963). Linear
Programming and Extensions. Princeton University Press, Princeton, New Jersey. It is based on the GAMSmodel
gamslib_transmcp.

https://www.gams.com/latest/gamslib_ml/libhtml/gamslib_transmcp.html
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capacity = Dict("seattle" => 350, "san-diego" => 600)
demand = Dict("new-york" => 325, "chicago" => 300, "topeka" => 275)
cost = Dict(

("seattle" => "new-york") => 90 * 2.5 / 1_000,
("seattle" => "chicago") => 90 * 1.7 / 1_000,
("seattle" => "topeka") => 90 * 1.8 / 1_000,
("san-diego" => "new-york") => 90 * 2.5 / 1_000,
("san-diego" => "chicago") => 90 * 1.8 / 1_000,
("san-diego" => "topeka") => 90 * 1.4 / 1_000,

)
plants, markets = keys(capacity), keys(demand)
model = Model(PATHSolver.Optimizer)
set_silent(model)
@variable(model, w[i in plants] >= 0)
@variable(model, p[j in markets] >= 0)
@variable(model, x[i in plants, j in markets] >= 0)
@constraints(

model,
begin

[i in plants, j in markets], w[i] + cost[i=>j] - p[j] ⟂ x[i, j]
[i in plants], capacity[i] - sum(x[i, :]) ⟂ w[i]
[j in markets], sum(x[:, j]) - demand[j] ⟂ p[j]

end
)
optimize!(model)
assert_is_solved_and_feasible(model)
value.(p)

1-dimensional DenseAxisArray{Float64,1,...} with index sets:
Dimension 1, ["new-york", "chicago", "topeka"]

And data, a 3-element Vector{Float64}:
0.22500000000033224
0.15299999994933886
0.126

Expected utility of insurance

This example is taken from a lecture of the course AAE706, given by Thomas F. Rutherford at the University
of Wisconsin, Madison. It models the expected coverage of insurance K that a rational actor would obtain to
insure a risk that occurs with probability pi and results in a loss of L.

pi = 0.01 # Probability of a bad outcome
L = 0.5 # Loss with a bad outcome
γ = 0.02 # Premium for coverage
σ = 0.5 # Elasticity
ρ = -1 # Risk exponent
U(C) = C^ρ / ρ
MU(C) = C^(ρ - 1)
model = Model(PATHSolver.Optimizer)
set_silent(model)
@variable(model, EU, start = 1) # Expected utility
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@variable(model, EV, start = 1) # Equivalent variation in income
@variable(model, C_G, start = 1) # Consumption on a good day
@variable(model, C_B, start = 1) # Consumption on a bad day
@variable(model, K, start = 1) # Coverage
@constraints(

model,
begin

(1 - pi) * U(C_G) + pi * U(C_B) - EU ⟂ EU
100 * (((1 - pi) * C_G^ρ + pi * C_B^ρ)^(1 / ρ) - 1) - EV ⟂ EV
1 - γ * K - C_G ⟂ C_G
1 - L + (1 - γ) * K - C_B ⟂ C_B
γ * ((1 - pi) * MU(C_G) + pi * MU(C_B)) - pi * MU(C_B) ⟂ K

end
)
optimize!(model)
assert_is_solved_and_feasible(model)
value(K)

0.20474003534537774

Electricity consumption

This example is a mixed complementarity formulation of Example 3.3.1 from (D’Aertrycke et al., 2017).

This example models a risk neutral competitive equilibrium between a producer and a consumer of electricity.

In our example, we assume a producer is looking to invest in a new power plant with capacity x [MW]. This
plant has an annualized capital cost of I [€/MW] and an operating cost of C [€/MWh]. There are 8760 hours in
a year.

After making the capital investment, there are five possible consumption scenarios, ω, which occur with prob-
ability θω . In each scenario , the producer makes Y MW of electricity.

There is one consumer in the model, who has a quadratic utility function, U(Q) = AQ +
BQ2

2 .

We now build and solve the mixed complementarity problem with a few brief comments. The economic justifi-
cation for the model would require a larger tutorial than the space available here. Consult (D’Aertrycke et al.,
2017) for details.

I = 90_000 # Annualized capital cost
C = 60 # Operation cost per MWh
τ = 8_760 # Hours per year
θ = [0.2, 0.2, 0.2, 0.2, 0.2] # Scenario probabilities
A = [300, 350, 400, 450, 500] # Utility function coefficients
B = 1 # Utility function coefficients
model = Model(PATHSolver.Optimizer)
set_silent(model)
@variable(model, x >= 0, start = 1) # Installed capacity
@variable(model, Q[ω = 1:5] >= 0, start = 1) # Consumption
@variable(model, Y[ω = 1:5] >= 0, start = 1) # Production
@variable(model, P[ω = 1:5], start = 1) # Electricity price
@variable(model, μ[ω = 1:5] >= 0, start = 1) # Capital scarcity margin
# Unit investment cost equals annualized scarcity profit or investment is 0
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@constraint(model, I - τ * θ' * μ ⟂ x)
# Difference between price and scarcity margin is equal to operation cost
@constraint(model, [ω = 1:5], C - (P[ω] - μ[ω]) ⟂ Y[ω])
# Price is equal to consumer's marginal utility
@constraint(model, [ω = 1:5], P[ω] - (A[ω] - B * Q[ω]) ⟂ Q[ω])
# Production is equal to consumption
@constraint(model, [ω = 1:5], Y[ω] - Q[ω] ⟂ P[ω])
# Production does not exceed capacity
@constraint(model, [ω = 1:5], x - Y[ω] ⟂ μ[ω])
optimize!(model)
assert_is_solved_and_feasible(model)
solution_summary(model)

solution_summary(; result = 1, verbose = false)
├ solver_name : Path 5.0.03
├ Termination
│ ├ termination_status : LOCALLY_SOLVED
│ ├ result_count : 1
│ └ raw_status : The problem was solved
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : NO_SOLUTION
│ └ objective_value : 0.00000e+00
└ Work counters
└ solve_time (sec) : 1.72000e-04

An equilibrium solution is to build 389 MW:

value(x)

389.31506849315065

The production in each scenario is:

value.(Q)

5-element Vector{Float64}:
240.0000000000001
289.9999999999999
340.0
389.31506849315065
389.31506849315065

The price in each scenario is:
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value.(P)

5-element Vector{Float64}:
59.999999999999886
60.0
59.99999999999994
60.68493150684928
110.68493150684935

7.9 Example: classification problems

This tutorial was generated using Literate.jl. Download the source as a .jl file.

The purpose of this tutorial is to show how JuMP can be used to formulate classification problems.

Classification problems deal with constructing functions, called classifiers, that can efficiently classify data into
two or more distinct sets. A common application is classifying previously unseen data points after training a
classifier on known data.

The theory and models in this tutorial come from Section 9.4 of (Ferris et al., 2007).

Required packages

This tutorial uses the following packages:

using JuMP
import DelimitedFiles
import Ipopt
import LinearAlgebra
import Plots
import Random
import Test

Data and visualisation

To start, let's generate some points to test with. The argumentm is the number of 2-dimensional points:

function generate_test_points(m; random_seed = 1)
rng = Random.MersenneTwister(random_seed)
return 2.0 .* rand(rng, Float64, m, 2)

end

generate_test_points (generic function with 1 method)

For the sake of the example, let's takem = 100:

https://github.com/fredrikekre/Literate.jl
tutorials/nonlinear/classifiers.jl
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P = generate_test_points(100);

The points are represented row-wise in the matrix P. Let's visualise the points using the Plots package:

plot = Plots.scatter(
P[:, 1],
P[:, 2];
xlim = (0, 2.02),
ylim = (0, 2.02),
color = :white,
size = (600, 600),
legend = false,

)
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We want to split the points into two distinct sets on either side of a dividing line. We'll then label each point
depending on which side of the line it happens to fall. Based on the labels of the point, we'll show how to
create a classifier using a JuMP model. We can then test how well our classifier reproduces the original labels
and the boundary between them.

Let's make a line to divide the points into two sets by defining a gradient and a constant:

w_0, g_0 = [5, 3], 8
line(v::AbstractArray; w = w_0, g = g_0) = w' * v - g
line(x::Real; w = w_0, g = g_0) = -(w[1] * x - g) / w[2];

Julia's multiple dispatch feature allows us to define the vector and single-variable form of the line function
under the same name.

Let's add this to the plot:

Plots.plot!(plot, line; linewidth = 5)
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Now we label the points relative to which side of the line they are. It is numerically useful to have the labels
+1 and -1 for the upcoming JuMP formulation.

labels = ifelse.(line.(eachrow(P)) .>= 0, 1, -1)
Plots.scatter!(

plot,
P[:, 1],
P[:, 2];
shape = ifelse.(labels .== 1, :cross, :xcross),
markercolor = ifelse.(labels .== 1, :blue, :crimson),
markersize = 8,

)
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Our goal is to show we can reconstruct the line from just the points and the labels.

Formulation: linear support vector machine

A classifier known as the linear support vector machine (SVM) looks for the affine function L(p) = w⊤p − g
that satisfies L(p) < 0 for all points p with a label -1 and L(p) ≥ 0 for all points p with a label +1.

The linearly constrained quadratic program that implements this is:

min
w∈Rn, g∈R, y∈Rm

1

2
w⊤w + C

m∑
i=1

yi

subject to D · (Pw − g) + y ≥ 1
y ≥ 0.

https://en.wikipedia.org/wiki/Support_vector_machine
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where D is a diagonal matrix of the labels.

We need a default value for the positive penalty parameter C:

C_0 = 100.0;

JuMP formulation

Here is the JuMP model:

function solve_SVM_classifier(P::Matrix, labels::Vector; C::Float64 = C_0)
m, n = size(P)
model = Model(Ipopt.Optimizer)
set_silent(model)
@variable(model, w[1:n])
@variable(model, g)
@variable(model, y[1:m] >= 0)
@objective(model, Min, 1 / 2 * w' * w + C * sum(y))
D = LinearAlgebra.Diagonal(labels)
@constraint(model, D * (P * w .- g) .+ y .>= 1)
optimize!(model)
assert_is_solved_and_feasible(model)
slack = extrema(value.(y))
println("Minimum slack: ", slack[1], "\nMaximum slack: ", slack[2])
classifier(x) = line(x; w = value.(w), g = value(g))
return model, classifier

end

solve_SVM_classifier (generic function with 1 method)

Results

Let's recover the values that define the classifier by solving the model:

_, classifier = solve_SVM_classifier(P, labels)

(A JuMP Model
├ solver: Ipopt
├ objective_sense: MIN_SENSE
│ └ objective_function_type: QuadExpr
├ num_variables: 103
├ num_constraints: 200
│ ├ AffExpr in MOI.GreaterThan{Float64}: 100
│ └ VariableRef in MOI.GreaterThan{Float64}: 100
└ Names registered in the model
└ :g, :w, :y, Main.classifier)
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With the solution, we can ask: was the value of the penalty constant "sufficiently large" for this data set? This
can be judged in part by the range of the slack variables. If the slack is too large, then we need to increase
the penalty constant.

Let's plot the solution and check how we did:

Plots.plot!(plot, classifier; linewidth = 5, linestyle = :dashdotdot)

We find that we have recovered the dividing line from just the information of the points and their labels.

Nonseparable classes of points

Now, what if the point sets are not cleanly separable by a line (or a hyperplane in higher dimensions)? Does
this still work? Let's repeat the process, but this time we will simulate nonseparable classes of points by
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intermingling a few nearby points across the previously used line.

nearby_indices = abs.(line.(eachrow(P))) .< 1.1
labels_new = ifelse.(nearby_indices, -labels, labels)
model, classifier = solve_SVM_classifier(P, labels_new)
plot = Plots.scatter(

P[:, 1],
P[:, 2];
xlim = (0, 2.02),
ylim = (0, 2.02),
color = :white,
size = (600, 600),
legend = false,

)
Plots.scatter!(

plot,
P[:, 1],
P[:, 2];
shape = ifelse.(labels_new .== 1, :cross, :xcross),
markercolor = ifelse.(labels_new .== 1, :blue, :crimson),
markersize = 8,

)
Plots.plot!(plot, classifier; linewidth = 5, linestyle = :dashdotdot)
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So our JuMP formulation still produces a classifier, but it mis-classifies some of the nonseparable points.

We can find out which points are contributing to the shape of the line by looking at the dual values of the affine
constraints and comparing them to the penalty constant C:

affine_cons = all_constraints(model, AffExpr, MOI.GreaterThan{Float64})
active_cons = findall(isapprox.(dual.(affine_cons), C_0; atol = 0.001))
findall(nearby_indices) ⊆ active_cons

true

The last statement tells us that our nonseparable points are actively contributing to how the classifier is defined.
The remaining points are of interest and are highlighted:
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P_active = P[setdiff(active_cons, findall(nearby_indices)), :]
Plots.scatter!(

plot,
P_active[:, 1],
P_active[:, 2];
shape = :hexagon,
markersize = 8,
markeropacity = 0.5,

)

Advanced: duality and the kernel method

We now consider an alternative formulation for a linear SVM by solving the dual problem.
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The dual program

The dual of the linear SVM program is also a linearly constrained quadratic program:

min
u∈Rm

1

2
u⊤DPP⊤Du− 1⊤u

subject to 1⊤Du = 0

0 ≤ u ≤ C1.

This is the JuMP model:

function solve_dual_SVM_classifier(P::Matrix, labels::Vector; C::Float64 = C_0)
m, n = size(P)
model = Model(Ipopt.Optimizer)
set_silent(model)
@variable(model, 0 <= u[1:m] <= C)
D = LinearAlgebra.Diagonal(labels)
@objective(model, Min, 1 / 2 * u' * D * P * P' * D * u - sum(u))
@constraint(model, con, sum(D * u) == 0)
optimize!(model)
assert_is_solved_and_feasible(model)
w = P' * D * value.(u)
g = dual(con)
classifier(x) = line(x; w = w, g = g)
return classifier

end

solve_dual_SVM_classifier (generic function with 1 method)

We recover the line gradient vector w through setting w = P⊤Du, and the line constant g as the dual value
of the single affine constraint.

The dual problem has fewer variables and fewer constraints, so in many cases it may be simpler to solve the
dual form.

We can check that the dual form has recovered a classifier:

classifier = solve_dual_SVM_classifier(P, labels)
Plots.plot!(plot, classifier; linewidth = 5, linestyle = :dash)
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The kernel method

Linear SVM techniques are not limited to finding separating hyperplanes in the original space of the dataset.
One could first transform the training data under a nonlinear mapping, apply our method, then map the hy-
perplane back into original space.

The actual data describing the point set is held in a matrix P , but looking at the dual program we see that
what actually matters is the Gram matrix PP⊤, expressing a pairwise comparison (an inner-product) between
each point vector. It follows that any mapping of the point set only needs to be defined at the level of pairwise
maps between points. Such maps are known as kernel functions:

k : Rn × Rn → R, (s, t) 7→ 〈Φ(s),Φ(t)〉

https://en.wikipedia.org/wiki/Gram_matrix
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where the right-hand side applies some transformation Φ : Rn → Rn′
followed by an inner-product in that

image space.

In practice, we can avoid having Φ explicitly given but instead define a kernel function directly between pairs
of vectors. This change to using a kernel function without knowing the map is called the kernel method (or
sometimes, the kernel trick).

Classifier using a Gaussian kernel

We will demonstrate the application of a Gaussian or radial basis function kernel:

k(s, t) = exp
(
−µ‖s− t‖22

)
for some positive parameter µ.

k_gauss(s::Vector, t::Vector; μ = 0.5) = exp(-μ * LinearAlgebra.norm(s - t)^2)

k_gauss (generic function with 1 method)

Given a matrix of points expressed row-wise and a kernel, the next function returns the transformed matrixK
that replaces PP⊤:

function pairwise_transform(kernel::Function, P::Matrix{T}) where {T}
m, n = size(P)
K = zeros(T, m, m)
for j in 1:m, i in 1:j

K[i, j] = K[j, i] = kernel(P[i, :], P[j, :])
end
return LinearAlgebra.Symmetric(K)

end

pairwise_transform (generic function with 1 method)

Now we're ready to define our optimization problem. We need to provide the kernel function to be used in
the problem. Note that any extra keyword arguments here (like parameter values) are passed through to the
kernel.

function solve_kernel_SVM_classifier(
kernel::Function,
P::Matrix,
labels::Vector;
C::Float64 = C_0,
kwargs...,

)
m, n = size(P)
K = pairwise_transform(kernel, P)
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model = Model(Ipopt.Optimizer)
set_silent(model)
@variable(model, 0 <= u[1:m] <= C)
D = LinearAlgebra.Diagonal(labels)
con = @constraint(model, sum(D * u) == 0)
@objective(model, Min, 1 / 2 * u' * D * K * D * u - sum(u))
optimize!(model)
assert_is_solved_and_feasible(model)
u_sol, g_sol = value.(u), dual(con)
function classifier(v::Vector)

return sum(
D[i, i] * u_sol[i] * kernel(P[i, :], v; kwargs...) for i in 1:m

) - g_sol
end
return classifier

end

solve_kernel_SVM_classifier (generic function with 1 method)

This time, we don't recover the line gradient vector w directly. Instead, we compute the classifier f using the
function:

f(v) =

m∑
i=1

Diiui k(pi, v)− g

where pi is row vector i of P .

Checkerboard dataset

To demonstrate this nonlinear technique, we'll use the checkerboard dataset.

filename = joinpath(@__DIR__, "data", "checker", "checker.txt")
checkerboard = DelimitedFiles.readdlm(filename, ' ', Int)
labels = ifelse.(iszero.(checkerboard[:, 1]), -1, 1)
B = checkerboard[:, 2:3] ./ 100.0 # rescale to [0,2] x [0,2] square.
plot = Plots.scatter(

B[:, 1],
B[:, 2];
color = ifelse.(labels .== 1, :white, :black),
markersize = ifelse.(labels .== 1, 4, 2),
size = (600, 600),
legend = false,

)
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Is the technique capable of generating a distinctly nonlinear surface? Let's solve the Gaussian kernel based
quadratic problem with these parameters:

classifier = solve_kernel_SVM_classifier(k_gauss, B, labels; C = 1e5, μ = 10.0)
grid = [[x, y] for x in 0:0.01:2, y in 0:0.01:2]
grid_pos = [Tuple(g) for g in grid if classifier(g) >= 0]
Plots.scatter!(plot, grid_pos; markersize = 0.2)
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We find that the kernel method can perform well as a nonlinear classifier.

The result has a fairly strong dependence on the choice of parameters, with larger values of µ allowing for a
more complex boundary while smaller values lead to a smoother boundary for the classifier. Determining a
better performing kernel function and choice of parameters is covered by the process of cross-validation with
respect to the dataset, where different testing, training and tuning sets are used to validate the best choice of
parameters against a statistical measure of error.

7.10 Example: portfolio optimization

This tutorial was generated using Literate.jl. Download the source as a .jl file.

This tutorial was originally contributed by Arpit Bhatia.

Optimization models play an increasingly important role in financial decisions. Many computational finance
problems can be solved efficiently using modern optimization techniques.

https://github.com/fredrikekre/Literate.jl
tutorials/nonlinear/portfolio.jl
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This tutorial solves the famous Markowitz Portfolio Optimization problem with data from lecture notes from a
course taught at Georgia Tech by Shabbir Ahmed.

Required packages

This tutorial uses the following packages:

using JuMP
import DataFrames
import Ipopt
import MultiObjectiveAlgorithms as MOA
import Plots
import Statistics
import StatsPlots

Formulation

Suppose we are considering investing 1000 dollars in three non-dividend paying stocks, IBM (IBM), Walmart
(WMT), and Southern Electric (SEHI), for a one-month period.

We will use the initial money to buy shares of the three stocks at the current market prices, hold these for one
month, and sell the shares off at the prevailing market prices at the end of the month.

As a rational investor, we hope to make some profit out of this endeavor, that is, the return on our investment
should be positive.

Suppose we bought a stock at p dollars per share in the beginning of the month, and sold it off at s dollars per
share at the end of the month. Then the one-month return on a share of the stock is s−p

p .

Since the stock prices are quite uncertain, so is the end-of-month return on our investment. Our goal is to
invest in such a way that the expected end-of-month return is at least $50 or 5%. Furthermore, we want to
make sure that the “risk” of not achieving our desired return is minimum.

Note that we are solving the problem under the following assumptions:

1. We can trade any continuum of shares.

2. No short-selling is allowed.

3. There are no transaction costs.

We model this problem by taking decision variables xi, i = 1, 2, 3, denoting the dollars invested in each of the
3 stocks.

Let us denote by r̃i the random variable corresponding to the monthly return (increase in the stock price) per
dollar for stock i.

Then, the return (or profit) on xi dollars invested in stock i is r̃ixi, and the total (random) return on our
investment is

∑3
i=1 r̃ixi. The expected return on our investment is then E

[∑3
i=1 r̃ixi

]
=
∑3

i=1 rixi, where
ri is the expected value of the r̃i.

Now we need to quantify the notion of “risk” in our investment.

Markowitz, in his Nobel prize winning work, showed that a rational investor’s notion of minimizing risk can be
closely approximated by minimizing the variance of the return of the investment portfolio. This variance is
given by:

https://www2.isye.gatech.edu/{~}sahmed/isye6669/
https://www2.isye.gatech.edu/{~}sahmed/isye6669/
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Var
[

3∑
i=1

r̃ixi

]
=

3∑
i=1

3∑
j=1

xixjσij

where σij is the covariance of the return of stock i with stock j.

Note that the right hand side of the equation is the most reduced form of the expression and we have not
shown the intermediate steps involved in getting to this form. We can also write this equation as:

Var
[

3∑
i=1

r̃ixi

]
= x⊤Qx

Where Q is the covariance matrix for the random vector r̃.

Finally, we can write the model as:

minx⊤Qx

s.t.
3∑

i=1

xi ≤ 1000

r⊤x ≥ 50

x ≥ 0

Data

For the data in our problem, we use the stock prices given below, in monthly values from November 2000,
through November 2001.

df = DataFrames.DataFrame(
[

93.043 51.826 1.063
84.585 52.823 0.938
111.453 56.477 1.000
99.525 49.805 0.938
95.819 50.287 1.438
114.708 51.521 1.700
111.515 51.531 2.540
113.211 48.664 2.390
104.942 55.744 3.120
99.827 47.916 2.980
91.607 49.438 1.900
107.937 51.336 1.750
115.590 55.081 1.800

],
[:IBM, :WMT, :SEHI],

)

Next, we compute the percentage return for the stock in each month:
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IBM WMT SEHI
Float64 Float64 Float64

1 93.043 51.826 1.063
2 84.585 52.823 0.938
3 111.453 56.477 1.0
4 99.525 49.805 0.938
5 95.819 50.287 1.438
6 114.708 51.521 1.7
7 111.515 51.531 2.54
8 113.211 48.664 2.39
9 104.942 55.744 3.12
10 99.827 47.916 2.98
11 91.607 49.438 1.9
12 107.937 51.336 1.75
13 115.59 55.081 1.8

returns = diff(Matrix(df); dims = 1) ./ Matrix(df[1:end-1, :])

12×3 Matrix{Float64}:
-0.0909042 0.0192374 -0.117592
0.317645 0.0691744 0.0660981
-0.107023 -0.118137 -0.062
-0.0372369 0.00967774 0.533049
0.197132 0.0245391 0.182197
-0.0278359 0.000194096 0.494118
0.0152087 -0.0556364 -0.0590551
-0.0730406 0.145487 0.305439
-0.0487412 -0.140428 -0.0448718
-0.0823425 0.0317639 -0.362416
0.178261 0.0383915 -0.0789474
0.0709025 0.0729508 0.0285714

The expected monthly return is:

r = vec(Statistics.mean(returns; dims = 1))

3-element Vector{Float64}:
0.026002150277777348
0.008101316405671459
0.07371590949198982

and the covariance matrix is:

Q = Statistics.cov(returns)
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3×3 Matrix{Float64}:
0.018641 0.00359853 0.00130976
0.00359853 0.00643694 0.00488727
0.00130976 0.00488727 0.0686828

JuMP formulation

model = Model(Ipopt.Optimizer)
set_silent(model)
@variable(model, x[1:3] >= 0)
@objective(model, Min, x' * Q * x)
@constraint(model, sum(x) <= 1000)
@constraint(model, r' * x >= 50)
optimize!(model)
assert_is_solved_and_feasible(model)
solution_summary(model)

solution_summary(; result = 1, verbose = false)
├ solver_name : Ipopt
├ Termination
│ ├ termination_status : LOCALLY_SOLVED
│ ├ result_count : 1
│ └ raw_status : Solve_Succeeded
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : FEASIBLE_POINT
│ ├ objective_value : 2.26344e+04
│ └ dual_objective_value : 4.52688e+04
└ Work counters
├ solve_time (sec) : 2.99191e-03
└ barrier_iterations : 11

The optimal allocation of our assets is:

value.(x)

3-element Vector{Float64}:
497.045529849864
-9.670578501816873e-9
502.9544801594809

So we spend $497 on IBM, and $503 on SEHI. This results in a variance of:

scalar_variance = value(x' * Q * x)
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22634.417849884147

and an expected return of:

scalar_return = value(r' * x)

49.999999500002374

Multi-objective portfolio optimization

The previous model returned a single solution that minimized the variance, ensuring that our expected return
was at least $50. In practice, we might be willing to accept a slightly higher variance if it meant a much
increased expected return. To explore this problem space, we can instead formulate our portfolio optimization
problem with two objectives:

1. to minimize the variance

2. to maximize the expected return

The solution to this bi-objective problem is the efficient frontier of modern portfolio theory, and each point in
the solution is a point with the best return for a fixed level of risk.

model = Model(() -> MOA.Optimizer(Ipopt.Optimizer))
set_silent(model)

We also need to choose a solution algorithm for MOA. For our problem, the efficient frontier will have an infinite
number of solutions. Since we cannot find all of the solutions, we choose an approximation algorithm and limit
the number of solution points that are returned:

set_optimizer_attribute(model, MOA.Algorithm(), MOA.EpsilonConstraint())
set_optimizer_attribute(model, MOA.SolutionLimit(), 50)

Now we can define the rest of the model:

@variable(model, x[1:3] >= 0)
@constraint(model, sum(x) <= 1000)
@expression(model, variance, x' * Q * x)
@expression(model, expected_return, r' * x)
# We want to minimize variance and maximize expected return, but we must pick
# a single objective sense `Min`, and negate any `Max` objectives:
@objective(model, Min, [variance, -expected_return])
optimize!(model)
assert_is_solved_and_feasible(model)
solution_summary(model)

https://en.wikipedia.org/wiki/Efficient_frontier
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solution_summary(; result = 1, verbose = false)
├ solver_name : MOA[algorithm=MultiObjectiveAlgorithms.EpsilonConstraint, optimizer=Ipopt]
├ Termination
│ ├ termination_status : OPTIMAL
│ ├ result_count : 50
│ ├ raw_status : Solve complete. Found 50 solution(s)
│ └ objective_bound : [1.57816e-08,-7.37159e+01]
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : NO_SOLUTION
│ └ objective_value : [1.57816e-08,-4.19663e-05]
└ Work counters
└ solve_time (sec) : 2.26958e-01

The algorithm found 50 different solutions. Let's plot them to see how they differ:

objective_space = Plots.hline(
[scalar_return];
label = "Single-objective solution",
linecolor = :red,

)
Plots.vline!(objective_space, [scalar_variance]; label = "", linecolor = :red)
Plots.scatter!(

objective_space,
[value(variance; result = i) for i in 1:result_count(model)],
[value(expected_return; result = i) for i in 1:result_count(model)];
xlabel = "Variance",
ylabel = "Expected Return",
label = "",
title = "Objective space",
markercolor = "white",
markersize = 5,
legend = :bottomright,

)
for i in 1:result_count(model)

y = objective_value(model; result = i)
Plots.annotate!(objective_space, y[1], -y[2], (i, 3))

end

decision_space = StatsPlots.groupedbar(
vcat([value.(x; result = i)' for i in 1:result_count(model)]...);
bar_position = :stack,
label = ["IBM" "WMT" "SEHI"],
xlabel = "Solution #",
ylabel = "Investment (\$)",
title = "Decision space",

)
Plots.plot(objective_space, decision_space; layout = (2, 1), size = (600, 600))
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Perhaps our trade-off wasn't so bad after all. Our original solution corresponded to picking a solution #17. If
we buy more SEHI, we can increase the return, but the variance also increases. If we buy less SEHI, such as a
solution like #5 or #6, then we can achieve the corresponding return without deploying all of our capital. We
should also note that at no point should we buy WMT.

7.11 Example: nonlinear optimal control of a rocket

This tutorial was generated using Literate.jl. Download the source as a .jl file.

This tutorial was originally contributed by Iain Dunning.

The purpose of this tutorial is to demonstrate how to setup and solve a nonlinear optimization problem.

The example is an optimal control problem of a nonlinear rocket.

https://github.com/fredrikekre/Literate.jl
tutorials/nonlinear/rocket_control.jl
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Info

The JuMP extension InfiniteOpt.jl can also be used to model and solve optimal control problems.

Required packages

This tutorial uses the following packages:

using JuMP
import Ipopt
import Plots

Overview

Our goal is to maximize the final altitude of a vertically launched rocket.

We can control the thrust of the rocket, and must take account of the rocket mass, fuel consumption rate,
gravity, and aerodynamic drag.

Let us consider the basic description of the model (for the full description, including parameters for the rocket,
see COPS3).

There are three state variables in our model:

• Velocity: xv(t)

• Altitude: xh(t)

• Mass of rocket and remaining fuel, xm(t)

and a single control variable:

• Thrust: ut(t).

There are three equations that control the dynamics of the rocket:

• Rate of ascent: dxh

dt = xv

• Acceleration: dxv

dt = ut−D(xh,xv)
xm

− g(xh)

• Rate of mass loss: dxm

dt = −ut

c

where drag D(xh, xv) is a function of altitude and velocity, gravity g(xh) is a function of altitude, and c is a
constant.

These forces are defined as:

D(xh, xv) = Dc · x2v · e
−hc

(
xh−xh(0)

xh(0)

)

and g(xh) = g0 ·
(

xh(0)
xh

)2
We use a discretized model of time, with a fixed number of time steps, T .

Our goal is thus to maximize xh(T ).

packages/InfiniteOpt.md
https://www.mcs.anl.gov/{~}more/cops/cops3.pdf
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Data

All parameters in this model have been normalized to be dimensionless, and they are taken from COPS3.

h_0 = 1 # Initial height
v_0 = 0 # Initial velocity
m_0 = 1.0 # Initial mass
m_T = 0.6 # Final mass
g_0 = 1 # Gravity at the surface
h_c = 500 # Used for drag
c = 0.5 * sqrt(g_0 * h_0) # Thrust-to-fuel mass
D_c = 0.5 * 620 * m_0 / g_0 # Drag scaling
u_t_max = 3.5 * g_0 * m_0 # Maximum thrust
T_max = 0.2 # Number of seconds
T = 1_000 # Number of time steps
Δt = 0.2 / T; # Time per discretized step

JuMP formulation

First, we create a model and choose an optimizer. Since this is a nonlinear program, we need to use a nonlinear
solver like Ipopt. We cannot use a linear solver like HiGHS.

model = Model(Ipopt.Optimizer)
set_silent(model)

Next, we create our state and control variables, which are each indexed by t. It is good practice for nonlinear
programs to always provide a starting solution for each variable.

@variable(model, x_v[1:T] >= 0, start = v_0) # Velocity
@variable(model, x_h[1:T] >= 0, start = h_0) # Height
@variable(model, x_m[1:T] >= m_T, start = m_0) # Mass
@variable(model, 0 <= u_t[1:T] <= u_t_max, start = 0); # Thrust

We implement boundary conditions by fixing variables to values.

fix(x_v[1], v_0; force = true)
fix(x_h[1], h_0; force = true)
fix(x_m[1], m_0; force = true)
fix(u_t[T], 0.0; force = true)

The objective is to maximize altitude at end of time of flight.

@objective(model, Max, x_h[T])

x_h1000

Forces are defined as functions:

https://www.mcs.anl.gov/{~}more/cops/cops3.pdf
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D(x_h, x_v) = D_c * x_v^2 * exp(-h_c * (x_h - h_0) / h_0)
g(x_h) = g_0 * (h_0 / x_h)^2

g (generic function with 1 method)

The dynamical equations are implemented as constraints.

ddt(x::Vector, t::Int) = (x[t] - x[t-1]) / Δt
@constraint(model, [t in 2:T], ddt(x_h, t) == x_v[t-1])
@constraint(

model,
[t in 2:T],
ddt(x_v, t) == (u_t[t-1] - D(x_h[t-1], x_v[t-1])) / x_m[t-1] - g(x_h[t-1]),

)
@constraint(model, [t in 2:T], ddt(x_m, t) == -u_t[t-1] / c);

Now we optimize the model and check that we found a solution:

optimize!(model)
assert_is_solved_and_feasible(model)
solution_summary(model)

solution_summary(; result = 1, verbose = false)
├ solver_name : Ipopt
├ Termination
│ ├ termination_status : LOCALLY_SOLVED
│ ├ result_count : 1
│ └ raw_status : Solve_Succeeded
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : FEASIBLE_POINT
│ ├ objective_value : 1.01278e+00
│ └ dual_objective_value : 4.66547e+00
└ Work counters
├ solve_time (sec) : 2.45561e-01
└ barrier_iterations : 24

Finally, we plot the solution:

function plot_trajectory(y; kwargs...)
return Plots.plot(

(1:T) * Δt,
value.(y);
xlabel = "Time (s)",
legend = false,
kwargs...,

)
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end

Plots.plot(
plot_trajectory(x_h; ylabel = "Altitude"),
plot_trajectory(x_m; ylabel = "Mass"),
plot_trajectory(x_v; ylabel = "Velocity"),
plot_trajectory(u_t; ylabel = "Thrust");
layout = (2, 2),

)

Next steps

• Experiment with different values for the constants. How does the solution change? In particular, what
happens if you change T_max?

• The dynamical equations use rectangular integration for the right-hand side terms. Modify the equa-
tions to use the Trapezoidal rule instead. (As an example, x_v[t-1] would become 0.5 * (x_v[t-1]
+ x_v[t]).) Is there a difference?

7.12 Example: optimal control for a Space Shuttle reentry trajectory

This tutorial was generated using Literate.jl. Download the source as a .jl file.

This tutorial was originally contributed by Henrique Ferrolho.

This tutorial demonstrates how to compute a reentry trajectory for the Space Shuttle, by formulating and
solving a nonlinear programming problem. The problem was drawn from Chapter 6 of (Betts, 2010).

https://en.wikipedia.org/wiki/Trapezoidal_rule_(differential_equations)
https://github.com/fredrikekre/Literate.jl
tutorials/nonlinear/space_shuttle_reentry_trajectory.jl
https://en.wikipedia.org/wiki/Space_Shuttle
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Info

The JuMP extension InfiniteOpt.jl can also be used to model and solve optimal control problems.

Tip

This tutorial is a more-complicated version of the Example: nonlinear optimal control of a rocket tuto-
rial. If you are new to solving nonlinear programs in JuMP, you may want to start there instead.

Required packages

This tutorial uses the following packages:

using JuMP
import Interpolations
import Ipopt

Formulation

The motion of the vehicle is defined by the following set of DAEs:

ḣ = v sin γ,

ϕ̇ =
v

r
cos γ sinψ/ cos θ,

θ̇ =
v

r
cos γ cosψ,

v̇ = −D
m

− g sin γ,

γ̇ =
L

mv
cos(β) + cos γ

(v
r
− g

v

)
,

ψ̇ =
1

mv cos γL sin(β) + v

r cos θ cos γ sinψ sin θ,

q ≤ qU ,

where the aerodynamic heating on the vehicle wing leading edge is q = qaqr and the dynamic variables are

h altitude (ft), γ flight path angle (rad),

ϕ longitude (rad), ψ azimuth (rad),

θ latitude (rad), α angle of attack (rad),

v velocity (ft/sec), β bank angle (rad).

The aerodynamic and atmospheric forces on the vehicle are specified by the following quantities (English units):

packages/InfiniteOpt.md
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D =
1

2
cDSρv

2, a0 = −0.20704,

L =
1

2
cLSρv

2, a1 = 0.029244,

g = µ/r2, µ = 0.14076539× 1017,

r = Re + h, b0 = 0.07854,

ρ = ρ0 exp[−h/hr], b1 = −0.61592× 10−2,

ρ0 = 0.002378, b2 = 0.621408× 10−3,

hr = 23800, qr = 17700
√
ρ(0.0001v)3.07,

cL = a0 + a1α̂, qa = c0 + c1α̂+ c2α̂
2 + c3α̂

3,

cD = b0 + b1α̂+ b2α̂
2, c0 = 1.0672181,

α̂ = 180α/π, c1 = −0.19213774× 10−1,

Re = 20902900, c2 = 0.21286289× 10−3,

S = 2690, c3 = −0.10117249× 10−5.

The reentry trajectory begins at an altitude where the aerodynamic forces are quite small with a weight of
w = 203000 (lb) and mass m = w/g0 (slug), where g0 = 32.174 (ft/sec2). The initial conditions are as
follows:

h = 260000 ft, v = 25600 ft/sec,

ϕ = 0 deg, γ = −1 deg,

θ = 0 deg, ψ = 90 deg.

The final point on the reentry trajectory occurs at the unknown (free) time tF , at the so-called terminal area
energy management (TAEM) interface, which is defined by the conditions

h = 80000 ft, v = 2500 ft/sec, γ = −5 deg.

As explained in the book, our goal is to maximize the final cross-range, which is equivalent to maximizing the
final latitude of the vehicle, that is, J = θ(tF ).

Approach

We will use a discretized model of time, with a fixed number of discretized points, n. The decision variables at
each point are going to be the state of the vehicle and the controls commanded to it. In addition, we will also
make each time step size∆t a decision variable; that way, we can either fix the time step size easily, or allow
the solver to fine-tune the duration between each adjacent pair of points. Finally, in order to approximate the
derivatives of the problem dynamics, we will use either rectangular or trapezoidal integration.

Warning

Do not try to actually land a Space Shuttle using this notebook. There's no mesh refinement going on,
which can lead to unrealistic trajectories having position and velocity errors with orders of magnitude
104 ft and 102 ft/sec, respectively.

http://en.wikipedia.org/wiki/Trapezoidal_rule
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Figure 7.1: Max cross-range shuttle reentry

# Global variables
const w = 203000.0 # weight (lb)
const g₀ = 32.174 # acceleration (ft/sec^2)
const m = w / g₀ # mass (slug)

# Aerodynamic and atmospheric forces on the vehicle
const ρ₀ = 0.002378
const hᵣ = 23800.0
const Rₑ = 20902900.0
const μ = 0.14076539e17
const S = 2690.0
const a₀ = -0.20704
const a₁ = 0.029244
const b₀ = 0.07854
const b₁ = -0.61592e-2
const b₂ = 0.621408e-3
const c₀ = 1.0672181
const c₁ = -0.19213774e-1
const c₂ = 0.21286289e-3
const c₃ = -0.10117249e-5

# Initial conditions
const h_s = 2.6 # altitude (ft) / 1e5
const ϕ_s = deg2rad(0) # longitude (rad)
const θ_s = deg2rad(0) # latitude (rad)
const v_s = 2.56 # velocity (ft/sec) / 1e4
const γ_s = deg2rad(-1) # flight path angle (rad)
const ψ_s = deg2rad(90) # azimuth (rad)
const α_s = deg2rad(0) # angle of attack (rad)
const β_s = deg2rad(0) # bank angle (rad)
const t_s = 1.00 # time step (sec)

# Final conditions, the so-called Terminal Area Energy Management (TAEM)
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const h_t = 0.8 # altitude (ft) / 1e5
const v_t = 0.25 # velocity (ft/sec) / 1e4
const γ_t = deg2rad(-5) # flight path angle (rad)

# Number of mesh points (knots) to be used
const n = 503

# Integration scheme to be used for the dynamics
const integration_rule = "rectangular"

Choose a good linear solver

Picking a good linear solver is extremely important to maximize the performance of nonlinear
solvers. For the best results, it is advised to experiment different linear solvers.

For example, the linear solver MA27 is outdated and can be quite slow. MA57 is a much better alternative,
especially for highly sparse problems (such as trajectory optimization problems).

# Uncomment the lines below to pass user options to the solver
user_options = (
# "mu_strategy" => "monotone",
# "linear_solver" => "ma27",
)

# Create JuMP model, using Ipopt as the solver
model = Model(optimizer_with_attributes(Ipopt.Optimizer, user_options...))

@variables(model, begin
0 ≤ scaled_h[1:n] # altitude (ft) / 1e5
ϕ[1:n] # longitude (rad)
deg2rad(-89) ≤ θ[1:n] ≤ deg2rad(89) # latitude (rad)
1e-4 ≤ scaled_v[1:n] # velocity (ft/sec) / 1e4
deg2rad(-89) ≤ γ[1:n] ≤ deg2rad(89) # flight path angle (rad)
ψ[1:n] # azimuth (rad)
deg2rad(-90) ≤ α[1:n] ≤ deg2rad(90) # angle of attack (rad)
deg2rad(-89) ≤ β[1:n] ≤ deg2rad(1) # bank angle (rad)
# 3.5 ≤ Δt[1:n] ≤ 4.5 # time step (sec)
Δt[1:n] == 4.0 # time step (sec)

end);
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Info

Above you can find two alternatives for the Δt variables.

The first one, 3.5 ≤ Δt[1:n] ≤ 4.5 (currently commented), allows some wiggle room for the solver to
adjust the time step size between pairs of mesh points. This is neat because it allows the solver to figure
out which parts of the flight require more dense discretization than others. (Remember, the number
of discretized points is fixed, and this example does not implement mesh refinement.) However, this
makes the problem more complex to solve, and therefore leads to a longer computation time.

The second line, Δt[1:n] == 4.0, fixes the duration of every time step to exactly 4.0 seconds. This
allows the problem to be solved faster. However, to do this we need to know beforehand that the
close-to-optimal total duration of the flight is ~2009 seconds. Therefore, if we split the total duration
in slices of 4.0 seconds, we know that we require n = 503 knots to discretize the whole trajectory.

# Fix initial conditions
fix(scaled_h[1], h_s; force = true)
fix(ϕ[1], ϕ_s; force = true)
fix(θ[1], θ_s; force = true)
fix(scaled_v[1], v_s; force = true)
fix(γ[1], γ_s; force = true)
fix(ψ[1], ψ_s; force = true)

# Fix final conditions
fix(scaled_h[n], h_t; force = true)
fix(scaled_v[n], v_t; force = true)
fix(γ[n], γ_t; force = true)

# Initial guess: linear interpolation between boundary conditions
x_s = [h_s, ϕ_s, θ_s, v_s, γ_s, ψ_s, α_s, β_s, t_s]
x_t = [h_t, ϕ_s, θ_s, v_t, γ_t, ψ_s, α_s, β_s, t_s]
interp_linear = Interpolations.LinearInterpolation([1, n], [x_s, x_t])
initial_guess = mapreduce(transpose, vcat, interp_linear.(1:n))
set_start_value.(all_variables(model), vec(initial_guess))

# Functions to restore `h` and `v` to their true scale
@expression(model, h[j = 1:n], scaled_h[j] * 1e5)
@expression(model, v[j = 1:n], scaled_v[j] * 1e4)

# Helper functions
@expression(model, c_L[j = 1:n], a₀ + a₁ * rad2deg(α[j]))
@expression(model, c_D[j = 1:n], b₀ + b₁ * rad2deg(α[j]) + b₂ * rad2deg(α[j])^2)
@expression(model, ρ[j = 1:n], ρ₀ * exp(-h[j] / hᵣ))
@expression(model, D[j = 1:n], 0.5 * c_D[j] * S * ρ[j] * v[j]^2)
@expression(model, L[j = 1:n], 0.5 * c_L[j] * S * ρ[j] * v[j]^2)
@expression(model, r[j = 1:n], Rₑ + h[j])
@expression(model, g[j = 1:n], μ / r[j]^2)

# Motion of the vehicle as a differential-algebraic system of equations (DAEs)
@expression(model, δh[j = 1:n], v[j] * sin(γ[j]))
@expression(

model,
δϕ[j = 1:n],
(v[j] / r[j]) * cos(γ[j]) * sin(ψ[j]) / cos(θ[j])

)



CHAPTER 7. NONLINEAR PROGRAMS 348

@expression(model, δθ[j = 1:n], (v[j] / r[j]) * cos(γ[j]) * cos(ψ[j]))
@expression(model, δv[j = 1:n], -(D[j] / m) - g[j] * sin(γ[j]))
@expression(

model,
δγ[j = 1:n],
(L[j] / (m * v[j])) * cos(β[j]) +
cos(γ[j]) * ((v[j] / r[j]) - (g[j] / v[j]))

)
@expression(

model,
δψ[j = 1:n],
(1 / (m * v[j] * cos(γ[j]))) * L[j] * sin(β[j]) +
(v[j] / (r[j] * cos(θ[j]))) * cos(γ[j]) * sin(ψ[j]) * sin(θ[j])

)

# System dynamics
for j in 2:n

i = j - 1 # index of previous knot

if integration_rule == "rectangular"
# Rectangular integration
@constraint(model, h[j] == h[i] + Δt[i] * δh[i])
@constraint(model, ϕ[j] == ϕ[i] + Δt[i] * δϕ[i])
@constraint(model, θ[j] == θ[i] + Δt[i] * δθ[i])
@constraint(model, v[j] == v[i] + Δt[i] * δv[i])
@constraint(model, γ[j] == γ[i] + Δt[i] * δγ[i])
@constraint(model, ψ[j] == ψ[i] + Δt[i] * δψ[i])

elseif integration_rule == "trapezoidal"
# Trapezoidal integration
@constraint(model, h[j] == h[i] + 0.5 * Δt[i] * (δh[j] + δh[i]))
@constraint(model, ϕ[j] == ϕ[i] + 0.5 * Δt[i] * (δϕ[j] + δϕ[i]))
@constraint(model, θ[j] == θ[i] + 0.5 * Δt[i] * (δθ[j] + δθ[i]))
@constraint(model, v[j] == v[i] + 0.5 * Δt[i] * (δv[j] + δv[i]))
@constraint(model, γ[j] == γ[i] + 0.5 * Δt[i] * (δγ[j] + δγ[i]))
@constraint(model, ψ[j] == ψ[i] + 0.5 * Δt[i] * (δψ[j] + δψ[i]))

else
@error "Unexpected integration rule '$(integration_rule)'"

end
end

# Objective: Maximize cross-range
@objective(model, Max, θ[n])

set_silent(model) # Hide solver's verbose output
optimize!(model) # Solve for the control and state
assert_is_solved_and_feasible(model)

# Show final cross-range of the solution
println(

"Final latitude θ = ",
round(objective_value(model) |> rad2deg; digits = 2),
"°",

)
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Final latitude θ = 34.18°

Plotting the results

Let's plot the results to visualize the optimal trajectory:

using Plots
ts = cumsum([0; value.(Δt)])[1:end-1]
plt_altitude = plot(

ts,
value.(scaled_h);
legend = nothing,
title = "Altitude (100,000 ft)",

)
plt_longitude =

plot(ts, rad2deg.(value.(ϕ)); legend = nothing, title = "Longitude (deg)")
plt_latitude =

plot(ts, rad2deg.(value.(θ)); legend = nothing, title = "Latitude (deg)")
plt_velocity = plot(

ts,
value.(scaled_v);
legend = nothing,
title = "Velocity (1000 ft/sec)",

)
plt_flight_path =

plot(ts, rad2deg.(value.(γ)); legend = nothing, title = "Flight Path (deg)")
plt_azimuth =

plot(ts, rad2deg.(value.(ψ)); legend = nothing, title = "Azimuth (deg)")

plot(
plt_altitude,
plt_velocity,
plt_longitude,
plt_flight_path,
plt_latitude,
plt_azimuth;
layout = grid(3, 2),
linewidth = 2,
size = (700, 700),

)
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function q(h, v, a)
ρ(h) = ρ₀ * exp(-h / hᵣ)
qᵣ(h, v) = 17700 * √ρ(h) * (0.0001 * v)^3.07
qₐ(a) = c₀ + c₁ * rad2deg(a) + c₂ * rad2deg(a)^2 + c₃ * rad2deg(a)^3
# Aerodynamic heating on the vehicle wing leading edge
return qₐ(a) * qᵣ(h, v)

end

plt_attack_angle = plot(
ts[1:end-1],
rad2deg.(value.(α)[1:end-1]);
legend = nothing,
title = "Angle of Attack (deg)",

)
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plt_bank_angle = plot(
ts[1:end-1],
rad2deg.(value.(β)[1:end-1]);
legend = nothing,
title = "Bank Angle (deg)",

)
plt_heating = plot(

ts,
q.(value.(scaled_h) * 1e5, value.(scaled_v) * 1e4, value.(α));
legend = nothing,
title = "Heating (BTU/ft/ft/sec)",

)

plot(
plt_attack_angle,
plt_bank_angle,
plt_heating;
layout = grid(3, 1),
linewidth = 2,
size = (700, 700),

)
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plot(
rad2deg.(value.(ϕ)),
rad2deg.(value.(θ)),
value.(scaled_h);
linewidth = 2,
legend = nothing,
title = "Space Shuttle Reentry Trajectory",
xlabel = "Longitude (deg)",
ylabel = "Latitude (deg)",
zlabel = "Altitude (100,000 ft)",

)



CHAPTER 7. NONLINEAR PROGRAMS 353



Chapter 8

Conic programs

8.1 Introduction

Conic programs are a class of convex nonlinear optimization problems which use cones to represent the non-
linearities. They have the form:

min
x∈Rn

f0(x) (8.1)

s.t. fj(x) ∈ Sj j = 1 . . .m (8.2)

Mixed-integer conic programs (MICPs) are extensions of conic programs in which some (or all) of the decision
variables take discrete values.

How to choose a solver

JuMP supports a range of conic solvers, although support differs on what types of cones each solver supports. In
the list of Supported solvers, "SOCP" denotes solvers supporting second-order cones and "SDP" denotes solvers
supporting semidefinite cones. In addition, solvers such as SCS and Mosek have support for the exponential
cone. Moreover, due to the bridging system in MathOptInterface, many of these solvers support a much wider
range of exotic cones than they natively support. Solvers supporting discrete variables start with "(MI)" in the
list of Supported solvers.

Tip

Duality plays a large role in solving conic optimization models. Depending on the solver, it can be more
efficient to solve the dual instead of the primal. If performance is an issue, see the Dualization tutorial
for more details.

How these tutorials are structured

Having a high-level overview of how this part of the documentation is structured will help you know where to
look for certain things.

• The following tutorials are worked examples that present a problem in words, then formulate it in math-
ematics, and then solve it in JuMP. This usually involves some sort of visualization of the solution. Start
here if you are new to JuMP.

354

https://en.wikipedia.org/wiki/Conic_optimization
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– Example: experiment design

– Example: logistic regression

• The Modeling with cones tutorial contains a number of helpful reformulations and tricks you can use
when modeling conic programs. Look here if you are stuck trying to formulate a problem as a conic
program.

• The remaining tutorials are less verbose and styled in the form of short code examples. These tutorials
have less explanation, but may contain useful code snippets, particularly if they are similar to a problem
you are trying to solve.

8.2 Modeling with cones

This tutorial was generated using Literate.jl. Download the source as a .jl file.

This tutorial was originally contributed by Arpit Bhatia.

The purpose of this tutorial is to show how you can model various common problems using conic optimization.

Tip

A good resource for learning more about functions which can be modeled using cones is the MOSEK
Modeling Cookbook.

Required packages

This tutorial uses the following packages:

using JuMP
import Clarabel
import LinearAlgebra
import MathOptInterface as MOI

Background theory

A subset C of a vector space V is a cone if ∀x ∈ C and positive scalars λ > 0, the product λx ∈ C.

A cone C is a convex cone if λx+ (1− λ)y ∈ C, for any λ ∈ [0, 1], and any x, y ∈ C.

Conic programming problems are convex optimization problems in which a convex function is minimized over
the intersection of an affine subspace and a convex cone. An example of a conic-form minimization problems,
in the primal form is:

min
x∈Rn

aT0 x+ b0

s.t. Aix+ bi ∈ Ci i = 1 . . .m

The corresponding dual problem is:

https://github.com/fredrikekre/Literate.jl
tutorials/conic/tips_and_tricks.jl
https://docs.mosek.com/modeling-cookbook/index.html
https://docs.mosek.com/modeling-cookbook/index.html
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max
y1,...,ym

−
m∑
i=1

bTi yi + b0

s.t. a0 −
m∑
i=1

AT
i yi = 0

yi ∈ C∗
i i = 1 . . .m

where each Ci is a closed convex cone and C∗
i is its dual cone.

Second-Order Cone

The SecondOrderCone (or Lorentz Cone) of dimension n is a cone of the form:

Ksoc = {(t, x) ∈ Rn : t ≥ ||x||2}

It is most commonly used to represent the L2-norm of the vector x:

model = Model(Clarabel.Optimizer)
set_silent(model)
@variable(model, x[1:3])
@variable(model, t)
@constraint(model, sum(x) == 1)
@constraint(model, [t; x] in SecondOrderCone())
@objective(model, Min, t)
optimize!(model)
assert_is_solved_and_feasible(model)
value(t), value.(x)

(0.5773502650695171, [0.3333333333333368, 0.3333333333333333, 0.3333333333333333])

Rotated Second-Order Cone

A Second-Order Cone rotated by π/4 in the (x1, x2) plane is called a RotatedSecondOrderCone. It is a cone
of the form:

Krsoc = {(t, u, x) ∈ Rn : 2tu ≥ ||x||22, t, u ≥ 0}

When u = 0.5, it represents the sum of squares of a vector x:

data = [1.0, 2.0, 3.0, 4.0]
target = [0.45, 1.04, 1.51, 1.97]
model = Model(Clarabel.Optimizer)
set_silent(model)
@variable(model, θ)
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@variable(model, t)
@expression(model, residuals, θ * data .- target)
@constraint(model, [t; 0.5; residuals] in RotatedSecondOrderCone())
@objective(model, Min, t)
optimize!(model)
assert_is_solved_and_feasible(model)
value(θ), value(t)

(0.49799999999999994, 0.004979997069489959)

Exponential Cone

The MOI.ExponentialCone is a set of the form:

Kexp = {(x, y, z) ∈ R3 : y exp(x/y) ≤ z, y > 0}

It can be used to model problems involving log and exp.

Exponential

To model exp(x) ≤ z, use (x, 1, z):

model = Model(Clarabel.Optimizer)
set_silent(model)
@variable(model, x == 1.5)
@variable(model, z)
@objective(model, Min, z)
@constraint(model, [x, 1, z] in MOI.ExponentialCone())
optimize!(model)
assert_is_solved_and_feasible(model)
value(z), exp(1.5)

(4.481689066110043, 4.4816890703380645)

Logarithm

To model x ≤ log(z), use (x, 1, z):

model = Model(Clarabel.Optimizer)
set_silent(model)
@variable(model, x)
@variable(model, z == 1.5)
@objective(model, Max, x)
@constraint(model, [x, 1, z] in MOI.ExponentialCone())
optimize!(model)
assert_is_solved_and_feasible(model)
value(x), log(1.5)
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(0.4054651080062003, 0.4054651081081644)

Log-sum-exp

To model t ≥ log (
∑
exi), use:

N = 3
x0 = rand(N)
model = Model(Clarabel.Optimizer)
set_silent(model)
@variable(model, x[i = 1:N] == x0[i])
@variable(model, t)
@objective(model, Min, t)
@variable(model, u[1:N])
@constraint(model, sum(u) <= 1)
@constraint(model, [i = 1:N], [x[i] - t, 1, u[i]] in MOI.ExponentialCone())
optimize!(model)
value(t), log(sum(exp.(x0)))

(1.4727722754754033, 1.472772274699489)

Entropy

The entropy maximization problem consists of maximizing the entropy function, H(x) = −x logx subject to
linear inequality constraints.

max −
n∑

i=1

xi logxi

s.t. 1⊤x = 1

Ax ≤ b

We can model this problem using an exponential cone by using the following transformation:

t ≤ −x logx ⇐⇒ t ≤ x log(1/x) ⇐⇒ (t, x, 1) ∈ Kexp

Thus, our problem becomes,

max 1T t

s.t. Ax ≤ b

1Tx = 1

(ti, xi, 1) ∈ Kexp ∀i = 1 . . . n
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m, n = 10, 15
A, b = randn(m, n), rand(m, 1)
model = Model(Clarabel.Optimizer)
set_silent(model)
@variable(model, t[1:n])
@variable(model, x[1:n])
@objective(model, Max, sum(t))
@constraint(model, sum(x) == 1)
@constraint(model, A * x .<= b)
@constraint(model, [i = 1:n], [t[i], x[i], 1] in MOI.ExponentialCone())
optimize!(model)
assert_is_solved_and_feasible(model)
objective_value(model)

2.6631503839586976

The MOI.ExponentialCone has a dual, the MOI.DualExponentialCone, that offers an alternative formulation
that can be more efficient for some formulations.

There is also the MOI.RelativeEntropyCone for explicitly encoding the relative entropy function

model = Model(Clarabel.Optimizer)
set_silent(model)
@variable(model, t)
@variable(model, x[1:n])
@objective(model, Max, -t)
@constraint(model, sum(x) == 1)
@constraint(model, A * x .<= b)
@constraint(model, [t; ones(n); x] in MOI.RelativeEntropyCone(2n + 1))
optimize!(model)
assert_is_solved_and_feasible(model)
objective_value(model)

2.6631503843096125

PowerCone

The MOI.PowerCone is a three-dimensional set parameterized by a scalar value α. It has the form:

Kp = {(x, y, z) ∈ R3 : xαy1−α ≥ |z|, x ≥ 0, y ≥ 0}

The power cone permits a number of reformulations. For example, when p > 1, we can model t ≥ xp using
the power cone (t, 1, x) with α = 1/p. Thus, to model t ≥ x3 with x ≥ 0
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model = Model(Clarabel.Optimizer)
set_silent(model)
@variable(model, t)
@variable(model, x >= 1.5)
@constraint(model, [t, 1, x] in MOI.PowerCone(1 / 3))
@objective(model, Min, t)
optimize!(model)
assert_is_solved_and_feasible(model)
value(t), value(x)

(3.3749999041156307, 1.499999996575596)

The MOI.PowerCone has a dual, the MOI.DualPowerCone, that offers an alternative formulation that can be
more efficient for some formulations.

P-Norm

The p-norm ||x||p =

(∑
i

|xi|p
) 1

p

can be modeled using MOI.PowerCones. See the Mosek Modeling Cookbook

for the derivation.

function p_norm(x::Vector, p)
N = length(x)
model = Model(Clarabel.Optimizer)
set_silent(model)
@variable(model, r[1:N])
@variable(model, t)
@constraint(model, [i = 1:N], [r[i], t, x[i]] in MOI.PowerCone(1 / p))
@constraint(model, sum(r) == t)
@objective(model, Min, t)
optimize!(model)
assert_is_solved_and_feasible(model)
return value(t)

end

x = rand(5);
LinearAlgebra.norm(x, 4), p_norm(x, 4)

(0.9316922467512209, 0.9316922539087699)

Positive Semidefinite Cone

The set of positive semidefinite matrices (PSD) of dimension n form a cone in Rn. We write this set mathe-
matically as:

Sn
+ = {X ∈ Sn | zTXz ≥ 0, ∀z ∈ Rn}.

https://docs.mosek.com/modeling-cookbook/powo.html#p-norm-cones
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A PSD cone is represented in JuMP using the MOI sets PositiveSemidefiniteConeTriangle (for upper triangle
of a PSDmatrix) and PositiveSemidefiniteConeSquare (for a complete PSDmatrix). However, it is preferable
to use the PSDCone shortcut as illustrated below.

Example: largest eigenvalue of a symmetric matrix

SupposeA has eigenvalues λ1 ≥ λ2 . . . ≥ λn. Then the matrix tI−A has eigenvalues t−λ1, t−λ2, . . . , t−
λn. Note that tI −A is PSD exactly when all these eigenvalues are non-negative, and this happens for values
t ≥ λ1. Thus, we can model the problem of finding the largest eigenvalue of a symmetric matrix as:

λ1 = min t
s.t. tI −A � 0

A = [3 2 4; 2 0 2; 4 2 3]
I = Matrix{Float64}(LinearAlgebra.I, 3, 3)
model = Model(Clarabel.Optimizer)
set_silent(model)
@variable(model, t)
@objective(model, Min, t)
@constraint(model, t .* I - A in PSDCone())
optimize!(model)
assert_is_solved_and_feasible(model)
objective_value(model)

7.999999998730902

GeometricMeanCone

The MOI.GeometricMeanCone is a cone of the form:

Kgeo = {(t, x) ∈ Rn : x ≥ 0, t ≤ n−1
√
x1x2 · · ·xn−1}

model = Model(Clarabel.Optimizer)
set_silent(model)
@variable(model, x[1:4])
@variable(model, t)
@constraint(model, sum(x) == 1)
@constraint(model, [t; x] in MOI.GeometricMeanCone(5))
optimize!(model)
value(t), value.(x)

(0.0, [0.15913987260919943, 0.2007683986913607, 0.320045863413361, 0.3200458634133662])



CHAPTER 8. CONIC PROGRAMS 362

RootDetCone

The MOI.RootDetConeSquare is a cone of the form:

K = {(t,X) ∈ R1+d2

: t ≤ det(X)
1
d }

model = Model(Clarabel.Optimizer)
set_silent(model)
@variable(model, t)
@variable(model, X[1:2, 1:2])
@objective(model, Max, t)
@constraint(model, [t; vec(X)] in MOI.RootDetConeSquare(2))
@constraint(model, X .== [2 1; 1 3])
optimize!(model)
assert_is_solved_and_feasible(model)
value(t), sqrt(LinearAlgebra.det(value.(X)))

(2.236067936397333, 2.236067965376734)

If X is symmetric, then you can use MOI.RootDetConeTriangle instead. This can be more efficient because
the solver does not need to add additional constraints to ensure X is symmetric.

When forming the function, use triangle_vec to obtain the column-wise upper triangle of the matrix as a
vector in the order that JuMP requires.

model = Model(Clarabel.Optimizer)
set_silent(model)
@variable(model, t)
@variable(model, X[1:2, 1:2], Symmetric)
@objective(model, Max, t)
@constraint(model, [t; triangle_vec(X)] in MOI.RootDetConeTriangle(2))
@constraint(model, X .== [2 1; 1 3])
optimize!(model)
value(t), sqrt(LinearAlgebra.det(value.(X)))

(2.2360679358702282, 2.236067965376757)

LogDetCone

The MOI.LogDetConeSquare is a cone of the form:

K = {(t, u,X) ∈ R2+d2

: t ≤ u log(det(X/u))}
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model = Model(Clarabel.Optimizer)
set_silent(model)
@variable(model, t)
@variable(model, u)
@variable(model, X[1:2, 1:2])
@objective(model, Max, t)
@constraint(model, [t; u; vec(X)] in MOI.LogDetConeSquare(2))
@constraint(model, X .== [2 1; 1 3])
@constraint(model, u == 0.5)
optimize!(model)
assert_is_solved_and_feasible(model)
value(t), 0.5 * log(LinearAlgebra.det(value.(X) ./ 0.5))

(1.4978661147944674, 1.4978661335845644)

If X is symmetric, then you can use MOI.LogDetConeTriangle instead. This can be more efficient because the
solver does not need to add additional constraints to ensure X is symmetric.

When forming the function, use triangle_vec to obtain the column-wise upper triangle of the matrix as a
vector in the order that JuMP requires.

model = Model(Clarabel.Optimizer)
set_silent(model)
@variable(model, t)
@variable(model, u)
@variable(model, X[1:2, 1:2], Symmetric)
@objective(model, Max, t)
@constraint(model, [t; u; triangle_vec(X)] in MOI.LogDetConeTriangle(2))
@constraint(model, X .== [2 1; 1 3])
@constraint(model, u == 0.5)
optimize!(model)
assert_is_solved_and_feasible(model)
value(t), 0.5 * log(LinearAlgebra.det(value.(X) ./ 0.5))

(1.4978661136972233, 1.497866133584564)

NormNuclearCone

The MOI.NormNuclearCone is a cone of the form:

K = {(t,X) ∈ R1+m·n : t ≥
∑
i

σi(X)}

where σi is the i singular value of X .
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model = Model(Clarabel.Optimizer)
set_silent(model)
@variable(model, t)
@variable(model, X[1:2, 1:3])
@objective(model, Min, t)
@constraint(model, [t; vec(X)] in MOI.NormNuclearCone(2, 3))
@constraint(model, X .== [1 2 3; 4 5 6])
optimize!(model)
assert_is_solved_and_feasible(model)
value(t), sum(LinearAlgebra.svdvals(value.(X)))

(10.280901634062255, 10.280901636369206)

NormSpectralCone

The MOI.NormSpectralCone is a cone of the form:

K = {(t,X) ∈ R1+m·n : t ≥ max
i
σi(X)}

where σi is the i singular value of X .

model = Model(Clarabel.Optimizer)
set_silent(model)
@variable(model, t)
@variable(model, X[1:2, 1:3])
@objective(model, Min, t)
@constraint(model, [t; vec(X)] in MOI.NormSpectralCone(2, 3))
@constraint(model, X .== [1 2 3; 4 5 6])
optimize!(model)
assert_is_solved_and_feasible(model)
value(t), maximum(LinearAlgebra.svdvals(value.(X)))

(9.508031944583905, 9.508032000695724)

Other Cones and Functions

For other cones supported by JuMP, check out the MathOptInterface Manual.

8.3 Dualization

This tutorial was generated using Literate.jl. Download the source as a .jl file.

The purpose of this tutorial is to explain how to use Dualization.jl to improve the performance of some conic
optimization models.

There are two important takeaways:

https://jump.dev/MathOptInterface.jl/stable
https://github.com/fredrikekre/Literate.jl
tutorials/conic/dualization.jl
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1. JuMP reformulates problems to meet the input requirements of the solver, potentially increasing the
problem size by adding slack variables and constraints.

2. Solving the dual of a conic model can be more efficient than solving the primal.

Dualization.jl is a package which fixes these problems, allowing you to solve the dual instead of the primal with
a one-line change to your code.

Required packages

This tutorial uses the following packages:

using JuMP
import Dualization
import LinearAlgebra
import SCS

Background

Conic optimization solvers typically accept one of two input formulations.

The first is the standard conic form:

min
x∈Rn

c⊤x (8.3)

s.t. Ax = b (8.4)

x ∈ K (8.5)

in which we have a set of linear equality constraints Ax = b and the variables belong to a cone K.

The second is the geometric conic form:

min
x∈Rn

c⊤x (8.6)

s.t. Ax− b ∈ K (8.7)

in which an affine function Ax− b belongs to a cone K and the variables are free.

It is trivial to convert between these two representations, for example, to go from the geometric conic form to
the standard conic form we introduce slack variables y:

min
x∈Rn

c⊤x (8.8)

s.t.
[
A −I

] [x
y

]
= b (8.9)[

x
y

]
∈ Rn ×K (8.10)
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and to go from the standard conic form to the geometric conic form, we can rewrite the equality constraint as
a function belonging to the {0} cone:

min
x∈Rn

c⊤x (8.11)

s.t.
[
A
I

]
x−

[
b
0

]
∈ {0} × K (8.12)

From a theoretical perspective, the two formulations are equivalent, and if you implement a model in the
standard conic form and pass it to a geometric conic form solver (or vice versa), then JuMP will automatically
reformulate the problem into the correct formulation.

From a practical perspective though, the reformulations are problematic because the additional slack variables
and constraints can make the problem much larger and therefore harder to solve.

You should also note many problems contain a mix of conic constraints and variables, and so they do not neatly
fall into one of the two formulations. In these cases, JuMP reformulates only the variables and constraints as
necessary to convert the problem into the desired form.

Primal and dual formulations

Duality plays a large role in conic optimization. For a detailed description of conic duality, see Duality.

A useful observation is that if the primal problem is in standard conic form, then the dual problem is in geometric
conic form, and vice versa. Moreover, the primal and dual may have a different number of variables and
constraints, although which one is smaller depends on the problem. Therefore, instead of reformulating the
problem from one form to the other, it can be more efficient to solve the dual instead of the primal.

To demonstrate, we use a variation of the Maximum cut via SDP example.

The primal formulation (in standard conic form) is:

model_primal = Model()
@variable(model_primal, X[1:2, 1:2], PSD)
@objective(model_primal, Max, sum([1 -1; -1 1] .* X))
@constraint(model_primal, primal_c[i = 1:2], 1 - X[i, i] == 0)
print(model_primal)

Max X[1,1] - 2 X[1,2] + X[2,2]
Subject to
primal_c[1] : -X[1,1] = -1
primal_c[2] : -X[2,2] = -1
[X[1,1] X[1,2]
⋯ X[2,2]] ∈ PSDCone()

This problem has three scalar decision variables (the matrix X is symmetric), two scalar equality constraints,
and a constraint that X is positive semidefinite.

The dual of model_primal is:
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model_dual = Model()
@variable(model_dual, y[1:2])
@objective(model_dual, Min, sum(y))
@constraint(

model_dual,
dual_c,
LinearAlgebra.Symmetric([y[1]-1 1; 1 y[2]-1]) in PSDCone(),

)
print(model_dual)

Min y[1] + y[2]
Subject to
dual_c : [y[1] - 1 1
⋯ y[2] - 1] ∈ PSDCone()

This problem has two scalar decision variables, and a 2x2 positive semidefinite matrix constraint.

Tip

If you haven't seen conic duality before, try deriving the dual problem based on the description in
Duality. You'll need to know that the dual cone of PSDCone is the PSDCone.

When we solve model_primal with SCS.Optimizer, SCS reports three variables (variables n: 3), five rows
in the constraint matrix (constraints m: 5), and five non-zeros in the matrix (nnz(A): 5):

set_optimizer(model_primal, SCS.Optimizer)
optimize!(model_primal)
assert_is_solved_and_feasible(model_primal; dual = true)

------------------------------------------------------------------
^^I SCS v3.2.7 - Splitting Conic Solver
^^I(c) Brendan O'Donoghue, Stanford University, 2012
------------------------------------------------------------------
problem: variables n: 3, constraints m: 5
cones: ^^I z: primal zero / dual free vars: 2
^^I s: psd vars: 3, ssize: 1
settings: eps_abs: 1.0e-04, eps_rel: 1.0e-04, eps_infeas: 1.0e-07
^^I alpha: 1.50, scale: 1.00e-01, adaptive_scale: 1
^^I max_iters: 100000, normalize: 1, rho_x: 1.00e-06
^^I acceleration_lookback: 10, acceleration_interval: 10
^^I compiled with openmp parallelization enabled
lin-sys: sparse-direct-amd-qdldl
^^I nnz(A): 5, nnz(P): 0
------------------------------------------------------------------
iter | pri res | dua res | gap | obj | scale | time (s)
------------------------------------------------------------------

0| 1.65e+01 1.60e-01 5.09e+01 -2.91e+01 1.00e-01 1.02e-04
50| 1.74e-08 2.70e-10 4.88e-08 -4.00e+00 1.00e-01 1.78e-04

------------------------------------------------------------------
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status: solved
timings: total: 1.79e-04s = setup: 4.51e-05s + solve: 1.34e-04s
^^I lin-sys: 1.13e-05s, cones: 5.77e-05s, accel: 2.60e-06s
------------------------------------------------------------------
objective = -4.000000
------------------------------------------------------------------

(There are five rows in the constraint matrix because SCS expects problems in geometric conic form, and so
JuMP has reformulated the X, PSD variable constraint into the affine constraint X .+ 0 in PSDCone().)

The solution we obtain is:

value(X)

2×2 LinearAlgebra.Symmetric{Float64, Matrix{Float64}}:
1.0 -1.0
-1.0 1.0

dual(VariableInSetRef(X))

2×2 LinearAlgebra.Symmetric{Float64, Matrix{Float64}}:
1.0 1.0
1.0 1.0

dual.(primal_c)

2-element Vector{Float64}:
1.9999999997299085
1.9999999997299085

objective_value(model_primal)

3.9999999506359716

When we solve model_dual with SCS.Optimizer, SCS reports two variables (variables n: 2), three rows in
the constraint matrix (constraints m: 3), and two non-zeros in the matrix (nnz(A): 2):
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set_optimizer(model_dual, SCS.Optimizer)
optimize!(model_dual)
assert_is_solved_and_feasible(model_dual; dual = true)

------------------------------------------------------------------
^^I SCS v3.2.7 - Splitting Conic Solver
^^I(c) Brendan O'Donoghue, Stanford University, 2012
------------------------------------------------------------------
problem: variables n: 2, constraints m: 3
cones: ^^I s: psd vars: 3, ssize: 1
settings: eps_abs: 1.0e-04, eps_rel: 1.0e-04, eps_infeas: 1.0e-07
^^I alpha: 1.50, scale: 1.00e-01, adaptive_scale: 1
^^I max_iters: 100000, normalize: 1, rho_x: 1.00e-06
^^I acceleration_lookback: 10, acceleration_interval: 10
^^I compiled with openmp parallelization enabled
lin-sys: sparse-direct-amd-qdldl
^^I nnz(A): 2, nnz(P): 0
------------------------------------------------------------------
iter | pri res | dua res | gap | obj | scale | time (s)
------------------------------------------------------------------

0| 1.23e+01 1.00e+00 2.73e+01 -9.03e+00 1.00e-01 6.45e-05
50| 1.13e-07 1.05e-09 3.23e-07 4.00e+00 1.00e-01 1.39e-04

------------------------------------------------------------------
status: solved
timings: total: 1.40e-04s = setup: 2.89e-05s + solve: 1.11e-04s
^^I lin-sys: 8.93e-06s, cones: 4.83e-05s, accel: 2.62e-06s
------------------------------------------------------------------
objective = 4.000000
------------------------------------------------------------------

and the solution we obtain is:

dual(dual_c)

2×2 LinearAlgebra.Symmetric{Float64, Matrix{Float64}}:
1.0 -1.0
-1.0 1.0

value(dual_c)

2×2 LinearAlgebra.Symmetric{Float64, Matrix{Float64}}:
1.0 1.0
1.0 1.0



CHAPTER 8. CONIC PROGRAMS 370

value.(y)

2-element Vector{Float64}:
2.000000159272681
2.000000159272681

objective_value(model_dual)

4.000000318545362

This particular problem is small enough that it isn't meaningful to compare the solve times, but in general,
we should expect model_dual to solve faster than model_primal because it contains fewer variables and
constraints. The difference is particularly noticeable on large-scale optimization problems.

dual_optimizer

Manually deriving the conic dual is difficult and error-prone. The packageDualization.jl provides the Dualization.dual_optimizer
meta-solver, which wraps any MathOptInterface-compatible solver in an interface that automatically formu-
lates and solves the dual of an input problem.

To demonstrate, we use Dualization.dual_optimizer to solve model_primal:

set_optimizer(model_primal, Dualization.dual_optimizer(SCS.Optimizer))
optimize!(model_primal)
assert_is_solved_and_feasible(model_primal; dual = true)

------------------------------------------------------------------
^^I SCS v3.2.7 - Splitting Conic Solver
^^I(c) Brendan O'Donoghue, Stanford University, 2012
------------------------------------------------------------------
problem: variables n: 2, constraints m: 3
cones: ^^I s: psd vars: 3, ssize: 1
settings: eps_abs: 1.0e-04, eps_rel: 1.0e-04, eps_infeas: 1.0e-07
^^I alpha: 1.50, scale: 1.00e-01, adaptive_scale: 1
^^I max_iters: 100000, normalize: 1, rho_x: 1.00e-06
^^I acceleration_lookback: 10, acceleration_interval: 10
^^I compiled with openmp parallelization enabled
lin-sys: sparse-direct-amd-qdldl
^^I nnz(A): 2, nnz(P): 0
------------------------------------------------------------------
iter | pri res | dua res | gap | obj | scale | time (s)
------------------------------------------------------------------

0| 1.23e+01 1.00e+00 2.73e+01 -9.03e+00 1.00e-01 6.57e-05
50| 1.13e-07 1.05e-09 3.23e-07 4.00e+00 1.00e-01 1.40e-04

------------------------------------------------------------------
status: solved
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timings: total: 1.40e-04s = setup: 2.93e-05s + solve: 1.11e-04s
^^I lin-sys: 8.91e-06s, cones: 4.83e-05s, accel: 2.59e-06s
------------------------------------------------------------------
objective = 4.000000
------------------------------------------------------------------

The performance is the same as if we solved model_dual, and the correct solution is returned to X:

value(X)

2×2 LinearAlgebra.Symmetric{Float64, Matrix{Float64}}:
1.0 -1.0
-1.0 1.0

dual(VariableInSetRef(X))

2×2 LinearAlgebra.Symmetric{Float64, Matrix{Float64}}:
1.0 1.0
1.0 1.0

dual.(primal_c)

2-element Vector{Float64}:
2.000000159272681
2.000000159272681

Moreover, if we use dual_optimizer on model_dual, then we get the same performance as if we had solved
model_primal:

set_optimizer(model_dual, Dualization.dual_optimizer(SCS.Optimizer))
optimize!(model_dual)
assert_is_solved_and_feasible(model_dual; dual = true)

------------------------------------------------------------------
^^I SCS v3.2.7 - Splitting Conic Solver
^^I(c) Brendan O'Donoghue, Stanford University, 2012
------------------------------------------------------------------
problem: variables n: 3, constraints m: 5
cones: ^^I z: primal zero / dual free vars: 2
^^I s: psd vars: 3, ssize: 1
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settings: eps_abs: 1.0e-04, eps_rel: 1.0e-04, eps_infeas: 1.0e-07
^^I alpha: 1.50, scale: 1.00e-01, adaptive_scale: 1
^^I max_iters: 100000, normalize: 1, rho_x: 1.00e-06
^^I acceleration_lookback: 10, acceleration_interval: 10
^^I compiled with openmp parallelization enabled
lin-sys: sparse-direct-amd-qdldl
^^I nnz(A): 5, nnz(P): 0
------------------------------------------------------------------
iter | pri res | dua res | gap | obj | scale | time (s)
------------------------------------------------------------------

0| 1.65e+01 1.60e-01 5.09e+01 -2.91e+01 1.00e-01 6.87e-05
50| 1.74e-08 2.70e-10 4.88e-08 -4.00e+00 1.00e-01 1.43e-04

------------------------------------------------------------------
status: solved
timings: total: 1.44e-04s = setup: 2.98e-05s + solve: 1.15e-04s
^^I lin-sys: 1.04e-05s, cones: 4.86e-05s, accel: 2.49e-06s
------------------------------------------------------------------
objective = -4.000000
------------------------------------------------------------------

dual(dual_c)

2×2 LinearAlgebra.Symmetric{Float64, Matrix{Float64}}:
1.0 -1.0
-1.0 1.0

value(dual_c)

2×2 LinearAlgebra.Symmetric{Float64, Matrix{Float64}}:
1.0 1.0
1.0 1.0

value.(y)

2-element Vector{Float64}:
1.9999999997299085
1.9999999997299085

A mixed example

The Maximum cut via SDP example is nicely defined because the primal is in standard conic form and the
dual is in geometric conic form. However, many practical models contain a mix of the two formulations. One
example is The minimum distortion problem:
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D = [0 1 1 1; 1 0 2 2; 1 2 0 2; 1 2 2 0]
model = Model()
@variable(model, c²)
@variable(model, Q[1:4, 1:4], PSD)
@objective(model, Min, c²)
for i in 1:4, j in (i+1):4

@constraint(model, D[i, j]^2 <= Q[i, i] + Q[j, j] - 2 * Q[i, j])
@constraint(model, Q[i, i] + Q[j, j] - 2 * Q[i, j] <= c² * D[i, j]^2)

end
@constraint(model, Q[1, 1] == 0)
@constraint(model, c² >= 1)

c² ≥ 1

In this formulation, the Q variable is of the form x ∈ K, but there is also a free variable, c², a linear equality
constraint, Q[1, 1] == 0, and some linear inequality constraints. Rather than attempting to derive the for-
mulation that JuMP would pass to SCS and its dual, the simplest solution is to try solving the problem with and
without dual_optimizer to see which formulation is most efficient.

set_optimizer(model, SCS.Optimizer)
optimize!(model)

------------------------------------------------------------------
^^I SCS v3.2.7 - Splitting Conic Solver
^^I(c) Brendan O'Donoghue, Stanford University, 2012
------------------------------------------------------------------
problem: variables n: 11, constraints m: 24
cones: ^^I z: primal zero / dual free vars: 1
^^I l: linear vars: 13
^^I s: psd vars: 10, ssize: 1
settings: eps_abs: 1.0e-04, eps_rel: 1.0e-04, eps_infeas: 1.0e-07
^^I alpha: 1.50, scale: 1.00e-01, adaptive_scale: 1
^^I max_iters: 100000, normalize: 1, rho_x: 1.00e-06
^^I acceleration_lookback: 10, acceleration_interval: 10
^^I compiled with openmp parallelization enabled
lin-sys: sparse-direct-amd-qdldl
^^I nnz(A): 54, nnz(P): 0
------------------------------------------------------------------
iter | pri res | dua res | gap | obj | scale | time (s)
------------------------------------------------------------------

0| 4.73e+00 1.00e+00 2.92e+00 1.23e+00 1.00e-01 1.28e-04
150| 1.01e-04 3.07e-05 6.08e-05 1.33e+00 1.00e-01 7.00e-04

------------------------------------------------------------------
status: solved
timings: total: 7.01e-04s = setup: 6.30e-05s + solve: 6.38e-04s
^^I lin-sys: 1.03e-04s, cones: 3.88e-04s, accel: 3.54e-05s
------------------------------------------------------------------
objective = 1.333363
------------------------------------------------------------------
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set_optimizer(model, Dualization.dual_optimizer(SCS.Optimizer))
optimize!(model)

------------------------------------------------------------------
^^I SCS v3.2.7 - Splitting Conic Solver
^^I(c) Brendan O'Donoghue, Stanford University, 2012
------------------------------------------------------------------
problem: variables n: 14, constraints m: 24
cones: ^^I z: primal zero / dual free vars: 1
^^I l: linear vars: 13
^^I s: psd vars: 10, ssize: 1
settings: eps_abs: 1.0e-04, eps_rel: 1.0e-04, eps_infeas: 1.0e-07
^^I alpha: 1.50, scale: 1.00e-01, adaptive_scale: 1
^^I max_iters: 100000, normalize: 1, rho_x: 1.00e-06
^^I acceleration_lookback: 10, acceleration_interval: 10
^^I compiled with openmp parallelization enabled
lin-sys: sparse-direct-amd-qdldl
^^I nnz(A): 57, nnz(P): 0
------------------------------------------------------------------
iter | pri res | dua res | gap | obj | scale | time (s)
------------------------------------------------------------------

0| 3.71e+01 1.48e+00 2.23e+02 -1.13e+02 1.00e-01 9.77e-05
150| 1.57e-04 2.28e-05 2.08e-04 -1.33e+00 1.00e-01 6.98e-04

------------------------------------------------------------------
status: solved
timings: total: 6.99e-04s = setup: 7.46e-05s + solve: 6.24e-04s
^^I lin-sys: 1.21e-04s, cones: 4.01e-04s, accel: 2.04e-05s
------------------------------------------------------------------
objective = -1.333460
------------------------------------------------------------------

For this problem, SCS reports that the primal has variables n: 11, constraints m: 24 and that the dual
has variables n: 14, constraints m: 24. Therefore, we should probably use the primal formulation be-
cause it has fewer variables and the same number of constraints.

When to use dual_optimizer

Because it can make the problem larger or smaller, depending on the problem and the choice of solver, there is
no definitive rule on when you should use dual_optimizer. However, you should try dual_optimizer if your
conic optimization problem takes a long time to solve, or if you need to repeatedly solve similarly structured
problems with different data. In some cases solving the dual instead of the primal can make a large difference.

8.4 Arbitrary precision arithmetic

This tutorial was generated using Literate.jl. Download the source as a .jl file.

The purpose of this tutorial is to explain how to use a solver which supports arithmetic using a number type
other than Float64.

Required packages

This tutorial uses the following packages:

https://github.com/fredrikekre/Literate.jl
tutorials/conic/arbitrary_precision.jl
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using JuMP
import CDDLib
import Clarabel

Higher-precision arithmetic

To create a model with a number type other than Float64, use GenericModel with an optimizer which supports
the same number type:

model = GenericModel{BigFloat}(Clarabel.Optimizer{BigFloat})

A JuMP Model
├ value_type: BigFloat
├ solver: Clarabel
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none

The syntax for adding decision variables is the same as a normal JuMP model, except that values are converted
to BigFloat:

@variable(model, -1 <= x[1:2] <= sqrt(big"2"))

2-element Vector{GenericVariableRef{BigFloat}}:
x[1]
x[2]

Note that each x is now a GenericVariableRef{BigFloat}, which means that the value of x in a solution will
be a BigFloat.

The lower and upper bounds of the decision variables are also BigFloat:

lower_bound(x[1])

-1.0

typeof(lower_bound(x[1]))
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BigFloat

upper_bound(x[2])

1.414213562373095048801688724209698078569671875376948073176679737990732478462102

typeof(upper_bound(x[2]))

BigFloat

The syntax for adding constraints is the same as a normal JuMP model, except that coefficients are converted
to BigFloat:

@constraint(model, c, x[1] == big"2" * x[2])

x1 − 2.0x2 = 0.0

The function is a GenericAffExpr with BigFloat for the coefficient and variable types;

constraint = constraint_object(c)
typeof(constraint.func)

GenericAffExpr{BigFloat, GenericVariableRef{BigFloat}}

and the set is a MOI.EqualTo{BigFloat}:

typeof(constraint.set)

MathOptInterface.EqualTo{BigFloat}

The syntax for adding and objective is the same as a normal JuMP model, except that coefficients are converted
to BigFloat:

@objective(model, Min, 3x[1]^2 + 2x[2]^2 - x[1] - big"4" * x[2])

3.0x21 + 2.0x22 − x1 − 4.0x2
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typeof(objective_function(model))

GenericQuadExpr{BigFloat, GenericVariableRef{BigFloat}}

Here's the model we have built:

print(model)

Min 3.0 x[1]² + 2.0 x[2]² - x[1] - 4.0 x[2]
Subject to
c : x[1] - 2.0 x[2] = 0.0
x[1] ≥ -1.0
x[2] ≥ -1.0
x[1] ≤ 1.414213562373095048801688724209698078569671875376948073176679737990732478462102
x[2] ≤ 1.414213562373095048801688724209698078569671875376948073176679737990732478462102

Let's solve and inspect the solution:

optimize!(model)
assert_is_solved_and_feasible(model; dual = true)
solution_summary(model)

solution_summary(; result = 1, verbose = false)
├ solver_name : Clarabel
├ Termination
│ ├ termination_status : OPTIMAL
│ ├ result_count : 1
│ └ raw_status : SOLVED
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : FEASIBLE_POINT
│ ├ objective_value : -6.42857e-01
│ └ dual_objective_value : -6.42857e-01
└ Work counters
├ solve_time (sec) : 1.47647e-03
└ barrier_iterations : 5

The value of each decision variable is a BigFloat:

value.(x)

2-element Vector{BigFloat}:
0.4285714246558161076147072906813123533593766450416896337912086518811186790735189
0.2142857123279078924828007272730108809297577877991360649674411645247653239673801



CHAPTER 8. CONIC PROGRAMS 378

as well as other solution attributes like the objective value:

objective_value(model)

-0.6428571428571422964607590389935242587959291815638830868454759876473734138856053

and dual solution:

dual(c)

1.571428571977140845343978069015092190548250919787945065022059071052557047888032

This problem has an analytic solution of x = [3//7, 3//14]. Currently, our solution has an error of approxi-
mately 1e-9:

value.(x) .- [3 // 7, 3 // 14]

2-element Vector{BigFloat}:
-3.915612463813864137890116218069194783529738937637362776690309892355053792476207e-09
-1.957806393231484987012703404784527926486578220746844549760948961746906215408591e-09

But by reducing the tolerances, we can obtain a more accurate solution:

set_attribute(model, "tol_gap_abs", 1e-32)
set_attribute(model, "tol_gap_rel", 1e-32)
optimize!(model)
assert_is_solved_and_feasible(model)
value.(x) .- [3 // 7, 3 // 14]

2-element Vector{BigFloat}:
-4.120732596246374574619292889406407106157605546563218305172773512099467866195165e-32
-7.146646610782677659152301436088423235900252780211057986251367981130623553333357e-32

Rational arithmetic

In addition to higher-precision floating point number types like BigFloat, JuMP also supports solvers with exact
rational arithmetic. One example is CDDLib.jl, which supports the Rational{BigInt} number type:

model = GenericModel{Rational{BigInt}}(CDDLib.Optimizer{Rational{BigInt}})
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A JuMP Model
├ value_type: Rational{BigInt}
├ solver: CDD
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none

As before, we can create variables using rational bounds:

@variable(model, 1 // 7 <= x[1:2] <= 2 // 3)

2-element Vector{GenericVariableRef{Rational{BigInt}}}:
x[1]
x[2]

lower_bound(x[1])

1//7

typeof(lower_bound(x[1]))

Rational{BigInt}

As well as constraints:

@constraint(model, c1, (2 // 1) * x[1] + x[2] <= 1)

2//1x1 + x2 ≤ 1//1

@constraint(model, c2, x[1] + 3x[2] <= 9 // 4)

x1 + 3//1x2 ≤ 9//4

and objective functions:
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@objective(model, Max, sum(x))

x1 + x2

Here's the model we have built:

print(model)

Max x[1] + x[2]
Subject to
c1 : 2//1 x[1] + x[2] ≤ 1//1
c2 : x[1] + 3//1 x[2] ≤ 9//4
x[1] ≥ 1//7
x[2] ≥ 1//7
x[1] ≤ 2//3
x[2] ≤ 2//3

Let's solve and inspect the solution:

optimize!(model)
assert_is_solved_and_feasible(model)
solution_summary(model)

solution_summary(; result = 1, verbose = false)
├ solver_name : CDD
├ Termination
│ ├ termination_status : OPTIMAL
│ ├ result_count : 1
│ └ raw_status : Optimal
└ Solution (result = 1)
├ primal_status : FEASIBLE_POINT
├ dual_status : NO_SOLUTION
└ objective_value : 5//6

The optimal values are given in exact rational arithmetic:

value.(x)

2-element Vector{Rational{BigInt}}:
1//6
2//3
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objective_value(model)

5//6

value(c2)

13//6

8.5 Primal and dual warm-starts

This tutorial was generated using Literate.jl. Download the source as a .jl file.

Some conic solvers have the ability to set warm-starts for the primal and dual solution. This can improve
performance, particularly if you are repeatedly solving a sequence of related problems.

The purpose of this tutorial is to demonstrate how to write a function that sets the primal and dual starts as
the optimal solution stored in a model. It is intended to be a starting point for which you can modify if you
want to do something similar in your own code.

Tip

See set_start_values for a generic implementation of this function that was added to JuMP after this
tutorial was written.

Required packages

This tutorial uses the following packages:

using JuMP
import SCS

A basic function

The main component of this tutorial is the following function. The most important observation is that we cache
all of the solution values first, and then we modify the model second. (Alternating between querying a value
and modifying the model is not allowed in JuMP.)

function set_optimal_start_values(model::Model)
# Store a mapping of the variable primal solution
variable_primal = Dict(x => value(x) for x in all_variables(model))
# In the following, we loop through every constraint and store a mapping
# from the constraint index to a tuple containing the primal and dual
# solutions.
constraint_solution = Dict()

https://github.com/fredrikekre/Literate.jl
tutorials/conic/start_values.jl
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for (F, S) in list_of_constraint_types(model)
# We add a try-catch here because some constraint types might not
# support getting the primal or dual solution.
try

for ci in all_constraints(model, F, S)
constraint_solution[ci] = (value(ci), dual(ci))

end
catch

@info("Something went wrong getting $F-in-$S. Skipping")
end

end
# Now we can loop through our cached solutions and set the starting values.
for (x, primal_start) in variable_primal

set_start_value(x, primal_start)
end
for (ci, (primal_start, dual_start)) in constraint_solution

set_start_value(ci, primal_start)
set_dual_start_value(ci, dual_start)

end
return

end

set_optimal_start_values (generic function with 1 method)

Testing the function

To test our function, we use the following linear program:

model = Model(SCS.Optimizer)
@variable(model, x[1:3] >= 0)
@constraint(model, sum(x) <= 1)
@objective(model, Max, sum(i * x[i] for i in 1:3))
optimize!(model)
assert_is_solved_and_feasible(model)

------------------------------------------------------------------
^^I SCS v3.2.7 - Splitting Conic Solver
^^I(c) Brendan O'Donoghue, Stanford University, 2012
------------------------------------------------------------------
problem: variables n: 3, constraints m: 4
cones: ^^I l: linear vars: 4
settings: eps_abs: 1.0e-04, eps_rel: 1.0e-04, eps_infeas: 1.0e-07
^^I alpha: 1.50, scale: 1.00e-01, adaptive_scale: 1
^^I max_iters: 100000, normalize: 1, rho_x: 1.00e-06
^^I acceleration_lookback: 10, acceleration_interval: 10
^^I compiled with openmp parallelization enabled
lin-sys: sparse-direct-amd-qdldl
^^I nnz(A): 6, nnz(P): 0
------------------------------------------------------------------
iter | pri res | dua res | gap | obj | scale | time (s)
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------------------------------------------------------------------
0| 4.42e+01 1.00e+00 1.28e+02 -6.64e+01 1.00e-01 8.97e-05
75| 5.30e-07 2.63e-06 3.15e-07 -3.00e+00 1.00e-01 1.68e-04

------------------------------------------------------------------
status: solved
timings: total: 1.69e-04s = setup: 4.18e-05s + solve: 1.27e-04s
^^I lin-sys: 1.47e-05s, cones: 7.31e-06s, accel: 3.68e-06s
------------------------------------------------------------------
objective = -2.999998
------------------------------------------------------------------

By looking at the log, we can see that SCS took 75 iterations to find the optimal solution. Now we set the
optimal solution as our starting point:

set_optimal_start_values(model)

and we re-optimize:

optimize!(model)

------------------------------------------------------------------
^^I SCS v3.2.7 - Splitting Conic Solver
^^I(c) Brendan O'Donoghue, Stanford University, 2012
------------------------------------------------------------------
problem: variables n: 3, constraints m: 4
cones: ^^I l: linear vars: 4
settings: eps_abs: 1.0e-04, eps_rel: 1.0e-04, eps_infeas: 1.0e-07
^^I alpha: 1.50, scale: 1.00e-01, adaptive_scale: 1
^^I max_iters: 100000, normalize: 1, rho_x: 1.00e-06
^^I acceleration_lookback: 10, acceleration_interval: 10
^^I compiled with openmp parallelization enabled
lin-sys: sparse-direct-amd-qdldl
^^I nnz(A): 6, nnz(P): 0
------------------------------------------------------------------
iter | pri res | dua res | gap | obj | scale | time (s)
------------------------------------------------------------------

0| 1.90e-05 1.56e-06 9.14e-05 -3.00e+00 1.00e-01 8.30e-05
------------------------------------------------------------------
status: solved
timings: total: 8.39e-05s = setup: 4.01e-05s + solve: 4.37e-05s
^^I lin-sys: 7.92e-07s, cones: 1.83e-06s, accel: 3.00e-08s
------------------------------------------------------------------
objective = -3.000044
------------------------------------------------------------------

Now the optimization terminates after 0 iterations because our starting point is already optimal.

Caveats

Some solvers do not support setting some parts of the starting solution, for example, they may support only
set_start_value for variables.
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If you encounter an UnsupportedSupported attribute error for MOI.VariablePrimalStart, MOI.ConstraintPrimalStart,
or MOI.ConstraintDualStart, comment out the corresponding part of the set_optimal_start_values func-
tion.

8.6 Simple semidefinite programming examples

This tutorial was generated using Literate.jl. Download the source as a .jl file.

The purpose of this tutorial is to provide a collection of examples of small conic programs from the field of
semidefinite programming (SDP).

Required packages

This tutorial uses the following packages:

using JuMP
import Clarabel
import LinearAlgebra
import Plots
import Random
import Test

Maximum cut via SDP

The maximum cut problem is a classical example in graph theory, where we seek to partition a graph into
two complementary sets, such that the weight of edges between the two sets is maximized. This problem is
NP-hard, but it is possible to obtain an approximate solution using the semidefinite programming relaxation:

max 0.25L•X
s.t. diag(X) = e

X � 0

where L is the weighted graph Laplacian and e is a vector of ones. For more details, see (Goemans and
Williamson, 1995).

"""
svd_cholesky(X::AbstractMatrix, rtol)

Return the matrix `U` of the Cholesky decomposition of `X` as `U' * U`.
Note that we do not use the `LinearAlgebra.cholesky` function because it
requires the matrix to be positive definite while `X` may be only
positive *semi*definite.

We use the convention `U' * U` instead of `U * U'` to be consistent with
`LinearAlgebra.cholesky`.
"""
function svd_cholesky(X::AbstractMatrix)

F = LinearAlgebra.svd(X)
# We now have `X ≈ `F.U * D² * F.U'` where:
D = LinearAlgebra.Diagonal(sqrt.(F.S))
# So `X ≈ U' * U` where `U` is:

https://github.com/fredrikekre/Literate.jl
tutorials/conic/simple_examples.jl
https://en.wikipedia.org/wiki/Semidefinite_programming
https://en.wikipedia.org/wiki/Maximum_cut
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return (F.U * D)'
end

function solve_max_cut_sdp(weights)
N = size(weights, 1)
# Calculate the (weighted) Laplacian of the graph: L = D - W.
L = LinearAlgebra.Diagonal(weights * ones(N)) - weights
model = Model(Clarabel.Optimizer)
set_silent(model)
@variable(model, X[1:N, 1:N], PSD)
for i in 1:N

set_start_value(X[i, i], 1.0)
end
@objective(model, Max, 0.25 * LinearAlgebra.dot(L, X))
@constraint(model, LinearAlgebra.diag(X) .== 1)
optimize!(model)
assert_is_solved_and_feasible(model)
V = svd_cholesky(value(X))
Random.seed!(N)
r = rand(N)
r /= LinearAlgebra.norm(r)
cut = [LinearAlgebra.dot(r, V[:, i]) > 0 for i in 1:N]
S = findall(cut)
T = findall(.!cut)
println("Solution:")
println(" (S, T) = ({", join(S, ", "), "}, {", join(T, ", "), "})")
return S, T

end

solve_max_cut_sdp (generic function with 1 method)

Given the graph

[1] --- 5 --- [2]

The solution is (S, T) = ({1}, {2})

S, T = solve_max_cut_sdp([0 5; 5 0])

([2], [1])

Given the graph

[1] --- 5 --- [2]
| \ |
| \ |
7 6 1
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| \ |
| \ |

[3] --- 1 --- [4]

The solution is (S, T) = ({1}, {2, 3, 4})

S, T = solve_max_cut_sdp([0 5 7 6; 5 0 0 1; 7 0 0 1; 6 1 1 0])

([1], [2, 3, 4])

Given the graph

[1] --- 1 --- [2]
| |
| |
5 9
| |
| |

[3] --- 2 --- [4]

The solution is (S, T) = ({1, 4}, {2, 3})

S, T = solve_max_cut_sdp([0 1 5 0; 1 0 0 9; 5 0 0 2; 0 9 2 0])

([1, 4], [2, 3])

Low-rank matrix completion

The matrix completion problem seeks to find the missing entries of a matrix with a given (possibly random)
subset of fixed entries, such that the completed matrix has the lowest attainable rank.

For more details, see (Recht et al., 2010).

function example_matrix_completion(; svdtol = 1e-6)
rng = Random.MersenneTwister(1234)
n = 20
mask = rand(rng, 1:25, n, n) .== 1
B = randn(rng, n, n)
model = Model(Clarabel.Optimizer)
@variable(model, X[1:n, 1:n])
@constraint(model, X[mask] .== B[mask])
@variable(model, t)
@constraint(model, [t; vec(X)] in MOI.NormNuclearCone(n, n))
@objective(model, Min, t)
optimize!(model)
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assert_is_solved_and_feasible(model)
# Return the approximate rank of the completed matrix to a given tolerance:
return sum(LinearAlgebra.svdvals(value.(X)) .> svdtol)

end

example_matrix_completion()

9

K-means clustering via SDP

Given a set of points a1, . . . , am in Rn, allocate them to k clusters.

For more details, see (Peng and Wei, 2007).

function example_k_means_clustering()
a = [[2.0, 2.0], [2.5, 2.1], [7.0, 7.0], [2.2, 2.3], [6.8, 7.0], [7.2, 7.5]]
m = length(a)
num_clusters = 2
W = zeros(m, m)
for i in 1:m, j in i+1:m

W[i, j] = W[j, i] = exp(-LinearAlgebra.norm(a[i] - a[j]) / 1.0)
end
model = Model(Clarabel.Optimizer)
set_silent(model)
@variable(model, Z[1:m, 1:m] >= 0, PSD)
@objective(model, Min, LinearAlgebra.tr(W * (LinearAlgebra.I - Z)))
@constraint(model, [i = 1:m], sum(Z[i, :]) .== 1)
@constraint(model, LinearAlgebra.tr(Z) == num_clusters)
optimize!(model)
assert_is_solved_and_feasible(model)
Z_val = value.(Z)
current_cluster, visited = 0, Set{Int}()
for i in 1:m

if !(i in visited)
current_cluster += 1
println("Cluster $current_cluster")
for j in i:m

if isapprox(Z_val[i, i], Z_val[i, j]; atol = 1e-3)
println(a[j])
push!(visited, j)

end
end

end
end
return

end

example_k_means_clustering()
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Cluster 1
[2.0, 2.0]
[2.5, 2.1]
[2.2, 2.3]
Cluster 2
[7.0, 7.0]
[6.8, 7.0]
[7.2, 7.5]

The correlation problem

Given three random variables A, B, and C, and given bounds on two of the three correlation coefficients:

−0.2 ≤ AB ≤ −0.1

0.4 ≤ BC ≤ 0.5

our problem is to determine upper and lower bounds on other correlation coefficient AC .

We solve an SDP to make use of the following positive semidefinite property of the correlation matrix:

 1 AB AC

AB 1 BC

AC BC 1

 � 0

function example_correlation_problem()
model = Model(Clarabel.Optimizer)
set_silent(model)
@variable(model, X[1:3, 1:3], PSD)
S = ["A", "B", "C"]
ρ = Containers.DenseAxisArray(X, S, S)
@constraint(model, [i in S], ρ[i, i] == 1)
@constraint(model, -0.2 <= ρ["A", "B"] <= -0.1)
@constraint(model, 0.4 <= ρ["B", "C"] <= 0.5)
@objective(model, Max, ρ["A", "C"])
optimize!(model)
assert_is_solved_and_feasible(model)
println("An upper bound for ρ_AC is $(value(ρ["A", "C"]))")
@objective(model, Min, ρ["A", "C"])
optimize!(model)
assert_is_solved_and_feasible(model)
println("A lower bound for ρ_AC is $(value(ρ["A", "C"]))")
return

end

example_correlation_problem()
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An upper bound for ρ_AC is 0.8719210444233569
A lower bound for ρ_AC is -0.9779977554370655

The minimum distortion problem

This example arises from computational geometry, in particular the problem of embedding a general finite
metric space into a Euclidean space.

It is known that the 4-point metric space defined by the star graph

[1]
\
1
\
[0] —- 1 -- [2]
/

1
/

[3]

cannot be exactly embedded into a Euclidean space of any dimension, where distances are computed by length
of the shortest path between vertices. A distance-preserving embedding would require the three leaf nodes
to form an equilateral triangle of side length 2, with the centre node (0) mapped to an equidistant point at
distance 1; this is impossible since the triangle inequality in Euclidean space implies all points would need to
be simultaneously collinear.

Here we will formulate and solve an SDP to compute the best possible embedding, that is, the embedding f
assigning each vertex v to a vector f(v) that minimizes the distortion c such that

D[a, b] ≤ ||f(a)− f(b)|| ≤ c D[a, b]

for all edges (a, b) in the graph, where D[a, b] is the distance in the graph metric space.

Any embedding f can be characterized by a Gram matrix Q, which is PSD and such that

||f(a)− f(b)||2 = Q[a, a] +Q[b, b]− 2Q[a, b]

The matrix entry Q[a, b] represents the inner product of f(a) with f(b).

We therefore impose the constraint

D[a, b]2 ≤ Q[a, a] +Q[b, b]− 2Q[a, b] ≤ c2 D[a, b]2

for all edges (a, b) in the graph and minimize c2, which gives us the SDP formulation below. Since we may
choose any point to be the origin, we fix the first vertex at 0.

For more details, see (Matoušek, 2013; Linial, 2002).

https://en.wikipedia.org/wiki/Triangle_inequality
https://en.wikipedia.org/wiki/Collinearity
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function example_minimum_distortion()
model = Model(Clarabel.Optimizer)
set_silent(model)
D = [

0.0 1.0 1.0 1.0
1.0 0.0 2.0 2.0
1.0 2.0 0.0 2.0
1.0 2.0 2.0 0.0

]
@variable(model, c² >= 1.0)
@variable(model, Q[1:4, 1:4], PSD)
for i in 1:4, j in (i+1):4

@constraint(model, D[i, j]^2 <= Q[i, i] + Q[j, j] - 2 * Q[i, j])
@constraint(model, Q[i, i] + Q[j, j] - 2 * Q[i, j] <= c² * D[i, j]^2)

end
fix(Q[1, 1], 0)
@objective(model, Min, c²)
optimize!(model)
assert_is_solved_and_feasible(model)
Test.@test objective_value(model) ≈ 4 / 3 atol = 1e-4
# Recover the minimal distorted embedding:
X = [zeros(3) sqrt(value.(Q)[2:end, 2:end])]
return Plots.plot(

X[1, :],
X[2, :],
X[3, :];
seriestype = :mesh3d,
connections = ([0, 0, 0, 1], [1, 2, 3, 2], [2, 3, 1, 3]),
legend = false,
fillalpha = 0.1,
lw = 3,
ratio = :equal,
xlim = (-1.1, 1.1),
ylim = (-1.1, 1.1),
zlim = (-1.5, 1.0),
zticks = -1:1,
camera = (60, 30),

)
end

example_minimum_distortion()
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Lovász numbers

The Lovász number of a graph, also known as Lovász's theta-function, is a number that lies between two
important and related numbers that are computationally hard to determine, namely the chromatic and clique
numbers of the graph. It is possible however to efficient compute the Lovász number as the optimal value of
a semidefinite program.

Consider the pentagon graph:

[5]
/ \

/ \
[1] [4]
| |
| |
[2] --- [3]

with five vertices and edges. Its Lovász number is known to be precisely
√
5 ≈ 2.236, lying between 2 (the

largest clique size) and 3 (the smallest number needed for a vertex coloring).

Let i, j be integers such that 1 ≤ i < j ≤ 5. We define Aij to be the 5 × 5 symmetric matrix with entries
(i, j) and (j, i) equal to 1, with all other entries 0. Let E be the graph's edge set; in this example, E contains
(1,2), (2,3), (3,4), (4,5), (5,1) and their transposes. The Lovász number can be computed from the program

https://en.wikipedia.org/wiki/Lov%C3%A1sz_number
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max J•X (8.13)

s.t. Aij•X = 0 for all (i, j) /∈ E (8.14)

I•X = 1 (8.15)

X � 0 (8.16)

where J is the matrix filled with ones, and I is the identity matrix.

For more details, see (Barvinok, 2002; Knuth, 1994).

function example_theta_problem()
model = Model(Clarabel.Optimizer)
set_silent(model)
E = [(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)]
@variable(model, X[1:5, 1:5], PSD)
for i in 1:5

for j in (i+1):5
if !((i, j) in E || (j, i) in E)

A = zeros(Int, 5, 5)
A[i, j] = 1
A[j, i] = 1
@constraint(model, LinearAlgebra.dot(A, X) == 0)

end
end

end
@constraint(model, LinearAlgebra.tr(LinearAlgebra.I * X) == 1)
J = ones(Int, 5, 5)
@objective(model, Max, LinearAlgebra.dot(J, X))
optimize!(model)
assert_is_solved_and_feasible(model)
Test.@test objective_value(model) ≈ sqrt(5) rtol = 1e-4
println("The Lovász number is: $(objective_value(model))")
return

end

example_theta_problem()

The Lovász number is: 2.2360679790987037

Robust uncertainty sets

This example computes the Value at Risk for a data-driven uncertainty set. Closed-form expressions for the
optimal value are available. For more details, see (Bertsimas et al., 2018).

function example_robust_uncertainty_sets()
R, d, �, ɛ = 1, 3, 0.05, 0.05
N = ceil((2 + 2 * log(2 / �))^2) + 1
c, μhat, M = randn(d), rand(d), rand(d, d)
Σhat = 1 / (d - 1) * (M - ones(d) * μhat')' * (M - ones(d) * μhat')
Γ1(�, N) = R / sqrt(N) * (2 + sqrt(2 * log(1 / �)))
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Γ2(�, N) = 2 * R^2 / sqrt(N) * (2 + sqrt(2 * log(2 / �)))
model = Model(Clarabel.Optimizer)
set_silent(model)
@variable(model, Σ[1:d, 1:d], PSD)
@variable(model, u[1:d])
@variable(model, μ[1:d])
@constraint(model, [Γ1(� / 2, N); μ - μhat] in SecondOrderCone())
@constraint(model, [Γ2(� / 2, N); vec(Σ - Σhat)] in SecondOrderCone())
@constraint(model, [((1-ɛ)/ɛ) (u - μ)'; (u-μ) Σ] >= 0, PSDCone())
@objective(model, Max, c' * u)
optimize!(model)
assert_is_solved_and_feasible(model)
exact =

μhat' * c +
Γ1(� / 2, N) * LinearAlgebra.norm(c) +
sqrt((1 - ɛ) / ɛ) *
sqrt(c' * (Σhat + Γ2(� / 2, N) * LinearAlgebra.I) * c)

Test.@test objective_value(model) ≈ exact atol = 1e-2
return

end

example_robust_uncertainty_sets()

8.7 Chordal decomposition

This tutorial was generated using Literate.jl. Download the source as a .jl file.

The purpose of this tutorial is to show how to use MathOptChordalDecomposition.jl to improve the performance
of models with PSD constraints.

Required packages

This tutorial uses the following packages:

using JuMP
import MathOptChordalDecomposition
import SCS
import SparseArrays

Background

Chordal decomposition is a technique for decomposing a large PSD constraint into a set of smaller PSD con-
straints and some linear equality constraints.

If the original PSD constraint is sparse, the decomposed problem can be faster to solve than the original.

For more information on chordal decomposition, watch Michael Garstka's talk at JuMP-dev 2019.

Some solvers, such as Clarabel.jl and COSMO.jl implement chordal decomposition internally. Others, such as
SCS.jl do not implement chordal decomposition.

The Julia package MathOptChordalDecomposition.jl is a MathOptInterface layer that implements chordal de-
composition of sparse semidefinite constraints. It can be used to wrap any solver which supports PSD con-
straints and does not implement chordal decomposition internally.

https://github.com/fredrikekre/Literate.jl
tutorials/conic/chordal_decomposition.jl
https://www.youtube.com/watch?v=H4Q0ZXDqB70
https://github.com/oxfordcontrol/Clarabel.jl
https://github.com/oxfordcontrol/COSMO.jl
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JuMP Model

To demonstrate the benefits of chordal decomposition, we use the mcp124-1 model from SDPLIB.

model = read_from_file(joinpath(@__DIR__, "mcp124-1.dat-s"))

A JuMP Model
├ solver: none
├ objective_sense: MIN_SENSE
│ └ objective_function_type: AffExpr
├ num_variables: 124
├ num_constraints: 1
│ └ Vector{AffExpr} in MOI.PositiveSemidefiniteConeTriangle: 1
└ Names registered in the model: none

This model has 124 decision variables and one PSD constraint. This PSD constraint is sparse, which means
that many elements of the matrix are zero.

To view the matrix, use all_constraints to get a list of the constraints, then use constraint_object to get
the function and set form of the constraint:

S = MOI.PositiveSemidefiniteConeTriangle
constraints = all_constraints(model, Vector{AffExpr}, S)
con = constraint_object(constraints[1]);
con.set

MathOptInterface.PositiveSemidefiniteConeTriangle(124)

con.func

7750-element Vector{AffExpr}:
_[1] - 0.25
0
_[2] - 0.5
0
0
_[3] - 0.25
0
0
0
_[4]
�
0
0
0
0
0

http://euler.nmt.edu/{~}brian/sdplib/sdplib.html
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0
0
0
_[124] - 1

The constraint function is given in vectorized form. Use reshape_vector to convert it into a matrix:

F = reshape_vector(con.func, SymmetricMatrixShape(con.set.side_dimension))

124×124 LinearAlgebra.Symmetric{AffExpr, Matrix{AffExpr}}:
_[1] - 0.25 0 0 0 … 0 0
0 _[2] - 0.5 0 0 0 0
0 0 _[3] - 0.25 0 0 0
0 0 0 _[4] 0 0
0 0 0 0 0 0
0 0 0 0 … 0 0
0 0 0 0 0 0
0 0 0.25 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
� �
0 0 0 0 … 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 … 0 0
0 0 0 0 0 0
0 0 0 0 _[123] - 1 0
0 0 0 0 0 _[124] - 1

The F matrix is dense, but many elements are zero. Use SparseArrays.sparse to turn it into a sparse matrix:

A = SparseArrays.sparse(F)

124×124 SparseArrays.SparseMatrixCSC{AffExpr, Int64} with 422 stored entries:
⎡����������������������������������������⎤
⎢����������������������������������������⎥
⎢����������������������������������������⎥
⎢����������������������������������������⎥
⎢����������������������������������������⎥
⎢����������������������������������������⎥
⎢����������������������������������������⎥
⎢����������������������������������������⎥
⎢����������������������������������������⎥
⎢����������������������������������������⎥
⎢����������������������������������������⎥
⎢����������������������������������������⎥
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⎢����������������������������������������⎥
⎢����������������������������������������⎥
⎢����������������������������������������⎥
⎢����������������������������������������⎥
⎢����������������������������������������⎥
⎢����������������������������������������⎥
⎢����������������������������������������⎥
⎣����������������������������������������⎦

The sparse matrix has 422 non-zeros, which is a density of 2.7%:

SparseArrays.nnz(A) / size(A, 1)^2

0.027445369406867846

Solution speed

SCS.jl is a first-order solver that does not exploit the sparsity of PSD constraints. Let's solve it and see how
long it took:

set_optimizer(model, SCS.Optimizer)
@time optimize!(model)

------------------------------------------------------------------
^^I SCS v3.2.7 - Splitting Conic Solver
^^I(c) Brendan O'Donoghue, Stanford University, 2012
------------------------------------------------------------------
problem: variables n: 124, constraints m: 7750
cones: ^^I s: psd vars: 7750, ssize: 1
settings: eps_abs: 1.0e-04, eps_rel: 1.0e-04, eps_infeas: 1.0e-07
^^I alpha: 1.50, scale: 1.00e-01, adaptive_scale: 1
^^I max_iters: 100000, normalize: 1, rho_x: 1.00e-06
^^I acceleration_lookback: 10, acceleration_interval: 10
^^I compiled with openmp parallelization enabled
lin-sys: sparse-direct-amd-qdldl
^^I nnz(A): 124, nnz(P): 0
------------------------------------------------------------------
iter | pri res | dua res | gap | obj | scale | time (s)
------------------------------------------------------------------

0| 9.71e-01 3.87e+00 3.12e+02 2.65e+02 1.00e-01 4.27e-03
250| 1.20e-03 3.27e-04 2.64e-01 1.42e+02 2.92e-02 8.11e-01
500| 2.97e-04 7.52e-05 4.58e-02 1.42e+02 2.92e-02 1.62e+00
750| 2.40e-04 6.14e-05 3.89e-02 1.42e+02 2.92e-02 2.43e+00

1000| 1.91e-04 5.10e-05 3.30e-02 1.42e+02 2.92e-02 3.26e+00
1250| 1.55e-04 4.34e-05 2.78e-02 1.42e+02 2.92e-02 4.06e+00
1500| 1.34e-04 3.65e-05 2.34e-02 1.42e+02 2.92e-02 4.86e+00
1750| 2.19e-01 2.84e-01 3.74e+00 1.44e+02 2.92e-02 5.66e+00
2000| 1.01e-04 2.57e-05 1.67e-02 1.42e+02 2.92e-02 6.46e+00
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2250| 9.41e-05 2.15e-05 1.42e-02 1.42e+02 2.92e-02 7.26e+00
------------------------------------------------------------------
status: solved
timings: total: 7.26e+00s = setup: 1.86e-03s + solve: 7.25e+00s
^^I lin-sys: 1.66e-01s, cones: 7.02e+00s, accel: 1.04e-02s
------------------------------------------------------------------
objective = 141.972713
------------------------------------------------------------------
7.262444 seconds (4.24 k allocations: 1.035 MiB)

In comparison, if we wrap SCS.Optimizer in MathOptChordalDecomposition.Optimizer, then the problem
takes less than 1 second to solve:

set_optimizer(model, () -> MathOptChordalDecomposition.Optimizer(SCS.Optimizer))
@time optimize!(model)

------------------------------------------------------------------
^^I SCS v3.2.7 - Splitting Conic Solver
^^I(c) Brendan O'Donoghue, Stanford University, 2012
------------------------------------------------------------------
problem: variables n: 1155, constraints m: 8781
cones: ^^I z: primal zero / dual free vars: 7750
^^I s: psd vars: 1031, ssize: 115
settings: eps_abs: 1.0e-04, eps_rel: 1.0e-04, eps_infeas: 1.0e-07
^^I alpha: 1.50, scale: 1.00e-01, adaptive_scale: 1
^^I max_iters: 100000, normalize: 1, rho_x: 1.00e-06
^^I acceleration_lookback: 10, acceleration_interval: 10
^^I compiled with openmp parallelization enabled
lin-sys: sparse-direct-amd-qdldl
^^I nnz(A): 2186, nnz(P): 0
------------------------------------------------------------------
iter | pri res | dua res | gap | obj | scale | time (s)
------------------------------------------------------------------

0| 2.75e+01 1.00e+00 9.93e+03 -4.81e+03 1.00e-01 2.77e-03
250| 3.65e-03 9.48e-04 1.32e-03 1.42e+02 8.07e-01 1.06e-01
500| 2.63e-04 7.03e-05 1.77e-04 1.42e+02 2.57e+00 2.10e-01

------------------------------------------------------------------
status: solved
timings: total: 2.10e-01s = setup: 2.38e-03s + solve: 2.08e-01s
^^I lin-sys: 5.95e-02s, cones: 1.29e-01s, accel: 2.43e-03s
------------------------------------------------------------------
objective = 141.988826
------------------------------------------------------------------
0.215524 seconds (15.72 k allocations: 3.361 MiB)

The difference in performance is because of the chordal decomposition. The decomposed problem introduced
new variables (there are now 1,155 variables instead of 124) and constraints (there are now 115 PSD constraints
instead of one), but each PSD constraint is smaller than the original.
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decom = unsafe_backend(model)

MathOptChordalDecomposition.Optimizer{CliqueTrees.MF}
├ ObjectiveSense: MIN_SENSE
├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
├ NumberOfVariables: 1155
└ NumberOfConstraints: 116
├ MOI.VectorAffineFunction{Float64} in MOI.Zeros: 1
└ MOI.VectorOfVariables in MOI.PositiveSemidefiniteConeTriangle: 115

With a bit of effort, we can compute the number of PSD constraints of each size:

count_by_size = Dict{Int,Int}()
for ci in MOI.get(decom, MOI.ListOfConstraintIndices{MOI.VectorOfVariables,S}())

set = MOI.get(decom, MOI.ConstraintSet(), ci)
n = set.side_dimension
count_by_size[n] = get(count_by_size, n, 0) + 1

end
count_by_size

Dict{Int64, Int64} with 10 entries:
5 => 7
4 => 15
6 => 3
7 => 3
2 => 33
10 => 2
9 => 2
8 => 3
3 => 35
1 => 12

The largest PSD constraint is now of size 10, which is much smaller than the original 124-by-124 matrix.

8.8 Example: logistic regression

This tutorial was generated using Literate.jl. Download the source as a .jl file.

This tutorial was originally contributed by François Pacaud.

This tutorial shows how to solve a logistic regression problem with JuMP. Logistic regression is a well known
method in machine learning, useful when we want to classify binary variables with the help of a given set
of features. To this goal, we find the optimal combination of features maximizing the (log)-likelihood onto a
training set.

Required packages

This tutorial uses the following packages:

https://github.com/fredrikekre/Literate.jl
tutorials/conic/logistic_regression.jl
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using JuMP
import Clarabel
import MathOptInterface as MOI
import Random

Random.seed!(2713);

Formulating the logistic regression problem

Suppose we have a set of training data-point i = 1, · · · , n, where for each i we have a vector of features
xi ∈ Rp and a categorical observation yi ∈ {−1, 1}.

The log-likelihood is given by

l(θ) =

n∑
i=1

log( 1

1 + exp(−yiθ⊤xi)
)

and the optimal θ minimizes the logistic loss function:

min
θ

n∑
i=1

log(1 + exp(−yiθ⊤xi)).

Most of the time, instead of solving directly the previous optimization problem, we prefer to add a regularization
term:

min
θ

n∑
i=1

log(1 + exp(−yiθ⊤xi)) + λ‖θ‖

with λ ∈ R+ a penalty and ‖.‖ a norm function. By adding such a regularization term, we avoid overfitting on
the training set and usually achieve a greater score in cross-validation.

Reformulation as a conic optimization problem

By introducing auxiliary variables t1, · · · , tn and r, the optimization problem is equivalent to

min
t,r,θ

n∑
i=1

ti + λr

subject to ti ≥ log(1 + exp(−yiθ⊤xi))
r ≥ ‖θ‖

Now, the trick is to reformulate the constraints ti ≥ log(1 + exp(−yiθ⊤xi)) with the help of the exponential
cone
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Kexp = {(x, y, z) ∈ R3 : y exp(x/y) ≤ z}.

Indeed, by passing to the exponential, we see that for all i = 1, · · · , n, the constraint ti ≥ log(1+exp(−yiθ⊤xi))
is equivalent to

exp(−ti) + exp(ui − ti) ≤ 1

with ui = −yiθ⊤xi. Then, by adding two auxiliary variables zi1 and zi2 such that zi1 ≥ exp(ui − ti) and
zi2 ≥ exp(−ti), we get the equivalent formulation


(ui − ti, 1, zi1) ∈ Kexp

(−ti, 1, zi2) ∈ Kexp

zi1 + zi2 ≤ 1

In this setting, the conic version of the logistic regression problems writes out

min
t,z,r,θ

n∑
i=1

ti + λr

subject to (ui − ti, 1, zi1) ∈ Kexp

(−ti, 1, zi2) ∈ Kexp

zi1 + zi2 ≤ 1

ui = −yix⊤i θ
r ≥ ‖θ‖

and thus encompasses 3n+p+1 variables and 3n+1 constraints (ui = −yiθ⊤xi is only a virtual constraint
used to clarify the notation). Thus, if n� 1, we get a large number of variables and constraints.

Fitting logistic regression with a conic solver

We start by implementing a function to generate a fake dataset, and where we could tune the correlation
between the feature variables. The function is a direct transcription of the one used in this blog post.

function generate_dataset(n_samples = 100, n_features = 10; shift = 0.0)
X = randn(n_samples, n_features)
w = randn(n_features)
y = sign.(X * w)
X .+= 0.8 * randn(n_samples, n_features) # add noise
X .+= shift # shift the points in the feature space
X = hcat(X, ones(n_samples, 1))
return X, y

end

http://fa.bianp.net/blog/2013/numerical-optimizers-for-logistic-regression/
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generate_dataset (generic function with 3 methods)

We write a softplus function to formulate each constraint t ≥ log(1 + exp(u)) with two exponential cones.

function softplus(model, t, u)
z = @variable(model, [1:2], lower_bound = 0.0)
@constraint(model, sum(z) <= 1.0)
@constraint(model, [u - t, 1, z[1]] in MOI.ExponentialCone())
@constraint(model, [-t, 1, z[2]] in MOI.ExponentialCone())

end

softplus (generic function with 1 method)

ℓ2 regularized logistic regression

Then, with the help of the softplus function, we could write our optimization model. In the ℓ2 regularization
case, the constraint r ≥ ‖θ‖2 rewrites as a second order cone constraint.

function build_logit_model(X, y, λ)
n, p = size(X)
model = Model()
@variable(model, θ[1:p])
@variable(model, t[1:n])
for i in 1:n

u = -(X[i, :]' * θ) * y[i]
softplus(model, t[i], u)

end
# Add �2 regularization
@variable(model, 0.0 <= reg)
@constraint(model, [reg; θ] in SecondOrderCone())
# Define objective
@objective(model, Min, sum(t) + λ * reg)
return model

end

build_logit_model (generic function with 1 method)

We generate the dataset.

Warning

Be careful here, for large n and p Clarabel could fail to converge.
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n, p = 200, 10
X, y = generate_dataset(n, p; shift = 10.0);

# We could now solve the logistic regression problem
λ = 10.0
model = build_logit_model(X, y, λ)
set_optimizer(model, Clarabel.Optimizer)
set_silent(model)
optimize!(model)
assert_is_solved_and_feasible(model)

θ♯ = value.(model[:θ])

11-element Vector{Float64}:
0.020412982291617057
0.16139910603563973
0.3570079277158122
-0.3078808169026966
-0.3939185273466955
-0.0591404576296592
0.34717361925866896
-0.8812125871219857
0.20125673132663888
0.5409401386231345
0.0809042115958132

It appears that the speed of convergence is not that impacted by the correlation of the dataset, nor by the
penalty λ.

ℓ1 regularized logistic regression

We now formulate the logistic problem with a ℓ1 regularization term. The ℓ1 regularization ensures sparsity
in the optimal solution of the resulting optimization problem. Luckily, the ℓ1 norm is implemented as a set
in MathOptInterface. Thus, we could formulate the sparse logistic regression problem with the help of a
MOI.NormOneCone set.

function build_sparse_logit_model(X, y, λ)
n, p = size(X)
model = Model()
@variable(model, θ[1:p])
@variable(model, t[1:n])
for i in 1:n

u = -(X[i, :]' * θ) * y[i]
softplus(model, t[i], u)

end
# Add �1 regularization
@variable(model, 0.0 <= reg)
@constraint(model, [reg; θ] in MOI.NormOneCone(p + 1))
# Define objective
@objective(model, Min, sum(t) + λ * reg)
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return model
end

# Auxiliary function to count non-null components:
count_nonzero(v::Vector; tol = 1e-6) = sum(abs.(v) .>= tol)

# We solve the sparse logistic regression problem on the same dataset as before.
λ = 10.0
sparse_model = build_sparse_logit_model(X, y, λ)
set_optimizer(sparse_model, Clarabel.Optimizer)
set_silent(sparse_model)
optimize!(sparse_model)
assert_is_solved_and_feasible(sparse_model)

θ♯ = value.(sparse_model[:θ])
println(

"Number of non-zero components: ",
count_nonzero(θ♯),
" (out of ",
p,
" features)",

)

Number of non-zero components: 8 (out of 10 features)

Extensions

A direct extension would be to consider the sparse logistic regression with hard thresholding, which, on contrary
to the soft version using a ℓ1 regularization, adds an explicit cardinality constraint in its formulation:

min
θ

n∑
i=1

log(1 + exp(−yiθ⊤xi)) + λ‖θ‖22

subject to ‖θ‖0 <= k

where k is the maximum number of non-zero components in the vector θ, and ‖.‖0 is the ℓ0 pseudo-norm:

‖x‖0 = #{i : xi 6= 0}

The cardinality constraint ‖θ‖0 ≤ k could be reformulated with binary variables. Thus the hard sparse regres-
sion problem could be solved by any solver supporting mixed integer conic problems.

8.9 Example: experiment design

This tutorial was generated using Literate.jl. Download the source as a .jl file.

https://github.com/fredrikekre/Literate.jl
tutorials/conic/experiment_design.jl
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This tutorial was originally contributed by Arpit Bhatia and Chris Coey.

This tutorial covers experiment design examples (D-optimal, A-optimal, and E-optimal) from section 7.5 of
(Boyd and Vandenberghe, 2004).

Required packages

This tutorial uses the following packages:

using JuMP
import Clarabel
import LinearAlgebra
import MathOptInterface as MOI
import Random

We set a seed so the random numbers are repeatable:

Random.seed!(1234)

Random.TaskLocalRNG()

The relaxed experiment design problem

The basic experiment design problem is as follows.

Given the menu of possible choices for experiments, v1, . . . , vp, and the total numberm of experiments to be
carried out, choose the numbers of each type of experiment, that is,m1, . . . ,mp to make the error covariance
E small (in some sense).

The variablesm1, . . . ,mp must, of course, be integers and sum tom the given total number of experiments.
This leads to the optimization problem:

min
(
w.r.t.Sn

+

)
E =

 p∑
j=1

mjvjv
T
j

−1

subject tomi ≥ 0
p∑

i=1

mi = m

mi ∈ Z, i = 1, . . . , p

The basic experiment design problem can be a hard combinatorial problem when m, the total number of
experiments, is comparable to n, since in this case themi are all small integers.

In the case whenm is large compared to n, however, a good approximate solution can be found by ignoring,
or relaxing, the constraint that themi are integers.

Let λi = mi/m, which is the fraction of the total number of experiments for which aj = vi, or the relative
frequency of experiment i. We can express the error covariance in terms of λi as:
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E =
1

m

(
p∑

i=1

λiviv
T
i

)−1

The vector λ ∈ Rp satisfies λ � 0, 1Tλ = 1, and also, each λi is an integer multiple of 1/m. By ignoring this
last constraint, we arrive at the problem:

min
(
w.r.t.Sn

+

)
E = (1/m)

(
p∑

i=1

λiviv
T
i

)−1

subject to: λ � 0

1Tλ = 1

Several scalarizations have been proposed for the experiment design problem, which is a vector optimization
problem over the positive semidefinite cone.

q = 4 # dimension of estimate space
p = 8 # number of experimental vectors
n_max = 3 # upper bound on lambda
n = 12

V = randn(q, p)

eye = Matrix{Float64}(LinearAlgebra.I, q, q);

A-optimal design

In A-optimal experiment design, we minimize tr E, the trace of the covariance matrix. This objective is simply
the mean of the norm of the error squared:

E‖e‖22 = E tr
(
eeT
)
= trE

The A-optimal experiment design problem in SDP form is

min1Tu

subject to


p∑

i=1

λiviv
T
i ek

eTk uk

 � 0, k = 1, . . . , n

λ � 0

1Tλ = 1
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aOpt = Model(Clarabel.Optimizer)
set_silent(aOpt)
@variable(aOpt, np[1:p], lower_bound = 0, upper_bound = n_max)
@variable(aOpt, u[1:q], lower_bound = 0)
@constraint(aOpt, sum(np) <= n)
for i in 1:q

matrix = [
V*LinearAlgebra.Diagonal(np ./ n)*V' eye[:, i]
eye[i, :]' u[i]

]
@constraint(aOpt, matrix >= 0, PSDCone())

end
@objective(aOpt, Min, sum(u))
optimize!(aOpt)
assert_is_solved_and_feasible(aOpt)
objective_value(aOpt)

5.103199058617686

value.(np)

8-element Vector{Float64}:
2.949598980152687
1.7791514505035955
7.276305887925417e-10
1.4509996590179904e-9
2.108204914610362
1.6982760520528668
1.263425849963127
2.201342749918528

E-optimal design

In E -optimal design, we minimize the norm of the error covariance matrix, that is, the maximum eigenvalue
of E.

Since the diameter (twice the longest semi-axis) of the confidence ellipsoid E is proportional to ‖E‖1/22 , mini-
mizing ‖E‖2 can be interpreted geometrically as minimizing the diameter of the confidence ellipsoid.

E-optimal design can also be interpreted as minimizing the maximum variance of qT e, over all q with ‖q‖2 = 1.
The E-optimal experiment design problem in SDP form is:

mint

subject to
p∑

i=1

λiviv
T
i � tI

λ � 0

1Tλ = 1
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eOpt = Model(Clarabel.Optimizer)
set_silent(eOpt)
@variable(eOpt, 0 <= np[1:p] <= n_max)
@variable(eOpt, t)
@constraint(

eOpt,
V * LinearAlgebra.Diagonal(np ./ n) * V' - (t .* eye) >= 0,
PSDCone(),

)
@constraint(eOpt, sum(np) <= n)
@objective(eOpt, Max, t)
optimize!(eOpt)
assert_is_solved_and_feasible(eOpt)
objective_value(eOpt)

0.4353846161234582

value.(np)

8-element Vector{Float64}:
2.999999998431658
2.752797006101644
4.10051457567522e-9
4.8207598279432515e-9
2.181840806067763
2.3253295524575566
0.21895619171783068
1.5210764321965744

D-optimal design

The most widely used scalarization is called D -optimal design, in which we minimize the determinant of
the error covariance matrix E. This corresponds to designing the experiment to minimize the volume of the
resulting confidence ellipsoid (for a fixed confidence level). Ignoring the constant factor 1/m in E, and taking
the logarithm of the objective, we can pose this problem as convex optimization problem:

min log det
(

p∑
i=1

λiviv
T
i

)−1

subject toλ � 0

1Tλ = 1

dOpt = Model(Clarabel.Optimizer)
set_silent(dOpt)
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@variable(dOpt, np[1:p], lower_bound = 0, upper_bound = n_max)
@variable(dOpt, t)
@objective(dOpt, Max, t)
@constraint(dOpt, sum(np) <= n)
E = V * LinearAlgebra.Diagonal(np ./ n) * V'
@constraint(dOpt, [t; 1; triangle_vec(E)] in MOI.LogDetConeTriangle(q))
optimize!(dOpt)
assert_is_solved_and_feasible(dOpt)
objective_value(dOpt)

0.3084755071033654

value.(np)

8-element Vector{Float64}:
0.42764306607681873
2.9100111142529657
6.411004669047624e-10
8.680825215182773e-10
2.9158597562579103
2.6732765281643593
2.7353858758724106
0.33782365595975183

8.10 Example: minimal ellipses

This tutorial was generated using Literate.jl. Download the source as a .jl file.

This example comes from section 8.4.1 of the book Convex Optimization by Boyd and Vandenberghe (2004).

Formulation

Given a set ofm ellipses of the form:

E(A, b, c) = {x : x⊤Ax+ 2b⊤x+ c ≤ 0},

the minimal ellipse problem finds an ellipse with the minimum area that encloses the given ellipses.

It is convenient to parameterize the minimal enclosing ellipse as

{x : ||Px+ q|| ≤ 1}.

Then the optimal P and q are given by the convex semidefinite program;

https://github.com/fredrikekre/Literate.jl
tutorials/conic/min_ellipse.jl
https://web.stanford.edu/{~}boyd/cvxbook/
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maximize log(det(P ))
subject to τi ≥ 0, i = 1, . . . ,m P 2 − τiAi Pq − τibi 0

(Pq − τibi)
⊤ −1− τici (Pq)⊤

0 (Pq) −P 2

 � 0 (PSD) i = 1, . . . ,m

with helper variables τ .

Required packages

This tutorial uses the following packages:

using JuMP
import Clarabel
import LinearAlgebra
import Plots
import Test

Data

First, define them input ellipses (herem = 6), parameterized as xTAix+ 2bTi x+ c ≤ 0:

struct Ellipse
A::Matrix{Float64}
b::Vector{Float64}
c::Float64
function Ellipse(A::Matrix{Float64}, b::Vector{Float64}, c::Float64)

@assert isreal(A) && LinearAlgebra.issymmetric(A)
return new(A, b, c)

end
end

ellipses = [
Ellipse([1.2576 -0.3873; -0.3873 0.3467], [0.2722, 0.1969], 0.1831),
Ellipse([1.4125 -2.1777; -2.1777 6.7775], [-1.228, -0.0521], 0.3295),
Ellipse([1.7018 0.8141; 0.8141 1.7538], [-0.4049, 1.5713], 0.2077),
Ellipse([0.9742 -0.7202; -0.7202 1.5444], [0.0265, 0.5623], 0.2362),
Ellipse([0.6798 -0.1424; -0.1424 0.6871], [-0.4301, -1.0157], 0.3284),
Ellipse([0.1796 -0.1423; -0.1423 2.6181], [-0.3286, 0.557], 0.4931),

];

We visualise the ellipses using the Plots package:

function plot_ellipse(plot, ellipse::Ellipse)
A, b, c = ellipse.A, ellipse.b, ellipse.c
θ = range(0, 2pi + 0.05; step = 0.05)
# Some linear algebra to convert θ into (x,y) coordinates.
x_y = √A \ (√(b' * (A \ b) - c) .* hcat(cos.(θ), sin.(θ)) .- (√A \ b)')'
Plots.plot!(plot, x_y[1, :], x_y[2, :]; label = nothing, c = :navy)
return
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end

plot = Plots.plot(; size = (600, 600))
for ellipse in ellipses

plot_ellipse(plot, ellipse)
end
plot

Build the model

Now let's build the model, using the change-of-variables P² = P 2 and P_q = Pq. We'll recover the true value
of P and q after the solve.



CHAPTER 8. CONIC PROGRAMS 411

model = Model(Clarabel.Optimizer)
set_silent(model)
m, n = length(ellipses), size(first(ellipses).A, 1)
@variable(model, τ[1:m] >= 0)
@variable(model, P²[1:n, 1:n], PSD)
@variable(model, P_q[1:n])

for (i, ellipse) in enumerate(ellipses)
A, b, c = ellipse.A, ellipse.b, ellipse.c
X = [

#! format: off
(P² - τ[i] * A) (P_q - τ[i] * b) zeros(n, n)
(P_q - τ[i] * b)' (-1 - τ[i] * c) P_q'
zeros(n, n) P_q -P²
#! format: on

]
@constraint(model, LinearAlgebra.Symmetric(X) <= 0, PSDCone())

end

We cannot directly represent the objective log(det(P )), so we introduce the conic reformulation:

@variable(model, log_det_P)
@constraint(model, [log_det_P; 1; vec(P²)] in MOI.LogDetConeSquare(n))
@objective(model, Max, log_det_P)

log_det_P

Now, solve the program:

optimize!(model)
assert_is_solved_and_feasible(model)
solution_summary(model)

solution_summary(; result = 1, verbose = false)
├ solver_name : Clarabel
├ Termination
│ ├ termination_status : OPTIMAL
│ ├ result_count : 1
│ └ raw_status : SOLVED
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : FEASIBLE_POINT
│ ├ objective_value : -4.04369e+00
│ └ dual_objective_value : -4.04369e+00
└ Work counters
├ solve_time (sec) : 5.11439e-03
└ barrier_iterations : 15
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Results

After solving the model to optimality we can recover the solution in terms of P and q:

P = sqrt(value.(P²))
q = P \ value.(P_q)

2-element Vector{Float64}:
-0.3964824351357496
-0.02122031038251278

Finally, overlaying the solution in the plot we see the minimal area enclosing ellipsoid:

Plots.plot!(
plot,
[tuple(P \ [cos(θ) - q[1], sin(θ) - q[2]]...) for θ in 0:0.05:(2pi+0.05)];
c = :crimson,
label = nothing,

)
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8.11 Example: ellipsoid approximation

This tutorial was generated using Literate.jl. Download the source as a .jl file.

This tutorial considers the problem of computing extremal ellipsoids: finding ellipsoids that best approximate
a given set. As an extension, we show how to use JuMP to inspect the bridges that were used, and how to
explore alternative formulations.

The model comes from Section 4.9 of (Ben-Tal and Nemirovski, 2001).

For a related example, see also the Example: minimal ellipses tutorial.

Required packages

This tutorial uses the following packages:

https://github.com/fredrikekre/Literate.jl
tutorials/conic/ellipse_approx.jl
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using JuMP
import Clarabel
import LinearAlgebra
import Plots
import Random
import Test

Problem formulation

Suppose that we are given a set S consisting ofm points in n-dimensional space:

S = {x1, . . . , xm} ⊂ Rn

Our goal is to determine an optimal vector c ∈ Rn and an optimal n × n real symmetric matrix D such that
the ellipse:

E(D, c) = {x : (x− c)⊤D(x− c) ≤ 1},

contains S and has the smallest possible volume.

The optimal D and c are given by the optimization problem:

max t

s.t. Z � 0[
s z⊤

z Z

]
� 0

x⊤i Zxi − 2x⊤i z + s ≤ 1 i = 1, . . . ,m

t ≤ n
√

det(Z),

where D = Z∗ and c = Z−1
∗ z∗.

Data

We first need to generate some points to work with.

function generate_point_cloud(
m; # number of 2-dimensional points
a = 10, # scaling in x direction
b = 2, # scaling in y direction
rho = π / 6, # rotation of points around origin
random_seed = 1,

)
rng = Random.MersenneTwister(random_seed)
P = randn(rng, Float64, m, 2)
Phi = [a*cos(rho) a*sin(rho); -b*sin(rho) b*cos(rho)]
S = P * Phi
return S

end
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generate_point_cloud (generic function with 1 method)

For the sake of this example, let's takem = 100:

S = generate_point_cloud(100);

We will visualise the points (and ellipse) using the Plots package:

r = 1.1 * maximum(abs.(S))
plot = Plots.scatter(

S[:, 1],
S[:, 2];
xlim = (-r, r),
ylim = (-r, r),
label = nothing,
c = :green,
shape = :x,
size = (600, 600),

)
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JuMP formulation

Now let's build and the JuMP model. We'll computeD and c after the solve.

model = Model(Clarabel.Optimizer)
set_silent(model)
m, n = size(S)
@variable(model, z[1:n])
@variable(model, Z[1:n, 1:n], PSD)
@variable(model, s)
@variable(model, t)
@constraint(model, [s z'; z Z] >= 0, PSDCone())
@constraint(

model,
[i in 1:m],
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S[i, :]' * Z * S[i, :] - 2 * S[i, :]' * z + s <= 1,
)
@constraint(model, [t; vec(Z)] in MOI.RootDetConeSquare(n))
@objective(model, Max, t)
optimize!(model)
assert_is_solved_and_feasible(model)
solution_summary(model)

solution_summary(; result = 1, verbose = false)
├ solver_name : Clarabel
├ Termination
│ ├ termination_status : OPTIMAL
│ ├ result_count : 1
│ └ raw_status : SOLVED
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : FEASIBLE_POINT
│ ├ objective_value : 7.92350e-03
│ └ dual_objective_value : 7.92350e-03
└ Work counters
├ solve_time (sec) : 2.45823e-03
└ barrier_iterations : 16

Results

After solving the model to optimality we can recover the solution in terms of D and c:

D = value.(Z)

2×2 Matrix{Float64}:
0.012616 -0.02132
-0.02132 0.0410053

c = D \ value.(z)

2-element Vector{Float64}:
-1.6318778797029514
-0.670458237995941

We can check that each point lies inside the ellipsoid, by checking if the largest normalized radius is less than
1:



CHAPTER 8. CONIC PROGRAMS 418

largest_radius = maximum(map(x -> (x - c)' * D * (x - c), eachrow(S)))

0.9999999991403553

Finally, overlaying the solution in the plot we see the minimal volume approximating ellipsoid:

P = sqrt(D)
q = -P * c
data = [tuple(P \ [cos(θ) - q[1], sin(θ) - q[2]]...) for θ in 0:0.05:(2pi+0.05)]
Plots.plot!(plot, data; c = :crimson, label = nothing)
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Alternative formulations

The formulation of model uses MOI.RootDetConeSquare. However, because Clarabel does not natively support
this cone, JuMP automatically reformulates the problem into an equivalent problem that Clarabel does support.
You can see the reformulation that JuMP chose using print_active_bridges:

print_active_bridges(model)

* Unsupported objective: MOI.VariableIndex
| bridged by:
| MOIB.Objective.FunctionConversionBridge{Float64, MOI.ScalarAffineFunction{Float64},

MOI.VariableIndex}↪→

| may introduce:
| * Supported objective: MOI.ScalarAffineFunction{Float64}
* Unsupported constraint: MOI.ScalarAffineFunction{Float64}-in-MOI.LessThan{Float64}
| bridged by:
| MOIB.Constraint.LessToGreaterBridge{Float64, MOI.ScalarAffineFunction{Float64},

MOI.ScalarAffineFunction{Float64}}↪→

| may introduce:
| * Unsupported constraint: MOI.ScalarAffineFunction{Float64}-in-MOI.GreaterThan{Float64}
| | bridged by:
| | MOIB.Constraint.VectorizeBridge{Float64, MOI.VectorAffineFunction{Float64},

MOI.Nonnegatives, MOI.ScalarAffineFunction{Float64}}↪→

| | may introduce:
| | * Supported constraint: MOI.VectorAffineFunction{Float64}-in-MOI.Nonnegatives
* Unsupported constraint: MOI.VectorAffineFunction{Float64}-in-MOI.PositiveSemidefiniteConeSquare
| bridged by:
| MOIB.Constraint.SquareBridge{Float64, MOI.VectorAffineFunction{Float64},

MOI.ScalarAffineFunction{Float64}, MOI.PositiveSemidefiniteConeTriangle,
MOI.PositiveSemidefiniteConeSquare}

↪→

↪→

| may introduce:
| * Unsupported constraint:

MOI.VectorAffineFunction{Float64}-in-MOI.PositiveSemidefiniteConeTriangle↪→

| | bridged by:
| | MOIB.Constraint.SetDotScalingBridge{Float64, MOI.PositiveSemidefiniteConeTriangle,

MOI.VectorAffineFunction{Float64}, MOI.VectorAffineFunction{Float64}}↪→

| | may introduce:
| | * Supported constraint:

MOI.VectorAffineFunction{Float64}-in-MOI.Scaled{MOI.PositiveSemidefiniteConeTriangle}↪→

| * Unsupported constraint: MOI.ScalarAffineFunction{Float64}-in-MOI.EqualTo{Float64}
| | bridged by:
| | MOIB.Constraint.VectorizeBridge{Float64, MOI.VectorAffineFunction{Float64}, MOI.Zeros,

MOI.ScalarAffineFunction{Float64}}↪→

| | may introduce:
| | * Supported constraint: MOI.VectorAffineFunction{Float64}-in-MOI.Zeros
* Unsupported constraint: MOI.VectorOfVariables-in-MOI.PositiveSemidefiniteConeTriangle
| bridged by:
| MOIB.Constraint.SetDotScalingBridge{Float64, MOI.PositiveSemidefiniteConeTriangle,

MOI.VectorAffineFunction{Float64}, MOI.VectorOfVariables}↪→

| may introduce:
| * Supported constraint:

MOI.VectorAffineFunction{Float64}-in-MOI.Scaled{MOI.PositiveSemidefiniteConeTriangle}↪→

* Unsupported constraint: MOI.VectorOfVariables-in-MOI.RootDetConeSquare
| bridged by:
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| MOIB.Constraint.SquareBridge{Float64, MOI.VectorOfVariables,
MOI.ScalarAffineFunction{Float64}, MOI.RootDetConeTriangle, MOI.RootDetConeSquare}↪→

| may introduce:
| * Unsupported constraint: MOI.VectorOfVariables-in-MOI.RootDetConeTriangle
| | bridged by:
| | MOIB.Constraint.RootDetBridge{Float64, MOI.VectorAffineFunction{Float64},

MOI.VectorOfVariables, MOI.VectorOfVariables}↪→

| | may introduce:
| | * Unsupported constraint:

MOI.VectorAffineFunction{Float64}-in-MOI.PositiveSemidefiniteConeTriangle↪→

| | | bridged by:
| | | MOIB.Constraint.SetDotScalingBridge{Float64, MOI.PositiveSemidefiniteConeTriangle,

MOI.VectorAffineFunction{Float64}, MOI.VectorAffineFunction{Float64}}↪→

| | | may introduce:
| | | * Supported constraint:

MOI.VectorAffineFunction{Float64}-in-MOI.Scaled{MOI.PositiveSemidefiniteConeTriangle}↪→

| | * Unsupported constraint: MOI.VectorOfVariables-in-MOI.GeometricMeanCone
| | | bridged by:
| | | MOIB.Constraint.GeoMeanToPowerBridge{Float64, MOI.VectorOfVariables}
| | | may introduce:
| | | * Supported constraint: MOI.VectorOfVariables-in-MOI.PowerCone{Float64}
| | | * Supported variable: MOI.Nonnegatives
| | * Supported variable: MOI.Reals
| * Unsupported constraint: MOI.ScalarAffineFunction{Float64}-in-MOI.EqualTo{Float64}
| | bridged by:
| | MOIB.Constraint.VectorizeBridge{Float64, MOI.VectorAffineFunction{Float64}, MOI.Zeros,

MOI.ScalarAffineFunction{Float64}}↪→

| | may introduce:
| | * Supported constraint: MOI.VectorAffineFunction{Float64}-in-MOI.Zeros

There's a lot going on here, but the first bullet is:

* Unsupported objective: MOI.VariableIndex
| bridged by:
| MOIB.Objective.FunctionConversionBridge{Float64}
| may introduce:
| * Supported objective: MOI.ScalarAffineFunction{Float64}

This says that Clarabel does not support a MOI.VariableIndex objective function, and that JuMP used a
MOI.Bridges.Objective.FunctionConversionBridge to convert it into a MOI.ScalarAffineFunction{Float64}
objective function.

We can leave JuMP to do the reformulation, or we can rewrite our model to have an objective function that
Clarabel natively supports:

@objective(model, Max, 1.0 * t + 0.0);

Re-printing the active bridges:

print_active_bridges(model)
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* Supported objective: MOI.ScalarAffineFunction{Float64}
* Unsupported constraint: MOI.ScalarAffineFunction{Float64}-in-MOI.LessThan{Float64}
| bridged by:
| MOIB.Constraint.LessToGreaterBridge{Float64, MOI.ScalarAffineFunction{Float64},

MOI.ScalarAffineFunction{Float64}}↪→

| may introduce:
| * Unsupported constraint: MOI.ScalarAffineFunction{Float64}-in-MOI.GreaterThan{Float64}
| | bridged by:
| | MOIB.Constraint.VectorizeBridge{Float64, MOI.VectorAffineFunction{Float64},

MOI.Nonnegatives, MOI.ScalarAffineFunction{Float64}}↪→

| | may introduce:
| | * Supported constraint: MOI.VectorAffineFunction{Float64}-in-MOI.Nonnegatives
* Unsupported constraint: MOI.VectorAffineFunction{Float64}-in-MOI.PositiveSemidefiniteConeSquare
| bridged by:
| MOIB.Constraint.SquareBridge{Float64, MOI.VectorAffineFunction{Float64},

MOI.ScalarAffineFunction{Float64}, MOI.PositiveSemidefiniteConeTriangle,
MOI.PositiveSemidefiniteConeSquare}

↪→

↪→

| may introduce:
| * Unsupported constraint:

MOI.VectorAffineFunction{Float64}-in-MOI.PositiveSemidefiniteConeTriangle↪→

| | bridged by:
| | MOIB.Constraint.SetDotScalingBridge{Float64, MOI.PositiveSemidefiniteConeTriangle,

MOI.VectorAffineFunction{Float64}, MOI.VectorAffineFunction{Float64}}↪→

| | may introduce:
| | * Supported constraint:

MOI.VectorAffineFunction{Float64}-in-MOI.Scaled{MOI.PositiveSemidefiniteConeTriangle}↪→

| * Unsupported constraint: MOI.ScalarAffineFunction{Float64}-in-MOI.EqualTo{Float64}
| | bridged by:
| | MOIB.Constraint.VectorizeBridge{Float64, MOI.VectorAffineFunction{Float64}, MOI.Zeros,

MOI.ScalarAffineFunction{Float64}}↪→

| | may introduce:
| | * Supported constraint: MOI.VectorAffineFunction{Float64}-in-MOI.Zeros
* Unsupported constraint: MOI.VectorOfVariables-in-MOI.PositiveSemidefiniteConeTriangle
| bridged by:
| MOIB.Constraint.SetDotScalingBridge{Float64, MOI.PositiveSemidefiniteConeTriangle,

MOI.VectorAffineFunction{Float64}, MOI.VectorOfVariables}↪→

| may introduce:
| * Supported constraint:

MOI.VectorAffineFunction{Float64}-in-MOI.Scaled{MOI.PositiveSemidefiniteConeTriangle}↪→

* Unsupported constraint: MOI.VectorOfVariables-in-MOI.RootDetConeSquare
| bridged by:
| MOIB.Constraint.SquareBridge{Float64, MOI.VectorOfVariables,

MOI.ScalarAffineFunction{Float64}, MOI.RootDetConeTriangle, MOI.RootDetConeSquare}↪→

| may introduce:
| * Unsupported constraint: MOI.VectorOfVariables-in-MOI.RootDetConeTriangle
| | bridged by:
| | MOIB.Constraint.RootDetBridge{Float64, MOI.VectorAffineFunction{Float64},

MOI.VectorOfVariables, MOI.VectorOfVariables}↪→

| | may introduce:
| | * Unsupported constraint:

MOI.VectorAffineFunction{Float64}-in-MOI.PositiveSemidefiniteConeTriangle↪→

| | | bridged by:
| | | MOIB.Constraint.SetDotScalingBridge{Float64, MOI.PositiveSemidefiniteConeTriangle,

MOI.VectorAffineFunction{Float64}, MOI.VectorAffineFunction{Float64}}↪→

| | | may introduce:



CHAPTER 8. CONIC PROGRAMS 422

| | | * Supported constraint:
MOI.VectorAffineFunction{Float64}-in-MOI.Scaled{MOI.PositiveSemidefiniteConeTriangle}↪→

| | * Unsupported constraint: MOI.VectorOfVariables-in-MOI.GeometricMeanCone
| | | bridged by:
| | | MOIB.Constraint.GeoMeanToPowerBridge{Float64, MOI.VectorOfVariables}
| | | may introduce:
| | | * Supported constraint: MOI.VectorOfVariables-in-MOI.PowerCone{Float64}
| | | * Supported variable: MOI.Nonnegatives
| | * Supported variable: MOI.Reals
| * Unsupported constraint: MOI.ScalarAffineFunction{Float64}-in-MOI.EqualTo{Float64}
| | bridged by:
| | MOIB.Constraint.VectorizeBridge{Float64, MOI.VectorAffineFunction{Float64}, MOI.Zeros,

MOI.ScalarAffineFunction{Float64}}↪→

| | may introduce:
| | * Supported constraint: MOI.VectorAffineFunction{Float64}-in-MOI.Zeros

we get * Supported objective: MOI.ScalarAffineFunction{Float64}.

We can manually implement some other reformulations to change our model to something that Clarabel more
closely supports by:

• Replacing the MOI.VectorOfVariables in MOI.PositiveSemidefiniteConeTriangle constraint @variable(model,
Z[1:n, 1:n], PSD)with the MOI.VectorAffineFunction in MOI.PositiveSemidefiniteConeTriangle
@constraint(model, Z >= 0, PSDCone()).

• Replacing the MOI.VectorOfVariables in MOI.PositiveSemidefiniteConeSquare constraint [s z'; z
Z] >= 0, PSDCone()with the MOI.VectorAffineFunction in MOI.PositiveSemidefiniteConeTriangle
@constraint(model, LinearAlgebra.Symmetric([s z'; z Z]) >= 0, PSDCone()).

• Replacing the MOI.ScalarAffineFunction in MOI.GreaterThan constraints with the vectorized equiv-
alent of MOI.VectorAffineFunction in MOI.Nonnegatives

• Replacing the MOI.VectorOfVariables in MOI.RootDetConeSquare constraint with MOI.VectorAffineFunction
in MOI.RootDetConeTriangle.

model = Model(Clarabel.Optimizer)
set_silent(model)
@variable(model, z[1:n])
@variable(model, s)
@variable(model, t)
# The former @variable(model, Z[1:n, 1:n], PSD)
@variable(model, Z[1:n, 1:n], Symmetric)
@constraint(model, Z >= 0, PSDCone())
# The former [s z'; z Z] >= 0, PSDCone()
@constraint(model, LinearAlgebra.Symmetric([s z'; z Z]) >= 0, PSDCone())
# The former constraint S[i, :]' * Z * S[i, :] - 2 * S[i, :]' * z + s <= 1
f = [1 - S[i, :]' * Z * S[i, :] + 2 * S[i, :]' * z - s for i in 1:m]
@constraint(model, f in MOI.Nonnegatives(m))
# The former constraint [t; vec(Z)] in MOI.RootDetConeSquare(n)
@constraint(model, 1 * [t; triangle_vec(Z)] .+ 0 in MOI.RootDetConeTriangle(n))
# The former @objective(model, Max, t)
@objective(model, Max, 1 * t + 0)
optimize!(model)
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assert_is_solved_and_feasible(model)
solve_time_1 = solve_time(model)

0.002134378

This formulation gives the much smaller graph:

print_active_bridges(model)

* Supported objective: MOI.ScalarAffineFunction{Float64}
* Supported constraint: MOI.VectorAffineFunction{Float64}-in-MOI.Nonnegatives
* Unsupported constraint:

MOI.VectorAffineFunction{Float64}-in-MOI.PositiveSemidefiniteConeTriangle↪→

| bridged by:
| MOIB.Constraint.SetDotScalingBridge{Float64, MOI.PositiveSemidefiniteConeTriangle,

MOI.VectorAffineFunction{Float64}, MOI.VectorAffineFunction{Float64}}↪→

| may introduce:
| * Supported constraint:

MOI.VectorAffineFunction{Float64}-in-MOI.Scaled{MOI.PositiveSemidefiniteConeTriangle}↪→

* Unsupported constraint: MOI.VectorAffineFunction{Float64}-in-MOI.RootDetConeTriangle
| bridged by:
| MOIB.Constraint.RootDetBridge{Float64, MOI.VectorAffineFunction{Float64},

MOI.VectorAffineFunction{Float64}, MOI.VectorAffineFunction{Float64}}↪→

| may introduce:
| * Unsupported constraint:

MOI.VectorAffineFunction{Float64}-in-MOI.PositiveSemidefiniteConeTriangle↪→

| | bridged by:
| | MOIB.Constraint.SetDotScalingBridge{Float64, MOI.PositiveSemidefiniteConeTriangle,

MOI.VectorAffineFunction{Float64}, MOI.VectorAffineFunction{Float64}}↪→

| | may introduce:
| | * Supported constraint:

MOI.VectorAffineFunction{Float64}-in-MOI.Scaled{MOI.PositiveSemidefiniteConeTriangle}↪→

| * Unsupported constraint: MOI.VectorAffineFunction{Float64}-in-MOI.GeometricMeanCone
| | bridged by:
| | MOIB.Constraint.GeoMeanToPowerBridge{Float64, MOI.VectorAffineFunction{Float64}}
| | may introduce:
| | * Supported constraint: MOI.VectorAffineFunction{Float64}-in-MOI.PowerCone{Float64}
| | * Supported variable: MOI.Nonnegatives
| * Supported variable: MOI.Reals

Note that we still need to bridge MOI.PositiveSemidefiniteConeTriangle constraints because Clarabel uses
the MOI.Scaled PSD cone.

model = Model(Clarabel.Optimizer)
set_silent(model)
@variable(model, z[1:n])
@variable(model, s)
@variable(model, t)
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@variable(model, Z[1:n, 1:n], Symmetric)
# The former @constraint(model, Z in PSDCone())
f = triangle_vec(Z)
scale_f = [1.0, sqrt(2), 1.0]
@constraint(

model,
scale_f .* f in MOI.Scaled(MOI.PositiveSemidefiniteConeTriangle(n)),

)
# The former LinearAlgebra.Symmetric([s z'; z Z]) >= 0, PSDCone()
g = triangle_vec(LinearAlgebra.Symmetric([s z'; z Z]))
scale_g = [1.0, sqrt(2), 1.0, sqrt(2), sqrt(2), 1.0]
@constraint(

model,
scale_g .* g in MOI.Scaled(MOI.PositiveSemidefiniteConeTriangle(1 + n)),

)
f = [1 - S[i, :]' * Z * S[i, :] + 2 * S[i, :]' * z - s for i in 1:m]
@constraint(model, f in MOI.Nonnegatives(m))
@constraint(model, 1 * [t; triangle_vec(Z)] .+ 0 in MOI.RootDetConeTriangle(n))
@objective(model, Max, 1 * t + 0)
optimize!(model)
assert_is_solved_and_feasible(model)
solve_time_2 = solve_time(model)

0.0021052040000000003

This formulation gives the much smaller graph:

print_active_bridges(model)

* Supported objective: MOI.ScalarAffineFunction{Float64}
* Supported constraint: MOI.VectorAffineFunction{Float64}-in-MOI.Nonnegatives
* Unsupported constraint: MOI.VectorAffineFunction{Float64}-in-MOI.RootDetConeTriangle
| bridged by:
| MOIB.Constraint.RootDetBridge{Float64, MOI.VectorAffineFunction{Float64},

MOI.VectorAffineFunction{Float64}, MOI.VectorAffineFunction{Float64}}↪→

| may introduce:
| * Unsupported constraint:

MOI.VectorAffineFunction{Float64}-in-MOI.PositiveSemidefiniteConeTriangle↪→

| | bridged by:
| | MOIB.Constraint.SetDotScalingBridge{Float64, MOI.PositiveSemidefiniteConeTriangle,

MOI.VectorAffineFunction{Float64}, MOI.VectorAffineFunction{Float64}}↪→

| | may introduce:
| | * Supported constraint:

MOI.VectorAffineFunction{Float64}-in-MOI.Scaled{MOI.PositiveSemidefiniteConeTriangle}↪→

| * Unsupported constraint: MOI.VectorAffineFunction{Float64}-in-MOI.GeometricMeanCone
| | bridged by:
| | MOIB.Constraint.GeoMeanToPowerBridge{Float64, MOI.VectorAffineFunction{Float64}}
| | may introduce:
| | * Supported constraint: MOI.VectorAffineFunction{Float64}-in-MOI.PowerCone{Float64}
| | * Supported variable: MOI.Nonnegatives
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| * Supported variable: MOI.Reals
* Supported constraint:

MOI.VectorAffineFunction{Float64}-in-MOI.Scaled{MOI.PositiveSemidefiniteConeTriangle}↪→

Now there is only a single Unsupported constraint bullet, showing how JuMP reformulated the MOI.RootDetConeTriangle
constraint by adding a mix of MOI.PositiveSemidefiniteConeTriangle and MOI.GeometricMeanCone con-
straints.

Because Clarabel doesn't natively support the MOI.GeometricMeanCone, these constraints were further bridged
using a MOI.Bridges.Constraint.GeoMeanToPowerBridge to a series of MOI.PowerCone constraints.

However, there are many other ways that a MOI.GeometricMeanCone can be reformulated into something that
Clarabel supports. Let's see what happens if we use remove_bridge to remove the MOI.Bridges.Constraint.GeoMeanToPowerBridge:

remove_bridge(model, MOI.Bridges.Constraint.GeoMeanToPowerBridge)
optimize!(model)
assert_is_solved_and_feasible(model)

This time, the solve took:

solve_time_3 = solve_time(model)

0.0019486920000000001

where previously it took

solve_time_2

0.0021052040000000003

Why was the solve time different?

print_active_bridges(model)

* Supported objective: MOI.ScalarAffineFunction{Float64}
* Supported constraint: MOI.VectorAffineFunction{Float64}-in-MOI.Nonnegatives
* Unsupported constraint: MOI.VectorAffineFunction{Float64}-in-MOI.RootDetConeTriangle
| bridged by:
| MOIB.Constraint.RootDetBridge{Float64, MOI.VectorAffineFunction{Float64},

MOI.VectorAffineFunction{Float64}, MOI.VectorAffineFunction{Float64}}↪→

| may introduce:
| * Unsupported constraint:

MOI.VectorAffineFunction{Float64}-in-MOI.PositiveSemidefiniteConeTriangle↪→

| | bridged by:
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| | MOIB.Constraint.SetDotScalingBridge{Float64, MOI.PositiveSemidefiniteConeTriangle,
MOI.VectorAffineFunction{Float64}, MOI.VectorAffineFunction{Float64}}↪→

| | may introduce:
| | * Supported constraint:

MOI.VectorAffineFunction{Float64}-in-MOI.Scaled{MOI.PositiveSemidefiniteConeTriangle}↪→

| * Unsupported constraint: MOI.VectorAffineFunction{Float64}-in-MOI.GeometricMeanCone
| | bridged by:
| | MOIB.Constraint.GeoMeantoRelEntrBridge{Float64, MOI.VectorOfVariables,

MOI.VectorAffineFunction{Float64}, MOI.VectorAffineFunction{Float64}}↪→

| | may introduce:
| | * Unsupported constraint: MOI.VectorAffineFunction{Float64}-in-MOI.RelativeEntropyCone
| | | bridged by:
| | | MOIB.Constraint.RelativeEntropyBridge{Float64, MOI.ScalarAffineFunction{Float64},

MOI.VectorAffineFunction{Float64}, MOI.VectorAffineFunction{Float64}}↪→

| | | may introduce:
| | | * Unsupported constraint:

MOI.ScalarAffineFunction{Float64}-in-MOI.GreaterThan{Float64}↪→

| | | | bridged by:
| | | | MOIB.Constraint.VectorizeBridge{Float64, MOI.VectorAffineFunction{Float64},

MOI.Nonnegatives, MOI.ScalarAffineFunction{Float64}}↪→

| | | | may introduce:
| | | | * Supported constraint: MOI.VectorAffineFunction{Float64}-in-MOI.Nonnegatives
| | | * Supported constraint: MOI.VectorAffineFunction{Float64}-in-MOI.ExponentialCone
| | | * Supported variable: MOI.Reals
| | * Supported variable: MOI.Nonnegatives
| * Supported variable: MOI.Reals
* Supported constraint:

MOI.VectorAffineFunction{Float64}-in-MOI.Scaled{MOI.PositiveSemidefiniteConeTriangle}↪→

This time, JuMP used a MOI.Bridges.Constraint.GeoMeantoRelEntrBridge to reformulate the constraint
into a set of MOI.RelativeEntropyCone constraints, which were further reformulated into a set of supported
MOI.ExponentialCone constraints.

Since the two models are equivalent, we can conclude that for this particular model, the formulations have
similar performance.

In general though, the performance of a particular reformulation is problem- and solver-specific. Therefore,
JuMP chooses to minimize the number of bridges in the default reformulation, leaving you to explore alternative
formulations using the tools and techniques shown in this tutorial.

8.12 Example: fitting of circles and ellipses

This tutorial was generated using Literate.jl. Download the source as a .jl file.

Ellipse fitting is a common task in data analysis and computer vision and is of key importance in many ap-
plication areas. In this tutorial we show how to fit an ellipse to a set of points using a conic optimization
approach.

Required packages

This tutorial uses the following packages:

https://github.com/fredrikekre/Literate.jl
tutorials/conic/ellipse_fitting.jl
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using JuMP
import Clarabel
import Clustering
import DSP
import Images
import LinearAlgebra
import LinearOperatorCollection as LOC
import Plots
import RegularizedLeastSquares as RLS
import Wavelets

Parametrization of an ellipse

An ellipse is a set of the form:

E = {ξ : (ξ − c)⊤D(ξ − c) = r2}

where c ∈ R2 is the center of the ellipse, D ∈ R2×2 � 0 is a symmetric positive definite matrix and r > 0.

We can setup a coordinate system (x, y) ∈ X × Y with x, y ≥ 0. We use definition (1) to write an ellipse as
the root of a quadratic form in homogeneous coordinates:

[
ξ
1

]T [
Q d
dT e

] [
ξ
1

]
= 0

where:

Q = D (8.17)

d = −Dc (8.18)

e = cTDc− r2 (8.19)

The residual distance r0 of a random point ξ0 = (x0, y0) to the ellipse is then given by:

r0 ≜
[
ξ0
1

]T [
Q d
dT e

] [
ξ0
1

]
The value of r0 is positive if the point is outside the ellipse, zero if it is on the ellipse and negative if it is inside
the ellipse. We also see we only need six parameters to uniquely define an ellipse.

Helper functions

We define some helper functions to help us visualize the results.
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function plot_dwt(x, sz = (500, 500))
return Plots.heatmap(

x;
color = :grays,
aspect_ratio = 1,
cbar = false,
xlims = (0, size(x, 2)),
ylims = (0, size(x, 1)),
size = sz,
dpi = 300,

)
end

function normalize(x::AbstractArray)
l, u = extrema(x)
return (x .- l) ./ (u - l)

end

normalize (generic function with 1 method)

Reading the test image

To test our ellipse-fitting algorithm we need a test image with elliptical features. For our test image we will
use an image of the cartwheel galaxy, captured by the James Webb Space Telescope. Galaxies come in many
shapes and sizes, elliptical being one of them.

This is just a toy problem with little scientific value, but you can imagine how the rotation and position of
elliptical galaxies can be useful information to astronomers.

filename = joinpath(@__DIR__, "..", "..", "assets", "cartwheel_galaxy.png")
img = Images.load(filename);

We convert the image to gray scale so that we can work with a single channel.

img_gray = Images.Gray.(img)
Images.mosaicview(img, img_gray; nrow = 1)

https://webbtelescope.org/contents/media/images/2022/039/01G8JXN0K2VBQP112RNSQWTCTH
https://science.nasa.gov/universe/galaxies/types/
https://science.nasa.gov/universe/galaxies/types/
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Instead of operating on the entire image, we select a region of interest (ROI) which is a subset of X× Y.

sz = 256
X_c = 600
Y_c = 140
X = X_c:X_c+sz-1
Y = Y_c:Y_c+sz-1
roi = (X, Y)
img_roi = img[roi...]
img_gray_roi = img_gray[roi...]
Images.mosaicview(img_roi, img_gray_roi; nrow = 1)
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Extracting image features

We cannot directly fit ellipses to the image, so we need to extract features that enable us to find the elliptical
galaxies.

The first step is to find a sparse representation of the image. We will use the discrete wavelet transform (DWT)
in combination with the Iterative Shrinking and Thresholding (ISTA) algorithm to denoise the image and find a
sparse representation. This will remove redundant information and make it much easier to detect the edges
of galaxies.

Finding a sparse representation amounts to solving the following optimization problem:

min
x

1

2
‖y − Φx‖22 + λ ‖x‖1

where y is the noisy image, Φ is the sparsifying basis, x is the sparse representation of our image, and λ is
the regularization parameter which we set to 0.1.

To work with our image we must first convert it to Float64.

x = convert(Array{Float64}, img_gray_roi)

256×256 Matrix{Float64}:
0.0823529 0.0588235 0.054902 … 0.0431373 0.0666667 0.054902
0.0784314 0.0588235 0.054902 0.054902 0.0666667 0.0431373
0.0705882 0.0666667 0.0627451 0.0588235 0.0705882 0.0588235
0.0627451 0.0666667 0.0705882 0.054902 0.0627451 0.0627451
0.0509804 0.0666667 0.0745098 0.0509804 0.0509804 0.0588235
0.0509804 0.0627451 0.054902 … 0.054902 0.0588235 0.0588235
0.0588235 0.0784314 0.054902 0.0784314 0.0627451 0.0431373
0.0627451 0.0509804 0.0509804 0.0666667 0.0588235 0.0666667
0.0627451 0.0470588 0.054902 0.0470588 0.054902 0.0901961
0.0588235 0.0509804 0.0470588 0.0470588 0.0470588 0.054902
� � �
0.054902 0.054902 0.0392157 0.054902 0.0666667 0.0745098
0.0470588 0.054902 0.0509804 0.054902 0.054902 0.0666667
0.0470588 0.0431373 0.0470588 0.0823529 0.0588235 0.0588235
0.0470588 0.0509804 0.0431373 … 0.0784314 0.0588235 0.054902
0.0509804 0.0509804 0.0431373 0.054902 0.0627451 0.054902
0.0431373 0.0470588 0.0431373 0.054902 0.0705882 0.0666667
0.0509804 0.0470588 0.0509804 0.0666667 0.0705882 0.0588235
0.0509804 0.0431373 0.0470588 0.0627451 0.0627451 0.0509804
0.054902 0.0470588 0.0470588 … 0.0823529 0.0705882 0.0666667

We then use ISTA in combination with our wavelet sparsifying basisΨ obtained from the family of Daubechies
wavelets. We use the db4 wavelet which has 4 vanishing moments. We set the number of iterations to 15.

reg = RLS.L1Regularization(0.1);
Φ = LOC.WaveletOp(

Float64;
shape = size(x),
wt = Wavelets.wavelet(Wavelets.WT.db4),

https://en.wikipedia.org/wiki/Daubechies_wavelet
https://en.wikipedia.org/wiki/Daubechies_wavelet
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);
solver = RLS.createLinearSolver(RLS.OptISTA, Φ; reg = reg, iterations = 15);

The sampled image in wavelet domain is given by:

b = Φ * vec(x);

We can now solve the optimization problem to find the sparse representation of the image.

x_approx = RLS.solve!(solver, b)
x_approx = reshape(x_approx, size(x));
x_final = normalize(x_approx)
Images.mosaicview(x, Images.Gray.(x_final); nrow = 1)

We then use a binarization algorithm to map each grayscale pixel (xi, yi) to a binary value so xi, yi → {0, 1}.

x_bin = Images.binarize(x_final, Images.Otsu(); nbins = 128)
x_bin = convert(Array{Bool}, x_bin)
plt = plot_dwt(img_roi)
Plots.heatmap!(x_bin; color = :grays, alpha = 0.45)
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Edge detection and clustering

Now that we have our binary image, we can use edge detection to find the edges of the galaxies. We will use
the Sobel operator for this task.

function edge_detector(
f_smooth::Matrix{Float64},
d1::Float64 = 0.1,
d2::Float64 = 0.1,

)
rows, cols = size(f_smooth)
gradient_magnitude = zeros(Float64, rows, cols)
laplacian_magnitude = zeros(Float64, rows, cols)
sobel_x = [-1 0 1; -2 0 2; -1 0 1]
sobel_y = [-1 -2 -1; 0 0 0; 1 2 1]

https://en.wikipedia.org/wiki/Sobel_operator
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sobel_xx = [-1 2 -1; 2 -4 2; -1 2 -1]
sobel_yy = [-1 2 -1; 2 -4 2; -1 2 -1]
gradient_x = DSP.conv(f_smooth, sobel_x)
gradient_y = DSP.conv(f_smooth, sobel_y)
gradient_magnitude = sqrt.(gradient_x .^ 2 + gradient_y .^ 2)
gradient_xx = DSP.conv(f_smooth, sobel_xx)
gradient_yy = DSP.conv(f_smooth, sobel_yy)
laplacian_magnitude = sqrt.(gradient_xx .^ 2 + gradient_yy .^ 2)
return (gradient_magnitude .> d1) .& (laplacian_magnitude .< d2)

end

edge_detector (generic function with 3 methods)

We apply the Sobel operator to the binary image:

edges = edge_detector(convert(Matrix{Float64}, x_bin), 1e-1, 1e2)
edges = Images.thinning(edges; algo = Images.GuoAlgo())

258×258 BitMatrix:
0 0 0 0 0 0 0 0 0 0 0 0 0 … 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 … 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
� � � � � �
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 … 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 … 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

And finally we cluster the edges using dbscan so we can fit ellipses to individual galaxies. We can control the
minimum size of galaxies by changing the minimum cluster size.

points = findall(edges)
points = getfield.(points, :I)
points = hcat([p[1] for p in points], [p[2] for p in points])'
result = Clustering.dbscan(

convert(Matrix{Float64}, points),
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3.0;
min_neighbors = 2,
min_cluster_size = 15,

)

Clustering.DbscanResult(Clustering.DbscanCluster[Clustering.DbscanCluster(41, [12, 13, 14, 15, 16,
17, 18, 19, 20, 21 … 47, 48, 49, 51, 52, 53, 54, 55, 56, 57], Int64[]),
Clustering.DbscanCluster(28, [83, 84, 85, 86, 87, 88, 89, 90, 91, 92 … 102, 105, 106, 107,
108, 109, 110, 111, 112, 113], Int64[]), Clustering.DbscanCluster(17, [121, 122, 125, 126, 127,
130, 131, 134, 135, 138, 139, 144, 145, 146, 147, 148, 149], Int64[]),
Clustering.DbscanCluster(26, [152, 153, 154, 155, 156, 157, 158, 159, 160, 161 … 168, 169,
170, 171, 172, 173, 174, 175, 176, 177], Int64[]), Clustering.DbscanCluster(27, [178, 179, 180,
181, 182, 183, 184, 185, 186, 187 … 195, 196, 197, 198, 199, 200, 201, 202, 203, 204],
Int64[]), Clustering.DbscanCluster(53, [220, 221, 222, 223, 224, 226, 227, 228, 229, 230 …
297, 298, 301, 302, 303, 304, 305, 308, 309, 310], Int64[]), Clustering.DbscanCluster(62, [237,
238, 239, 245, 246, 247, 248, 249, 256, 257 … 336, 337, 338, 341, 342, 343, 344, 345, 346,
347], Int64[])], [12, 83, 121, 152, 178, 220, 237], [41, 28, 17, 26, 27, 53, 62], [0, 0, 0, 0,
0, 0, 0, 0, 0, 0 … 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

The result of the clustering is a list of clusters to which we will assign a unique color. Each cluster is a list of
points that belong to the same galaxy.

clusters = result.clusters
N_clusters = length(clusters)
colors = Plots.distinguishable_colors(N_clusters + 1)[2:end]
plt = plot_dwt(x_final)
for (i, cluster) in enumerate(clusters)

p_cluster = points[:, cluster.core_indices]
Plots.scatter!(

plt,
p_cluster[2, :],
p_cluster[1, :];
color = colors[i],
label = false,
markerstrokewidth = 0,
markersize = 1.5,

)
end
Plots.plot!(

plt;
axis = false,
legend = :topleft,
legendcolumns = 1,
legendfontsize = 12,

)
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Fitting ellipses

Now that we have all the ingredients we can finally start fitting ellipses. We will use a conic optimization
approach to do so since it is a very natural way to represent ellipses.

First, we define the residual distance definition (6) of a point to an ellipse in JuMP:

function create_ellipse_model(Ξ::Array{Tuple{Int,Int},1}, ϵ = 1e-5)
N = length(Ξ)
model = Model(Clarabel.Optimizer)
set_silent(model)
@variable(model, Q[1:2, 1:2], PSD)
@variable(model, d[1:2])
@variable(model, e)
@expression(

model,



CHAPTER 8. CONIC PROGRAMS 436

r[i in 1:N],
[Ξ[i][1], Ξ[i][2], 1]' * [Q d; d' e] * [Ξ[i][1], Ξ[i][2], 1]

)
return model

end

create_ellipse_model (generic function with 2 methods)

Objective 1: Minimize the total squared distance

For our first objective we will minimize the total squared distance of all points to the ellipse. Hence we will use
the sum of the squared distances as our objective function, also known as the L2 norm:

min
Q,d,e

Pres(E) = min
Q,d,e

∑
i∈N

d2res(ξi, E) = min
Q,d,e

||dres||22

This problem is equivalent to:

min
Q,d,e,

(8.20)

s.t. ≥ d2res(ξi, E) ∀i ∈ N (8.21)

And hence can be modelled as a second-order cone program (SOCP) using MOI.RotatedSecondOrderCone as
follows:

ellipses_C1 = Dict{Symbol,Any}[]
for (i, cluster) in enumerate(clusters)

p_cluster = points[:, cluster.core_indices]
Ξ = [(point[1], point[2]) for point in eachcol(p_cluster)]
model = create_ellipse_model(Ξ)
@variable(model, ζ >= 0)
@constraint(

model,
[1 / 2; ζ; model[:r]] in
MOI.RotatedSecondOrderCone(2 + length(model[:r]))

)
@objective(model, Min, ζ)
optimize!(model)
assert_is_solved_and_feasible(model)
Q, d, e = value.(model[:Q]), value.(model[:d]), value.(model[:e])
push!(ellipses_C1, Dict(:Q => Q, :d => d, :e => e))

end
W, H = size(img_roi)
x_range = 0:1:W
y_range = 0:1:H
X, Y = [x for x in x_range], [y for y in y_range]
function ellipse_eq(x, y, Q, d, e)

Z = zeros(length(x), length(y))
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for i in eachindex(x), j in eachindex(y)
ξ = [x[i], y[j]]
Z[i, j] = [ξ; 1.0]' * [Q d; d' e] * [ξ; 1.0]

end
return Z

end
for ellipse in ellipses_C1

Q, d, e = ellipse[:Q], ellipse[:d], ellipse[:e]
Z_sq = ellipse_eq(X, Y, Q, d, e)
Plots.contour!(

plt,
x_range,
y_range,
Z_sq;
levels = [0.0],
linewidth = 2,
color = :red,
cbar = false,

)
end
plt
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Objective 2: Minimize the maximum residual distance

For our second objective we will minimize the maximum residual distance of all points to the ellipse:

min
Q,d,e

max
ξi∈F

dres(ξi, E) = min
Q,d,e

||dres||∞

This objective can be implemented in JuMP using MOI.NormInfinityCone as follows:

ellipses_C2 = Dict{Symbol,Any}[]
for (i, cluster) in enumerate(clusters)

p_cluster = points[:, cluster.core_indices]
Ξ = [(point[1], point[2]) for point in eachcol(p_cluster)]
model = create_ellipse_model(Ξ)
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N = length(Ξ)
@variable(model, ζ)
@constraint(

model,
[ζ; model[:r]] in MOI.NormInfinityCone(1 + length(model[:r]))

)
@objective(model, Min, ζ)
optimize!(model)
assert_is_solved_and_feasible(model; allow_almost = true)
Q, d, e = value.(model[:Q]), value.(model[:d]), value.(model[:e])
push!(ellipses_C2, Dict(:Q => Q, :d => d, :e => e))

end
for ellipse in ellipses_C2

Q, d, e = ellipse[:Q], ellipse[:d], ellipse[:e]
Z_sq = ellipse_eq(X, Y, Q, d, e)
Plots.contour!(

plt,
x_range,
y_range,
Z_sq;
levels = [0.0],
linewidth = 2,
color = :green,
cbar = false,

)
end
Plots.scatter!([0], [0]; color = :red, label = "Squared (Obj. 1)")
Plots.scatter!([0], [0]; color = :green, label = "Min-Max (Obj. 2)")
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8.13 Example: quantum state discrimination

This tutorial was generated using Literate.jl. Download the source as a .jl file.

This tutorial solves the problem of quantum state discrimination.

The purpose of this tutorial to demonstrate how to solve problems involving complex-valued decision variables
and the HermitianPSDCone. See Complex number support for more details.

Required packages

This tutorial uses the following packages:

using JuMP
import Clarabel
import LinearAlgebra

https://github.com/fredrikekre/Literate.jl
tutorials/conic/quantum_discrimination.jl
https://en.wikipedia.org/wiki/Quantum_state_discrimination
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Formulation

A d-dimensional quantum state, ρ, can be defined by a complex-valued Hermitian matrix with a trace of 1.
Assume we have N d-dimensional quantum states, {ρi}Ni=1, each of which is equally likely.

The goal of the quantum state discrimination problem is to choose a positive operator-valued measure (POVM),
{Ei}Ni=1, such that if we observe Ei then the most probable state that we are in is ρi.

Each POVM element, Ei, is a complex-valued Hermitian matrix, and there is a requirement that
N∑
i=1

Ei = I.

To choose a POVM, we want to maximize the probability that we guess the quantum state correctly. This can
be formulated as the following optimization problem:

max
E

1

N

N∑
i=1

tr(ρiEi)

s.t.
N∑
i=1

Ei = I

Ei � 0 ∀i = 1, . . . , N.

Data

To setup our problem, we need N d-dimensional quantum states. To keep the problem simple, we use N = 2
and d = 2.

N, d = 2, 2

(2, 2)

We then generated N random d-dimensional quantum states:

function random_state(d)
x = randn(ComplexF64, (d, d))
y = x * x'
return LinearAlgebra.Hermitian(y / LinearAlgebra.tr(y))

end

ρ = [random_state(d) for i in 1:N]

2-element Vector{LinearAlgebra.Hermitian{ComplexF64, Matrix{ComplexF64}}}:
[0.9049983143615443 + 0.0im -0.11984167294191471 + 0.2224268161763913im; -0.11984167294191471 -

0.2224268161763913im 0.09500168563845571 + 0.0im]↪→

[0.2503060704439256 + 0.0im -0.16997258971668044 - 0.09226624832975384im; -0.16997258971668044 +
0.09226624832975384im 0.7496939295560743 + 0.0im]↪→

https://en.wikipedia.org/wiki/POVM
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JuMP formulation

To model the problem in JuMP, we need a solver that supports positive semidefinite matrices:

model = Model(Clarabel.Optimizer)
set_silent(model)

Then, we construct our set of E variables:

E = [@variable(model, [1:d, 1:d] in HermitianPSDCone()) for i in 1:N]

2-element Vector{LinearAlgebra.Hermitian{GenericAffExpr{ComplexF64, VariableRef},
Matrix{GenericAffExpr{ComplexF64, VariableRef}}}}:↪→

[_[1] _[2] + _[4] im; _[2] - _[4] im _[3]]
[_[5] _[6] + _[8] im; _[6] - _[8] im _[7]]

Here we have created a vector of matrices. This is different to other modeling languages such as YALMIP,
which allow you to create a multi-dimensional array in which 2-dimensional slices of the array are Hermitian
matrices.

We also need to enforce the constraint that
N∑
i=1

Ei = I:

@constraint(model, sum(E) == LinearAlgebra.I)

[
_1 + _5 − 1 _2 + _6 + _4im+ _8im

_2 + _6 − _4im− _8im _3 + _7 − 1

]
∈ Zeros()

This constraint is a complex-valued equality constraint. In the solver, it will be decomposed onto two types
of equality constraints: one to enforce equality of the real components, and one to enforce equality of the
imaginary components.

Our objective is to maximize the expected probability of guessing correctly:

@objective(
model,
Max,
sum(real(LinearAlgebra.tr(ρ[i] * E[i])) for i in 1:N) / N,

)

0.45249915718077216_1−0.11984167294191471_2+0.2224268161763913_4+0.047500842819227854_3+
0.1251530352219628_5 − 0.16997258971668044_6 − 0.09226624832975384_8 +0.37484696477803714_7

Now we optimize:

optimize!(model)
assert_is_solved_and_feasible(model)
solution_summary(model)
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solution_summary(; result = 1, verbose = false)
├ solver_name : Clarabel
├ Termination
│ ├ termination_status : OPTIMAL
│ ├ result_count : 1
│ └ raw_status : SOLVED
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : FEASIBLE_POINT
│ ├ objective_value : 8.64063e-01
│ └ dual_objective_value : 8.64063e-01
└ Work counters
├ solve_time (sec) : 1.24622e-03
└ barrier_iterations : 8

The probability of guessing correctly is:

objective_value(model)

0.8640627425181733

When N = 2, there is a known analytical solution of:

0.5 + 0.25 * sum(LinearAlgebra.svdvals(ρ[1] - ρ[2]))

0.8640627582954737

proving that we found the optimal solution.

Finally, the optimal POVM is:

solution = [value.(e) for e in E]

2-element Vector{Matrix{ComplexF64}}:
[0.9496066849311735 + 0.0im 0.034413986810280475 + 0.21603121721998986im; 0.034413986810280475 -

0.21603121721998986im 0.050393307139617316 + 0.0im]↪→

[0.05039331506882663 + 0.0im -0.034413986810280475 - 0.21603121721998986im; -0.034413986810280475
+ 0.21603121721998986im 0.9496066928603828 + 0.0im]↪→

Tip

Duality plays a large role in solving conic optimization models. Depending on the solver, it can be more
efficient to solve the dual of this problem instead of the primal. If performance is an issue, see the
Dualization tutorial for more details.
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Alternative formulation

The formulation above includes N Hermitian matrices and a set of linear equality constraints. We can simplify

the problem by replacing EN with EN = I −
N−1∑
i=1

Ei. This results in:

model = Model(Clarabel.Optimizer)
set_silent(model)
E = [@variable(model, [1:d, 1:d] in HermitianPSDCone()) for i in 1:N-1]
E_N = LinearAlgebra.Hermitian(LinearAlgebra.I - sum(E))
@constraint(model, E_N in HermitianPSDCone())
push!(E, E_N)

2-element Vector{LinearAlgebra.Hermitian{GenericAffExpr{ComplexF64, VariableRef},
Matrix{GenericAffExpr{ComplexF64, VariableRef}}}}:↪→

[_[1] _[2] + _[4] im; _[2] - _[4] im _[3]]
[-_[1] + 1 -_[2] - _[4] im; -_[2] + _[4] im -_[3] + 1]

The objective can also be simplified, by observing that it is equivalent to:

@objective(model, Max, real(LinearAlgebra.dot(ρ, E)) / N)

0.32734612195880936_1+0.050130916774765735_2+0.31469306450614515_4−0.3273461219588093_3+
0.49999999999999994

Then we can check that we get the same solution:

optimize!(model)
assert_is_solved_and_feasible(model)
solution_summary(model)

solution_summary(; result = 1, verbose = false)
├ solver_name : Clarabel
├ Termination
│ ├ termination_status : OPTIMAL
│ ├ result_count : 1
│ └ raw_status : SOLVED
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : FEASIBLE_POINT
│ ├ objective_value : 8.64063e-01
│ └ dual_objective_value : 8.64063e-01
└ Work counters
├ solve_time (sec) : 1.31532e-03
└ barrier_iterations : 9
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objective_value(model)

0.8640627545817933
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Algorithms

9.1 Benders decomposition

This tutorial was generated using Literate.jl. Download the source as a .jl file.

This tutorial was originally contributed by Shuvomoy Das Gupta.

This tutorial describes how to implement Benders decomposition in JuMP. It uses the following packages:

using JuMP
import Gurobi
import HiGHS
import Printf

Theory

Benders decomposition is a useful algorithm for solving convex optimization problems with a large number of
variables. It works best when a larger problem can be decomposed into two (or more) smaller problems that
are individually much easier to solve.

This tutorial demonstrates Benders decomposition on the following mixed-integer linear program:

min c1(x) + c2(y)

subject to f1(x) ∈ S1

f2(y) ∈ S2

f3(x, y) ∈ S3

x ∈ Zm

y ∈ Rn

where the functions f and c are linear, and the sets S are inequality sets like ≥ l, ≤ u, or = b.

Any mixed integer programming problem can be written in the form above.

If there are relatively few integer variables, and many more continuous variables, then it may be beneficial to
decompose the problem into a small problem containing only integer variables and a linear program containing
only continuous variables. Hopefully, the linear program will be much easier to solve in isolation than in the
full mixed-integer linear program.

446

https://github.com/fredrikekre/Literate.jl
tutorials/algorithms/benders_decomposition.jl
https://en.wikipedia.org/wiki/Benders_decomposition
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For example, if we knew a feasible solution for x̄, we could obtain a solution for y by solving:

V2(x̄) =min c2(y)

subject to f2(y) ∈ S2

f3(x, y) ∈ S3

x = x̄ [π]

y ∈ Rn

Note that we have included a "copy" of the x variable to simplify computing π, which is the dual of V2 with
respect to x̄.

Because this model is a linear program, it is easy to solve.

Replacing the c2(y) component of the objective in our original problem with V2 yields:

V1 =min c1(x) + V2(x)

subject to f1(x) ∈ S1

x ∈ Zm.

This problem looks a lot simpler to solve because it involves only x and a subset of the constraints, but we
need to do something else with V2 first.

Because x̄ is a constant that appears on the right-hand side of the constraints, V2 is a convex function with
respect to x̄, and the dual variable π is a subgradient of V2(x) with respect to x. Therefore, if we have a
candidate solution xk, then we can solve V2(xk) and obtain a feasible dual vector πk. Using these values, we
can construct a first-order Taylor-series approximation of V2 about the point xk:

V2(x) ≥ V2(xk) + π⊤
k (x− xk).

By convexity, we know that this inequality holds for all x, and we call these inequalities cuts.

Benders decomposition is an iterative technique that replaces V2(x) with a new decision variable θ, and ap-
proximates it from below using cuts:

V K
1 =min c1(x) + θ

subject to f1(x) ∈ S1

x ∈ Zm

θ ≥M

θ ≥ V2(xk) + π⊤
k (x− xk) ∀k = 1, . . . ,K.

This integer program is called the first-stage subproblem.

To generate cuts, we solve V K
1 to obtain a candidate first-stage solution xk, then we use that solution to solve

V2(xk). Then, using the optimal objective value and dual solution from V2, we add a new cut to form V K+1
1

and repeat.
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Bounds

Due to convexity, we know that V2(x) ≥ θ for all x. Therefore, the optimal objective value of V K
1 provides

a valid lower bound on the objective value of the full problem. In addition, if we take a feasible solution for
x from the first-stage problem, then c1(x) + V2(x) is a valid upper bound on the objective value of the full
problem.

Benders decomposition uses the lower and upper bounds to determine when it has found the global optimal
solution.

Monolithic problem

As an example problem, we consider the following variant of The max-flow problem, in which there is a binary
variable to decide whether to open each arc for a cost of 0.1 unit, and we can open at most 11 arcs:

G = [
0 3 2 2 0 0 0 0
0 0 0 0 5 1 0 0
0 0 0 0 1 3 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 4
0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 4
0 0 0 0 0 0 0 0

]
n = size(G, 1)
model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, x[1:n, 1:n], Bin)
@variable(model, y[1:n, 1:n] >= 0)
@constraint(model, sum(x) <= 11)
@constraint(model, [i = 1:n, j = 1:n], y[i, j] <= G[i, j] * x[i, j])
@constraint(model, [i = 2:n-1], sum(y[i, :]) == sum(y[:, i]))
@objective(model, Min, 0.1 * sum(x) - sum(y[1, :]))
optimize!(model)
solution_summary(model)

solution_summary(; result = 1, verbose = false)
├ solver_name : HiGHS
├ Termination
│ ├ termination_status : OPTIMAL
│ ├ result_count : 1
│ ├ raw_status : kHighsModelStatusOptimal
│ └ objective_bound : -5.10000e+00
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : NO_SOLUTION
│ ├ objective_value : -5.10000e+00
│ ├ dual_objective_value : NaN
│ └ relative_gap : 0.00000e+00
└ Work counters
├ solve_time (sec) : 2.27332e-03
├ simplex_iterations : 15
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├ barrier_iterations : -1
└ node_count : 1

The optimal objective value is -5.1:

objective_value(model)

-5.1

and the optimal flows are:

function optimal_flows(x)
return [(i, j) => x[i, j] for i in 1:n for j in 1:n if x[i, j] > 0]

end

monolithic_solution = optimal_flows(value.(y))

9-element Vector{Pair{Tuple{Int64, Int64}, Float64}}:
(1, 2) => 3.0
(1, 3) => 2.0
(1, 4) => 1.0
(2, 5) => 3.0
(3, 5) => 1.0
(3, 6) => 1.0
(4, 6) => 1.0
(5, 8) => 4.0
(6, 8) => 2.0

Iterative method

Warning

This is a basic implementation for pedagogical purposes. We haven't discussed any of the compu-
tational tricks that are required to build a performant implementation for large-scale problems. See
In-place iterative method for one improvement that helps computation time.

We start by formulating the first-stage subproblem. It includes the x variables, and the constraints involving
only x, and the terms in the objective containing only x. We also need an initial lower bound on the cost-to-go
variable θ. One valid lower bound is to assume that we do not pay for opening arcs, and there is flow all the
arcs.

M = -sum(G)
model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, x[1:n, 1:n], Bin)
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@variable(model, θ >= M)
@constraint(model, sum(x) <= 11)
@objective(model, Min, 0.1 * sum(x) + θ)
model

A JuMP Model
├ solver: HiGHS
├ objective_sense: MIN_SENSE
│ └ objective_function_type: AffExpr
├ num_variables: 65
├ num_constraints: 66
│ ├ AffExpr in MOI.LessThan{Float64}: 1
│ ├ VariableRef in MOI.GreaterThan{Float64}: 1
│ └ VariableRef in MOI.ZeroOne: 64
└ Names registered in the model
└ :x, :θ

For the next step, we need a function that takes a first-stage candidate solution x and returns the optimal
solution from the second-stage subproblem:

function solve_subproblem(x_bar)
model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, x[i in 1:n, j in 1:n] == x_bar[i, j])
@variable(model, y[1:n, 1:n] >= 0)
@constraint(model, [i = 1:n, j = 1:n], y[i, j] <= G[i, j] * x[i, j])
@constraint(model, [i = 2:n-1], sum(y[i, :]) == sum(y[:, i]))
@objective(model, Min, -sum(y[1, :]))
optimize!(model)
assert_is_solved_and_feasible(model; dual = true)
return (obj = objective_value(model), y = value.(y), π = reduced_cost.(x))

end

solve_subproblem (generic function with 1 method)

Note that solve_subproblem returns a NamedTuple of the objective value, the optimal primal solution for y,
and the optimal dual solution for π, which we obtained from the reduced_cost of the x variables.

We're almost ready for our optimization loop, but first, here's a helpful function for logging:

function print_iteration(k, args...)
f(x) = Printf.@sprintf("%12.4e", x)
println(lpad(k, 9), " ", join(f.(args), " "))
return

end
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print_iteration (generic function with 1 method)

We also need to put a limit on the number of iterations before termination:

MAXIMUM_ITERATIONS = 100

100

And a way to check if the lower and upper bounds are close-enough to terminate:

ABSOLUTE_OPTIMALITY_GAP = 1e-6

1.0e-6

Now we're ready to iterate Benders decomposition:

println("Iteration Lower Bound Upper Bound Gap")
for k in 1:MAXIMUM_ITERATIONS

optimize!(model)
assert_is_solved_and_feasible(model)
lower_bound = objective_value(model)
x_k = value.(x)
ret = solve_subproblem(x_k)
upper_bound = (objective_value(model) - value(θ)) + ret.obj
gap = abs(upper_bound - lower_bound) / abs(upper_bound)
print_iteration(k, lower_bound, upper_bound, gap)
if gap < ABSOLUTE_OPTIMALITY_GAP

println("Terminating with the optimal solution")
break

end
cut = @constraint(model, θ >= ret.obj + sum(ret.π .* (x .- x_k)))
@info "Adding the cut $(cut)"

end

Iteration Lower Bound Upper Bound Gap
1 -2.9000e+01 0.0000e+00 Inf

[ Info: Adding the cut 3 x[1,2] + 2 x[1,3] + 2 x[1,4] + θ ≥ 0
2 -6.7000e+00 3.0000e-01 2.3333e+01

[ Info: Adding the cut 5 x[2,5] + x[3,5] + x[2,6] + 3 x[3,6] + x[4,6] + x[3,7] + θ ≥ 0
3 -6.5000e+00 5.0000e-01 1.4000e+01

[ Info: Adding the cut x[3,7] + 4 x[5,8] + 2 x[6,8] + θ ≥ 0
4 -6.2000e+00 -4.2000e+00 4.7619e-01

[ Info: Adding the cut 3 x[1,2] + x[3,5] + 2 x[6,8] + 4 x[7,8] + θ ≥ 0
5 -6.1000e+00 -4.1000e+00 4.8780e-01
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[ Info: Adding the cut 3 x[1,2] + x[3,5] + 3 x[3,6] + x[4,6] + x[3,7] + θ ≥ 0
6 -6.1000e+00 -4.1000e+00 4.8780e-01

[ Info: Adding the cut 3 x[1,2] + 2 x[1,3] + x[4,6] + θ ≥ 0
7 -5.1000e+00 -5.1000e+00 0.0000e+00

Terminating with the optimal solution

Finally, we can obtain the optimal solution:

optimize!(model)
assert_is_solved_and_feasible(model)
x_optimal = value.(x)
optimal_ret = solve_subproblem(x_optimal)
iterative_solution = optimal_flows(optimal_ret.y)

9-element Vector{Pair{Tuple{Int64, Int64}, Float64}}:
(1, 2) => 3.0
(1, 3) => 2.0
(1, 4) => 1.0
(2, 5) => 3.0
(3, 5) => 1.0
(3, 6) => 1.0
(4, 6) => 1.0
(5, 8) => 4.0
(6, 8) => 2.0

which is the same as the monolithic solution:

iterative_solution == monolithic_solution

true

and it has the same objective value:

objective_value(model)

-5.1

Callback method

The Iterative method section implemented Benders decomposition using a loop. In each iteration, we re-solved
the first-stage subproblem to generate a candidate solution. However, modern MILP solvers such as CPLEX,
Gurobi, and GLPK provide lazy constraint callbacks which allow us to add new cuts while the solver is running.
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This can be more efficient than an iterative method because we can avoid repeating work such as solving the
root node of the first-stage MILP at each iteration.

Tip

We use Gurobi for this model because HiGHS does not support lazy constraints. For more information
on callbacks, read the page Solver-independent callbacks.

As before, we construct the same first-stage subproblem:

optimizer = Gurobi.Optimizer
lazy_model = Model(optimizer)
set_silent(lazy_model)
@variable(lazy_model, x[1:n, 1:n], Bin)
@variable(lazy_model, θ >= M)
@constraint(lazy_model, sum(x) <= 11)
@objective(lazy_model, Min, 0.1 * sum(x) + θ)
lazy_model

A JuMP Model
├ solver: Gurobi
├ objective_sense: MIN_SENSE
│ └ objective_function_type: AffExpr
├ num_variables: 65
├ num_constraints: 66
│ ├ AffExpr in MOI.LessThan{Float64}: 1
│ ├ VariableRef in MOI.GreaterThan{Float64}: 1
│ └ VariableRef in MOI.ZeroOne: 64
└ Names registered in the model
└ :x, :θ

What differs is that we write a callback function instead of a loop:

number_of_subproblem_solves = 0
function my_callback(cb_data)

status = callback_node_status(cb_data, lazy_model)
if status != MOI.CALLBACK_NODE_STATUS_INTEGER

# Only add the constraint if `x` is an integer feasible solution
return

end
x_k = callback_value.(cb_data, x)
θ_k = callback_value(cb_data, θ)
global number_of_subproblem_solves += 1
ret = solve_subproblem(x_k)
if θ_k < (ret.obj - 1e-6)

# Only add the constraint if θ_k violates the constraint
cut = @build_constraint(θ >= ret.obj + sum(ret.π .* (x .- x_k)))
MOI.submit(lazy_model, MOI.LazyConstraint(cb_data), cut)

end
return

end
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set_attribute(lazy_model, MOI.LazyConstraintCallback(), my_callback)

Now when we optimize!, our callback is run:

optimize!(lazy_model)
assert_is_solved_and_feasible(lazy_model)

For this model, the callback algorithm required more solves of the subproblem:

number_of_subproblem_solves

17

But for larger problems, you can expect the callback algorithm to be more efficient than the iterative algorithm.

Finally, we can obtain the optimal solution:

x_optimal = value.(x)
optimal_ret = solve_subproblem(x_optimal)
callback_solution = optimal_flows(optimal_ret.y)

9-element Vector{Pair{Tuple{Int64, Int64}, Float64}}:
(1, 2) => 3.0
(1, 3) => 2.0
(1, 4) => 1.0
(2, 5) => 3.0
(3, 5) => 1.0
(3, 6) => 1.0
(4, 6) => 1.0
(5, 8) => 4.0
(6, 8) => 2.0

which is the same as the monolithic solution:

callback_solution == monolithic_solution

true
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In-place iterative method

Our implementation of the iterative method has a problem: every time we need to solve the subproblem, we
must rebuild it from scratch. This is expensive, and it can be the bottleneck in the solution process. We can
improve our implementation by using re-using the subproblem between solves.

First, we create our first-stage problem as usual:

model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, x[1:n, 1:n], Bin)
@variable(model, θ >= M)
@constraint(model, sum(x) <= 11)
@objective(model, Min, 0.1 * sum(x) + θ)
model

A JuMP Model
├ solver: HiGHS
├ objective_sense: MIN_SENSE
│ └ objective_function_type: AffExpr
├ num_variables: 65
├ num_constraints: 66
│ ├ AffExpr in MOI.LessThan{Float64}: 1
│ ├ VariableRef in MOI.GreaterThan{Float64}: 1
│ └ VariableRef in MOI.ZeroOne: 64
└ Names registered in the model
└ :x, :θ

Then, instead of building the subproblem in a function, we build it once here:

subproblem = Model(HiGHS.Optimizer)
set_silent(subproblem)
@variable(subproblem, x_copy[i in 1:n, j in 1:n])
@variable(subproblem, y[1:n, 1:n] >= 0)
@constraint(subproblem, [i = 1:n, j = 1:n], y[i, j] <= G[i, j] * x_copy[i, j])
@constraint(subproblem, [i = 2:n-1], sum(y[i, :]) == sum(y[:, i]))
@objective(subproblem, Min, -sum(y[1, :]))
subproblem

A JuMP Model
├ solver: HiGHS
├ objective_sense: MIN_SENSE
│ └ objective_function_type: AffExpr
├ num_variables: 128
├ num_constraints: 134
│ ├ AffExpr in MOI.EqualTo{Float64}: 6
│ ├ AffExpr in MOI.LessThan{Float64}: 64
│ └ VariableRef in MOI.GreaterThan{Float64}: 64
└ Names registered in the model
└ :x_copy, :y
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Our function to solve the subproblem is also slightly different because we need to fix the value of the x_copy
variables to the value of x from the first-stage problem:

function solve_subproblem(model, x)
fix.(model[:x_copy], x)
optimize!(model)
assert_is_solved_and_feasible(model; dual = true)
return (

obj = objective_value(model),
y = value.(model[:y]),
π = reduced_cost.(model[:x_copy]),

)
end

solve_subproblem (generic function with 2 methods)

Now we're ready to iterate our in-place Benders decomposition:

println("Iteration Lower Bound Upper Bound Gap")
for k in 1:MAXIMUM_ITERATIONS

optimize!(model)
assert_is_solved_and_feasible(model)
lower_bound = objective_value(model)
x_k = value.(x)
ret = solve_subproblem(subproblem, x_k)
upper_bound = (objective_value(model) - value(θ)) + ret.obj
gap = abs(upper_bound - lower_bound) / abs(upper_bound)
print_iteration(k, lower_bound, upper_bound, gap)
if gap < ABSOLUTE_OPTIMALITY_GAP

println("Terminating with the optimal solution")
break

end
cut = @constraint(model, θ >= ret.obj + sum(ret.π .* (x .- x_k)))
@info "Adding the cut $(cut)"

end

Iteration Lower Bound Upper Bound Gap
1 -2.9000e+01 0.0000e+00 Inf

[ Info: Adding the cut 3 x[1,2] + 2 x[1,3] + 2 x[1,4] + θ ≥ 0
2 -6.7000e+00 3.0000e-01 2.3333e+01

[ Info: Adding the cut 5 x[2,5] + x[3,5] + x[2,6] + 3 x[3,6] + x[4,6] + x[3,7] + θ ≥ 0
3 -6.5000e+00 5.0000e-01 1.4000e+01

[ Info: Adding the cut x[3,7] + 4 x[5,8] + 2 x[6,8] + θ ≥ 0
4 -6.2000e+00 -4.2000e+00 4.7619e-01

[ Info: Adding the cut 3 x[1,2] + x[3,5] + 2 x[6,8] + 4 x[7,8] + θ ≥ 0
5 -6.1000e+00 -4.1000e+00 4.8780e-01

[ Info: Adding the cut 3 x[1,2] + x[3,5] + 3 x[3,6] + x[4,6] + x[3,7] + θ ≥ 0
6 -6.1000e+00 -4.1000e+00 4.8780e-01

[ Info: Adding the cut 3 x[1,2] + 2 x[1,3] + x[4,6] + θ ≥ 0
7 -5.1000e+00 -5.1000e+00 0.0000e+00

Terminating with the optimal solution
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Finally, we can obtain the optimal solution:

optimize!(model)
assert_is_solved_and_feasible(model)
x_optimal = value.(x)
optimal_ret = solve_subproblem(subproblem, x_optimal)
inplace_solution = optimal_flows(optimal_ret.y)

9-element Vector{Pair{Tuple{Int64, Int64}, Float64}}:
(1, 2) => 3.0
(1, 3) => 2.0
(1, 4) => 1.0
(2, 5) => 3.0
(3, 5) => 1.0
(3, 6) => 1.0
(4, 6) => 1.0
(5, 8) => 4.0
(6, 8) => 2.0

which is the same as the monolithic solution:

inplace_solution == monolithic_solution

true

Feasibility cuts

So far, we have discussed only Benders optimality cuts. However, for some first-stage values of x, the sub-
problem might be infeasible. The solution is to add a Benders feasibility cut:

vk + u⊤k (x− xk) ≤ 0

where uk is a dual unbounded ray of the subproblem and vk is the intercept of the unbounded ray.

As a variation of our example which leads to infeasibilities, we add a constraint that sum(y) >= 1. This means
we need a choice of first-stage x for which at least one unit can flow.

The first-stage problem remains the same:

model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, x[1:n, 1:n], Bin)
@variable(model, θ >= M)
@constraint(model, sum(x) <= 11)
@objective(model, Min, 0.1 * sum(x) + θ)
model
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A JuMP Model
├ solver: HiGHS
├ objective_sense: MIN_SENSE
│ └ objective_function_type: AffExpr
├ num_variables: 65
├ num_constraints: 66
│ ├ AffExpr in MOI.LessThan{Float64}: 1
│ ├ VariableRef in MOI.GreaterThan{Float64}: 1
│ └ VariableRef in MOI.ZeroOne: 64
└ Names registered in the model
└ :x, :θ

But the subproblem has a new constraint that sum(y) >= 1:

subproblem = Model(HiGHS.Optimizer)
set_silent(subproblem)
# We need to turn presolve off so that HiGHS will return an infeasibility
# certificate.
set_attribute(subproblem, "presolve", "off")
@variable(subproblem, x_copy[i in 1:n, j in 1:n])
@variable(subproblem, y[1:n, 1:n] >= 0)
@constraint(subproblem, sum(y) >= 1) # <--- THIS IS NEW
@constraint(subproblem, [i = 1:n, j = 1:n], y[i, j] <= G[i, j] * x_copy[i, j])
@constraint(subproblem, [i = 2:n-1], sum(y[i, :]) == sum(y[:, i]))
@objective(subproblem, Min, -sum(y[1, :]))
subproblem

A JuMP Model
├ solver: HiGHS
├ objective_sense: MIN_SENSE
│ └ objective_function_type: AffExpr
├ num_variables: 128
├ num_constraints: 135
│ ├ AffExpr in MOI.EqualTo{Float64}: 6
│ ├ AffExpr in MOI.GreaterThan{Float64}: 1
│ ├ AffExpr in MOI.LessThan{Float64}: 64
│ └ VariableRef in MOI.GreaterThan{Float64}: 64
└ Names registered in the model
└ :x_copy, :y

The function to solve the subproblem now checks for feasibility, and returns the dual objective value and an
dual unbounded ray if the subproblem is infeasible:

function solve_subproblem_with_feasibility(model, x)
fix.(model[:x_copy], x)
optimize!(model)
if is_solved_and_feasible(model; dual = true)

return (
is_feasible = true,
obj = objective_value(model),
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y = value.(model[:y]),
π = reduced_cost.(model[:x_copy]),

)
end
return (

is_feasible = false,
v = dual_objective_value(model),
u = reduced_cost.(model[:x_copy]),

)
end

solve_subproblem_with_feasibility (generic function with 1 method)

Now we're ready to iterate our in-place Benders decomposition:

println("Iteration Lower Bound Upper Bound Gap")
for k in 1:MAXIMUM_ITERATIONS

optimize!(model)
assert_is_solved_and_feasible(model)
lower_bound = objective_value(model)
x_k = value.(x)
ret = solve_subproblem_with_feasibility(subproblem, x_k)
if ret.is_feasible

# Benders Optimality Cuts
upper_bound = (objective_value(model) - value(θ)) + ret.obj
gap = abs(upper_bound - lower_bound) / abs(upper_bound)
print_iteration(k, lower_bound, upper_bound, gap)
if gap < ABSOLUTE_OPTIMALITY_GAP

println("Terminating with the optimal solution")
break

end
@constraint(model, θ >= ret.obj + sum(ret.π .* (x .- x_k)))

else
# Benders Feasibility Cuts
cut = @constraint(model, ret.v + sum(ret.u .* (x .- x_k)) <= 0)
@info "Adding the feasibility cut $(cut)"

end
end

Iteration Lower Bound Upper Bound Gap
[ Info: Adding the feasibility cut -3 x[1,2] - 2 x[1,3] - 2 x[1,4] - 5.000000000000002 x[2,5] -

x[3,5] - 2 x[2,6] - 6 x[3,6] - 2 x[4,6] - 2.0000000000000004 x[3,7] - 4 x[5,8] ≤ -1↪→

[ Info: Adding the feasibility cut -2.999999999999999 x[1,2] - 1.9999999999999996 x[1,3] -
1.9999999999999996 x[1,4] - 10 x[2,5] - 2 x[3,5] - 1.9999999999999996 x[2,6] -
5.999999999999998 x[3,6] - 1.9999999999999996 x[4,6] - 1.9999999999999998 x[3,7] ≤
-0.9999999999999998

↪→

↪→

↪→

[ Info: Adding the feasibility cut -2.9999999999999987 x[1,2] - 5.999999999999998 x[1,3] -
1.9999999999999991 x[1,4] - 10 x[2,5] - 1.9999999999999991 x[2,6] - 1.9999999999999991 x[4,6] ≤
-0.9999999999999996

↪→

↪→

[ Info: Adding the feasibility cut -4 x[1,3] - 3.9999999999999982 x[1,4] - 9.999999999999998 x[2,5]
- 2 x[2,6] - 4 x[5,8] - 1.9999999999999996 x[6,8] - 4 x[7,8] ≤ -1↪→
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[ Info: Adding the feasibility cut -3 x[1,2] - 4 x[1,3] - 2 x[1,4] - 10 x[2,5] - x[3,5] - 4 x[6,8]
- 4 x[7,8] ≤ -1↪→

[ Info: Adding the feasibility cut -6 x[1,2] - 6 x[1,3] - 4 x[1,4] - 4 x[5,8] - 2 x[6,8] ≤ -1
[ Info: Adding the feasibility cut -6 x[1,2] - 6 x[1,3] - 2 x[4,6] - 4 x[5,8] - 2 x[6,8] ≤ -1
[ Info: Adding the feasibility cut -6 x[1,2] - 2 x[1,4] - 2 x[3,5] - 6 x[3,6] - x[4,6] - 2 x[3,7] -

4 x[5,8] - 2 x[6,8] - 4 x[7,8] ≤ -1↪→

[ Info: Adding the feasibility cut -6 x[1,2] - 2 x[3,5] - 6 x[3,6] - 2 x[4,6] - 2 x[3,7] - 4 x[5,8]
- 2 x[6,8] - 4 x[7,8] ≤ -1↪→

[ Info: Adding the feasibility cut -5 x[2,5] - x[3,5] - x[2,6] - 3 x[3,6] - x[4,6] - x[3,7] - 8
x[5,8] - 4 x[6,8] - 8 x[7,8] ≤ -1↪→

[ Info: Adding the feasibility cut -2 x[1,3] - 6 x[1,4] - 9.999999999999998 x[2,5] - x[3,5] - 3
x[2,6] - 6.000000000000002 x[3,6] - x[3,7] - 3.999999999999999 x[5,8] - 3.999999999999999
x[7,8] ≤ -0.9999999999999998

↪→

↪→

[ Info: Adding the feasibility cut -1.9999999999999987 x[1,3] - 5.999999999999997 x[1,4] -
14.999999999999996 x[2,5] - 1.9999999999999991 x[3,5] - 2.9999999999999987 x[2,6] -
5.9999999999999964 x[3,6] - x[3,7] - 3.999999999999999 x[7,8] ≤ -0.9999999999999998

↪→

↪→

[ Info: Adding the feasibility cut -3 x[1,2] - 5.999999999999997 x[1,4] - 9.999999999999996 x[2,5]
- 2.999999999999999 x[3,5] - 1.999999999999999 x[2,6] - 8.999999999999996 x[3,6] -
1.9999999999999996 x[3,7] - 3.999999999999999 x[7,8] ≤ -0.9999999999999998

↪→

↪→

[ Info: Adding the feasibility cut -3 x[1,2] - 6 x[1,4] - 2 x[2,6] - 9 x[3,6] - 2 x[3,7] - 12
x[5,8] - 4 x[7,8] ≤ -1↪→

[ Info: Adding the feasibility cut -3 x[1,2] - 6 x[1,4] - 2 x[2,6] - 9 x[3,6] - 3 x[3,7] - 12
x[5,8] ≤ -1↪→

[ Info: Adding the feasibility cut -2 x[1,4] - 3 x[3,7] - 12 x[5,8] - 6 x[6,8] ≤ -1
[ Info: Adding the feasibility cut -3 x[3,7] - 12 x[5,8] - 6 x[6,8] ≤ -1
[ Info: Adding the feasibility cut -15.000000000000007 x[2,5] - 3.0000000000000013 x[3,5] - x[3,7]

- 6 x[6,8] - 8 x[7,8] ≤ -1↪→

[ Info: Adding the feasibility cut -9 x[1,2] - 2 x[1,3] - 2 x[3,5] - 6 x[3,6] - 3 x[4,6] - x[3,7] -
4 x[7,8] ≤ -1↪→

[ Info: Adding the feasibility cut -8.999999999999998 x[1,2] - 3.000000000000001 x[3,5] -
8.999999999999996 x[3,6] - 2.9999999999999996 x[4,6] - 12.000000000000004 x[7,8] ≤
-1.0000000000000004

↪→

↪→

[ Info: Adding the feasibility cut -15 x[2,5] - 3 x[3,5] - 3 x[2,6] - 9 x[3,6] - 3 x[4,6] - 12
x[7,8] ≤ -1↪→

[ Info: Adding the feasibility cut -15 x[2,5] - 3 x[3,5] - 3 x[2,6] - 9 x[3,6] - 3 x[4,6] - 3
x[3,7] ≤ -1↪→

[ Info: Adding the feasibility cut -9.000000000000004 x[1,2] - 6 x[1,4] - 3 x[3,5] - 9 x[3,6] -
2.999999999999999 x[3,7] ≤ -1↪→

[ Info: Adding the feasibility cut -6.000000000000003 x[1,2] - 4.000000000000002 x[1,3] -
6.0000000000000036 x[1,4] - 4.999999999999996 x[2,5] - x[3,5] - x[2,6] - 2.9999999999999973
x[3,6] - 4 x[7,8] ≤ -1

↪→

↪→

[ Info: Adding the feasibility cut -2 x[1,4] - 5 x[2,5] - x[3,5] - x[2,6] - 3 x[3,6] - 8 x[5,8] - 4
x[6,8] - 12 x[7,8] ≤ -1↪→

[ Info: Adding the feasibility cut -5 x[2,5] - x[3,5] - 8 x[5,8] - 6 x[6,8] - 12 x[7,8] ≤ -1
[ Info: Adding the feasibility cut -2.0000000000000004 x[1,3] - 2 x[1,4] - 2.9999999999999987

x[2,6] - 5.999999999999998 x[3,6] - 1.9999999999999996 x[4,6] - 12 x[5,8] - 8 x[7,8] ≤ -1↪→

[ Info: Adding the feasibility cut -6 x[1,3] - 2 x[1,4] - 3 x[2,6] - 2 x[4,6] - 12 x[5,8] - 8
x[7,8] ≤ -1↪→

29 -2.8700e+01 -7.0000e-01 4.0000e+01
[ Info: Adding the feasibility cut -2 x[1,4] - 15 x[2,5] - 3 x[3,5] - 3 x[3,7] - 6 x[6,8] ≤ -1

31 -1.1400e+01 -4.0000e-01 2.7500e+01
32 -8.2000e+00 -1.2000e+00 5.8333e+00
33 -8.0000e+00 -4.0000e+00 1.0000e+00
34 -5.3000e+00 -3.3000e+00 6.0606e-01
35 -5.2000e+00 -1.2000e+00 3.3333e+00
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36 -5.2000e+00 -4.2000e+00 2.3810e-01
37 -5.2000e+00 -4.2000e+00 2.3810e-01
38 -5.1000e+00 -5.1000e+00 0.0000e+00

Terminating with the optimal solution

Finally, we can obtain the optimal solution:

optimize!(model)
assert_is_solved_and_feasible(model)
x_optimal = value.(x)
optimal_ret = solve_subproblem(subproblem, x_optimal)
feasible_inplace_solution = optimal_flows(optimal_ret.y)

9-element Vector{Pair{Tuple{Int64, Int64}, Float64}}:
(1, 2) => 3.0
(1, 3) => 2.0
(1, 4) => 1.0
(2, 5) => 3.0
(3, 5) => 1.0
(3, 6) => 1.0
(4, 6) => 1.0
(5, 8) => 4.0
(6, 8) => 2.0

which is the same as the monolithic solution (because sum(y) >= 1 in the monolithic solution):

feasible_inplace_solution == monolithic_solution

true

9.2 Column generation

This tutorial was generated using Literate.jl. Download the source as a .jl file.

The purpose of this tutorial is to demonstrate the column generation algorithm. As an example, it solves the
Cutting stock problem.

This tutorial uses the following packages:

using JuMP
import DataFrames
import HiGHS
import Plots
import SparseArrays

https://github.com/fredrikekre/Literate.jl
tutorials/algorithms/cutting_stock_column_generation.jl
https://en.wikipedia.org/wiki/Cutting_stock_problem
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Background

The cutting stock problem is about cutting large rolls of paper into smaller pieces.

We denote the set of possible sized pieces that a roll can be cut into by i ∈ 1, . . . , I . Each piece i has a width,
wi, and a demand, di. The width of the large roll isW .

Our objective is to minimize the number of rolls needed to meet all demand.

Here's the data that we are going to use in this tutorial:

struct Piece
w::Float64
d::Int

end

struct Data
pieces::Vector{Piece}
W::Float64

end

function Base.show(io::IO, d::Data)
println(io, "Data for the cutting stock problem:")
println(io, " W = $(d.W)")
println(io, "with pieces:")
println(io, " i w_i d_i")
println(io, " ------------")
for (i, p) in enumerate(d.pieces)

println(io, lpad(i, 4), " ", lpad(p.w, 5), " ", lpad(p.d, 3))
end
return

end

function get_data()
data = [

75.0 38
75.0 44
75.0 30
75.0 41
75.0 36
53.8 33
53.0 36
51.0 41
50.2 35
32.2 37
30.8 44
29.8 49
20.1 37
16.2 36
14.5 42
11.0 33
8.6 47
8.2 35
6.6 49
5.1 42

]
return Data([Piece(data[i, 1], data[i, 2]) for i in axes(data, 1)], 100.0)

end
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data = get_data()

Data for the cutting stock problem:
W = 100.0

with pieces:
i w_i d_i

------------
1 75.0 38
2 75.0 44
3 75.0 30
4 75.0 41
5 75.0 36
6 53.8 33
7 53.0 36
8 51.0 41
9 50.2 35

10 32.2 37
11 30.8 44
12 29.8 49
13 20.1 37
14 16.2 36
15 14.5 42
16 11.0 33
17 8.6 47
18 8.2 35
19 6.6 49
20 5.1 42

Mathematical formulation

To formulate the cutting stock problem as a mixed-integer linear program, we assume that there is a set of
large rolls j = 1, . . . , J to use. Then, we introduce two classes of decision variables:

• xij ≥ 0, integer, ∀i = 1, . . . , I, j = 1, . . . , J

• yj ∈ {0, 1}, ∀j = 1, . . . , J.

yj is a binary variable that indicates if we use roll j, and xij counts how many pieces of size i that we cut from
roll j.

Our mixed-integer linear program is therefore:
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min
J∑

j=1

yj (9.1)

s.t.
I∑

i=1

wixij ≤Wyj ∀j = 1, . . . , J (9.2)

J∑
j=1

xij ≥ di ∀i = 1, . . . , I (9.3)

xij ≥ 0 ∀i = 1, . . . , I, j = 1, . . . , J (9.4)

xij ∈ Z ∀i = 1, . . . , I, j = 1, . . . , J (9.5)

yj ∈ {0, 1} ∀j = 1, . . . , J (9.6)

(9.7)

The objective is to minimize the number of rolls that we use, and the two constraints ensure that we respect
the total width of each large roll and that we satisfy demand exactly.

The JuMP formulation of this model is:

I = length(data.pieces)
J = 1_000 # Some large number
model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, x[1:I, 1:J] >= 0, Int)
@variable(model, y[1:J], Bin)
@objective(model, Min, sum(y))
@constraint(model, [i in 1:I], sum(x[i, :]) >= data.pieces[i].d)
@constraint(

model,
[j in 1:J],
sum(data.pieces[i].w * x[i, j] for i in 1:I) <= data.W * y[j],

);

Unfortunately, we can't solve this formulation for realistic instances because it takes a very long time to solve.
(Try removing the time limit.)

set_time_limit_sec(model, 5.0)
optimize!(model)
solution_summary(model)

solution_summary(; result = 1, verbose = false)
├ solver_name : HiGHS
├ Termination
│ ├ termination_status : TIME_LIMIT
│ ├ result_count : 1
│ ├ raw_status : kHighsModelStatusTimeLimit
│ └ objective_bound : 2.93000e+02
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
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│ ├ dual_status : NO_SOLUTION
│ ├ objective_value : 4.11000e+02
│ ├ dual_objective_value : NaN
│ └ relative_gap : 2.87105e-01
└ Work counters
├ solve_time (sec) : 5.05008e+00
├ simplex_iterations : 21016
├ barrier_iterations : -1
└ node_count : 0

However, there is a formulation that solves much faster, and that is to use a column generation scheme.

Column generation theory

The key insight for column generation is to recognize that feasible columns in the xmatrix of variables encode
cutting patterns.

For example, if we look only at the roll j = 1, then a feasible solution is:

• x1,1 = 1 (1 unit of piece #1)

• x13,1 = 1 (1 unit of piece #13)

• All other xi,1 = 0

Another solution is

• x20,1 = 19 (19 unit of piece #20)

• All other xi,1 = 0

Cutting patterns like x1,1 = 1 and x2,1 = 1 are infeasible because the combined length is greater thanW .

Since there are a finite number of ways that we could cut a roll into a valid cutting pattern, we could create a
set of all possible cutting patterns p = 1, . . . , P , with data ai,p indicating how many units of piece i we cut in
pattern p. Then, we can formulate our mixed-integer linear program as:

min
P∑

p=1

xp (9.8)

s.t.
P∑

p=1

aipxp ≥ di ∀i = 1, . . . , I (9.9)

xp ≥ 0 ∀p = 1, . . . , P (9.10)

xp ∈ Z ∀p = 1, . . . , P (9.11)

Unfortunately, there will be a very large number of these patterns, so it is often intractable to enumerate all
columns p = 1, . . . , P .

Column generation is an iterative algorithm that starts with a small set of initial patterns, and then cleverly
chooses new columns to add to the main MILP so that we find the optimal solution without having to enumerate
every column.
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Choosing the initial set of patterns

For the initial set of patterns, we create a trivial cutting pattern which cuts as many units of piece i as will fit.

patterns = map(1:I) do i
n_pieces = floor(Int, data.W / data.pieces[i].w)
return SparseArrays.sparsevec([i], [n_pieces], I)

end

20-element Vector{SparseArrays.SparseVector{Int64, Int64}}:
sparsevec([1], [1], 20)
sparsevec([2], [1], 20)
sparsevec([3], [1], 20)
sparsevec([4], [1], 20)
sparsevec([5], [1], 20)
sparsevec([6], [1], 20)
sparsevec([7], [1], 20)
sparsevec([8], [1], 20)
sparsevec([9], [1], 20)
sparsevec([10], [3], 20)
sparsevec([11], [3], 20)
sparsevec([12], [3], 20)
sparsevec([13], [4], 20)
sparsevec([14], [6], 20)
sparsevec([15], [6], 20)
sparsevec([16], [9], 20)
sparsevec([17], [11], 20)
sparsevec([18], [12], 20)
sparsevec([19], [15], 20)
sparsevec([20], [19], 20)

We can visualize the patterns as follows:

"""
cutting_locations(data::Data, pattern::SparseArrays.SparseVector)

A function which returns a vector of the locations along the roll at which to
cut in order to produce pattern `pattern`.
"""
function cutting_locations(data::Data, pattern::SparseArrays.SparseVector)

locations = Float64[]
offset = 0.0
for (i, c) in zip(SparseArrays.findnz(pattern)...)

for _ in 1:c
offset += data.pieces[i].w
push!(locations, offset)

end
end
return locations

end

function plot_patterns(data::Data, patterns)
plot = Plots.bar(;
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xlims = (0, length(patterns) + 1),
ylims = (0, data.W),
xlabel = "Pattern",
ylabel = "Roll length",

)
for (i, p) in enumerate(patterns)

locations = cutting_locations(data, p)
Plots.bar!(

plot,
fill(i, length(locations)),
reverse(locations);
bar_width = 0.6,
label = false,
color = "#90caf9",

)
end
return plot

end

plot_patterns(data, patterns)

The base problem

Using the initial set of patterns, we can create and optimize our base model:
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model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, x[1:length(patterns)] >= 0, Int)
@objective(model, Min, sum(x))
@constraint(model, demand[i in 1:I], patterns[i]' * x >= data.pieces[i].d)
optimize!(model)
assert_is_solved_and_feasible(model)
solution_summary(model)

solution_summary(; result = 1, verbose = false)
├ solver_name : HiGHS
├ Termination
│ ├ termination_status : OPTIMAL
│ ├ result_count : 1
│ ├ raw_status : kHighsModelStatusOptimal
│ └ objective_bound : 4.21000e+02
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : NO_SOLUTION
│ ├ objective_value : 4.21000e+02
│ ├ dual_objective_value : NaN
│ └ relative_gap : 0.00000e+00
└ Work counters
├ solve_time (sec) : 1.74284e-04
├ simplex_iterations : 0
├ barrier_iterations : -1
└ node_count : 0

This solution requires 421 rolls. This solution is sub-optimal because the model does not contain the full set of
possible patterns.

How do we find a new column that leads to an improved solution?

Choosing new columns

Column generation chooses a new column by relaxing the integrality constraint on x and looking at the dual
variable πi associated with demand constraint i.

For example, the dual of demand[13] is:

unset_integer.(x)
optimize!(model)
assert_is_solved_and_feasible(model; dual = true)
π_13 = dual(demand[13])

0.25

Using the economic interpretation of the dual variable, we can say that a one unit increase in demand for
piece i will cost an extra πi rolls. Alternatively, we can say that a one unit increase in the left-hand side (for
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example, due to a new cutting pattern) will save us πi rolls. Therefore, we want a new column that maximizes
the savings associated with the dual variables, while respecting the total width of the roll:

max
I∑

i=1

πiyi (9.12)

s.t.
I∑

i=1

wiyi ≤W (9.13)

yi ≥ 0 ∀i = 1, . . . , I (9.14)

yi ∈ Z ∀i = 1, . . . , I (9.15)

(9.16)

If this problem, called the pricing problem, has an objective value greater than 1, then we estimate than adding
y as the coefficients of a new column will decrease the objective by more than the cost of an extra roll.

Here is code to solve the pricing problem:

function solve_pricing(data::Data, π::Vector{Float64})
I = length(π)
model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, y[1:I] >= 0, Int)
@constraint(model, sum(data.pieces[i].w * y[i] for i in 1:I) <= data.W)
@objective(model, Max, sum(π[i] * y[i] for i in 1:I))
optimize!(model)
assert_is_solved_and_feasible(model)
number_of_rolls_saved = objective_value(model)
if number_of_rolls_saved > 1 + 1e-8

# Benefit of pattern is more than the cost of a new roll plus some
# tolerance
return SparseArrays.sparse(round.(Int, value.(y)))

end
return nothing

end

solve_pricing (generic function with 1 method)

If we solve the pricing problem with an artificial dual vector:

solve_pricing(data, [1.0 / i for i in 1:I])

20-element SparseArrays.SparseVector{Int64, Int64} with 3 stored entries:
[1 ] = 1
[17] = 1
[20] = 3
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the solution is a roll with 1 unit of piece #1, 1 unit of piece #17, and 3 units of piece #20.

If we solve the pricing problem with a dual vector of zeros, then the benefit of the new pattern is less than the
cost of a roll, and so the function returns nothing:

solve_pricing(data, zeros(I))

Iterative algorithm

Now we can combine our base model with the pricing subproblem in an iterative column generation scheme:

while true
# Solve the linear relaxation
optimize!(model)
assert_is_solved_and_feasible(model; dual = true)
# Obtain a new dual vector
π = dual.(demand)
# Solve the pricing problem
new_pattern = solve_pricing(data, π)
# Stop iterating if there is no new pattern
if new_pattern === nothing

@info "No new patterns, terminating the algorithm."
break

end
push!(patterns, new_pattern)
# Create a new column
push!(x, @variable(model, lower_bound = 0))
# Update the objective coefficient of the new column
set_objective_coefficient(model, x[end], 1.0)
# Update the non-zeros in the coefficient matrix
for (i, count) in zip(SparseArrays.findnz(new_pattern)...)

set_normalized_coefficient(demand[i], x[end], count)
end
println("Found new pattern. Total patterns = $(length(patterns))")

end

Found new pattern. Total patterns = 21
Found new pattern. Total patterns = 22
Found new pattern. Total patterns = 23
Found new pattern. Total patterns = 24
Found new pattern. Total patterns = 25
Found new pattern. Total patterns = 26
Found new pattern. Total patterns = 27
Found new pattern. Total patterns = 28
Found new pattern. Total patterns = 29
Found new pattern. Total patterns = 30
Found new pattern. Total patterns = 31
Found new pattern. Total patterns = 32
Found new pattern. Total patterns = 33
Found new pattern. Total patterns = 34
Found new pattern. Total patterns = 35
[ Info: No new patterns, terminating the algorithm.
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We found lots of new patterns. Here's pattern 21:

patterns[21]

20-element SparseArrays.SparseVector{Int64, Int64} with 3 stored entries:
[9 ] = 1
[13] = 2
[17] = 1

Let's have a look at the patterns now:

plot_patterns(data, patterns)

Looking at the solution

Let's see how many of each column we need:

solution = DataFrames.DataFrame([
(pattern = p, rolls = value(x_p)) for (p, x_p) in enumerate(x)

])
filter!(row -> row.rolls > 0, solution)



CHAPTER 9. ALGORITHMS 472

pattern rolls
Int64 Float64

1 1 38.0
2 2 44.0
3 3 30.0
4 21 0.5
5 22 10.2
6 23 14.65
7 24 23.1
8 25 11.25
9 26 21.35
10 28 4.3
11 29 19.55
12 30 11.25
13 31 17.45
14 33 36.0
15 34 11.4
16 35 41.0

Since we solved a linear program, some of our columns have fractional solutions. We can create a integer
feasible solution by rounding up the orders. This requires 341 rolls:

sum(ceil.(Int, solution.rolls))

341

Alternatively, we can re-introduce the integrality constraints and resolve the problem:

set_integer.(x)
optimize!(model)
assert_is_solved_and_feasible(model)
solution = DataFrames.DataFrame([

(pattern = p, rolls = value(x_p)) for (p, x_p) in enumerate(x)
])
filter!(row -> row.rolls > 0, solution)

This now requires 334 rolls:

sum(solution.rolls)

333.99999999999994

Note that this may not be the global minimum because we are not adding new columns during the solution
of the mixed-integer problem model (an algorithm known as branch and price). Nevertheless, the column
generation algorithm typically finds good integer feasible solutions to an otherwise intractable optimization
problem.

https://en.wikipedia.org/wiki/Branch_and_price
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pattern rolls
Int64 Float64

1 1 38.0
2 2 44.0
3 3 30.0
4 21 1.0
5 22 9.0
6 23 19.0
7 24 19.0
8 25 13.0
9 26 17.0
10 28 2.0
11 29 19.0
12 30 13.0
13 31 18.0
14 33 36.0
15 34 15.0
16 35 41.0

Next steps

• Our objective function is to minimize the total number of rolls. What is the total length of waste? How
does that compare to the total demand?

• Writing the optimization algorithm is only part of the challenge. Can you develop a better way to com-
municate the solution to stakeholders?

9.3 Traveling Salesperson Problem

This tutorial was generated using Literate.jl. Download the source as a .jl file.

This tutorial was originally contributed by Daniel Schermer.

This tutorial describes how to implement the Traveling Salesperson Problem in JuMP using solver-independent
lazy constraints that dynamically separate subtours. To be more precise, we use lazy constraints to cut off
infeasible subtours only when necessary and not before needed.

It uses the following packages:

using JuMP
import Gurobi
import Plots
import Random
import Test

Mathematical Formulation

Assume that we are given a complete graph G(V,E) where V is the set of vertices (or cities) and E is the set
of edges (or roads). For each pair of vertices i, j ∈ V, i 6= j the edge (i, j) ∈ E is associated with a weight
(or distance) dij ∈ R+.

For this tutorial, we assume the problem to be symmetric, that is, dij = dji ∀i, j ∈ V .

https://github.com/fredrikekre/Literate.jl
tutorials/algorithms/tsp_lazy_constraints.jl
https://en.wikipedia.org/wiki/Travelling_salesman_problem
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In the Traveling Salesperson Problem, we are tasked with finding a tour with minimal length that visits every
vertex exactly once and then returns to the point of origin, that is, a Hamiltonian cycle with minimal weight.

To model the problem, we introduce a binary variable, xij ∈ {0, 1} ∀i, j ∈ V , that indicates if edge (i, j)
is part of the tour or not. Using these variables, the Traveling Salesperson Problem can be modeled as the
following integer linear program.

Objective Function

The objective is to minimize the length of the tour (due to the assumed symmetry, the second sum only
contains i < j):

min
∑
i∈V

∑
j∈V,i<j

dijxij .

Note that it is also possible to use the following objective function instead:

min
∑
i∈V

∑
j∈V

dijxij
2

.

Constraints

There are four classes of constraints in our formulation.

First, due to the presumed symmetry, the following constraints must hold:

xij = xji ∀i, j ∈ V.

Second, for each vertex i, exactly two edges must be selected that connect it to other vertices j in the graph
G:

∑
j∈V

xij = 2 ∀i ∈ V.

Third, we do not permit loops to occur:

xii = 0 ∀i ∈ V.

The fourth constraint is more complicated. A major difficulty of the Traveling Salesperson Problem arises from
the fact that we need to prevent subtours, that is, several distinct Hamiltonian cycles existing on subgraphs
of G.

Note that the previous constraints do not guarantee that the solution will be free of subtours. To this end, by
S we label a subset of vertices. Then, for each proper subset S ⊂ V , the following constraints guarantee that
no subtour may occur:
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∑
i∈S

∑
j∈S,i<j

xij ≤ |S| − 1 ∀S ⊂ V.

Problematically, we require exponentially many of these constraints as |V | increases. Therefore, we will add
these constraints only when necessary.

Implementation

There are two ways we can eliminate subtours in JuMP, both of which will be shown in what follows:

• iteratively solving a new model that incorporates previously identified subtours,

• or adding violated subtours as lazy constraints.

Data

The vertices are assumed to be randomly distributed in the Euclidean space; thus, the weight (distance) of
each edge is defined as follows.

function generate_distance_matrix(n; random_seed = 1)
rng = Random.MersenneTwister(random_seed)
X = 100 * rand(rng, n)
Y = 100 * rand(rng, n)
d = [sqrt((X[i] - X[j])^2 + (Y[i] - Y[j])^2) for i in 1:n, j in 1:n]
return X, Y, d

end

n = 100
X, Y, d = generate_distance_matrix(n)

([9.913970137863682, 70.19797138879542, 50.3261785841856, 87.58412053070398, 95.34654118744876,
50.7810571056071, 78.97511635624403, 7.125413261100788, 13.837807897217225, 39.31891799217675
… 84.87369607977678, 61.680928138712, 5.665730912653899, 15.622563304879634,
36.90767228785501, 70.07597765092129, 79.43901471209098, 46.482254570311675, 68.59072330642508,
86.69884288310024], [96.78179466896867, 56.23453714649542, 67.44638756669107,
7.1115103002265645, 92.78034391338332, 34.57366887562756, 76.53412034001651,
33.078576899782796, 62.27235533684083, 31.31072581673351 … 1.4463814325218927,
42.253985947804495, 53.81635009641501, 76.50117040708963, 27.74238915740479, 60.20183753580153,
19.81346291572821, 90.60507365183767, 31.10234142135033, 21.085230265206945], [0.0
72.65150307747324 … 88.07242440917794 107.82340444001487; 72.65150307747324 0.0 …
25.183536454701592 38.829789264256306; … ; 88.07242440917794 25.183536454701592 … 0.0
20.69411777577625; 107.82340444001487 38.829789264256306 … 20.69411777577625 0.0])

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

For the JuMP model, we first initialize the model object. Then, we create the binary decision variables and add
the objective function and constraints. By defining the x matrix as Symmetric, we do not need to add explicit
constraints that x[i, j] == x[j, i].



CHAPTER 9. ALGORITHMS 476

function build_tsp_model(d, n, optimizer)
model = Model(optimizer)
set_silent(model)
@variable(model, x[1:n, 1:n], Bin, Symmetric)
@objective(model, Min, sum(d .* x) / 2)
@constraint(model, [i in 1:n], sum(x[i, :]) == 2)
@constraint(model, [i in 1:n], x[i, i] == 0)
return model

end

build_tsp_model (generic function with 1 method)

To search for violated constraints, based on the edges that are currently in the solution (that is, those that have
value xij = 1), we identify the shortest cycle through the function subtour(). Whenever a subtour has been
identified, a constraint corresponding to the form above can be added to the model.

function subtour(edges::Vector{Tuple{Int,Int}}, n)
shortest_subtour, unvisited = collect(1:n), Set(collect(1:n))
while !isempty(unvisited)

this_cycle, neighbors = Int[], unvisited
while !isempty(neighbors)

current = pop!(neighbors)
push!(this_cycle, current)
if length(this_cycle) > 1

pop!(unvisited, current)
end
neighbors =

[j for (i, j) in edges if i == current && j in unvisited]
end
if length(this_cycle) < length(shortest_subtour)

shortest_subtour = this_cycle
end

end
return shortest_subtour

end

subtour (generic function with 1 method)

Let us declare a helper function selected_edges() that will be repeatedly used in what follows.

function selected_edges(x::Matrix{Float64}, n)
return Tuple{Int,Int}[(i, j) for i in 1:n, j in 1:n if x[i, j] > 0.5]

end

selected_edges (generic function with 1 method)
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Other helper functions for computing subtours:

subtour(x::Matrix{Float64}) = subtour(selected_edges(x, size(x, 1)), size(x, 1))
subtour(x::AbstractMatrix{VariableRef}) = subtour(value.(x))

subtour (generic function with 3 methods)

Iterative method

An iterative way of eliminating subtours is the following.

However, it is reasonable to assume that this is not the most efficient way: whenever a new subtour elimination
constraint is added to the model, the optimization has to start from the very beginning.

That way, the solver will repeatedly discard useful information encountered during previous solves (for exam-
ple, all cuts, the incumbent solution, or lower bounds).

Info

Note that, in principle, it would also be feasible to add all subtours (instead of just the shortest one) to
the model. However, preventing just the shortest cycle is often sufficient for breaking other subtours
and will keep the model size smaller.

optimizer = Gurobi.Optimizer
iterative_model = build_tsp_model(d, n, optimizer)
optimize!(iterative_model)
assert_is_solved_and_feasible(iterative_model)
time_iterated = solve_time(iterative_model)
cycle = subtour(iterative_model[:x])
while 1 < length(cycle) < n

println("Found cycle of length $(length(cycle))")
S = [(i, j) for (i, j) in Iterators.product(cycle, cycle) if i < j]
@constraint(

iterative_model,
sum(iterative_model[:x][i, j] for (i, j) in S) <= length(cycle) - 1,

)
optimize!(iterative_model)
assert_is_solved_and_feasible(iterative_model)
global time_iterated += solve_time(iterative_model)
global cycle = subtour(iterative_model[:x])

end

Set parameter WLSAccessID
Set parameter WLSSecret
Set parameter LicenseID to value 722777
WLS license 722777 - registered to JuMP Development
Found cycle of length 3
Found cycle of length 3
Found cycle of length 3
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Found cycle of length 3
Found cycle of length 3
Found cycle of length 3
Found cycle of length 3
Found cycle of length 3
Found cycle of length 3
Found cycle of length 4
Found cycle of length 3
Found cycle of length 3
Found cycle of length 3
Found cycle of length 4
Found cycle of length 5
Found cycle of length 6
Found cycle of length 5
Found cycle of length 3
Found cycle of length 4
Found cycle of length 6
Found cycle of length 4
Found cycle of length 8
Found cycle of length 5
Found cycle of length 10
Found cycle of length 10
Found cycle of length 15
Found cycle of length 11
Found cycle of length 4
Found cycle of length 22
Found cycle of length 3
Found cycle of length 5
Found cycle of length 21

objective_value(iterative_model)

744.6016576596794

time_iterated

3.9510159492492676

As a quick sanity check, we visualize the optimal tour to verify that no subtour is present:

function plot_tour(X, Y, x)
plot = Plots.plot()
for (i, j) in selected_edges(x, size(x, 1))

Plots.plot!([X[i], X[j]], [Y[i], Y[j]]; legend = false)
end
return plot
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end

plot_tour(X, Y, value.(iterative_model[:x]))

Lazy constraint method

A more sophisticated approach makes use of lazy constraints. To be more precise, we do this through the
subtour_elimination_callback() below, which is only run whenever we encounter a new integer-feasible
solution.

Tip

We use Gurobi for this model because HiGHS does not support lazy constraints. For more information
on callbacks, read the page Solver-independent callbacks.

As before, we construct the same first-stage subproblem:

lazy_model = build_tsp_model(d, n, optimizer)
function subtour_elimination_callback(cb_data)

status = callback_node_status(cb_data, lazy_model)
if status != MOI.CALLBACK_NODE_STATUS_INTEGER

return # Only run at integer solutions
end
cycle = subtour(callback_value.(cb_data, lazy_model[:x]))
if !(1 < length(cycle) < n)

return # Only add a constraint if there is a cycle
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end
S = [(i, j) for (i, j) in Iterators.product(cycle, cycle) if i < j]
con = @build_constraint(

sum(lazy_model[:x][i, j] for (i, j) in S) <= length(cycle) - 1,
)
MOI.submit(lazy_model, MOI.LazyConstraint(cb_data), con)
return

end
set_attribute(

lazy_model,
MOI.LazyConstraintCallback(),
subtour_elimination_callback,

)
optimize!(lazy_model)
assert_is_solved_and_feasible(lazy_model)
objective_value(lazy_model)

744.6016576596794

time_lazy = solve_time(lazy_model)

1.6928150653839111

This finds the same optimal tour:

plot_tour(X, Y, value.(lazy_model[:x]))
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The solution time is faster than the iterative approach:

Test.@test time_lazy < time_iterated

Test Passed

9.4 Rolling horizon problems

This tutorial was generated using Literate.jl. Download the source as a .jl file.

This tutorial was originally contributed by Diego Tejada.

The purpose of this tutorial is to demonstrate how to use ParametricOptInterface.jl to solve a rolling horizon
optimization problem.

The term "rolling horizon" refers to solving a time-dependent model repeatedly, where the planning interval is
shifted forward in time during each solution step.

As a motivating example, this tutorial models the operations of a power system with solar generation and a
battery.

Required packages

This tutorial uses the following packages

https://github.com/fredrikekre/Literate.jl
tutorials/algorithms/rolling_horizon.jl
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using JuMP
import CSV
import DataFrames
import HiGHS
import ParametricOptInterface as POI
import Plots

The optimization model

The model is a simplified model of a power system's operations with battery storage.

We model the system of a set of time-steps t ∈ 1, . . . , T , where each time step is a period of one hour.

There are five types of decision variables in the model:

• Renewable production: rt ≥ 0

• Thermal production: 0 ≤ pt ≤ P

• Storage level: 0 ≤ st ≤ S

• Storage charging: 0 ≤ ct ≤ C

• Storage discharging: 0 ≤ dt ≤ D

For the purpose of this tutorial, there are three parameters of interest:

• Demand at time t: Dt

• Renewable availability at time t: At

• Initial storage: S0

The objective function to minimize is the total cost of thermal generation:

min
∑
t

O · pt

For the constraints, we must balance power generation and consumption in all time periods:

pt + rt + dt = Dt + ct, ∀t

We need to account for the dynamics of the battery storage:

st = st−1 + ηc · ct −
dt
ηd
, ∀t

with the boundary condition that s0 = S0.
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Finally, the level of renewable energy production is limited by the quantity of potential solar generation A:

rt ≤ At, ∀t

Solving this problem with a large number of time steps is computationally challenging. A common practice is
to use the rolling horizon idea to solve multiple identical problems of a smaller size. These problems differ only
in parameters such as demand, renewable availability, and initial storage. By combining the solution of many
smaller problems, we can recover a feasible solution to the full problem. However, because we don't optimize
the full set of decisions in a single optimization problem, the recovered solution might be suboptimal.

Parameter definition and input data

There are two main parameters for a rolling horizon implementation: the optimization window and the move
forward.

Optimization Window: this value defines how many periods (for example, hours) we will optimize each time.
For this example, we set the default value to 48 hours, meaning we will optimize two days each time.

optimization_window = 48;

Move Forward: this value defines how many periods (for example, hours) we will move forward to optimize
the next optimization window. For this example, we set the default value in 24 hours, meaning we will move
one day ahead each time.

move_forward = 24;

Note that the move forward parameter must be lower or equal to the optimization window parameter to work
correctly.

@assert optimization_window >= move_forward

Let's explore the input data in file rolling_horizon.csv. We have a total time horizon of a week (that is, 168
hours), an electricity demand, and a solar production profile.

filename = joinpath(@__DIR__, "rolling_horizon.csv")
time_series = CSV.read(filename, DataFrames.DataFrame)
time_series[1:21:end, :]

We define the solar investment (for example, 150 MW) to determine the solar production during the operation
optimization step.

solar_investment = 150;

We multiply the level of solar investment by the time series of availability to get actual MW generated.

tutorials/algorithms/rolling_horizon.csv
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day hour demand_MW solar_pu
Int64 Int64 Float64 Float64

1 1 0 51.6 0.0
2 1 21 59.0 0.0
3 2 18 80.7 0.0
4 3 15 69.5 0.00966184
5 4 12 65.9 0.78744
6 5 9 83.8 0.628019
7 6 6 67.4 0.0
8 7 3 57.5 0.0

time_series.solar_MW = solar_investment * time_series.solar_pu;

In addition, we can determine some basic information about the rolling horizon, such as the number of data
points we have:

total_time_length = size(time_series, 1)

168

and the number of windows that we are going to optimize given the problem's time horizon:

(total_time_length + move_forward - optimization_window) / move_forward

6.0

Finally, we can see a plot representing the first two optimization windows and the move forward parameter to
have a better idea of how the rolling horizon works.

x_series = 1:total_time_length
y_series = [time_series.demand_MW, time_series.solar_MW]
plot_1 = Plots.plot(x_series, y_series; label = ["demand" "solar"])
plot_2 = Plots.plot(x_series, y_series; label = false)
window = [0, optimization_window]
Plots.vspan!(plot_1, window; alpha = 0.25, label = false)
Plots.vspan!(plot_2, move_forward .+ window; alpha = 0.25, label = false)
text_1 = Plots.text("optimization\n window 1", :top, :left, 8)
Plots.annotate!(plot_1, 18, time_series.solar_MW[12], text_1)
text_2 = Plots.text("optimization\n window 2", :top, :left, 8)
Plots.annotate!(plot_2, 42, time_series.solar_MW[12], text_2)
Plots.plot(

plot_1,
plot_2;
layout = (2, 1),
linewidth = 3,
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xticks = 0:12:total_time_length,
xlabel = "Hours",
ylabel = "MW",

)

JuMP model

We have all the information we need to create a JuMP model to solve a single window of our rolling horizon
problem.

As the optimizer, we use POI.Optimizer, which is part of ParametricOptInterface.jl. POI.Optimizer converts
the Parameter decision variables into constants in the underlying optimization model, and it efficiently updates
the solver in-place when we call set_parameter_value which avoids having to rebuild the problem each time
we call optimize!.

model = Model(() -> POI.Optimizer(HiGHS.Optimizer()))
set_silent(model)
@variables(model, begin

0 <= r[1:optimization_window]
0 <= p[1:optimization_window] <= 150
0 <= s[1:optimization_window] <= 40
0 <= c[1:optimization_window] <= 10
0 <= d[1:optimization_window] <= 10
# Initialize empty parameters. These values will get updated later
D[t in 1:optimization_window] in Parameter(0)
A[t in 1:optimization_window] in Parameter(0)
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S_0 in Parameter(0)
end)
@objective(model, Min, 50 * sum(p))
@constraints(

model,
begin

p .+ r .+ d .== D .+ c
s[1] == S_0 + 0.9 * c[1] - d[1] / 0.9
[t in 2:optimization_window], s[t] == s[t-1] + 0.9 * c[t] - d[t] / 0.9
r .<= A

end
)
model

A JuMP Model
├ solver: Parametric Optimizer with HiGHS attached
├ objective_sense: MIN_SENSE
│ └ objective_function_type: AffExpr
├ num_variables: 337
├ num_constraints: 673
│ ├ AffExpr in MOI.EqualTo{Float64}: 96
│ ├ AffExpr in MOI.LessThan{Float64}: 48
│ ├ VariableRef in MOI.GreaterThan{Float64}: 240
│ ├ VariableRef in MOI.LessThan{Float64}: 192
│ └ VariableRef in MOI.Parameter{Float64}: 97
└ Names registered in the model
└ :A, :D, :S_0, :c, :d, :p, :r, :s

After the optimization, we can store the results in vectors. It's important to note that despite optimizing for
48 hours (the default value), we only store the values for the "move forward" parameter (for example, 24
hours or one day using the default value). This approach ensures that there is a buffer of additional periods or
hours beyond the "move forward" parameter to prevent the storage from depleting entirely at the end of the
specified hours.

sol_complete = Dict(
:r => zeros(total_time_length),
:p => zeros(total_time_length),
:c => zeros(total_time_length),
:d => zeros(total_time_length),
# The storage level is initialized with an initial value
:s => zeros(total_time_length + 1),

)
sol_windows = Pair{Int,Dict{Symbol,Vector{Float64}}}[]

Pair{Int64, Dict{Symbol, Vector{Float64}}}[]

Now we can iterate across the windows of our rolling horizon problem, and at each window, we:

1. update the parameters in the models
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2. solve the model for that window

3. store the results for later analysis

offsets = 0:move_forward:total_time_length-optimization_window
for offset in offsets

# Step 1: update the parameter values over the optimization_window
for t in 1:optimization_window

set_parameter_value(model[:D][t], time_series[offset+t, :demand_MW])
set_parameter_value(model[:A][t], time_series[offset+t, :solar_MW])

end
# Set the starting storage level as the value from the end of the previous
# solve. The `+1` accounts for the initial storage value in time step "t=0"
set_parameter_value(model[:S_0], sol_complete[:s][offset+1])
# Step 2: solve the model
optimize!(model)
# Step 3: store the results of the move_forward values, except in the last
# horizon where we store the full `optimization_window`.
for t in 1:(offset == last(offsets) ? optimization_window : move_forward)

for key in (:r, :p, :c, :d)
sol_complete[key][offset+t] = value(model[key][t])

end
sol_complete[:s][offset+t+1] = value(model[:s][t])

end
sol_window = Dict(key => value.(model[key]) for key in (:r, :p, :s, :c, :d))
push!(sol_windows, offset => sol_window)

end

Solution

Here is a function to plot the solution at each of the time-steps to help visualize the rolling horizon scheme:

function plot_solution(sol; offset = 0, kwargs...)
plot = Plots.plot(;

ylabel = "MW",
xlims = (0, total_time_length),
xticks = 0:12:total_time_length,
kwargs...,

)
y = hcat(sol[:p], sol[:r], sol[:d])
x = offset .+ (1:size(y, 1))
if offset == 0

Plots.areaplot!(x, y; label = ["thermal" "solar" "discharge"])
Plots.areaplot!(x, -sol[:c]; label = "charge")

else
Plots.areaplot!(x, y; label = false)
Plots.areaplot!(x, -sol[:c]; label = false)

end
return plot

end

Plots.plot(
[plot_solution(sol; offset) for (offset, sol) in sol_windows]...;
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layout = (length(sol_windows), 1),
size = (600, 800),
margin = 3Plots.mm,

)
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We can re-use the function to plot the recovered solution of the full problem:
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plot_solution(sol_complete; offset = 0, xlabel = "Hour")

Final remark

ParametricOptInterface.jl offers an easy way to update the parameters of an optimization problem that will be
solved several times, as in the rolling horizon implementation. It has the benefit of avoiding rebuilding the
model each time we want to solve it with new information in a new window.

9.5 Parallelism

The purpose of this tutorial is to give a brief overview of parallelism in Julia as it pertains to JuMP, and to explain
some of the things to be aware of when writing parallel algorithms involving JuMP models.

Overview

There are two main types of parallelism in Julia:

1. Multi-threading

2. Distributed computing

In multi-threading, multiple tasks are run in a single Julia process and share the same memory. In distributed
computing, tasks are run in multiple Julia processes with independent memory spaces. This can include pro-
cesses across multiple physical machines, such as in a high-performance computing cluster.
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Choosing and understanding the type of parallelism you are using is important because the code you write for
each type is different, and there are different limitations and benefits to each approach. However, the best
choice is highly problem dependent, so you may want to experiment with both approaches to determine what
works for your situation.

Multi-threading

To use multi-threading with Julia, you must either start Julia with the command line flag --threads=N, or you
must set the JULIA_NUM_THREADS environment variable before launching Julia. For this documentation, we set
the environment variable to:

julia> ENV["JULIA_NUM_THREADS"]
"4"

You can check how many threads are available using:

julia> Threads.nthreads()
4

The easiest way to use multi-threading in Julia is by placing the Threads.@threadsmacro in front of a for-loop:

julia> @time begin
ids = Int[]
my_lock = Threads.ReentrantLock()
Threads.@threads for i in 1:Threads.nthreads()

global ids, my_lock
Threads.lock(my_lock) do

push!(ids, Threads.threadid())
end
sleep(1.0)

end
end

1.037087 seconds (31.32 k allocations: 1.836 MiB, 2.02% compilation time)

This for-loop sleeps for 1 second on each iteration. Thus, if it had executed sequentially, it should have taken
the same number of seconds as there are threads available. Instead, it took only 1 second, showing that
the iterations were executed simultaneously. We can verify this by checking the Threads.threadid() of the
thread that executed each iteration:

julia> ids
4-element Vector{Int64}:
2
4
1
3
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Danger

The Threads.threadid() that a task runs on may change during execution. Therefore, it is not safe
to use Threads.threadid() to index into, say, a vector of buffer or stateful objects. As an example,
do not do:

x = rand(Threads.nthreads())
Threads.@threads for i in 1:Threads.nthreads()

x[Threads.threadid()] *= 2 # Danger! This use of threadid is not safe
end

For more information, read PSA: Thread-local state is no longer recommended.

Thread safety

When working with threads, you must avoid race conditions, in which two threads attempt to write to the same
variable at the same time. In the above example we avoided a race condition by using ReentrantLock. See
the Multi-threading section of the Julia documentation for more details.

JuMP models are not thread-safe. Code that uses multi-threading to simultaneously modify or optimize a single
JuMP model across threads may error, crash Julia, or silently produce incorrect results.

For example, the following incorrect use of multi-threading crashes Julia:

julia> using JuMP, HiGHS

julia> function an_incorrect_way_to_use_threading()
model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, x)
Threads.@threads for i in 1:10

optimize!(model)
end
return

end
an_incorrect_way_to_use_threading (generic function with 1 method)

julia> an_incorrect_way_to_use_threading()
julia(76918,0x16c92f000) malloc: *** error for object 0x600003e52220: pointer being freed was not

allocated↪→

zsh: abort julia -t 4

To avoid issues with thread safety, create a new instance of a JuMP model in each iteration of the for-loop.
In addition, you must avoid race conditions in the rest of your Julia code, for example, by using a lock when
pushing elements to a shared vector.

Example: parameter search with multi-threading

Here is an example of how to use multi-threading to solve a collection of JuMP models in parallel.

julia> using JuMP, HiGHS

https://julialang.org/blog/2023/07/PSA-dont-use-threadid/
https://docs.julialang.org/en/v1/manual/multi-threading/
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julia> function a_good_way_to_use_threading()
solutions = Pair{Int,Float64}[]
my_lock = Threads.ReentrantLock();
Threads.@threads for i in 1:10

model = Model(HiGHS.Optimizer)
set_silent(model)
set_attribute(model, MOI.NumberOfThreads(), 1)
@variable(model, x >= i)
@objective(model, Min, x)
optimize!(model)
assert_is_solved_and_feasible(model)
Threads.lock(my_lock) do

push!(solutions, i => objective_value(model))
end

end
return solutions

end
a_good_way_to_use_threading (generic function with 1 method)

julia> a_good_way_to_use_threading()
10-element Vector{Pair{Int64, Float64}}:
7 => 7.0
9 => 9.0
4 => 4.0
1 => 1.0
5 => 5.0
2 => 2.0
8 => 8.0
10 => 10.0
3 => 3.0
6 => 6.0

Warning

For some solvers, it may be necessary to limit the number of threads used internally by the solver to
1 by setting the MOI.NumberOfThreads attribute.

Example: building data structures in parallel

For large problems, building the model in JuMP can be a bottleneck, and you may consider trying to write code
that builds themodel in parallel, for example, by wrapping a for-loop that adds constraints with Threads.@threads.
Here's an example:

julia> using JuMP

julia> function an_incorrect_way_to_build_with_multithreading()
model = Model()
@variable(model, x[1:10])
Threads.@threads for i in 1:10

@constraint(model, x[i] <= i)
end
return model

end
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julia> an_incorrect_way_to_build_with_multithreading()
A JuMP Model
├ solver: none
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 10
├ num_constraints: 7
│ └ AffExpr in MOI.LessThan{Float64}: 7
└ Names registered in the model
└ :x

Unfortunately, this model is wrong. It has only seven constraints instead of the expected ten. This happens
because JuMPmodels are not thread-safe. Code that uses multi-threading to simultaneously modify or optimize
a single JuMP model across threads may error, crash Julia, or silently produce incorrect results.

The correct way to build a JuMP model with multi-threading is to build the data structures in parallel, but add
them to the JuMP model in a thread-safe way:

julia> using JuMP

julia> function a_correct_way_to_build_with_multithreading()
model = Model()
@variable(model, x[1:10])
my_lock = Threads.ReentrantLock()
Threads.@threads for i in 1:10

con = @build_constraint(x[i] <= i)
Threads.lock(my_lock) do

add_constraint(model, con)
end

end
return model

end

julia> a_correct_way_to_build_with_multithreading()
A JuMP Model
├ solver: none
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 10
├ num_constraints: 10
│ └ AffExpr in MOI.LessThan{Float64}: 10
└ Names registered in the model
└ :x

Warning

Do not use multi-threading to build a JuMP model just because your original code is slow. In
most cases, we find that the reason for the bottleneck is not JuMP, but in how you are constructing the
problem data, and that with changes, it is possible to build a model in a way that is not the bottleneck
in the solution process. If you need help to make your code run faster, ask for help on the community
forum. Make sure to include a reproducible example of your code.

https://jump.dev/forum
https://jump.dev/forum
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Distributed computing

To use distributed computing with Julia, use the Distributed package:

julia> import Distributed

Like multi-threading, we need to tell Julia how many processes to add. We can do this either by starting Julia
with the -p N command line argument, or by using Distributed.addprocs:

julia> import Pkg

julia> project = Pkg.project();

julia> workers = Distributed.addprocs(4; exeflags = "--project=$(project.path)")
4-element Vector{Int64}:
2
3
4
5

Warning

Not loading the parent environment with --project is a common mistake.

The added processes are "worker" processes that we can use to do computation with. They are orches-
trated by the process with the id 1. You can check what process the code is currently running on using
Distributed.myid()

julia> Distributed.myid()
1

As a general rule, to get maximum performance you should add as many processes as you have logical cores
available.

Unlike the for-loop approach of multi-threading, distributed computing extends the Julia map function to a
"parallel-map" function Distributed.pmap. For each element in the list of arguments to map over, Julia will
copy the element to an idle worker process and evaluate the function, passing the element as an input argu-
ment.

julia> function hard_work(i::Int)
sleep(1.0)
return Distributed.myid()

end
hard_work (generic function with 1 method)

julia> Distributed.pmap(hard_work, 1:4)
ERROR: On worker 2:
UndefVarError: #hard_work not defined
Stacktrace:
[...]



CHAPTER 9. ALGORITHMS 496

Unfortunately, if you try this code directly, you will get an errormessage that says On worker 2: UndefVarError:
hard_work not defined. The error is thrown because, although process 1 knows what the hard_work function
is, the worker processes do not.

To fix the error, we need to use Distributed.@everywhere, which evaluates the code on every process:

julia> Distributed.@everywhere begin
function hard_work(i::Int)

sleep(1.0)
return Distributed.myid()

end
end

Now if we run pmap, we see that it took only 1 second instead of 4, and that it executed on each of the worker
processes:

julia> @time ids = Distributed.pmap(hard_work, 1:4)
1.202006 seconds (216.39 k allocations: 13.301 MiB, 4.07% compilation time)

4-element Vector{Int64}:
2
3
5
4

Tip

For more information, read the Julia documentation Distributed Computing.

Example: parameter search with distributed computing

With distributed computing, remember to evaluate all of the code on all of the processes using Distributed.@everywhere,
and then write a function which creates a new instance of the model on every evaluation:

julia> Distributed.@everywhere begin
using JuMP
import HiGHS

end

julia> Distributed.@everywhere begin
function solve_model_with_right_hand_side(i)

model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, x)
@objective(model, Min, x)
set_lower_bound(x, i)
optimize!(model)
assert_is_solved_and_feasible(sudoku)
return objective_value(model)

end
end

julia> solutions = Distributed.pmap(solve_model_with_right_hand_side, 1:10)

https://docs.julialang.org/en/v1/manual/distributed-computing/
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10-element Vector{Float64}:
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0

Parallelism within the solver

Many solvers use parallelism internally. For example, commercial solvers like Gurobi.jl and CPLEX.jl both par-
allelize the search in branch-and-bound.

Solvers supporting internal parallelism will typically support the MOI.NumberOfThreads attribute, which you
can set using set_attribute:

using JuMP, Gurobi
model = Model(Gurobi.Optimizer)
set_attribute(model, MOI.NumberOfThreads(), 4)

GPU parallelism

JuMP does not support GPU programming, but some solvers support execution on a GPU.

One example is SCS.jl, which supports using a GPU to internally solve a system of linear equations. If you are
on x86_64 Linux machine, do:

using JuMP, SCS, SCS_GPU_jll
model = Model(SCS.Optimizer)
set_attribute(model, "linear_solver", SCS.GpuIndirectSolver)

9.6 Writing a solver interface

This tutorial was generated using Literate.jl. Download the source as a .jl file.

The purpose of this tutorial is to demonstrate how to implement a basic solver interface to MathOptInterface.
As a motivating example, we implement the Primal Dual Hybrid Gradient (PDHG) method. PDHG is a first-order
method that can solve convex optimization problems.

Google has a good introduction to the math behind PDLP, which is a variant of PDHG specialized for linear
programs.

Required packages

This tutorial requires the following packages:

https://github.com/fredrikekre/Literate.jl
tutorials/algorithms/pdhg.jl
https://developers.google.com/optimization/lp/pdlp_math


CHAPTER 9. ALGORITHMS 498

using JuMP
import LinearAlgebra
import MathOptInterface as MOI
import Printf
import SparseArrays

Primal Dual Hybrid Gradient

The following function is a pedagogical implementation of PDHG that solves the linear program:

min c⊤x

subject to Ax = b

x ≥ 0.

Note that this implementation is intentionally kept simple. It is not robust nor efficient, and it does not incor-
porate the theoretical improvements in the PDLP paper. It does use two workspace vectors so that the body
of the iteration loop is non-allocating.

function solve_pdhg(
A::SparseArrays.SparseMatrixCSC{Float64,Int},
b::Vector{Float64},
c::Vector{Float64};
maximum_iterations::Int = 100_000,
tol::Float64 = 1e-4,
verbose::Bool = true,
log_frequency::Int = 1_000,

)
printf(x::Float64) = Printf.@sprintf("% 1.6e", x)
printf(x::Int) = Printf.@sprintf("%6d", x)
m, n = size(A)
η = τ = 1 / LinearAlgebra.norm(A) - 1e-6
x, x_next, y, k, status = zeros(n), zeros(n), zeros(m), 0, MOI.OTHER_ERROR
m_workspace, n_workspace = zeros(m), zeros(n)
if verbose

println(
" iter pobj dobj pfeas dfeas objfeas",

)
end
while status == MOI.OTHER_ERROR

k += 1
# =====================================================================
# This block computes x_next = max.(0.0, x - η * (A' * y + c))
LinearAlgebra.mul!(x_next, A', y)
LinearAlgebra.axpby!(-η, c, -η, x_next)
x_next .+= x
x_next .= max.(0.0, x_next)
# =====================================================================
# This block computes y += τ * (A * (2 * x_next - x) - b)
copy!(n_workspace, x_next)
LinearAlgebra.axpby!(-1.0, x, 2.0, n_workspace)
LinearAlgebra.mul!(y, A, n_workspace, τ, 1.0)
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LinearAlgebra.axpy!(-τ, b, y)
# =====================================================================
copy!(x, x_next)
# =====================================================================
# This block computes pfeas = LinearAlgebra.norm(A * x - b)
LinearAlgebra.mul!(m_workspace, A, x)
m_workspace .-= b
pfeas = LinearAlgebra.norm(m_workspace)
# =====================================================================
# This block computes dfeas = LinearAlgebra.norm(min.(0.0, A' * y + c))
LinearAlgebra.mul!(n_workspace, A', y)
n_workspace .+= c
n_workspace .= min.(0.0, n_workspace)
dfeas = LinearAlgebra.norm(n_workspace)
# =====================================================================
objfeas = abs(LinearAlgebra.dot(c, x) + LinearAlgebra.dot(b, y))
if pfeas <= tol && dfeas <= tol && objfeas <= tol

status = MOI.OPTIMAL
elseif k == maximum_iterations

status = MOI.ITERATION_LIMIT
end
if verbose && (mod(k, log_frequency) == 0 || status != MOI.OTHER_ERROR)

logs = printf.((k, c' * x, -b' * y, pfeas, dfeas, objfeas))
println(join(logs, " "))

end
end
return status, k, x, y

end

solve_pdhg (generic function with 1 method)

Here's an example:

A = [0.0 -1.0 -1.0 0.0 0.0; 6.0 8.0 0.0 -1.0 0.0; 7.0 12.0 0.0 0.0 -1.0]
b = [-3.0, 100.0, 120.0]
c = [12.0, 20.0, 0.0, 0.0, 0.0]
status, k, x, y = solve_pdhg(SparseArrays.sparse(A), b, c);

iter pobj dobj pfeas dfeas objfeas
1000 2.050187e+02 2.044002e+02 2.006420e-01 2.674295e-02 6.185366e-01
2000 2.049895e+02 2.051241e+02 1.705136e-02 2.746207e-02 1.346232e-01
3000 2.050050e+02 2.050805e+02 8.907061e-03 8.405470e-03 7.550812e-02
4000 2.050024e+02 2.049755e+02 4.046623e-03 9.374982e-04 2.689079e-02
5000 2.049995e+02 2.049831e+02 8.635908e-04 6.483234e-04 1.633722e-02
6000 2.049995e+02 2.050016e+02 7.833794e-04 1.676266e-04 2.095135e-03
7000 2.050000e+02 2.050030e+02 2.811341e-05 3.065459e-04 2.964863e-03
8000 2.050001e+02 2.050002e+02 1.316682e-04 1.674879e-05 8.453982e-05
8365 2.049999e+02 2.050000e+02 9.473351e-05 2.381905e-06 7.955573e-05

The termination status is:
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status

OPTIMAL::TerminationStatusCode = 1

The solve took the following number of iterations:

k

8365

The primal solution is:

x

5-element Vector{Float64}:
15.000070735249105
1.2499547393201815
1.750098059200116
0.0
0.0

The dual multipliers are:

y

3-element Vector{Float64}:
1.931930909998547e-6
-0.2500022801722057
-1.4999982446009117

The MOI interface

Converting a linear program from the modeler's form into the A, b, and cmatrices of the standard form required
by our implementation of PDHG is tedious and error-prone. This section walks through how to implement a
basic interface to MathOptInterface, so that we can use our algorithm from JuMP.

For a more comprehensive guide, see Implementing a solver interface.
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The Optimizer type

Create an optimizer by subtyping MOI.AbstractOptimizer. By convention, the name of this type is Optimizer,
and most optimizers are available as PackageName.Optimizer.

The fields inside the optimizer are arbitrary. Store whatever is useful.

"""
Optimizer()

Create a new optimizer for PDHG.
"""
mutable struct Optimizer <: MOI.AbstractOptimizer

# A mapping from variable to column
x_to_col::Dict{MOI.VariableIndex,Int}
# A mapping from constraint to rows
ci_to_rows::Dict{

MOI.ConstraintIndex{MOI.VectorAffineFunction{Float64},MOI.Zeros},
Vector{Int},

}
# Information from solve_pdhg
status::MOI.TerminationStatusCode
iterations::Int
x::Vector{Float64}
y::Vector{Float64}
# Other useful quantities
solve_time::Float64
obj_value::Float64

function Optimizer()
F = MOI.VectorAffineFunction{Float64}
return new(

Dict{MOI.VariableIndex,Int}(),
Dict{MOI.ConstraintIndex{F,MOI.Zeros},Vector{Int}}(),
MOI.OPTIMIZE_NOT_CALLED,
0,
Float64[],
Float64[],
0.0,
0.0,

)
end

end

Main.Optimizer

Now that we have an Optimizer, we need to implement two methods: MOI.is_empty and MOI.empty!. These
are called whenever MOI needs to ensure that the optimizer is in a clean state.

function MOI.is_empty(model::Optimizer)
# You might want to check every field, not just a few
return isempty(model.x_to_col) && model.status == MOI.OPTIMIZE_NOT_CALLED

end
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function MOI.empty!(model::Optimizer)
empty!(model.x_to_col)
empty!(model.ci_to_rows)
model.status = MOI.OPTIMIZE_NOT_CALLED
model.iterations = 0
model.solve_time = 0.0
model.obj_value = 0.0
empty!(model.x)
empty!(model.y)
return

end

Next, we need to define what constraints the optimizer supports. Since our standard form was Ax = b, we
support only Ax + b ∈ {0}, which is a MOI.VectorAffineFunction in MOI.Zeros constraint. Note that you
might have expected Ax− b ∈ {0}. We'll address the difference in the sign of b in a few places later on.

function MOI.supports_constraint(
::Optimizer,
::Type{MOI.VectorAffineFunction{Float64}},
::Type{MOI.Zeros},

)
return true

end

By default, MOI assumes that it can add free variables. This isn't true for our standard form, because we
support only x ≥ 0. Let's tell MOI that:

MOI.supports_add_constrained_variables(::Optimizer, ::Type{MOI.Reals}) = false

function MOI.supports_add_constrained_variables(
::Optimizer,
::Type{MOI.Nonnegatives},

)
return true

end

The objective function that we support is MOI.ScalarAffineFunction:

function MOI.supports(
::Optimizer,
::MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}},

)
return true

end

Finally, we'll implement MOI.SolverName so that MOI knows how to print the name of our optimizer:

MOI.get(::Optimizer, ::MOI.SolverName) = "PDHG"
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GenericModel

The simplest way to solve a problemwith your optimizer is to implement themethod MOI.optimize!(dest::Optimizer,
src::MOI.ModelLike), where src is an input model and dest is your empty optimizer.

To implement this method you would need to query the variables and constraints in src and the convert these
into the matrix data expected by solve_pdhg. Since matrix input is a common requirement of solvers, MOI
includes utilities to simplify the process.

The downside of the utilities is that they involve a highly parameterized type with a large number of possible
configurations.The upside of the utilities is that, once setup, they requires few lines of code to extract the
problem matrices.

First, we need to define the set of sets that our standard form supports. For PDHG, we support only Ax + b in
{0}:

MOI.Utilities.@product_of_sets(SetOfZeros, MOI.Zeros)

Then, we define a MOI.Utilities.GenericModel. This is the highly parameterized type that can be cus-
tomized.

const CacheModel = MOI.Utilities.GenericModel{
# The coefficient type is Float64
Float64,
# We use the default objective container
MOI.Utilities.ObjectiveContainer{Float64},
# We use the default variable container
MOI.Utilities.VariablesContainer{Float64},
# We use a Matrix of Constraints to represent `A * x + b in K`
MOI.Utilities.MatrixOfConstraints{

# The number type is Float64
Float64,
# The matrix type `A` is a sparse matrix
MOI.Utilities.MutableSparseMatrixCSC{

# ... with Float64 coefficients
Float64,
# ... Int64 row and column indices
Int,
# ... and it uses one-based indexing
MOI.Utilities.OneBasedIndexing,

},
# The vector type `b` is a Julia `Vector`
Vector{Float64},
# The set type `K` is the SetOfZeros type we defined above
SetOfZeros{Float64},

},
}

MathOptInterface.Utilities.GenericModel{Float64,
MathOptInterface.Utilities.ObjectiveContainer{Float64},
MathOptInterface.Utilities.VariablesContainer{Float64},
MathOptInterface.Utilities.MatrixOfConstraints{Float64,
MathOptInterface.Utilities.MutableSparseMatrixCSC{Float64, Int64,
MathOptInterface.Utilities.OneBasedIndexing}, Vector{Float64}, Main.SetOfZeros{Float64}}}

↪→

↪→

↪→

↪→

↪→
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As one example of possible alternate configuration, if you were interfacing with a solver written in C that
expected zero-based indices, you might use instead:

MOI.Utilities.MutableSparseMatrixCSC{
Cdouble,
Cint,
MOI.Utilities.ZeroBasedIndexing,

}

MathOptInterface.Utilities.MutableSparseMatrixCSC{Float64, Int32,
MathOptInterface.Utilities.ZeroBasedIndexing}↪→

Tip

The best place to look at how to configure GenericModel is to find an existing solver with the same
input standard form that you require.

We need to make one modification to CacheModel to tell MOI that x ∈ R+ is equivalent to adding variables in
MOI.GreaterThan:

function MOI.add_constrained_variables(model::CacheModel, set::MOI.Nonnegatives)
x = MOI.add_variables(model, MOI.dimension(set))
MOI.add_constraint.(model, x, MOI.GreaterThan(0.0))
ci = MOI.ConstraintIndex{MOI.VectorOfVariables,MOI.Nonnegatives}(x[1].value)
return x, ci

end

The optimize method

Now we define the most important method for our optimizer.

function MOI.optimize!(dest::Optimizer, src::MOI.ModelLike)
# In addition to the values returned by `solve_pdhg`, it may be useful to
# record other attributes, such as the solve time.
start_time = time()
# Construct a cache to store our problem data:
cache = CacheModel()
# MOI includes a utility to copy an arbitrary `src` model into `cache`. The
# return, `index_map`, is a mapping from indices in `src` to indices in
# `dest`.
index_map = MOI.copy_to(cache, src)
# Now we can access the `A` matrix:
A = convert(

SparseArrays.SparseMatrixCSC{Float64,Int},
cache.constraints.coefficients,

)
# and the b vector (note that MOI models Ax = b as Ax + b in {0}, so b
# differs by -):
b = -cache.constraints.constants
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# The `c` vector is more involved, because we need to account for the
# objective sense:
sense = ifelse(cache.objective.sense == MOI.MAX_SENSE, -1, 1)
F = MOI.ScalarAffineFunction{Float64}
obj = MOI.get(src, MOI.ObjectiveFunction{F}())
c = zeros(size(A, 2))
for term in obj.terms

c[term.variable.value] += sense * term.coefficient
end
# Now we can solve the problem with PDHG and record the solution:
dest.status, dest.iterations, dest.x, dest.y = solve_pdhg(A, b, c)
# To help assign the values of the x and y vectors to the appropriate
# variables and constrats, we need a map of the constraint indices to their
# row in the `dest` matrix and a map of the variable indices to their
# column in the `dest` matrix:
F, S = MOI.VectorAffineFunction{Float64}, MOI.Zeros
for src_ci in MOI.get(src, MOI.ListOfConstraintIndices{F,S}())

dest.ci_to_rows[index_map[src_ci]] =
MOI.Utilities.rows(cache.constraints.sets, index_map[src_ci])

end
for (i, src_x) in enumerate(MOI.get(src, MOI.ListOfVariableIndices()))

dest.x_to_col[index_map[src_x]] = i
end
# We can now record two derived quantities: the primal objective value and
# the solve time.
dest.obj_value = obj.constant + sense * c' * dest.x
dest.solve_time = time() - start_time
# We need to return the index map, and `false`, to indicate to MOI that we
# do not support incremental modification of the model.
return index_map, false

end

Solutions

Now that we know how to solve a model, let's implement the required solution attributes.

First, we need to tell MOI how many solutions we found via MOI.ResultCount:

function MOI.get(model::Optimizer, ::MOI.ResultCount)
return model.status == MOI.OPTIMAL ? 1 : 0

end

and implement MOI.RawStatusString to provide a user-readable string that describes what happened:

function MOI.get(model::Optimizer, ::MOI.RawStatusString)
if model.status == MOI.OPTIMAL

return "found a primal-dual optimal solution (subject to tolerances)"
end
return "failed to solve"

end

Then, we need to implement the three types of problem status: MOI.TerminationStatus, MOI.PrimalStatus
and MOI.DualStatus:
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MOI.get(model::Optimizer, ::MOI.TerminationStatus) = model.status

function MOI.get(model::Optimizer, attr::Union{MOI.PrimalStatus,MOI.DualStatus})
if attr.result_index == 1 && model.status == MOI.OPTIMAL

return MOI.FEASIBLE_POINT
end
return MOI.NO_SOLUTION

end

Now we can implement MOI.ObjectiveValue, MOI.VariablePrimal, and MOI.ConstraintDual:

function MOI.get(model::Optimizer, attr::MOI.ObjectiveValue)
MOI.check_result_index_bounds(model, attr)
return model.obj_value

end

function MOI.get(
model::Optimizer,
attr::MOI.VariablePrimal,
x::MOI.VariableIndex,

)
MOI.check_result_index_bounds(model, attr)
return model.x[model.x_to_col[x]]

end

function MOI.get(
model::Optimizer,
attr::MOI.ConstraintDual,
ci::MOI.ConstraintIndex{MOI.VectorAffineFunction{Float64},MOI.Zeros},

)
MOI.check_result_index_bounds(model, attr)
# MOI models Ax = b as Ax + b in {0}, so the dual differs by -
return -model.y[model.ci_to_rows[ci]]

end

Some other useful result quantities are MOI.SolveTimeSec and MOI.BarrierIterations:

MOI.get(model::Optimizer, ::MOI.SolveTimeSec) = model.solve_time
MOI.get(model::Optimizer, ::MOI.BarrierIterations) = model.iterations

A JuMP example

Now we can solve an arbitrary linear program with JuMP. Here's the same standard form as before:

model = Model(Optimizer)
@variable(model, x[1:5] >= 0)
@objective(model, Min, c' * x)
@constraint(model, c3, A * x == b)
optimize!(model)
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iter pobj dobj pfeas dfeas objfeas
1000 2.050187e+02 2.044002e+02 2.006420e-01 2.674295e-02 6.185366e-01
2000 2.049895e+02 2.051241e+02 1.705136e-02 2.746207e-02 1.346232e-01
3000 2.050050e+02 2.050805e+02 8.907061e-03 8.405470e-03 7.550812e-02
4000 2.050024e+02 2.049755e+02 4.046623e-03 9.374982e-04 2.689079e-02
5000 2.049995e+02 2.049831e+02 8.635908e-04 6.483234e-04 1.633722e-02
6000 2.049995e+02 2.050016e+02 7.833794e-04 1.676266e-04 2.095135e-03
7000 2.050000e+02 2.050030e+02 2.811341e-05 3.065459e-04 2.964863e-03
8000 2.050001e+02 2.050002e+02 1.316682e-04 1.674879e-05 8.453982e-05
8365 2.049999e+02 2.050000e+02 9.473351e-05 2.381905e-06 7.955573e-05

solution_summary(model; verbose = true)

solution_summary(; result = 1, verbose = true)
├ solver_name : PDHG
├ Termination
│ ├ termination_status : OPTIMAL
│ ├ result_count : 1
│ └ raw_status : found a primal-dual optimal solution (subject to tolerances)
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : FEASIBLE_POINT
│ ├ objective_value : 2.05000e+02
│ ├ dual_objective_value : 2.05000e+02
│ ├ value
│ │ ├ x[1] : 1.50001e+01
│ │ ├ x[2] : 1.24995e+00
│ │ ├ x[3] : 1.75010e+00
│ │ ├ x[4] : 0.00000e+00
│ │ └ x[5] : 0.00000e+00
│ └ dual
│ └ c3 : [-1.93193e-06,2.50002e-01,1.50000e+00]
└ Work counters
├ solve_time (sec) : 2.14339e-01
└ barrier_iterations : 8365

But we could also have written:

model = Model(Optimizer)
@variable(model, x >= 0)
@variable(model, 0 <= y <= 3)
@objective(model, Min, 12x + 20y)
@constraint(model, c1, 6x + 8y >= 100)
@constraint(model, c2, 7x + 12y >= 120)
optimize!(model)

iter pobj dobj pfeas dfeas objfeas
1000 2.050187e+02 2.044002e+02 2.006420e-01 2.674295e-02 6.185366e-01
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2000 2.049895e+02 2.051241e+02 1.705136e-02 2.746207e-02 1.346232e-01
3000 2.050050e+02 2.050805e+02 8.907061e-03 8.405470e-03 7.550812e-02
4000 2.050024e+02 2.049755e+02 4.046623e-03 9.374982e-04 2.689079e-02
5000 2.049995e+02 2.049831e+02 8.635908e-04 6.483234e-04 1.633722e-02
6000 2.049995e+02 2.050016e+02 7.833794e-04 1.676266e-04 2.095135e-03
7000 2.050000e+02 2.050030e+02 2.811341e-05 3.065459e-04 2.964863e-03
8000 2.050001e+02 2.050002e+02 1.316682e-04 1.674879e-05 8.453982e-05
8365 2.049999e+02 2.050000e+02 9.473351e-05 2.381905e-06 7.955573e-05

solution_summary(model; verbose = true)

solution_summary(; result = 1, verbose = true)
├ solver_name : PDHG
├ Termination
│ ├ termination_status : OPTIMAL
│ ├ result_count : 1
│ └ raw_status : found a primal-dual optimal solution (subject to tolerances)
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : FEASIBLE_POINT
│ ├ objective_value : 2.05000e+02
│ ├ dual_objective_value : 2.05000e+02
│ ├ value
│ │ ├ x : 1.50001e+01
│ │ └ y : 1.24995e+00
│ └ dual
│ ├ c1 : 2.50002e-01
│ └ c2 : 1.50000e+00
└ Work counters
├ solve_time (sec) : 1.69992e-03
└ barrier_iterations : 8365

Other variations are also possible:

model = Model(Optimizer)
@variable(model, x[1:5] >= 0)
@objective(model, Max, -c' * x)
@constraint(model, c4, A * x .== b)
optimize!(model)

iter pobj dobj pfeas dfeas objfeas
1000 2.050187e+02 2.044002e+02 2.006420e-01 2.674295e-02 6.185366e-01
2000 2.049895e+02 2.051241e+02 1.705136e-02 2.746207e-02 1.346232e-01
3000 2.050050e+02 2.050805e+02 8.907061e-03 8.405470e-03 7.550812e-02
4000 2.050024e+02 2.049755e+02 4.046623e-03 9.374982e-04 2.689079e-02
5000 2.049995e+02 2.049831e+02 8.635908e-04 6.483234e-04 1.633722e-02
6000 2.049995e+02 2.050016e+02 7.833794e-04 1.676266e-04 2.095135e-03
7000 2.050000e+02 2.050030e+02 2.811341e-05 3.065459e-04 2.964863e-03
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8000 2.050001e+02 2.050002e+02 1.316682e-04 1.674879e-05 8.453982e-05
8365 2.049999e+02 2.050000e+02 9.473351e-05 2.381905e-06 7.955573e-05

solution_summary(model; verbose = true)

solution_summary(; result = 1, verbose = true)
├ solver_name : PDHG
├ Termination
│ ├ termination_status : OPTIMAL
│ ├ result_count : 1
│ └ raw_status : found a primal-dual optimal solution (subject to tolerances)
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : FEASIBLE_POINT
│ ├ objective_value : -2.05000e+02
│ ├ dual_objective_value : -2.05000e+02
│ ├ value
│ │ ├ x[1] : 1.50001e+01
│ │ ├ x[2] : 1.24995e+00
│ │ ├ x[3] : 1.75010e+00
│ │ ├ x[4] : 0.00000e+00
│ │ └ x[5] : 0.00000e+00
│ └ dual
│ └ c4 : multiple constraints with the same name
└ Work counters
├ solve_time (sec) : 1.71018e-03
└ barrier_iterations : 8365

Behind the scenes, JuMP and MathOptInterface reformulate the problem from the modeller's form into the
standard form defined by our Optimizer.
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Applications

10.1 Power Systems

This tutorial was generated using Literate.jl. Download the source as a .jl file.

This tutorial was originally contributed by Yury Dvorkin and Miles Lubin.

This tutorial demonstrates how to formulate basic power systems engineering models in JuMP.

We will consider basic "economic dispatch" and "unit commitment" models without taking into account trans-
mission constraints.

For this tutorial, we use the following packages:

using JuMP
import DataFrames
import HiGHS
import Plots
import StatsPlots

Economic dispatch

Economic dispatch (ED) is an optimization problem that minimizes the cost of supplying energy demand subject
to operational constraints on power system assets. In its simplest modification, ED is an LP problem solved for
an aggregated load and wind forecast and for a single infinitesimal moment.

Mathematically, the ED problem can be written as follows:

min
∑
i∈I

cgi · gi + cw · w,

where ci and gi are the incremental cost ($/MWh) and power output (MW) of the ith generator, respectively,
and cw and w are the incremental cost ($/MWh) and wind power injection (MW), respectively.

Subject to the constraints:

• Minimum (gmin) and maximum (gmax) limits on power outputs of generators: gmin
i ≤ gi ≤ gmax

i .

• Constraint on the wind power injection: 0 ≤ w ≤ wf , where w and wf are the wind power injection
and wind power forecast, respectively.

510

https://github.com/fredrikekre/Literate.jl
tutorials/applications/power_systems.jl
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• Power balance constraint:
∑

i∈I gi + w = df , where df is the demand forecast.

Further reading on EDmodels can be found in A. J. Wood, B. F. Wollenberg, and G. B. Sheblé, "Power Generation,
Operation and Control," Wiley, 2013.

Define some input data about the test system.

We define some thermal generators:

function ThermalGenerator(
min::Float64,
max::Float64,
fixed_cost::Float64,
variable_cost::Float64,

)
return (

min = min,
max = max,
fixed_cost = fixed_cost,
variable_cost = variable_cost,

)
end

generators = [
ThermalGenerator(0.0, 1000.0, 1000.0, 50.0),
ThermalGenerator(300.0, 1000.0, 0.0, 100.0),

]

2-element Vector{@NamedTuple{min::Float64, max::Float64, fixed_cost::Float64,
variable_cost::Float64}}:↪→

(min = 0.0, max = 1000.0, fixed_cost = 1000.0, variable_cost = 50.0)
(min = 300.0, max = 1000.0, fixed_cost = 0.0, variable_cost = 100.0)

A wind generator

WindGenerator(variable_cost::Float64) = (variable_cost = variable_cost,)

wind_generator = WindGenerator(50.0)

(variable_cost = 50.0,)

And a scenario

function Scenario(demand::Float64, wind::Float64)
return (demand = demand, wind = wind)

end

scenario = Scenario(1500.0, 200.0)



CHAPTER 10. APPLICATIONS 512

(demand = 1500.0, wind = 200.0)

Create a function solve_economic_dispatch, which solves the economic dispatch problem for a given set of
input parameters.

function solve_economic_dispatch(generators::Vector, wind, scenario)
# Define the economic dispatch (ED) model
model = Model(HiGHS.Optimizer)
set_silent(model)
# Define decision variables
# power output of generators
N = length(generators)
@variable(model, generators[i].min <= g[i = 1:N] <= generators[i].max)
# wind power injection
@variable(model, 0 <= w <= scenario.wind)
# Define the objective function
@objective(

model,
Min,
sum(generators[i].variable_cost * g[i] for i in 1:N) +
wind.variable_cost * w,

)
# Define the power balance constraint
@constraint(model, sum(g[i] for i in 1:N) + w == scenario.demand)
# Solve statement
optimize!(model)
assert_is_solved_and_feasible(model)
# return the optimal value of the objective function and its minimizers
return (

g = value.(g),
w = value(w),
wind_spill = scenario.wind - value(w),
total_cost = objective_value(model),

)
end

solve_economic_dispatch (generic function with 1 method)

Solve the economic dispatch problem

solution = solve_economic_dispatch(generators, wind_generator, scenario);

println("Dispatch of Generators: ", solution.g, " MW")
println("Dispatch of Wind: ", solution.w, " MW")
println("Wind spillage: ", solution.wind_spill, " MW")
println("Total cost: \$", solution.total_cost)
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Dispatch of Generators: [1000.0, 300.0] MW
Dispatch of Wind: 200.0 MW
Wind spillage: 0.0 MW
Total cost: $90000.0

Economic dispatch with adjustable incremental costs

In the following exercise we adjust the incremental cost of generator G1 and observe its impact on the total
cost.

function scale_generator_cost(g, scale)
return ThermalGenerator(g.min, g.max, g.fixed_cost, scale * g.variable_cost)

end

start = time()
c_g_scale_df = DataFrames.DataFrame(;

# Scale factor
scale = Float64[],
# Dispatch of Generator 1 [MW]
dispatch_G1 = Float64[],
# Dispatch of Generator 2 [MW]
dispatch_G2 = Float64[],
# Dispatch of Wind [MW]
dispatch_wind = Float64[],
# Spillage of Wind [MW]
spillage_wind = Float64[],
# Total cost [$]
total_cost = Float64[],

)
for c_g1_scale in 0.5:0.1:3.0

# Update the incremental cost of the first generator at every iteration.
new_generators = scale_generator_cost.(generators, [c_g1_scale, 1.0])
# Solve the economic-dispatch problem with the updated incremental cost
sol = solve_economic_dispatch(new_generators, wind_generator, scenario)
push!(

c_g_scale_df,
(c_g1_scale, sol.g[1], sol.g[2], sol.w, sol.wind_spill, sol.total_cost),

)
end
print(string("elapsed time: ", time() - start, " seconds"))

elapsed time: 0.13479399681091309 seconds

c_g_scale_df
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scale dispatch_G1 dispatch_G2 dispatch_wind spillage_wind total_cost
Float64 Float64 Float64 Float64 Float64 Float64

1 0.5 1000.0 300.0 200.0 0.0 65000.0
2 0.6 1000.0 300.0 200.0 0.0 70000.0
3 0.7 1000.0 300.0 200.0 0.0 75000.0
4 0.8 1000.0 300.0 200.0 0.0 80000.0
5 0.9 1000.0 300.0 200.0 0.0 85000.0
6 1.0 1000.0 300.0 200.0 0.0 90000.0
7 1.1 1000.0 300.0 200.0 0.0 95000.0
8 1.2 1000.0 300.0 200.0 0.0 100000.0
9 1.3 1000.0 300.0 200.0 0.0 105000.0
10 1.4 1000.0 300.0 200.0 0.0 110000.0
11 1.5 1000.0 300.0 200.0 0.0 115000.0
12 1.6 1000.0 300.0 200.0 0.0 120000.0
13 1.7 1000.0 300.0 200.0 0.0 125000.0
14 1.8 1000.0 300.0 200.0 0.0 130000.0
15 1.9 1000.0 300.0 200.0 0.0 135000.0
16 2.0 300.0 1000.0 200.0 0.0 140000.0
17 2.1 300.0 1000.0 200.0 0.0 141500.0
18 2.2 300.0 1000.0 200.0 0.0 143000.0
19 2.3 300.0 1000.0 200.0 0.0 144500.0
20 2.4 300.0 1000.0 200.0 0.0 146000.0
21 2.5 300.0 1000.0 200.0 0.0 147500.0
22 2.6 300.0 1000.0 200.0 0.0 149000.0
23 2.7 300.0 1000.0 200.0 0.0 150500.0
24 2.8 300.0 1000.0 200.0 0.0 152000.0
25 2.9 300.0 1000.0 200.0 0.0 153500.0
26 3.0 300.0 1000.0 200.0 0.0 155000.0

Modifying the JuMP model in-place

Note that in the previous exercise we entirely rebuilt the optimization model at every iteration of the internal
loop, which incurs an additional computational burden. This burden can be alleviated if instead of re-building
the entire model, we modify the constraints or objective function, as it shown in the example below.

Compare the computing time in case of the above and below models.

function solve_economic_dispatch_inplace(
generators::Vector,
wind,
scenario,
scale::AbstractVector{Float64},

)
obj_out = Float64[]
w_out = Float64[]
g1_out = Float64[]
g2_out = Float64[]
# This function only works for two generators
@assert length(generators) == 2
model = Model(HiGHS.Optimizer)
set_silent(model)
N = length(generators)
@variable(model, generators[i].min <= g[i = 1:N] <= generators[i].max)
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@variable(model, 0 <= w <= scenario.wind)
@objective(

model,
Min,
sum(generators[i].variable_cost * g[i] for i in 1:N) +
wind.variable_cost * w,

)
@constraint(model, sum(g[i] for i in 1:N) + w == scenario.demand)
for c_g1_scale in scale

@objective(
model,
Min,
c_g1_scale * generators[1].variable_cost * g[1] +
generators[2].variable_cost * g[2] +
wind.variable_cost * w,

)
optimize!(model)
assert_is_solved_and_feasible(model)
push!(obj_out, objective_value(model))
push!(w_out, value(w))
push!(g1_out, value(g[1]))
push!(g2_out, value(g[2]))

end
df = DataFrames.DataFrame(;

scale = scale,
dispatch_G1 = g1_out,
dispatch_G2 = g2_out,
dispatch_wind = w_out,
spillage_wind = scenario.wind .- w_out,
total_cost = obj_out,

)
return df

end

start = time()
inplace_df = solve_economic_dispatch_inplace(

generators,
wind_generator,
scenario,
0.5:0.1:3.0,

)
print(string("elapsed time: ", time() - start, " seconds"))

elapsed time: 0.1675879955291748 seconds

For small models, adjusting specific constraints or the objective function is sometimes faster and sometimes
slower than re-building the entire model. However, as the problem size increases, updating the model in-place
is usually faster.

inplace_df
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scale dispatch_G1 dispatch_G2 dispatch_wind spillage_wind total_cost
Float64 Float64 Float64 Float64 Float64 Float64

1 0.5 1000.0 300.0 200.0 0.0 65000.0
2 0.6 1000.0 300.0 200.0 0.0 70000.0
3 0.7 1000.0 300.0 200.0 0.0 75000.0
4 0.8 1000.0 300.0 200.0 0.0 80000.0
5 0.9 1000.0 300.0 200.0 0.0 85000.0
6 1.0 1000.0 300.0 200.0 0.0 90000.0
7 1.1 1000.0 300.0 200.0 0.0 95000.0
8 1.2 1000.0 300.0 200.0 0.0 100000.0
9 1.3 1000.0 300.0 200.0 0.0 105000.0
10 1.4 1000.0 300.0 200.0 0.0 110000.0
11 1.5 1000.0 300.0 200.0 0.0 115000.0
12 1.6 1000.0 300.0 200.0 0.0 120000.0
13 1.7 1000.0 300.0 200.0 0.0 125000.0
14 1.8 1000.0 300.0 200.0 0.0 130000.0
15 1.9 1000.0 300.0 200.0 0.0 135000.0
16 2.0 1000.0 300.0 200.0 0.0 140000.0
17 2.1 300.0 1000.0 200.0 0.0 141500.0
18 2.2 300.0 1000.0 200.0 0.0 143000.0
19 2.3 300.0 1000.0 200.0 0.0 144500.0
20 2.4 300.0 1000.0 200.0 0.0 146000.0
21 2.5 300.0 1000.0 200.0 0.0 147500.0
22 2.6 300.0 1000.0 200.0 0.0 149000.0
23 2.7 300.0 1000.0 200.0 0.0 150500.0
24 2.8 300.0 1000.0 200.0 0.0 152000.0
25 2.9 300.0 1000.0 200.0 0.0 153500.0
26 3.0 300.0 1000.0 200.0 0.0 155000.0

Inefficient usage of wind generators

The economic dispatch problem does not perform commitment decisions and, thus, assumes that all generators
must be dispatched at least at their minimum power output limit. This approach is not cost efficient and may
lead to absurd decisions. For example, if d =

∑
i∈I g

min
i , the wind power injection must be zero, that is, all

available wind generation is spilled, to meet the minimum power output constraints on generators.

In the following example, we adjust the total demand and observed how it affects wind spillage.

demand_scale_df = DataFrames.DataFrame(;
demand = Float64[],
dispatch_G1 = Float64[],
dispatch_G2 = Float64[],
dispatch_wind = Float64[],
spillage_wind = Float64[],
total_cost = Float64[],

)

function scale_demand(scenario, scale)
return Scenario(scale * scenario.demand, scenario.wind)

end

for demand_scale in 0.2:0.1:1.4
new_scenario = scale_demand(scenario, demand_scale)
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sol = solve_economic_dispatch(generators, wind_generator, new_scenario)
push!(

demand_scale_df,
(

new_scenario.demand,
sol.g[1],
sol.g[2],
sol.w,
sol.wind_spill,
sol.total_cost,

),
)

end

demand_scale_df

demand dispatch_G1 dispatch_G2 dispatch_wind spillage_wind total_cost
Float64 Float64 Float64 Float64 Float64 Float64

1 300.0 0.0 300.0 0.0 200.0 30000.0
2 450.0 150.0 300.0 0.0 200.0 37500.0
3 600.0 300.0 300.0 0.0 200.0 45000.0
4 750.0 450.0 300.0 0.0 200.0 52500.0
5 900.0 600.0 300.0 0.0 200.0 60000.0
6 1050.0 750.0 300.0 0.0 200.0 67500.0
7 1200.0 900.0 300.0 0.0 200.0 75000.0
8 1350.0 850.0 300.0 200.0 0.0 82500.0
9 1500.0 1000.0 300.0 200.0 0.0 90000.0
10 1650.0 1000.0 450.0 200.0 0.0 105000.0
11 1800.0 1000.0 600.0 200.0 0.0 120000.0
12 1950.0 1000.0 750.0 200.0 0.0 135000.0
13 2100.0 1000.0 900.0 200.0 0.0 150000.0

dispatch_plot = StatsPlots.@df(
demand_scale_df,
Plots.plot(

:demand,
[:dispatch_G1, :dispatch_G2],
labels = ["G1" "G2"],
title = "Thermal Dispatch",
legend = :bottomright,
linewidth = 3,
xlabel = "Demand",
ylabel = "Dispatch [MW]",

),
)

wind_plot = StatsPlots.@df(
demand_scale_df,
Plots.plot(

:demand,
[:dispatch_wind, :spillage_wind],
labels = ["Dispatch" "Spillage"],
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title = "Wind",
legend = :bottomright,
linewidth = 3,
xlabel = "Demand [MW]",
ylabel = "Energy [MW]",

),
)

Plots.plot(dispatch_plot, wind_plot)

This particular drawback can be overcome by introducing binary decisions on the "on/off" status of generators.
This model is called unit commitment and considered later in these notes.

For further reading on the interplay between wind generation and the minimum power output constraints of
generators, we refer interested readers to R. Baldick, "Wind and energy markets: a case study of Texas," IEEE
Systems Journal, vol. 6, pp. 27-34, 2012.

Unit commitment

The Unit Commitment (UC) model can be obtained from ED model by introducing binary variable associated
with each generator. This binary variable can attain two values: if it is "1," the generator is synchronized and,
thus, can be dispatched, otherwise, that is, if the binary variable is "0," that generator is not synchronized and
its power output is set to 0.

To obtain the mathematical formulation of the UC model, we will modify the constraints of the ED model as
follows:
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gmin
i · ut,i ≤ gi ≤ gmax

i · ut,i,

where ui ∈ {0, 1}. In this constraint, if ui = 0, then gi = 0. On the other hand, if ui = 1, then gmin
i ≤ gi ≤

gmax
i .

For further reading on the UC problem we refer interested readers to G. Morales-Espana, J. M. Latorre, and A.
Ramos, "Tight and Compact MILP Formulation for the Thermal Unit Commitment Problem," IEEE Transactions
on Power Systems, vol. 28, pp. 4897-4908, 2013.

In the following example we convert the ED model explained above to the UC model.

function solve_unit_commitment(generators::Vector, wind, scenario)
model = Model(HiGHS.Optimizer)
set_silent(model)
N = length(generators)
@variable(model, 0 <= g[i = 1:N] <= generators[i].max)
@variable(model, 0 <= w <= scenario.wind)
@constraint(model, sum(g[i] for i in 1:N) + w == scenario.demand)
# !!! New: add binary on-off variables for each generator
@variable(model, u[i = 1:N], Bin)
@constraint(model, [i = 1:N], g[i] <= generators[i].max * u[i])
@constraint(model, [i = 1:N], g[i] >= generators[i].min * u[i])
@objective(

model,
Min,
sum(generators[i].variable_cost * g[i] for i in 1:N) +
wind.variable_cost * w +
# !!! new
sum(generators[i].fixed_cost * u[i] for i in 1:N)

)
optimize!(model)
status = termination_status(model)
if status != OPTIMAL

return (status = status,)
end
@assert primal_status(model) == FEASIBLE_POINT
return (

status = status,
g = value.(g),
w = value(w),
wind_spill = scenario.wind - value(w),
u = value.(u),
total_cost = objective_value(model),

)
end

solve_unit_commitment (generic function with 1 method)

Solve the unit commitment problem
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solution = solve_unit_commitment(generators, wind_generator, scenario)

println("Dispatch of Generators: ", solution.g, " MW")
println("Commitments of Generators: ", solution.u)
println("Dispatch of Wind: ", solution.w, " MW")
println("Wind spillage: ", solution.wind_spill, " MW")
println("Total cost: \$", solution.total_cost)

Dispatch of Generators: [1000.0, 300.0] MW
Commitments of Generators: [1.0, 1.0]
Dispatch of Wind: 200.0 MW
Wind spillage: 0.0 MW
Total cost: $91000.0

Unit commitment as a function of demand

After implementing the unit commitment model, we can now assess the interplay between the minimum power
output constraints on generators and wind generation.

uc_df = DataFrames.DataFrame(;
demand = Float64[],
commitment_G1 = Float64[],
commitment_G2 = Float64[],
dispatch_G1 = Float64[],
dispatch_G2 = Float64[],
dispatch_wind = Float64[],
spillage_wind = Float64[],
total_cost = Float64[],

)

for demand_scale in 0.2:0.1:1.4
new_scenario = scale_demand(scenario, demand_scale)
sol = solve_unit_commitment(generators, wind_generator, new_scenario)
if sol.status == OPTIMAL

push!(
uc_df,
(

new_scenario.demand,
sol.u[1],
sol.u[2],
sol.g[1],
sol.g[2],
sol.w,
sol.wind_spill,
sol.total_cost,

),
)

end
println("Status: $(sol.status) for demand_scale = $(demand_scale)")

end
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Status: OPTIMAL for demand_scale = 0.2
Status: OPTIMAL for demand_scale = 0.3
Status: OPTIMAL for demand_scale = 0.4
Status: OPTIMAL for demand_scale = 0.5
Status: OPTIMAL for demand_scale = 0.6
Status: OPTIMAL for demand_scale = 0.7
Status: OPTIMAL for demand_scale = 0.8
Status: OPTIMAL for demand_scale = 0.9
Status: OPTIMAL for demand_scale = 1.0
Status: OPTIMAL for demand_scale = 1.1
Status: OPTIMAL for demand_scale = 1.2
Status: OPTIMAL for demand_scale = 1.3
Status: OPTIMAL for demand_scale = 1.4

uc_df

demand commitment_G1 commitment_G2 dispatch_G1 dispatch_G2 dispatch_wind spillage_wind total_cost
Float64 Float64 Float64 Float64 Float64 Float64 Float64 Float64

1 300.0 1.0 0.0 100.0 0.0 200.0 0.0 16000.0
2 450.0 1.0 0.0 250.0 0.0 200.0 0.0 23500.0
3 600.0 1.0 0.0 400.0 0.0 200.0 0.0 31000.0
4 750.0 1.0 0.0 550.0 0.0 200.0 0.0 38500.0
5 900.0 1.0 0.0 700.0 0.0 200.0 0.0 46000.0
6 1050.0 1.0 0.0 850.0 0.0 200.0 0.0 53500.0
7 1200.0 1.0 0.0 1000.0 0.0 200.0 0.0 61000.0
8 1350.0 1.0 1.0 850.0 300.0 200.0 0.0 83500.0
9 1500.0 1.0 1.0 1000.0 300.0 200.0 0.0 91000.0
10 1650.0 1.0 1.0 1000.0 450.0 200.0 0.0 106000.0
11 1800.0 1.0 1.0 1000.0 600.0 200.0 0.0 121000.0
12 1950.0 1.0 1.0 1000.0 750.0 200.0 0.0 136000.0
13 2100.0 1.0 1.0 1000.0 900.0 200.0 0.0 151000.0

commitment_plot = StatsPlots.@df(
uc_df,
Plots.plot(

:demand,
[:commitment_G1, :commitment_G2],
labels = ["G1" "G2"],
title = "Commitment",
legend = :bottomright,
linewidth = 3,
xlabel = "Demand [MW]",
ylabel = "Commitment decision {0, 1}",

),
)

dispatch_plot = StatsPlots.@df(
uc_df,
Plots.plot(

:demand,
[:dispatch_G1, :dispatch_G2, :dispatch_wind],
labels = ["G1" "G2" "Wind"],
title = "Dispatch [MW]",
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legend = :bottomright,
linewidth = 3,
xlabel = "Demand",
ylabel = "Dispatch [MW]",

),
)

Plots.plot(commitment_plot, dispatch_plot)

Nonlinear economic dispatch

As a final example, we modify our economic dispatch problem in two ways:

• The thermal cost function is user-defined

• The output of the wind is only the square-root of the dispatch

import Ipopt

"""
thermal_cost_function(g)

A user-defined thermal cost function in pure-Julia! You can include
nonlinearities, and even things like control flow.
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!!! warning
It's still up to you to make sure that the function has a meaningful
derivative.

"""
function thermal_cost_function(g)

if g <= 500
return g

else
return g + 1e-2 * (g - 500)^2

end
end

function solve_nonlinear_economic_dispatch(
generators::Vector,
wind,
scenario;
silent::Bool = false,

)
model = Model(Ipopt.Optimizer)
if silent

set_silent(model)
end
@operator(model, op_tcf, 1, thermal_cost_function)
N = length(generators)
@variable(model, generators[i].min <= g[i = 1:N] <= generators[i].max)
@variable(model, 0 <= w <= scenario.wind)
@objective(

model,
Min,
sum(generators[i].variable_cost * op_tcf(g[i]) for i in 1:N) +
wind.variable_cost * w,

)
@constraint(model, sum(g[i] for i in 1:N) + sqrt(w) == scenario.demand)
optimize!(model)
assert_is_solved_and_feasible(model)
return (

g = value.(g),
w = value(w),
wind_spill = scenario.wind - value(w),
total_cost = objective_value(model),

)
end

solution =
solve_nonlinear_economic_dispatch(generators, wind_generator, scenario)

(g = [847.3509933774712, 648.6754966887423], w = 15.788781193899027, wind_spill = 184.211218806101,
total_cost = 190455.298013245)↪→

Now let's see how the wind is dispatched as a function of the cost:
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wind_cost = 0.0:1:100
wind_dispatch = Float64[]
for c in wind_cost

sol = solve_nonlinear_economic_dispatch(
generators,
WindGenerator(c),
scenario;
silent = true,

)
push!(wind_dispatch, sol.w)

end

Plots.plot(
wind_cost,
wind_dispatch;
xlabel = "Cost",
ylabel = "Dispatch [MW]",
label = false,

)

10.2 Optimal power flow

This tutorial was generated using Literate.jl. Download the source as a .jl file.

This tutorial formulates and solves an alternating current optimal power flow (AC-OPF) problem, amuch-studied
nonlinear problem from the field of electrical engineering.

https://github.com/fredrikekre/Literate.jl
tutorials/applications/optimal_power_flow.jl
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Once we've formulated and solved the nonlinear problem, we will turn our focus to obtaining a good estimate
of the objective value at the global optimum through the use of semidefinite programming.

One main purpose of this tutorial is to highlight JuMP's ability to directly formulate problems involving complex-
valued decision variables and complex matrix cones such as the HermitianPSDCone object.

For another example of modeling with complex decision variables, see the Example: quantum state discrimi-
nation tutorial, and see the Complex number support section of the manual for more details.

Info

This tutorial takes a matrix-oriented approach focused on network nodes that simplifies the construc-
tion of semidefinite programs. Another approach is to formulate the problem focusing on network lines
(known as a branch model) where it is easier to work with flow constraints. A general approach is pro-
vided by PowerModels.jl, an open-source framework to a broad range of power flowmodel formulations
along with utilities for working with detailed network data.

Required packages

This tutorial requires the following packages:

using JuMP
import Clarabel
import DataFrames
import Ipopt
import LinearAlgebra
import SparseArrays
import Test

Initial formulation

Optimal power flow problems for electrical transmission typically pose the following question: what is the
most cost-effective operation of electricity generators while meeting constraints on the safe limits of network
components?

We'll use the 9-node network test case case9mod to explore this problem.

The graph of the network, shown here, has three nodes (or buses) each for the different purposes of generation
G (nodes 1, 2, and 3), trans-shipment (nodes 4, 6, and 8), and demand D (nodes 5, 7, and 9).

This example is a modified version of the MATPOWER ((Zimmerman et al., 2011)) test case case9 (archive)
created by (Bukhsh et al., 2013) for their test case archive of optimal power flow problems with local optima.
This test case is also extensively evaluated in (Krasko and Rebennack, 2017).

Here bus and network node are taken as analogous terms, as are branch and transmission line.

For future reference, let's name the number of nodes in the network:

N = 9;

The network data can be summarised using a small number of arrays. Using the sparsevec function from the
SparseArrays standard library package, we can give the indices and values of the non-zero data points:

https://lanl-ansi.github.io/PowerModels.jl/stable/
https://www.maths.ed.ac.uk/optenergy/LocalOpt/9busnetwork.html
https://matpower.org/
https://github.com/MATPOWER/matpower/tree/master/data


CHAPTER 10. APPLICATIONS 526

Figure 10.1: Nine Nodes
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# Real generation: lower (`lb`) and upper (`ub`) bounds
P_Gen_lb = SparseArrays.sparsevec([1, 2, 3], [10, 10, 10], N)
P_Gen_ub = SparseArrays.sparsevec([1, 2, 3], [250, 300, 270], N)
# Reactive generation: lower (`lb`) and upper (`ub`) bounds
Q_Gen_lb = SparseArrays.sparsevec([1, 2, 3], [-5, -5, -5], N)
Q_Gen_ub = SparseArrays.sparsevec([1, 2, 3], [300, 300, 300], N)
# Power demand levels (real, reactive, and complex form)
P_Demand = SparseArrays.sparsevec([5, 7, 9], [54, 60, 75], N)
Q_Demand = SparseArrays.sparsevec([5, 7, 9], [18, 21, 30], N)
S_Demand = P_Demand + im * Q_Demand

9-element SparseArrays.SparseVector{Complex{Int64}, Int64} with 3 stored entries:
[5] = 54+18im
[7] = 60+21im
[9] = 75+30im

The key decision variables are the real power injections PG and reactive power injectionsQGover the allowed
range of the generators. All other buses must restrict their generation variables to 0. On the other hand, these
non-generator nodes have a fixed real and reactive power demand, denoted PD and QD respectively (these
are fixed at 0 in the case of trans-shipment and generator nodes).

The cost of operating each generator is modeled as a quadratic function of its real power output; in our specific
test case, the objective function to minimize is:

min0.11 (PG
1 )2 + 5PG

1 + 150 (10.1)

+ 0.085 (PG
2 )2 + 1.2PG

2 + 600 (10.2)

+ 0.1225 (PG
3 )2 + PG

3 + 335 (10.3)

(10.4)

Let's create an initial JuMP model with some of this data:

model = Model(Ipopt.Optimizer)
set_silent(model)
@variable(model, P_Gen_lb[i] <= P_G[i in 1:N] <= P_Gen_ub[i])
@objective(

model,
Min,
(0.11 * P_G[1]^2 + 5 * P_G[1] + 150) +
(0.085 * P_G[2]^2 + 1.2 * P_G[2] + 600) +
(0.1225 * P_G[3]^2 + P_G[3] + 335),

);

Even before solving an optimization problem, we can estimate a lower bound on the best objective value by
substituting the lower bound on each generator's real power range (all 10, as it turns out in this case):

basic_lower_bound = value(lower_bound, objective_function(model));
println("Objective value (basic lower bound) : $basic_lower_bound")
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Objective value (basic lower bound) : 1188.75

to see that we can do no better than an objective cost of 1188.75.

(Direct substitution works because a quadratic function of a single variable xwith positive coefficients is strictly
increasing for all x ≥ 0.)

In fact, we can get a quick but even better estimate from the direct observation that the real power generated
must meet or exceed the real power demand:

@constraint(model, sum(P_G) >= sum(P_Demand))
optimize!(model)
assert_is_solved_and_feasible(model)
better_lower_bound = round(objective_value(model); digits = 2)
println("Objective value (better lower bound): $better_lower_bound")

Objective value (better lower bound): 2733.55

However, there are additional power flow constraints that must be satisfied.

Power must flow from one or more generation nodes through the transmission lines and end up at a demand
node. The state variables of our steady-state alternating current (AC) electrical network are complex-valued
voltage variables V1, . . . , VN . Voltages capture both a magnitude and phase of the node's electrical state in
relation to the rest of the system. An AC power system also extends the notion of resistance in wires found in
a direct current (DC) circuit to a complex quantity, known as the impedance, of each transmission line. The
reciprocal of impedance is known as admittance. Together, these complex quantities are used to express a
complex version of Ohm's law: current flow through a line is proportional to the difference in voltages on each
end of the line, multiplied by the admittance.

Network data

Let's assemble the data we need for writing the complex power flow constraints. The data for the problem
consists of a list of the real and imaginary parts of the line impedance. We obtain the following data table from
the branch data section of the case9mod MATPOWER format file:

branch_data = DataFrames.DataFrame([
(1, 4, 0.0, 0.0576, 0.0),
(4, 5, 0.017, 0.092, 0.158),
(6, 5, 0.039, 0.17, 0.358),
(3, 6, 0.0, 0.0586, 0.0),
(6, 7, 0.0119, 0.1008, 0.209),
(8, 7, 0.0085, 0.072, 0.149),
(2, 8, 0.0, 0.0625, 0.0),
(8, 9, 0.032, 0.161, 0.306),
(4, 9, 0.01, 0.085, 0.176),

]);
DataFrames.rename!(branch_data, [:F_BUS, :T_BUS, :BR_R, :BR_X, :BR_Bc])

The first two columns describe the network, supplying the from and to connection points of the lines. The last
three columns give the branch resistance, branch reactance and line-charging susceptance.

https://en.wikipedia.org/wiki/Quadratic_function#Graph_of_the_univariate_function
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F_BUS T_BUS BR_R BR_X BR_Bc
Int64 Int64 Float64 Float64 Float64

1 1 4 0.0 0.0576 0.0
2 4 5 0.017 0.092 0.158
3 6 5 0.039 0.17 0.358
4 3 6 0.0 0.0586 0.0
5 6 7 0.0119 0.1008 0.209
6 8 7 0.0085 0.072 0.149
7 2 8 0.0 0.0625 0.0
8 8 9 0.032 0.161 0.306
9 4 9 0.01 0.085 0.176

We will also need to reference the base_MVA number (used for re-scaling):

base_MVA = 100;

and the number of lines:

M = size(branch_data, 1)

9

From the first two columns of the branch data table, we can create a sparse incidence matrix that simplifies
handling of the network layout:

A =
SparseArrays.sparse(branch_data.F_BUS, 1:M, 1, N, M) +
SparseArrays.sparse(branch_data.T_BUS, 1:M, -1, N, M)

9×9 SparseArrays.SparseMatrixCSC{Int64, Int64} with 18 stored entries:
1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅
-1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ -1 -1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 -1 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ -1 -1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1 -1 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ -1 -1

We form the network impedance vector from the next two columns

z = (branch_data.BR_R .+ im * branch_data.BR_X) / base_MVA;

and calculate it's corresponding bus admittance matrix as

https://en.wikipedia.org/wiki/Incidence_matrix
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Y_0 = A * SparseArrays.spdiagm(1 ./ z) * A';

while the last column gives the branch line-charging susceptance

y_sh = 1 / 2 * (im * branch_data.BR_Bc) * base_MVA;

and leads to the shunt admittance matrix

Y_sh = SparseArrays.spdiagm(
LinearAlgebra.diag(A * SparseArrays.spdiagm(y_sh) * A'),

);

(The construction of the shunt admittance matrix Y_sh looks somewhat more complicated than Y_0 because
we only want to add the diagonal elements in the calculation; the line-charging is used only in the nodal voltage
terms and not the line voltage terms.)

The full bus admittance matrix Y is then defined as

Y = Y_0 + Y_sh;

JuMP model

Now we're ready to write the complex power flow constraints we need to more accurately model the electricity
system.

We'll introduce a number of constraints that model both the physics and operational requirements.

Let's start by initializing a new model:

model = Model(Ipopt.Optimizer)
set_silent(model)

Then we'll create the nodal power generation variables:

@variable(
model,
S_G[i in 1:N] in ComplexPlane(),
lower_bound = P_Gen_lb[i] + Q_Gen_lb[i] * im,
upper_bound = P_Gen_ub[i] + Q_Gen_ub[i] * im,

)

9-element Vector{GenericAffExpr{ComplexF64, VariableRef}}:
real(S_G[1]) + imag(S_G[1]) im
real(S_G[2]) + imag(S_G[2]) im
real(S_G[3]) + imag(S_G[3]) im
real(S_G[4]) + imag(S_G[4]) im
real(S_G[5]) + imag(S_G[5]) im
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real(S_G[6]) + imag(S_G[6]) im
real(S_G[7]) + imag(S_G[7]) im
real(S_G[8]) + imag(S_G[8]) im
real(S_G[9]) + imag(S_G[9]) im

We need complex nodal voltages (the system state variables):

@variable(model, V[1:N] in ComplexPlane(), start = 1.0 + 0.0im)

9-element Vector{GenericAffExpr{ComplexF64, VariableRef}}:
real(V[1]) + imag(V[1]) im
real(V[2]) + imag(V[2]) im
real(V[3]) + imag(V[3]) im
real(V[4]) + imag(V[4]) im
real(V[5]) + imag(V[5]) im
real(V[6]) + imag(V[6]) im
real(V[7]) + imag(V[7]) im
real(V[8]) + imag(V[8]) im
real(V[9]) + imag(V[9]) im

and operational constraints for maintaining voltage magnitude levels:

@constraint(model, [i in 1:N], 0.9^2 <= real(V[i])^2 + imag(V[i])^2 <= 1.1^2)

9-element Vector{ConstraintRef{Model,
MathOptInterface.ConstraintIndex{MathOptInterface.ScalarQuadraticFunction{Float64},
MathOptInterface.Interval{Float64}}, ScalarShape}}:

↪→

↪→

real(V[1])² + imag(V[1])² ∈ [0.81, 1.2100000000000002]
real(V[2])² + imag(V[2])² ∈ [0.81, 1.2100000000000002]
real(V[3])² + imag(V[3])² ∈ [0.81, 1.2100000000000002]
real(V[4])² + imag(V[4])² ∈ [0.81, 1.2100000000000002]
real(V[5])² + imag(V[5])² ∈ [0.81, 1.2100000000000002]
real(V[6])² + imag(V[6])² ∈ [0.81, 1.2100000000000002]
real(V[7])² + imag(V[7])² ∈ [0.81, 1.2100000000000002]
real(V[8])² + imag(V[8])² ∈ [0.81, 1.2100000000000002]
real(V[9])² + imag(V[9])² ∈ [0.81, 1.2100000000000002]

We also need to fix an origin or reference angle from which all other complex voltage angles (arguments) are
determined. Here we will use node 1 as the nominated reference bus. Fixing the imaginary component of a
reference bus to zero sets its complex voltage angle to 0, while constraining the real part to be non-negative
disallows equivalent solutions that are just a reflection by 180 degrees:

@constraint(model, imag(V[1]) == 0);
@constraint(model, real(V[1]) >= 0);

The power flow equations express a conservation of energy (power) principle, where power generated less the
power consumed must balance the power exchanged with the network:
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@constraint(model, S_G - S_Demand .== V .* conj(Y * V))

9-element Vector{ConstraintRef{Model,
MathOptInterface.ConstraintIndex{MathOptInterface.ScalarQuadraticFunction{ComplexF64},
MathOptInterface.EqualTo{ComplexF64}}, ScalarShape}}:

↪→

↪→

-1736.111111111111im real(V[1])² + 1736.111111111111im real(V[1])*real(V[4]) + 1736.111111111111
real(V[1])*imag(V[4]) - 1736.111111111111im imag(V[1])² - 1736.111111111111
imag(V[1])*real(V[4]) + 1736.111111111111im imag(V[1])*imag(V[4]) + real(S_G[1]) +
imag(S_G[1]) im = 0

↪→

↪→

↪→

-1600im real(V[2])² + 1600im real(V[2])*real(V[8]) + 1600 real(V[2])*imag(V[8]) - 1600im
imag(V[2])² - 1600 imag(V[2])*real(V[8]) + 1600im imag(V[2])*imag(V[8]) + real(S_G[2]) +
imag(S_G[2]) im = 0

↪→

↪→

-1706.484641638225im real(V[3])² + 1706.484641638225im real(V[3])*real(V[6]) + 1706.484641638225
real(V[3])*imag(V[6]) - 1706.484641638225im imag(V[3])² - 1706.484641638225
imag(V[3])*real(V[6]) + 1706.484641638225im imag(V[3])*imag(V[6]) + real(S_G[3]) +
imag(S_G[3]) im = 0

↪→

↪→

↪→

1736.111111111111im real(V[4])*real(V[1]) - 1736.111111111111 imag(V[4])*real(V[1]) +
1736.111111111111 real(V[4])*imag(V[1]) + 1736.111111111111im imag(V[4])*imag(V[1]) +
(-330.7378962025307 - 3930.8888726118976im) real(V[4])² + (194.21912487147264 +
1051.0682051867932im) real(V[4])*real(V[5]) + (1051.0682051867932 - 194.21912487147264im)
real(V[4])*imag(V[5]) + (136.51877133105802 + 1160.409556313993im) real(V[4])*real(V[9]) +
(1160.409556313993 - 136.51877133105802im) real(V[4])*imag(V[9]) + (-330.7378962025307 -
3930.8888726118976im) imag(V[4])² + (-1051.0682051867932 + 194.21912487147264im)
imag(V[4])*real(V[5]) + (194.21912487147264 + 1051.0682051867932im) imag(V[4])*imag(V[5]) +
(-1160.409556313993 + 136.51877133105802im) imag(V[4])*real(V[9]) + (136.51877133105802 +
1160.409556313993im) imag(V[4])*imag(V[9]) + real(S_G[4]) + imag(S_G[4]) im = 0

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

(194.21912487147264 + 1051.0682051867932im) real(V[5])*real(V[4]) + (-1051.0682051867932 +
194.21912487147264im) imag(V[5])*real(V[4]) + (1051.0682051867932 - 194.21912487147264im)
real(V[5])*imag(V[4]) + (194.21912487147264 + 1051.0682051867932im) imag(V[5])*imag(V[4]) +
(-322.4200387138841 - 1584.0927014229458im) real(V[5])² + (128.20091384241147 +
558.8244962361526im) real(V[5])*real(V[6]) + (558.8244962361526 - 128.20091384241147im)
real(V[5])*imag(V[6]) + (-322.4200387138841 - 1584.0927014229458im) imag(V[5])² +
(-558.8244962361526 + 128.20091384241147im) imag(V[5])*real(V[6]) + (128.20091384241147 +
558.8244962361526im) imag(V[5])*imag(V[6]) + real(S_G[5]) + imag(S_G[5]) im = (54 + 18im)

↪→

↪→

↪→

↪→

↪→

↪→

↪→

1706.484641638225im real(V[6])*real(V[3]) - 1706.484641638225 imag(V[6])*real(V[3]) +
1706.484641638225 real(V[6])*imag(V[3]) + 1706.484641638225im imag(V[6])*imag(V[3]) +
(128.20091384241147 + 558.8244962361526im) real(V[6])*real(V[5]) + (-558.8244962361526 +
128.20091384241147im) imag(V[6])*real(V[5]) + (558.8244962361526 - 128.20091384241147im)
real(V[6])*imag(V[5]) + (128.20091384241147 + 558.8244962361526im) imag(V[6])*imag(V[5]) +
(-243.70966193142118 - 3215.386180510695im) real(V[6])² + (115.5087480890097 +
978.4270426363173im) real(V[6])*real(V[7]) + (978.4270426363173 - 115.5087480890097im)
real(V[6])*imag(V[7]) + (-243.70966193142118 - 3215.386180510695im) imag(V[6])² +
(-978.4270426363173 + 115.5087480890097im) imag(V[6])*real(V[7]) + (115.5087480890097 +
978.4270426363173im) imag(V[6])*imag(V[7]) + real(S_G[6]) + imag(S_G[6]) im = 0

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

(115.5087480890097 + 978.4270426363173im) real(V[7])*real(V[6]) + (-978.4270426363173 +
115.5087480890097im) imag(V[7])*real(V[6]) + (978.4270426363173 - 115.5087480890097im)
real(V[7])*imag(V[6]) + (115.5087480890097 + 978.4270426363173im) imag(V[7])*imag(V[6]) +
(-277.22099541362326 - 2330.3249023271615im) real(V[7])² + (161.71224732461357 +
1369.7978596908442im) real(V[7])*real(V[8]) + (1369.7978596908442 - 161.71224732461357im)
real(V[7])*imag(V[8]) + (-277.22099541362326 - 2330.3249023271615im) imag(V[7])² +
(-1369.7978596908442 + 161.71224732461357im) imag(V[7])*real(V[8]) + (161.71224732461357 +
1369.7978596908442im) imag(V[7])*imag(V[8]) + real(S_G[7]) + imag(S_G[7]) im = (60 + 21im)

↪→

↪→

↪→

↪→

↪→

↪→

↪→

1600im real(V[8])*real(V[2]) - 1600 imag(V[8])*real(V[2]) + 1600 real(V[8])*imag(V[2]) + 1600im
imag(V[8])*imag(V[2]) + (161.71224732461357 + 1369.7978596908442im) real(V[8])*real(V[7]) +
(-1369.7978596908442 + 161.71224732461357im) imag(V[8])*real(V[7]) + (1369.7978596908442 -
161.71224732461357im) real(V[8])*imag(V[7]) + (161.71224732461357 + 1369.7978596908442im)
imag(V[8])*imag(V[7]) + (-280.4726852537284 - 3544.5613130217034im) real(V[8])² +
(118.76043792911486 + 597.5134533308592im) real(V[8])*real(V[9]) + (597.5134533308592 -
118.76043792911486im) real(V[8])*imag(V[9]) + (-280.4726852537284 - 3544.5613130217034im)
imag(V[8])² + (-597.5134533308592 + 118.76043792911486im) imag(V[8])*real(V[9]) +
(118.76043792911486 + 597.5134533308592im) imag(V[8])*imag(V[9]) + real(S_G[8]) + imag(S_G[8])
im = 0

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→
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(136.51877133105802 + 1160.409556313993im) real(V[9])*real(V[4]) + (-1160.409556313993 +
136.51877133105802im) imag(V[9])*real(V[4]) + (1160.409556313993 - 136.51877133105802im)
real(V[9])*imag(V[4]) + (136.51877133105802 + 1160.409556313993im) imag(V[9])*imag(V[4]) +
(118.76043792911486 + 597.5134533308592im) real(V[9])*real(V[8]) + (-597.5134533308592 +
118.76043792911486im) imag(V[9])*real(V[8]) + (597.5134533308592 - 118.76043792911486im)
real(V[9])*imag(V[8]) + (118.76043792911486 + 597.5134533308592im) imag(V[9])*imag(V[8]) +
(-255.27920926017288 - 1733.8230096448524im) real(V[9])² + (-255.27920926017288 -
1733.8230096448524im) imag(V[9])² + real(S_G[9]) + imag(S_G[9]) im = (75 + 30im)

↪→

↪→

↪→

↪→

↪→

↪→

↪→

As above, the objective function is a quadratic cost of real power:

P_G = real(S_G)
@objective(

model,
Min,
(0.11 * P_G[1]^2 + 5 * P_G[1] + 150) +
(0.085 * P_G[2]^2 + 1.2 * P_G[2] + 600) +
(0.1225 * P_G[3]^2 + P_G[3] + 335),

);

We're finally ready to solve our nonlinear AC-OPF problem:

optimize!(model)
assert_is_solved_and_feasible(model)
solution_summary(model)

solution_summary(; result = 1, verbose = false)
├ solver_name : Ipopt
├ Termination
│ ├ termination_status : LOCALLY_SOLVED
│ ├ result_count : 1
│ └ raw_status : Solve_Succeeded
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : FEASIBLE_POINT
│ └ objective_value : 3.08784e+03
└ Work counters
├ solve_time (sec) : 5.45287e-03
└ barrier_iterations : 16

objval_solution = round(objective_value(model); digits = 2)
println("Objective value (feasible solution) : $(objval_solution)")

Objective value (feasible solution) : 3087.84

The solution's power generation (in rectangular form) and complex voltage values (in polar form using degrees)
are:
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DataFrames.DataFrame(;
Bus = 1:N,
ComplexPowerGen = round.(value.(S_G); digits = 2),
VoltageMagnitude = round.(abs.(value.(V)); digits = 2),
VoltageAngle_Deg = round.(rad2deg.(angle.(value.(V))); digits = 2),

)

Bus ComplexPowerGen VoltageMagnitude VoltageAngle_Deg
Int64 Complex… Float64 Float64

1 1 10.0-5.0im 0.91 -0.0
2 2 125.37-5.0im 0.92 12.37
3 3 57.03-5.0im 0.94 7.01
4 4 0.0+0.0im 0.91 -0.4
5 5 0.0+0.0im 0.92 -0.73
6 6 0.0+0.0im 0.94 4.84
7 7 0.0+0.0im 0.93 4.52
8 8 0.0+0.0im 0.93 7.12
9 9 0.0+0.0im 0.9 -0.63

Relaxations and better objective bounds

The Ipopt solver uses an interior-point algorithm. It has local optimality guarantees, but is unable to certify
whether the solution is globally optimal. The solution we found is indeed globally optimal. The work to verify
this has been done in (Bukhsh et al., 2013) and (Krasko and Rebennack, 2017), and different solvers (such as
Gurobi, SCIP and GLOMIQO) are also able to verify this.

The techniques of convex relaxations can also be used to improve on our current best lower bound:

better_lower_bound

2733.55

To this end, observe that the nonlinear constraints in the AC-OPF formulation are quadratic equalities for power
flow along with quadratic voltage inequalities.

Let's linearize these constraints by first making the substitutionW = V V ∗, where:

W = V V ∗ ⇐⇒ Wii = |Vi|2, Wik = Vi Vk, ∀i, k ∈ {1, . . . , N}

and where V ∗ is the conjugate transpose of V .

On the face of it, this turns a quadratic voltage bound constraint like:

vL ≤ |Vi|2 ≤ vU , i ∈ {1, . . . , N}

for some real vL and vU into a simple two-sided bound:

https://en.wikipedia.org/wiki/Conjugate_transpose
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vL ≤Wii ≤ vU ,

while each quadratic expression for the nodal power term:

SNode
i = Vi(Y V )i

becomes the linear combination:

SNode
i = (EiiY

T ) •W.

HereA•B = tr(A∗B) is the Frobenius inner product of two complex matrices, while Ekn denotes thematrix
unit with a single nonzero entry of 1 in row k and column n.

E(k, n) = SparseArrays.sparse([k], [n], 1, N, N);

Of course, we've shifted the nonlinearity into the equality constraintW = V V ∗: it is this constraint we will
now relax using a semidefinite programming approach.

We will make use of complex voltages and relaxW = V V ∗ to;

W � V V ∗,

where the relation � is the ordering in the Hermitian positive semidefinite cone.

The above constraint is equivalent to:

[
1 V ∗

V W

]
� 0

by the theory of the Schur complement. This matrix inequality implies a number of second-order cone con-
straints by taking certain 2× 2 minors of the matrix for each i ∈ {1, . . . , N}:

[
1 V ∗

i

Vi Wii

]
� 0,

which is equivalent to the real second-order cone inequality:

real(Wii) ≥ real(Vi)2 + imag(Vi)2.

We include these implied constraints as well for demonstration purposes.

Putting it all together we get the following semidefinite relaxation of the AC-OPF problem:

https://en.wikipedia.org/wiki/Frobenius_inner_product
https://en.wikipedia.org/wiki/Schur_complement
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model = Model(Clarabel.Optimizer)
set_attribute(model, "tol_gap_rel", 1e-3)
set_attribute(model, "tol_feas", 1e-3)
set_attribute(model, "tol_ktratio", 1e-3)
@variable(

model,
S_G[i in 1:N] in ComplexPlane(),
lower_bound = P_Gen_lb[i] + Q_Gen_lb[i] * im,
upper_bound = P_Gen_ub[i] + Q_Gen_ub[i] * im,

)
@variable(model, W[1:N, 1:N] in HermitianPSDCone())
@variable(model, V[1:N] in ComplexPlane(), start = 1.0 + 0.0im)
@constraint(model, [i in 1:N], 0.9^2 <= real(W[i, i]) <= 1.1^2)
@constraint(model, real(V[1]) >= 0)
@constraint(model, imag(V[1]) == 0)
@constraint(model, 0.9 <= real(V[1]) <= 1.1)
@constraint(model, LinearAlgebra.Hermitian([1 V'; V W]) in HermitianPSDCone())
# 2 x 2 minor inequalities:
@constraint(

model,
[i in 1:N],
[0.5, real(W[i, i]), real(V[i]), imag(V[i])] in RotatedSecondOrderCone()

)
@constraint(

model,
[i in 1:N],
S_G[i] - S_Demand[i] == LinearAlgebra.tr((conj(Y) * E(i, i)) * W),

)
P_G = real(S_G)
@objective(

model,
Min,
(0.11 * P_G[1]^2 + 5 * P_G[1] + 150) +
(0.085 * P_G[2]^2 + 1.2 * P_G[2] + 600) +
(0.1225 * P_G[3]^2 + P_G[3] + 335),

)
optimize!(model)

-------------------------------------------------------------
Clarabel.jl v0.10.0 - Clever Acronym

(c) Paul Goulart
University of Oxford, 2022

-------------------------------------------------------------

problem:
variables = 117
constraints = 493
nnz(P) = 3
nnz(A) = 547
cones (total) = 14
: Zero = 1, numel = 19
: Nonnegative = 2, numel = (18,39)
: SecondOrder = 9, numel = (4,4,4,4,...,4)
: PSDTriangle = 2, numel = (171,210)
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settings:
linear algebra: direct / qdldl, precision: Float64
max iter = 200, time limit = Inf, max step = 0.990
tol_feas = 1.0e-03, tol_gap_abs = 1.0e-08, tol_gap_rel = 1.0e-03,
static reg : on, ϵ1 = 1.0e-08, ϵ2 = 4.9e-32
dynamic reg: on, ϵ = 1.0e-13, δ = 2.0e-07
iter refine: on, reltol = 1.0e-13, abstol = 1.0e-12,

max iter = 10, stop ratio = 5.0
equilibrate: on, min_scale = 1.0e-04, max_scale = 1.0e+04

max iter = 10

iter pcost dcost gap pres dres k/t μ step
---------------------------------------------------------------------------------------------
0 6.6673e+03 -3.0980e+05 4.75e+01 9.32e-02 8.43e-01 1.00e+00 3.34e+03 ------
1 3.3968e+03 -6.4534e+04 2.00e+01 1.95e-02 3.85e-01 2.41e+02 9.42e+02 8.13e-01
2 1.9798e+03 -1.7012e+04 9.59e+00 5.49e-03 2.64e-01 1.51e+02 3.06e+02 9.90e-01
3 2.1414e+03 -2.3620e+03 2.10e+00 1.22e-03 8.46e-02 3.29e+01 7.63e+01 8.60e-01
4 2.0597e+03 1.1123e+03 8.52e-01 2.41e-04 5.67e-02 5.52e+00 1.93e+01 8.55e-01
5 1.6312e+03 1.4437e+03 1.30e-01 3.59e-05 1.04e-02 9.18e-01 3.20e+00 9.12e-01
6 1.5768e+03 1.5579e+03 1.21e-02 3.46e-06 1.05e-03 9.28e-02 3.09e-01 9.19e-01
7 1.5691e+03 1.5654e+03 2.35e-03 6.96e-07 2.05e-04 1.96e-02 5.73e-02 8.55e-01
8 1.5657e+03 1.5640e+03 1.08e-03 4.01e-07 9.61e-05 8.54e-03 2.47e-02 7.64e-01
9 1.5653e+03 1.5641e+03 7.88e-04 2.96e-07 6.55e-05 6.14e-03 1.79e-02 4.07e-01

---------------------------------------------------------------------------------------------
Terminated with status = solved
solve time = 56.2ms

assert_is_solved_and_feasible(model; allow_almost = true)
sdp_relaxation_lower_bound = round(objective_value(model); digits = 2)
println(

"Objective value (W & V relax. lower bound): $sdp_relaxation_lower_bound",
)

Objective value (W & V relax. lower bound): 2754.1

We can more easily see solution values by rounding out noisy data:

W_1 = SparseArrays.sparse(round.(value.(W); digits = 2))

9×9 SparseArrays.SparseMatrixCSC{ComplexF64, Int64} with 81 stored entries:
1.19+0.0im 1.14-0.07im 1.13-0.05im … 1.15-0.02im 1.14+0.05im
1.14+0.07im 1.2+0.0im 1.15+0.02im 1.17+0.05im 1.14+0.12im
1.13+0.05im 1.15-0.02im 1.19+0.0im 1.16+0.03im 1.14+0.1im
1.14-0.03im 1.15-0.1im 1.15-0.08im 1.17-0.05im 1.15+0.03im
1.15-0.05im 1.15-0.12im 1.15-0.1im 1.17-0.07im 1.15+0.01im
1.15+0.01im 1.17-0.06im 1.16-0.03im … 1.18-0.0im 1.16+0.07im
1.15-0.01im 1.16-0.08im 1.16-0.06im 1.18-0.03im 1.16+0.05im
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1.15+0.02im 1.17-0.05im 1.16-0.03im 1.18+0.0im 1.16+0.07im
1.14-0.05im 1.14-0.12im 1.14-0.1im 1.16-0.07im 1.15+0.0im

and recover an approximation to the voltage variables as:

DataFrames.DataFrame(;
Bus = 1:N,
Magnitude = round.(abs.(value.(V)); digits = 2),
AngleDeg = round.(rad2deg.(angle.(value.(V))); digits = 2),

)

Bus Magnitude AngleDeg
Int64 Float64 Float64

1 1 0.95 -0.0
2 2 0.84 3.78
3 3 0.83 2.67
4 4 0.85 -1.21
5 5 0.85 -2.11
6 6 0.86 0.94
7 7 0.86 -0.17
8 8 0.86 1.15
9 9 0.85 -2.46

For further information on exploiting sparsity see (Jabr, 2012).

This relaxation has the advantage that we can work directly with complex voltages to extend the formulation,
strengthen the relaxation and gain additional approximate information about the voltage variables.

10.3 Serving web apps

This tutorial was generated using Literate.jl. Download the source as a .jl file.

This tutorial demonstrates how to setup and serve JuMP models via a REST API.

In the example app we are building, we solve a trivial mixed-integer program, which is parameterized by the
lower bound of a variable. To call the service, users send an HTTP POST request with JSON contents indicating
the lower bound. The returned value is the solution of the mixed-integer program as JSON.

First, we need JuMP and a solver:

using JuMP
import HiGHS

We also need HTTP.jl to act as our REST server, and JSON.jl to marshal data.

import HTTP
import JSON

https://github.com/fredrikekre/Literate.jl
tutorials/applications/web_app.jl
https://github.com/JuliaWeb/HTTP.jl
https://github.com/JuliaIO/JSON.jl
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The server side

The core components of our REST server are endpoints. These are functions which accept a Dict{String,Any}
of input parameters, and return a Dict{String,Any} as output. The types are Dict{String,Any} because
we're going to read these to and from JSON.

Here's a very simple endpoint: it accepts params as input, formulates and solves a trivial mixed-integer pro-
gram, and then returns a dictionary with the result.

function endpoint_solve(params::Dict{String,Any})
if !haskey(params, "lower_bound")

return Dict{String,Any}(
"status" => "failure",
"reason" => "missing lower_bound param",

)
elseif !(params["lower_bound"] isa Real)

return Dict{String,Any}(
"status" => "failure",
"reason" => "lower_bound is not a number",

)
end
model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, x >= params["lower_bound"], Int)
optimize!(model)
ret = Dict{String,Any}(

"status" => "okay",
"terminaton_status" => termination_status(model),
"primal_status" => primal_status(model),

)
# Only include the `x` key if it has a value.
if primal_status(model) == FEASIBLE_POINT

ret["x"] = value(x)
end
return ret

end

endpoint_solve (generic function with 1 method)

When we call this, we get:

endpoint_solve(Dict{String,Any}("lower_bound" => 1.2))

Dict{String, Any} with 4 entries:
"status" => "okay"
"x" => 2.0
"primal_status" => FEASIBLE_POINT
"terminaton_status" => OPTIMAL
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endpoint_solve(Dict{String,Any}())

Dict{String, Any} with 2 entries:
"status" => "failure"
"reason" => "missing lower_bound param"

For a second function, we need a function that accepts an HTTP.Request object and returns an HTTP.Response
object.

function serve_solve(request::HTTP.Request)
data = JSON.parse(String(request.body))
solution = endpoint_solve(data)
return HTTP.Response(200, JSON.json(solution))

end

serve_solve (generic function with 1 method)

Finally, we need an HTTP server. There are a variety of ways you can do this in HTTP.jl. We use an explicit
Sockets.listen so we have manual control of when we shutdown the server.

function setup_server(host, port)
server = HTTP.Sockets.listen(host, port)
HTTP.serve!(host, port; server = server) do request

try
# Extend the server by adding other endpoints here.
if request.target == "/api/solve"

return serve_solve(request)
else

return HTTP.Response(404, "target $(request.target) not found")
end

catch err
# Log details about the exception server-side
@info "Unhandled exception: $err"
# Return a response to the client
return HTTP.Response(500, "internal error")

end
end
return server

end

setup_server (generic function with 1 method)
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Warning

HTTP.jl does not serve requests on a separate thread. Therefore, a long-running job will block the main
thread, preventing concurrent users from submitting requests. To work-around this, read HTTP.jl issue
798 or watch Building Microservices and Applications in Julia from JuliaCon 2020.

server = setup_server(HTTP.ip"127.0.0.1", 8080)

Sockets.TCPServer(RawFD(37) active)

The client side

Now that we have a server, we can send it requests via this function:

function send_request(data::Dict; endpoint::String = "solve")
ret = HTTP.request(

"POST",
# This should match the URL and endpoint we defined for our server.
"http://127.0.0.1:8080/api/$endpoint",
["Content-Type" => "application/json"],
JSON.json(data),

)
if ret.status != 200

# This could happen if there are time-outs, network errors, etc.
return Dict(

"status" => "failure",
"code" => ret.status,
"body" => String(ret.body),

)
end
return JSON.parse(String(ret.body))

end

send_request (generic function with 1 method)

Let's see what happens:

send_request(Dict("lower_bound" => 0))

Dict{String, Any} with 4 entries:
"status" => "okay"
"x" => 0.0
"primal_status" => "FEASIBLE_POINT"
"terminaton_status" => "OPTIMAL"

https://github.com/JuliaWeb/HTTP.jl/issues/798
https://github.com/JuliaWeb/HTTP.jl/issues/798
https://www.youtube.com/watch?v=uLhXgt_gKJc&t=9543s
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send_request(Dict("lower_bound" => 1.2))

Dict{String, Any} with 4 entries:
"status" => "okay"
"x" => 2.0
"primal_status" => "FEASIBLE_POINT"
"terminaton_status" => "OPTIMAL"

If we don't send a lower_bound, we get:

send_request(Dict("invalid_param" => 1.2))

Dict{String, Any} with 2 entries:
"status" => "failure"
"reason" => "missing lower_bound param"

If we don't send a lower_bound that is a number, we get:

send_request(Dict("lower_bound" => "1.2"))

Dict{String, Any} with 2 entries:
"status" => "failure"
"reason" => "lower_bound is not a number"

Finally, we can shutdown our HTTP server:

close(server)

[ Info: Server on 127.0.0.1:8080 closing

Next steps

For more complicated examples relating to HTTP servers, consult the HTTP.jl documentation.

To see how you can integrate this with a larger JuMP model, read Design patterns for larger models.

https://juliaweb.github.io/HTTP.jl/stable/
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10.4 Two-stage stochastic programs

This tutorial was generated using Literate.jl. Download the source as a .jl file.

The purpose of this tutorial is to demonstrate how to model and solve a two-stage stochastic program.

Info

The JuMP extension InfiniteOpt.jl can also be used to model and solve two-stage stochastic programs.
The JuMP extension SDDP.jl can be used to model and solve multi-stage stochastic programs.

This tutorial uses the following packages

using JuMP
import Distributions
import HiGHS
import Plots
import StatsPlots
import Statistics

Background

During the week, you are a busy practitioner of Operations Research. To escape the drudgery of mathematics,
you decide to open a side business selling creamy mushroom pies with puff pastry. After a few weeks, it quickly
becomes apparent that operating a food business is not so easy.

The pies must be prepared in the morning, before you open for the day and can gauge the level of demand.
If you bake too many, the unsold pies at the end of the day must be discarded and you have wasted time and
money on their production. But if you bake too few, then there may be un-served customers and you could
have made more money by baking more pies.

After a few weeks of poor decision making, you decide to put your knowledge of Operations Research to good
use, starting with some data collection.

Each pie costs you $2 to make, and you sell them at $5 each. Disposal of an unsold pie costs $0.10. Based on
three weeks of data collected, in which you made 200 pies each week, you sold 150, 190, and 200 pies. Thus,
as a guess, you assume a triangular distribution of demand with a minimum of 150, a median of 200, and a
maximum of 250.

We can model this problem by a two-stage stochastic program. In the first stage, we decide a quantity of pies
to make x. We make this decision before we observe the demand dω . In the second stage, we sell yω pies,
and incur any costs for unsold pies.

We can formulate this problem as follows:

max
x,yω

− 2x+ Eω[5yω − 0.1(x− yω)]

yω ≤ x ∀ω ∈ Ω

0 ≤ yω ≤ dω ∀ω ∈ Ω

x ≥ 0.

https://github.com/fredrikekre/Literate.jl
tutorials/applications/two_stage_stochastic.jl
packages/InfiniteOpt.md
packages/SDDP.md
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Sample Average approximation

If the distribution of demand is continuous, then our problem has an infinite number of variables and con-
straints. To form a computationally tractable problem, we instead use a finite set of samples drawn from the
distribution. This is called sample average approximation (SAA).

D = Distributions.TriangularDist(150.0, 250.0, 200.0)
N = 100
d = sort!(rand(D, N));
Ω = 1:N
P = fill(1 / N, N);
StatsPlots.histogram(d; bins = 20, label = "", xlabel = "Demand")

JuMP model

The implementation of our two-stage stochastic program in JuMP is:

model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, x >= 0)
@variable(model, 0 <= y[ω in Ω] <= d[ω])
@constraint(model, [ω in Ω], y[ω] <= x)
@expression(model, z[ω in Ω], 5y[ω] - 0.1 * (x - y[ω]))
@objective(model, Max, -2x + sum(P[ω] * z[ω] for ω in Ω))
optimize!(model)
assert_is_solved_and_feasible(model)
solution_summary(model)
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solution_summary(; result = 1, verbose = false)
├ solver_name : HiGHS
├ Termination
│ ├ termination_status : OPTIMAL
│ ├ result_count : 1
│ ├ raw_status : kHighsModelStatusOptimal
│ └ objective_bound : 5.64271e+02
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : FEASIBLE_POINT
│ ├ objective_value : 5.64271e+02
│ ├ dual_objective_value : 5.64271e+02
│ └ relative_gap : 0.00000e+00
└ Work counters
├ solve_time (sec) : 4.22955e-04
├ simplex_iterations : 42
├ barrier_iterations : 0
└ node_count : -1

The optimal number of pies to make is:

value(x)

206.8364169803885

The distribution of total profit is:

total_profit = [-2 * value(x) + value(z[ω]) for ω in Ω]

100-element Vector{Float64}:
399.9151768229468
405.7454219177082
417.61135488562354
420.5047206624374
424.1692725508499
426.7062730398078
434.2880791737741
434.96479364495735
444.5071682942105
449.5828663580197
�

620.5092509411653
620.5092509411653
620.5092509411653
620.5092509411653
620.5092509411653
620.5092509411653
620.5092509411653
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620.5092509411653
620.5092509411653

Let's plot it:

"""
bin_distribution(x::Vector{Float64}, N::Int)

A helper function that discretizes `x` into bins of width `N`.
"""
bin_distribution(x, N) = N * (floor(minimum(x) / N):ceil(maximum(x) / N))

plot = StatsPlots.histogram(
total_profit;
bins = bin_distribution(total_profit, 25),
label = "",
xlabel = "Profit [\$]",
ylabel = "Number of outcomes",

)
μ = Statistics.mean(total_profit)
Plots.vline!(

plot,
[μ];
label = "Expected profit (\$$(round(Int, μ)))",
linewidth = 3,

)
plot
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Risk measures

A risk measure is a function which maps a random variable to a real number. Common risk measures include
the mean (expectation), median, mode, and maximum. We need a risk measure to convert the distribution of
second stage costs into a single number that can be optimized.

Our model currently uses the expectation risk measure, but others are possible too. One popular risk measure
is the conditional value at risk (CVaR).

CVaR has a parameter γ, and it computes the expectation of the worst γ fraction of outcomes.

If we are maximizing, so that small outcomes are bad, the definition of CVaR is:

CV aRγ [Z] = max
ξ

ξ − 1

γ
Eω [(ξ − Z)+]

which can be formulated as the linear program:

CV aRγ [Z] = max
ξ,zω

ξ − 1

γ

∑
Pωzω

zω ≥ ξ − Zω ∀ω
zω ≥ 0 ∀ω.
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function CVaR(Z::Vector{Float64}, P::Vector{Float64}; γ::Float64)
@assert 0 < γ <= 1
N = length(Z)
model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, ξ)
@variable(model, z[1:N] >= 0)
@constraint(model, [i in 1:N], z[i] >= ξ - Z[i])
@objective(model, Max, ξ - 1 / γ * sum(P[i] * z[i] for i in 1:N))
optimize!(model)
assert_is_solved_and_feasible(model)
return objective_value(model)

end

CVaR (generic function with 1 method)

When γ is 1.0, we compute the mean of the profit:

cvar_10 = CVaR(total_profit, P; γ = 1.0)

564.2707958834865

Statistics.mean(total_profit)

564.2707958834864

As γ approaches 0.0, we compute the worst-case (minimum) profit:

cvar_00 = CVaR(total_profit, P; γ = 0.0001)

399.9151768229468

minimum(total_profit)

399.9151768229468

By varying γ between 0 and 1 we can compute some trade-off of these two extremes:
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cvar_05 = CVaR(total_profit, P; γ = 0.5)

511.14442019068

Let's plot these outcomes on our distribution:

plot = StatsPlots.histogram(
total_profit;
bins = bin_distribution(total_profit, 25),
label = "",
xlabel = "Profit [\$]",
ylabel = "Number of outcomes",

)
Plots.vline!(

plot,
[cvar_10 cvar_05 cvar_00];
label = ["γ = 1.0" "γ = 0.5" "γ = 0.0"],
linewidth = 3,

)
plot
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Risk averse sample average approximation

Because CVaR can be formulated as a linear program, we can form a risk averse sample average approximation
model by combining the two formulations:

γ = 0.4
model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, x >= 0)
@variable(model, 0 <= y[ω in Ω] <= d[ω])
@constraint(model, [ω in Ω], y[ω] <= x)
@expression(model, Z[ω in Ω], 5 * y[ω] - 0.1(x - y[ω]))
@variable(model, ξ)
@variable(model, z[ω in Ω] >= 0)
@constraint(model, [ω in Ω], z[ω] >= ξ - Z[ω])
@objective(model, Max, -2x + ξ - 1 / γ * sum(P[ω] * z[ω] for ω in Ω))
optimize!(model)
assert_is_solved_and_feasible(model)

When γ = 0.4, the optimal number of pies to bake is:

value(x)

187.3712615331823

The distribution of total profit is:

risk_averse_total_profit = [value(-2x + Z[ω]) for ω in Ω]
bins = bin_distribution([total_profit; risk_averse_total_profit], 25)
plot = StatsPlots.histogram(total_profit; label = "Expectation", bins = bins)
StatsPlots.histogram!(

plot,
risk_averse_total_profit;
label = "CV@R",
bins = bins,
alpha = 0.5,

)
plot
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Next steps

• Try solving this problem for different numbers of samples and different distributions.

• Refactor the example to avoid hard-coding the costs. What happens to the solution if the cost of disposing
unsold pies increases?

• Plot the optimal number of pies to make for different values of the risk aversion parameter γ. What is
the relationship?
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Models

JuMP models are the fundamental building block that we use to construct optimization problems. They hold
things like the variables and constraints, as well as which solver to use and even solution information.

Info

JuMP uses "optimizer" as a synonym for "solver." Our convention is to use "solver" to refer to the
underlying software, and use "optimizer" to refer to the Julia object that wraps the solver. For example,
HiGHS is a solver, and HiGHS.Optimizer is an optimizer.

Tip

See Supported solvers for a list of available solvers.

11.1 Create a model

Create a model by passing an optimizer to Model:

julia> model = Model(HiGHS.Optimizer)
A JuMP Model
├ solver: HiGHS
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none

If you don't know which optimizer you will be using at creation time, create a model without an optimizer, and
then call set_optimizer at any time prior to optimize!:

julia> model = Model()
A JuMP Model
├ solver: none
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none

553
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julia> set_optimizer(model, HiGHS.Optimizer)

Tip

Don't know what the fields Model mode and CachingOptimizer state mean? Read the Backends
section.

What is the difference?

For most models, there is no difference between passing the optimizer to Model, and calling set_optimizer.

However, if an optimizer does not support a constraint in the model, the timing of when an error will be thrown
can differ:

• If you pass an optimizer, an error will be thrown when you try to add the constraint.

• If you call set_optimizer, an error will be thrown when you try to solve the model via optimize!.

Therefore, most users should pass an optimizer to Model because it provides the earliest warning that your
solver is not suitable for the model you are trying to build. However, if you are modifying a problem by adding
and deleting different constraint types, you may need to use set_optimizer. See Switching optimizer for the
relaxed problem for an example of when this is useful.

Solvers which expect environments

Some solvers accept (or require) positional arguments such as a license environment or a path to a binary
executable. For these solvers, you can pass a function to Model which takes zero arguments and returns an
instance of the optimizer.

A common use-case for this is passing an environment or sub-solver to the optimizer:

julia> import HiGHS

julia> import MultiObjectiveAlgorithms as MOA

julia> model = Model(() -> MOA.Optimizer(HiGHS.Optimizer))
A JuMP Model
├ solver: MOA[algorithm=MultiObjectiveAlgorithms.Lexicographic, optimizer=HiGHS]
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none

11.2 Solver options

JuMP uses "attribute" as a synonym for "option." Use optimizer_with_attributes to create an optimizer with
some attributes initialized:
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julia> model = Model(
optimizer_with_attributes(HiGHS.Optimizer, "output_flag" => false),

)
A JuMP Model
├ solver: HiGHS
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none

Alternatively, use set_attribute to set an attribute after the model has been created:

julia> model = Model(HiGHS.Optimizer);

julia> set_attribute(model, "output_flag", false)

julia> get_attribute(model, "output_flag")
false

You can also modify attributes within an optimizer_with_attributes object:

julia> solver = optimizer_with_attributes(HiGHS.Optimizer, "output_flag" => true);

julia> get_attribute(solver, "output_flag")
true

julia> set_attribute(solver, "output_flag", false)

julia> get_attribute(solver, "output_flag")
false

julia> model = Model(solver);

11.3 Changing the number types

By default, the coefficients of affine and quadratic expressions are numbers of type either Float64 or Complex{Float64}
(see Complex number support).

The type Float64 can be changed using the GenericModel constructor:

julia> model = GenericModel{Rational{BigInt}}();

julia> @variable(model, x)
x

julia> @expression(model, expr, 1 // 3 * x)
1//3 x

julia> typeof(expr)
GenericAffExpr{Rational{BigInt}, GenericVariableRef{Rational{BigInt}}}
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Using a value_type other than Float64 is an advanced operation and should be used only if the underlying
solver actually solves the problem using the provided value type.

Warning

Nonlinear Modeling is currently restricted to the Float64 number type.

11.4 Print the model

By default, show(model) will print a summary of the problem:

julia> model = Model(); @variable(model, x >= 0); @objective(model, Max, x);

julia> model
A JuMP Model
├ solver: none
├ objective_sense: MAX_SENSE
│ └ objective_function_type: VariableRef
├ num_variables: 1
├ num_constraints: 1
│ └ VariableRef in MOI.GreaterThan{Float64}: 1
└ Names registered in the model
└ :x

Use print to print the formulation of the model (in IJulia, this will render as LaTeX.

julia> print(model)
Max x
Subject to
x ≥ 0

Warning

This format is specific to JuMP andmay change in any future release. It is not intended to be an instance
format. To write the model to a file, use write_to_file instead.

Use latex_formulation to display the model in LaTeX form.

julia> latex_formulation(model)
$$ \begin{aligned}
\max\quad & x\\
\text{Subject to} \quad & x \geq 0\\
\end{aligned} $$

In IJulia (and Documenter), ending a cell in with latex_formulation will render the model in LaTeX:

latex_formulation(model)
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max x

Subject to x ≥ 0

11.5 Turn off output

Use set_silent and unset_silent to disable or enable printing output from the solver.

julia> model = Model(HiGHS.Optimizer);

julia> set_silent(model)

julia> unset_silent(model)

Tip

Most solvers will also have a solver-specific option to provide finer-grained control over the output.
Consult their README's for details.

11.6 Set a time limit

Use set_time_limit_sec, unset_time_limit_sec, and time_limit_sec to manage time limits.

julia> model = Model(HiGHS.Optimizer);

julia> set_time_limit_sec(model, 60.0)

julia> time_limit_sec(model)
60.0

julia> unset_time_limit_sec(model)

julia> limit = time_limit_sec(model)

julia> limit === nothing
true

If your time limit is encoded as a Dates.Period object, use the following code to convert it to Float64 for
set_time_limit_sec:

julia> import Dates

julia> seconds(x::Dates.Period) = 1e-3 * Dates.value(round(x, Dates.Millisecond))
seconds (generic function with 1 method)

julia> set_time_limit_sec(model, seconds(Dates.Hour(1)))

julia> time_limit_sec(model)
3600.0
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Info

Some solvers do not support time limits. In these cases, an error will be thrown.

11.7 Write a model to file

JuMP can write models to a variety of file-formats using write_to_file and Base.write.

For most common file formats, the file type will be detected from the extension.

For example, here is how to write an MPS file:

julia> model = Model();

julia> write_to_file(model, "model.mps")

Other supported file formats include:

• .cbf for the Conic Benchmark Format

• .lp for the LP file format

• .mof.json for the MathOptFormat

• .nl for AMPL's NL file format

• .rew for the REW file format

• .sdpa and ".dat-s" for the SDPA file format

To write to a specific io::IO, use Base.write. Specify the file type by passing a MOI.FileFormats.FileFormat
enum.

julia> model = Model();

julia> io = IOBuffer();

julia> write(io, model; format = MOI.FileFormats.FORMAT_MPS)

11.8 Read a model from file

JuMP models can be created from file formats using read_from_file and Base.read.

julia> model = read_from_file("model.mps")
A JuMP Model
├ solver: none
├ objective_sense: MIN_SENSE
│ └ objective_function_type: AffExpr
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none

https://en.wikipedia.org/wiki/MPS_(format)
https://docs.mosek.com/latest/capi/cbf-format.html
https://docs.mosek.com/latest/capi/lp-format.html
https://jump.dev/MathOptFormat/
https://en.wikipedia.org/wiki/Nl_(format)
https://www.gurobi.com/documentation/9.5/refman/rew_format.html
http://plato.asu.edu/ftp/sdpa_format.txt
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julia> seekstart(io);

julia> model2 = read(io, Model; format = MOI.FileFormats.FORMAT_MPS)
A JuMP Model
├ solver: none
├ objective_sense: MIN_SENSE
│ └ objective_function_type: AffExpr
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none

Note

Because file formats do not serialize the containers of JuMP variables and constraints, the names in
the model will not be registered. Therefore, you cannot access named variables and constraints via
model[:x]. Instead, use variable_by_name or constraint_by_name to access specific variables or
constraints.

Nonlinear file formats

Tomaintain backwards compatibility, nonlinearmodels in .mof.json and .nl files are parsed into a MOI.NLPBlock.
To parse as MOI.ScalarNonlinearFunction, pass the keyword use_nlp_block = false:

julia> model = Model();

julia> @variable(model, x >= 0);

julia> @objective(model, Min, log(x));

julia> filename = joinpath(mktempdir(), "model.mof.json");

julia> write_to_file(model, filename)

julia> new_model = read_from_file(filename; use_nlp_block = false)
A JuMP Model
├ solver: none
├ objective_sense: MIN_SENSE
│ └ objective_function_type: NonlinearExpr
├ num_variables: 1
├ num_constraints: 1
│ └ VariableRef in MOI.GreaterThan{Float64}: 1
└ Names registered in the model: none

julia> print(new_model)
Min log(x)
Subject to
x ≥ 0



CHAPTER 11. MODELS 560

11.9 Relax integrality

Use relax_integrality to remove any integrality constraints from the model, such as integer and binary
restrictions on variables. relax_integrality returns a function that can be later called with zero arguments
to re-add the removed constraints:

julia> model = Model();

julia> @variable(model, x, Int)
x

julia> num_constraints(model, VariableRef, MOI.Integer)
1

julia> undo = relax_integrality(model);

julia> num_constraints(model, VariableRef, MOI.Integer)
0

julia> undo()

julia> num_constraints(model, VariableRef, MOI.Integer)
1

Switching optimizer for the relaxed problem

A common reason for relaxing integrality is to compute dual variables of the relaxed problem. However, some
mixed-integer linear solvers (for example, Cbc) do not return dual solutions, even if the problem does not have
integrality restrictions.

Therefore, after relax_integrality you should call set_optimizer with a solver that does support dual so-
lutions, such as Clp.

For example, instead of:

using JuMP, Cbc
model = Model(Cbc.Optimizer)
@variable(model, x, Int)
undo = relax_integrality(model)
optimize!(model)
reduced_cost(x) # Errors

do:

using JuMP, Cbc, Clp
model = Model(Cbc.Optimizer)
@variable(model, x, Int)
undo = relax_integrality(model)
set_optimizer(model, Clp.Optimizer)
optimize!(model)
reduced_cost(x) # Works
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11.10 Get the matrix representation

Use lp_matrix_data to return a data structure that represents the matrix form of a linear program.

julia> begin
model = Model()
@variable(model, x >= 1, Bin)
@variable(model, 2 <= y)
@variable(model, 3 <= z <= 4, Int)
@constraint(model, x == 5)
@constraint(model, 2x + 3y <= 6)
@constraint(model, -4y >= 5z + 7)
@constraint(model, -1 <= x + y <= 2)
@objective(model, Max, 1 + 2x)

end;

julia> data = lp_matrix_data(model);

julia> data.A
4×3 SparseArrays.SparseMatrixCSC{Float64, Int64} with 7 stored entries:
1.0 ⋅ ⋅
⋅ -4.0 -5.0
2.0 3.0 ⋅
1.0 1.0 ⋅

julia> data.b_lower
4-element Vector{Float64}:

5.0
7.0

-Inf
-1.0

julia> data.b_upper
4-element Vector{Float64}:
5.0
Inf
6.0
2.0

julia> data.x_lower
3-element Vector{Float64}:
1.0
2.0
3.0

julia> data.x_upper
3-element Vector{Float64}:
Inf
Inf
4.0

julia> data.c
3-element Vector{Float64}:
2.0
0.0
0.0
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julia> data.c_offset
1.0

julia> data.sense
MAX_SENSE::OptimizationSense = 1

julia> data.integers
1-element Vector{Int64}:
3

julia> data.binaries
1-element Vector{Int64}:
1

Warning

lp_matrix_data is intentionally limited in the types of problems that it supports and the structure of
the matrices it outputs. It is mainly intended as a pedagogical and debugging tool. It should not be
used to interface solvers, see Implementing a solver interface instead.

11.11 Backends

Info

This section discusses advanced features of JuMP. For new users, you may want to skip this section. You
don't need to know how JuMP manages problems behind the scenes to create and solve JuMP models.

A JuMP Model is a thin layer around a backend of type MOI.ModelLike that stores the optimization problem
and acts as the optimization solver.

However, if you construct a model like Model(HiGHS.Optimizer), the backend is not a HiGHS.Optimizer, but
a more complicated object.

From JuMP, the MOI backend can be accessed using the backend function. Let's see what the backend of a
JuMP Model is:

julia> model = Model(HiGHS.Optimizer);

julia> b = backend(model)
MOIU.CachingOptimizer
├ state: EMPTY_OPTIMIZER
├ mode: AUTOMATIC
├ model_cache: MOIU.UniversalFallback{MOIU.Model{Float64}}
│ ├ ObjectiveSense: FEASIBILITY_SENSE
│ ├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
│ ├ NumberOfVariables: 0
│ └ NumberOfConstraints: 0
└ optimizer: MOIB.LazyBridgeOptimizer{HiGHS.Optimizer}
├ Variable bridges: none
├ Constraint bridges: none
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├ Objective bridges: none
└ model: A HiGHS model with 0 columns and 0 rows.

Uh oh. Even though we passed a HiGHS.Optimizer, the backend is a much more complicated object.

CachingOptimizer

A MOIU.CachingOptimizer is a layer that abstracts the difference between solvers that support incremen-
tal modification (for example, they support adding variables one-by-one), and solvers that require the entire
problem in a single API call (for example, they only accept the A, b and c matrices of a linear program).

It has two parts:

1. A cache, where the model can be built and modified incrementally

julia> b.model_cache
MOIU.UniversalFallback{MOIU.Model{Float64}}
├ ObjectiveSense: FEASIBILITY_SENSE
├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
├ NumberOfVariables: 0
└ NumberOfConstraints: 0

2. An optimizer, which is used to solve the problem

julia> b.optimizer
MOIB.LazyBridgeOptimizer{HiGHS.Optimizer}
├ Variable bridges: none
├ Constraint bridges: none
├ Objective bridges: none
└ model: A HiGHS model with 0 columns and 0 rows.

Info

The LazyBridgeOptimizer section explains what a LazyBridgeOptimizer is.

The CachingOptimizer has logic to decide when to copy the problem from the cache to the optimizer, and
when it can efficiently update the optimizer in-place.

A CachingOptimizer may be in one of three possible states:

• NO_OPTIMIZER: The CachingOptimizer does not have any optimizer.

• EMPTY_OPTIMIZER: The CachingOptimizer has an empty optimizer, and it is not synchronized with the
cached model.

• ATTACHED_OPTIMIZER: The CachingOptimizer has an optimizer, and it is synchronized with the cached
model.

A CachingOptimizer has two modes of operation:
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• AUTOMATIC: The CachingOptimizer changes its state when necessary. For example, optimize! will
automatically call attach_optimizer (an optimizer must have been previously set). Attempting to add a
constraint or perform amodification not supported by the optimizer results in a drop to EMPTY_OPTIMIZER
mode.

• MANUAL: The usermust change the state of the CachingOptimizer using MOIU.reset_optimizer(::JuMP.Model),
MOIU.drop_optimizer(::JuMP.Model), and MOIU.attach_optimizer(::JuMP.Model). Attempting to
perform an operation in the incorrect state results in an error.

By default Model will create a CachingOptimizer in AUTOMATIC mode.

LazyBridgeOptimizer

The second layer that JuMP applies automatically is a MOI.Bridges.LazyBridgeOptimizer. A MOI.Bridges.LazyBridgeOptimizer
is an MOI layer that attempts to transform the problem from the formulation provided by the user into an equiv-
alent problem supported by the solver. This may involve adding new variables and constraints to the optimizer.
The transformations are selected from a set of known recipes called bridges.

A common example of a bridge is one that splits an interval constraint like @constraint(model, 1 <= x + y
<= 2) into two constraints, @constraint(model, x + y >= 1) and @constraint(model, x + y <= 2).

Use the add_bridges = false keyword to remove the bridging layer:

julia> model = Model(HiGHS.Optimizer; add_bridges = false)
A JuMP Model
├ solver: HiGHS
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none

julia> backend(model)
MOIU.CachingOptimizer
├ state: EMPTY_OPTIMIZER
├ mode: AUTOMATIC
├ model_cache: MOIU.UniversalFallback{MOIU.Model{Float64}}
│ ├ ObjectiveSense: FEASIBILITY_SENSE
│ ├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
│ ├ NumberOfVariables: 0
│ └ NumberOfConstraints: 0
└ optimizer: A HiGHS model with 0 columns and 0 rows.

Bridges can be added and removed from a MOI.Bridges.LazyBridgeOptimizer using add_bridge and remove_bridge.
Use print_active_bridges to see which bridges are used to reformulate the model. Read the Example: el-
lipsoid approximation tutorial for more details.

Unsafe backend

In some advanced use-cases, it is necessary to work with the inner optimization model directly. To access this
model, use unsafe_backend:

julia> backend(model)
MOIU.CachingOptimizer
├ state: EMPTY_OPTIMIZER
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├ mode: AUTOMATIC
├ model_cache: MOIU.UniversalFallback{MOIU.Model{Float64}}
│ ├ ObjectiveSense: FEASIBILITY_SENSE
│ ├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
│ ├ NumberOfVariables: 0
│ └ NumberOfConstraints: 0
└ optimizer: MOIB.LazyBridgeOptimizer{HiGHS.Optimizer}
├ Variable bridges: none
├ Constraint bridges: none
├ Objective bridges: none
└ model: A HiGHS model with 0 columns and 0 rows.

julia> unsafe_backend(model)
A HiGHS model with 0 columns and 0 rows.

Warning

backend and unsafe_backend are advanced routines. Read their docstrings to understand the caveats
of their usage, and only call them if you wish to access low-level solver-specific functions.

11.12 Direct mode

Using a CachingOptimizer results in an additional copy of themodel being stored by JuMP in the .model_cache
field. To avoid this overhead, create a JuMP model using direct_model:

julia> model = direct_model(HiGHS.Optimizer())
A JuMP Model
├ mode: DIRECT
├ solver: HiGHS
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none

Warning

Solvers that do not support incremental modification do not support direct_model. An error will be
thrown, telling you to use a CachingOptimizer instead.

The benefit of using direct_model is that there are no extra layers (for example, Cachingoptimizer or
LazyBridgeOptimizer) between model and the provided optimizer:

julia> backend(model)
A HiGHS model with 0 columns and 0 rows.

A downside of direct mode is that there is no bridging layer. Therefore, only constraints which are natively
supported by the solver are supported. For example, HiGHS.jl does not implement quadratic constraints:
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julia> model = direct_model(HiGHS.Optimizer());

julia> set_silent(model)

julia> @variable(model, x[1:2]);

julia> @constraint(model, x[1]^2 + x[2]^2 <= 2)
ERROR: Constraints of type

MathOptInterface.ScalarQuadraticFunction{Float64}-in-MathOptInterface.LessThan{Float64} are not
supported by the solver.

↪→

↪→

If you expected the solver to support your problem, you may have an error in your formulation.
Otherwise, consider using a different solver.↪→

The list of available solvers, along with the problem types they support, is available at
https://jump.dev/JuMP.jl/stable/installation/#Supported-solvers.↪→

Stacktrace:

Warning

Another downside of direct mode is that the behavior of querying solution information after modifying
the problem is solver-specific. This can lead to errors, or the solver silently returning an incorrect value.
See OptimizeNotCalled errors for more information.
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Variables

The term variable in mathematical optimization has many meanings. For example, optimization variables (also
called decision variables) are the unknowns x that we are solving for in the problem:

min
x∈Rn

f0(x) (12.1)

s.t. fi(x) ∈ Si i = 1 . . .m (12.2)

To complicate things, Julia uses variable to mean a binding between a name and a value. For example, in the
statement:

julia> x = 1
1

x is a variable that stores the value 1.

JuMP uses variable in a third way, to mean an instance of the VariableRef struct. JuMP variables are the link
between Julia and the optimization variables inside a JuMP model.

This page explains how to create and manage JuMP variables in a variety of contexts.

12.1 Create a variable

Create variables using the @variable macro:

julia> model = Model();

julia> @variable(model, x)
x

julia> typeof(x)
VariableRef (alias for GenericVariableRef{Float64})

julia> num_variables(model)
1

Here x is a Julia variable that is bound to a VariableRef object, and we have added 1 decision variable to our
model.

567
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To make the binding more explicit, we could have written:

julia> model = Model();

julia> x = @variable(model, x)
x

but there is no need to in general; the macro does it for us.

When creating a variable, you can also specify variable bounds:

julia> model = Model();

julia> @variable(model, x_free)
x_free

julia> @variable(model, x_lower >= 0)
x_lower

julia> @variable(model, x_upper <= 1)
x_upper

julia> @variable(model, 2 <= x_interval <= 3)
x_interval

julia> @variable(model, x_fixed == 4)
x_fixed

julia> print(model)
Feasibility
Subject to
x_fixed = 4
x_lower ≥ 0
x_interval ≥ 2
x_upper ≤ 1
x_interval ≤ 3

Warning

When creating a variable with a single lower- or upper-bound, and the value of the bound is not a
numeric literal (for example, 1 or 1.0), the name of the variable must appear on the left-hand side.
Putting the name on the right-hand side is an error. For example, to create a variable x:

a = 1
@variable(model, x >= 1) # � Okay
@variable(model, 1.0 <= x) # � Okay
@variable(model, x >= a) # � Okay
@variable(model, a <= x) # × Not okay
@variable(model, x >= 1 / 2) # � Okay
@variable(model, 1 / 2 <= x) # × Not okay
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Containers of variables

The @variablemacro also supports creating collections of JuMP variables. We'll cover some brief syntax here;
read the Variable containers section for more details.

You can create arrays of JuMP variables:

julia> model = Model();

julia> @variable(model, x[1:2, 1:2])
2×2 Matrix{VariableRef}:
x[1,1] x[1,2]
x[2,1] x[2,2]

julia> x[1, 2]
x[1,2]

Index sets can be named, and bounds can depend on those names:

julia> model = Model();

julia> @variable(model, sqrt(i) <= x[i = 1:3] <= i^2)
3-element Vector{VariableRef}:
x[1]
x[2]
x[3]

julia> x[2]
x[2]

Sets can be any Julia type that supports iteration:

julia> model = Model();

julia> @variable(model, x[i = 2:3, j = 1:2:3, ["red", "blue"]] >= 0)
3-dimensional DenseAxisArray{VariableRef,3,...} with index sets:

Dimension 1, 2:3
Dimension 2, 1:2:3
Dimension 3, ["red", "blue"]

And data, a 2×2×2 Array{VariableRef, 3}:
[:, :, "red"] =
x[2,1,red] x[2,3,red]
x[3,1,red] x[3,3,red]

[:, :, "blue"] =
x[2,1,blue] x[2,3,blue]
x[3,1,blue] x[3,3,blue]

julia> x[2, 1, "red"]
x[2,1,red]

Sets can depend upon previous indices:
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julia> model = Model();

julia> @variable(model, u[i = 1:2, j = i:3])
JuMP.Containers.SparseAxisArray{VariableRef, 2, Tuple{Int64, Int64}} with 5 entries:
[1, 1] = u[1,1]
[1, 2] = u[1,2]
[1, 3] = u[1,3]
[2, 2] = u[2,2]
[2, 3] = u[2,3]

and we can filter elements in the sets using the ; syntax:

julia> model = Model();

julia> @variable(model, v[i = 1:9; mod(i, 3) == 0])
JuMP.Containers.SparseAxisArray{VariableRef, 1, Tuple{Int64}} with 3 entries:
[3] = v[3]
[6] = v[6]
[9] = v[9]

12.2 Registered variables

When you create variables, JuMP registers them inside the model using their corresponding symbol. Get a
registered name using model[:key]:

julia> model = Model()
A JuMP Model
├ solver: none
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none

julia> @variable(model, x)
x

julia> model
A JuMP Model
├ solver: none
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 1
├ num_constraints: 0
└ Names registered in the model
└ :x

julia> model[:x] === x
true

Registered names are most useful when you start to write larger models and want to break up the model
construction into functions:
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julia> function set_objective(model::Model)
@objective(model, Min, 2 * model[:my_x] + 1)
return

end
set_objective (generic function with 1 method)

julia> model = Model();

julia> @variable(model, my_x);

julia> set_objective(model)

julia> print(model)
Min 2 my_x + 1
Subject to

12.3 Anonymous variables

To reduce the likelihood of accidental bugs, and because JuMP registers variables inside a model, creating two
variables with the same name is an error:

julia> model = Model();

julia> @variable(model, x)
x

julia> @variable(model, x)
ERROR: An object of name x is already attached to this model. If this

is intended, consider using the anonymous construction syntax, for example,
`x = @variable(model, [1:N], ...)` where the name of the object does
not appear inside the macro.

Alternatively, use `unregister(model, :x)` to first unregister
the existing name from the model. Note that this will not delete the
object; it will just remove the reference at `model[:x]`.

[...]

A common reason for encountering this error is adding variables in a loop.

As a work-around, JuMP provides anonymous variables. Create a scalar valued anonymous variable by omitting
the name argument:

julia> model = Model();

julia> x = @variable(model)
_[1]

Anonymous variables get printed as an underscore followed by a unique index of the variable.
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Warning

The index of the variable may not correspond to the column of the variable in the solver.

Create a container of anonymous JuMP variables by dropping the name in front of the [:

julia> model = Model();

julia> y = @variable(model, [1:2])
2-element Vector{VariableRef}:
_[1]
_[2]

The <= and >= short-hand cannot be used to set bounds on scalar-valued anonymous JuMP variables. Instead,
use the lower_bound and upper_bound keywords:

julia> model = Model();

julia> x_lower = @variable(model, lower_bound = 1.0)
_[1]

julia> x_upper = @variable(model, upper_bound = 2.0)
_[2]

julia> x_interval = @variable(model, lower_bound = 3.0, upper_bound = 4.0)
_[3]

12.4 Variable names

In addition to the symbol that variables are registered with, JuMP variables have a String name that is used
for printing and writing to file formats.

Get and set the name of a variable using name and set_name:

julia> model = Model();

julia> @variable(model, x)
x

julia> name(x)
"x"

julia> set_name(x, "my_x_name")

julia> x
my_x_name

Override the default choice of name using the base_name keyword:
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julia> model = Model();

julia> @variable(model, x[i=1:2], base_name = "my_var")
2-element Vector{VariableRef}:
my_var[1]
my_var[2]

Note that names apply to each element of the container, not to the container of variables:

julia> name(x[1])
"my_var[1]"

julia> set_name(x[1], "my_x")

julia> x
2-element Vector{VariableRef}:
my_x
my_var[2]

Tip

For some models, setting the string name of each variable can take a non-trivial portion of the total
time required to build the model. Turn off String names by passing set_string_name = false to
@variable:

julia> model = Model();

julia> @variable(model, x, set_string_name = false)
_[1]

See Disable string names for more information.

Retrieve a variable by name

Retrieve a variable from a model using variable_by_name:

julia> variable_by_name(model, "my_x")
my_x

If the name is not present, nothing will be returned:

julia> variable_by_name(model, "bad_name")

You can only look up individual variables using variable_by_name. Something like this will not work:

julia> model = Model();
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julia> @variable(model, [i = 1:2], base_name = "my_var")
2-element Vector{VariableRef}:
my_var[1]
my_var[2]

julia> variable_by_name(model, "my_var")

To look up a collection of variables, do not use variable_by_name. Instead, register them using the model[:key]
= value syntax:

julia> model = Model();

julia> model[:x] = @variable(model, [i = 1:2], base_name = "my_var")
2-element Vector{VariableRef}:
my_var[1]
my_var[2]

julia> model[:x]
2-element Vector{VariableRef}:
my_var[1]
my_var[2]

12.5 String names, symbolic names, and bindings

It's common for new users to experience confusion relating to JuMP variables. Part of the problem is the
overloaded use of "variable" in mathematical optimization, along with the difference between the name that
a variable is registered under and the String name used for printing.

Here's a summary of the differences:

• JuMP variables are created using @variable.

• JuMP variables can be named or anonymous.

• Named JuMP variables have the form @variable(model, x). For named variables:

– The String name of the variable is set to "x".

– A Julia variable x is created that binds x to the JuMP variable.

– The name :x is registered as a key in the model with the value x.

• Anonymous JuMP variables have the form x = @variable(model). For anonymous variables:

– The String name of the variable is set to "". When printed, this is replaced with "_[i]" where i
is the index of the variable.

– You control the name of the Julia variable used as the binding.

– No name is registered as a key in the model.

• The base_name keyword can override the String name of the variable.

• You can manually register names in the model via model[:key] = value
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Here's an example that should make things clearer:

julia> model = Model();

julia> x_binding = @variable(model, base_name = "x")
x

julia> model
A JuMP Model
├ solver: none
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 1
├ num_constraints: 0
└ Names registered in the model: none

julia> x
ERROR: UndefVarError: `x` not defined

julia> x_binding
x

julia> name(x_binding)
"x"

julia> model[:x_register] = x_binding
x

julia> model
A JuMP Model
├ solver: none
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 1
├ num_constraints: 0
└ Names registered in the model
└ :x_register

julia> model[:x_register]
x

julia> model[:x_register] === x_binding
true

julia> x
ERROR: UndefVarError: `x` not defined

12.6 Create, delete, and modify variable bounds

Query whether a variable has a bound using has_lower_bound, has_upper_bound, and is_fixed:

julia> has_lower_bound(x_free)
false

julia> has_upper_bound(x_upper)
true
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julia> is_fixed(x_fixed)
true

If a variable has a particular bound, query the value of it using lower_bound, upper_bound, and fix_value:

julia> lower_bound(x_interval)
2.0

julia> upper_bound(x_interval)
3.0

julia> fix_value(x_fixed)
4.0

Querying the value of a bound that does not exist will result in an error.

Delete variable bounds using delete_lower_bound, delete_upper_bound, and unfix:

julia> delete_lower_bound(x_lower)

julia> has_lower_bound(x_lower)
false

julia> delete_upper_bound(x_upper)

julia> has_upper_bound(x_upper)
false

julia> unfix(x_fixed)

julia> is_fixed(x_fixed)
false

Set or update variable bounds using set_lower_bound, set_upper_bound, and fix:

julia> set_lower_bound(x_lower, 1.1)

julia> set_upper_bound(x_upper, 2.1)

julia> fix(x_fixed, 4.1)

Fixing a variable with existing bounds will throw an error. To delete the bounds prior to fixing, use fix(variable,
value; force = true).

julia> model = Model();

julia> @variable(model, x >= 1)
x

julia> fix(x, 2)
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ERROR: Unable to fix x to 2 because it has existing variable bounds. Consider calling
`JuMP.fix(variable, value; force=true)` which will delete existing bounds before fixing the
variable.

↪→

↪→

julia> fix(x, 2; force = true)

julia> fix_value(x)
2.0

Tip

Use fix instead of @constraint(model, x == 2). The former modifies variable bounds, while the
latter adds a new linear constraint to the problem.

12.7 Binary variables

Binary variables are constrained to the set x ∈ {0, 1}.

Create a binary variable by passing Bin as an optional positional argument:

julia> model = Model();

julia> @variable(model, x, Bin)
x

Warning

Solvers use tolerances to decide whether a variable satisfies the binary constraint. Thus, the true
feasible region is [−ε, ε]∪ [1− ε, 1+ ε], where ε is solver-specific, but typically 1e-6. As a result, you
should expect the value(x) of a Bin variable to sometimes take a value like -0.0, 1e-8, or 0.999999.

Check if a variable is binary using is_binary:

julia> is_binary(x)
true

Delete a binary constraint using unset_binary:

julia> unset_binary(x)

julia> is_binary(x)
false

Binary variables can also be created by setting the binary keyword to true:
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julia> model = Model();

julia> @variable(model, x, binary=true)
x

or by using set_binary:

julia> model = Model();

julia> @variable(model, x)
x

julia> set_binary(x)

12.8 Integer variables

Integer variables are constrained to the set x ∈ Z.

Create an integer variable by passing Int as an optional positional argument:

julia> model = Model();

julia> @variable(model, x, Int)
x

Warning

Solvers use tolerances to decide whether a variable satisfies the integer constraint. Thus, the true
feasible region is ∪z∈Z[z − ε, z + ε], where ε is solver-specific, but typically 1e-6. As a result, you
should expect the value(x) of an Int variable to sometimes take a value like 1e-8, or 2.999999.

Check if a variable is integer using is_integer:

julia> is_integer(x)
true

Delete an integer constraint using unset_integer.

julia> unset_integer(x)

julia> is_integer(x)
false

Integer variables can also be created by setting the integer keyword to true:

julia> model = Model();

julia> @variable(model, x, integer=true)
x
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or by using set_integer:

julia> model = Model();

julia> @variable(model, x)
x

julia> set_integer(x)

Tip

The relax_integrality function relaxes all integrality constraints in the model, returning a function
that can be called to undo the operation later on.

12.9 Semi-integer and semi-continuous variables

Semi-continuous variables are constrained to the set x ∈ {0} ∪ [l, u].

Create a semi-continuous variable using the Semicontinuous set:

julia> model = Model();

julia> @variable(model, x in Semicontinuous(1.5, 3.5))
x

Semi-integer variables are constrained to the set x ∈ {0} ∪ {l, l + 1, . . . , u}.

Create a semi-integer variable using the Semiinteger set:

julia> model = Model();

julia> @variable(model, x in Semiinteger(1.0, 3.0))
x

12.10 Start values

There are two ways to provide a primal starting solution (also called MIP-start or a warmstart) for each variable:

• using the start keyword in the @variable macro

• using set_start_value

The starting value of a variable can be queried using start_value. If no start value has been set, start_value
will return nothing.

julia> model = Model();

julia> @variable(model, x)
x



CHAPTER 12. VARIABLES 580

julia> start_value(x)

julia> @variable(model, y, start = 1)
y

julia> start_value(y)
1.0

julia> set_start_value(y, 2)

julia> start_value(y)
2.0

The start keyword argument can depend on the indices of a variable container:

julia> model = Model();

julia> @variable(model, z[i = 1:2], start = i^2)
2-element Vector{VariableRef}:
z[1]
z[2]

julia> start_value.(z)
2-element Vector{Float64}:
1.0
4.0

Warning

Some solvers do not support start values. If a solver does not support start values, an
MathOptInterface.UnsupportedAttribute{MathOptInterface.VariablePrimalStart} error will
be thrown.

Tip

To set the optimal solution from a previous solve as a new starting value, use all_variables to get a
vector of all the variables in the model, then run:

x = all_variables(model)
x_solution = value.(x)
set_start_value.(x, x_solution)

Alternatively, use set_start_values.

12.11 Delete a variable

Use delete to delete a variable from a model. Use is_valid to check if a variable belongs to a model and has
not been deleted.
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julia> model = Model();

julia> @variable(model, x)
x

julia> is_valid(model, x)
true

julia> delete(model, x)

julia> is_valid(model, x)
false

Deleting a variable does not unregister the corresponding name from the model. Therefore, creating a new
variable of the same name will throw an error:

julia> @variable(model, x)
ERROR: An object of name x is already attached to this model. If this

is intended, consider using the anonymous construction syntax, for example,
`x = @variable(model, [1:N], ...)` where the name of the object does
not appear inside the macro.

Alternatively, use `unregister(model, :x)` to first unregister
the existing name from the model. Note that this will not delete the
object; it will just remove the reference at `model[:x]`.

[...]

After calling delete, call unregister to remove the symbolic reference:

julia> unregister(model, :x)

julia> @variable(model, x)
x

Info

delete does not automatically unregister because we do not distinguish between names that are
automatically registered by JuMPmacros and names that are manually registered by the user by setting
values in object_dictionary. In addition, deleting a variable and then adding a new variable of the
same name is an easy way to introduce bugs into your code.

12.12 Variable containers

JuMP provides a mechanism for creating collections of variables in three types of data structures, which we
refer to as containers.

The three types are Arrays, DenseAxisArrays, and SparseAxisArrays. We explain each of these in the fol-
lowing.
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Tip

You can read more about containers in the Containers section.

Arrays

We have already seen the creation of an array of JuMP variables with the x[1:2] syntax. This can be extended
to create multi-dimensional arrays of JuMP variables. For example:

julia> model = Model();

julia> @variable(model, x[1:2, 1:2])
2×2 Matrix{VariableRef}:
x[1,1] x[1,2]
x[2,1] x[2,2]

Arrays of JuMP variables can be indexed and sliced as follows:

julia> x[1, 2]
x[1,2]

julia> x[2, :]
2-element Vector{VariableRef}:
x[2,1]
x[2,2]

Variable bounds can depend upon the indices:

julia> model = Model();

julia> @variable(model, x[i=1:2, j=1:2] >= 2i + j)
2×2 Matrix{VariableRef}:
x[1,1] x[1,2]
x[2,1] x[2,2]

julia> lower_bound.(x)
2×2 Matrix{Float64}:
3.0 4.0
5.0 6.0

JuMP will form an Array of JuMP variables when it can determine at compile time that the indices are one-based
integer ranges. Therefore x[1:b] will create an Array of JuMP variables, but x[a:b] will not. If JuMP cannot
determine that the indices are one-based integer ranges (for example, in the case of x[a:b]), JuMP will create
a DenseAxisArray instead.

DenseAxisArrays

We often want to create arrays where the indices are not one-based integer ranges. For example, we may want
to create a variable indexed by the name of a product or a location. The syntax is the same as that above,
except with an arbitrary vector as an index as opposed to a one-based range. The biggest difference is that
instead of returning an Array of JuMP variables, JuMP will return a DenseAxisArray. For example:
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julia> model = Model();

julia> @variable(model, x[1:2, [:A,:B]])
2-dimensional DenseAxisArray{VariableRef,2,...} with index sets:

Dimension 1, Base.OneTo(2)
Dimension 2, [:A, :B]

And data, a 2×2 Matrix{VariableRef}:
x[1,A] x[1,B]
x[2,A] x[2,B]

DenseAxisArrays can be indexed and sliced as follows:

julia> x[1, :A]
x[1,A]

julia> x[2, :]
1-dimensional DenseAxisArray{VariableRef,1,...} with index sets:

Dimension 1, [:A, :B]
And data, a 2-element Vector{VariableRef}:
x[2,A]
x[2,B]

Bounds can depend upon indices:

julia> model = Model();

julia> @variable(model, x[i=2:3, j=1:2:3] >= 0.5i + j)
2-dimensional DenseAxisArray{VariableRef,2,...} with index sets:

Dimension 1, 2:3
Dimension 2, 1:2:3

And data, a 2×2 Matrix{VariableRef}:
x[2,1] x[2,3]
x[3,1] x[3,3]

julia> lower_bound.(x)
2-dimensional DenseAxisArray{Float64,2,...} with index sets:

Dimension 1, 2:3
Dimension 2, 1:2:3

And data, a 2×2 Matrix{Float64}:
2.0 4.0
2.5 4.5

SparseAxisArrays

The third container type that JuMP natively supports is SparseAxisArray. These arrays are created when the
indices do not form a rectangular set. For example, this applies when indices have a dependence upon previous
indices (called triangular indexing). JuMP supports this as follows:

julia> model = Model();

julia> @variable(model, x[i=1:2, j=i:2])
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JuMP.Containers.SparseAxisArray{VariableRef, 2, Tuple{Int64, Int64}} with 3 entries:
[1, 1] = x[1,1]
[1, 2] = x[1,2]
[2, 2] = x[2,2]

We can also conditionally create variables via a JuMP-specific syntax. This syntax appends a comparison check
that depends upon the named indices and is separated from the indices by a semi-colon (;). For example:

julia> model = Model();

julia> @variable(model, x[i=1:4; mod(i, 2)==0])
JuMP.Containers.SparseAxisArray{VariableRef, 1, Tuple{Int64}} with 2 entries:
[2] = x[2]
[4] = x[4]

Performance considerations

When using the semi-colon as a filter, JuMP iterates over all indices and evaluates the conditional for each
combination. If there are many index dimensions and a large amount of sparsity, this can be inefficient.

For example:

julia> model = Model();

julia> N = 10
10

julia> S = [(1, 1, 1), (N, N, N)]
2-element Vector{Tuple{Int64, Int64, Int64}}:
(1, 1, 1)
(10, 10, 10)

julia> @time @variable(model, x1[i=1:N, j=1:N, k=1:N; (i, j, k) in S])
0.203861 seconds (392.22 k allocations: 23.977 MiB, 99.10% compilation time)

JuMP.Containers.SparseAxisArray{VariableRef, 3, Tuple{Int64, Int64, Int64}} with 2 entries:
[1, 1, 1 ] = x1[1,1,1]
[10, 10, 10] = x1[10,10,10]

julia> @time @variable(model, x2[S])
0.045407 seconds (65.24 k allocations: 3.771 MiB, 99.15% compilation time)

1-dimensional DenseAxisArray{VariableRef,1,...} with index sets:
Dimension 1, [(1, 1, 1), (10, 10, 10)]

And data, a 2-element Vector{VariableRef}:
x2[(1, 1, 1)]
x2[(10, 10, 10)]

The first option is slower because it is equivalent to:

julia> model = Model();

julia> x1 = Dict{NTuple{3,Int},VariableRef}()
Dict{Tuple{Int64, Int64, Int64}, VariableRef}()
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julia> for i in 1:N
for j in 1:N

for k in 1:N
if (i, j, k) in S

x1[i, j, k] = @variable(model, base_name = "x1[$i,$j,$k]")
end

end
end

end

julia> x1
Dict{Tuple{Int64, Int64, Int64}, VariableRef} with 2 entries:
(1, 1, 1) => x1[1,1,1]
(10, 10, 10) => x1[10,10,10]

If performance is a concern, explicitly construct the set of indices instead of using the filtering syntax.

Forcing the container type

When creating a container of JuMP variables, JuMP will attempt to choose the tightest container type that can
store the JuMP variables. Thus, it will prefer to create an Array before a DenseAxisArray and a DenseAxisArray
before a SparseAxisArray. However, because this happens at compile time, JuMP does not always make the
best choice. To illustrate this, consider the following example:

julia> model = Model();

julia> A = 1:2
1:2

julia> @variable(model, x[A])
1-dimensional DenseAxisArray{VariableRef,1,...} with index sets:

Dimension 1, 1:2
And data, a 2-element Vector{VariableRef}:
x[1]
x[2]

Since the value (and type) of A is unknown at parsing time, JuMP is unable to infer that A is a one-based integer
range. Therefore, JuMP creates a DenseAxisArray, even though it could store these two variables in a standard
one-dimensional Array.

We can share our knowledge that it is possible to store these JuMP variables as an array by setting the
container keyword:

julia> @variable(model, y[A], container=Array)
2-element Vector{VariableRef}:
y[1]
y[2]

JuMP now creates a vector of JuMP variables instead of a DenseAxisArray. Choosing an invalid container type
will throw an error.
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User-defined containers

In addition to the built-in container types, you can create your own collections of JuMP variables.

Tip

This is a point that users often overlook: you are not restricted to the built-in container types in JuMP.

For example, the following code creates a dictionary with symmetric matrices as the values:

julia> model = Model();

julia> variables = Dict{Symbol,Array{VariableRef,2}}(
key => @variable(model, [1:2, 1:2], Symmetric, base_name = "$(key)")
for key in [:A, :B]

)
Dict{Symbol, Matrix{VariableRef}} with 2 entries:
:A => [A[1,1] A[1,2]; A[1,2] A[2,2]]
:B => [B[1,1] B[1,2]; B[1,2] B[2,2]]

Another common scenario is a request to add variables to existing containers, for example:

using JuMP
model = Model()
@variable(model, x[1:2] >= 0)
# Later I want to add
@variable(model, x[3:4] >= 0)

This is not possible with the built-in JuMP container types. However, you can use regular Julia types instead:

julia> model = Model();

julia> x = model[:x] = @variable(model, [1:2], lower_bound = 0, base_name = "x")
2-element Vector{VariableRef}:
x[1]
x[2]

julia> append!(x, @variable(model, [1:2], lower_bound = 0, base_name = "y"));

julia> model[:x]
4-element Vector{VariableRef}:
x[1]
x[2]
y[1]
y[2]

Sparse arrays

To construct a SparseArrays.SparseMatrixCSC of JuMP variables, create a vector of JuMP variables for the
non-zero elements, and then use the SparseArrays.sparse constructor:
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julia> import SparseArrays

julia> model = Model();

julia> x = @variable(model, [1:5]);

julia> A = SparseArrays.sparse([1, 1, 2, 2, 3], [1, 2, 2, 3, 3], x)
3×3 SparseArrays.SparseMatrixCSC{VariableRef, Int64} with 5 stored entries:
_[1] _[2] ⋅
⋅ _[3] _[4]
⋅ ⋅ _[5]

12.13 Semidefinite variables

Declare a square matrix of JuMP variables to be positive semidefinite by passing PSD as a positional argument:

julia> model = Model();

julia> @variable(model, x[1:2, 1:2], PSD)
2×2 LinearAlgebra.Symmetric{VariableRef, Matrix{VariableRef}}:
x[1,1] x[1,2]
x[1,2] x[2,2]

This will ensure that x is symmetric, and that all of its eigenvalues are nonnegative.

Note

xmust be a square 2-dimensional Array of JuMP variables; it cannot be a DenseAxisArray or a SparseAx-
isArray.

Use VariableInSetRef to obtain the associated constraint reference:

julia> model = Model();

julia> @variable(model, x[1:2, 1:2], PSD)
2×2 LinearAlgebra.Symmetric{VariableRef, Matrix{VariableRef}}:
x[1,1] x[1,2]
x[1,2] x[2,2]

julia> c = VariableInSetRef(x)
[x[1,1] x[1,2]
⋯ x[2,2]] ∈ PSDCone()

The PSD argument must be provided explicitly to the macro. Passing it via a variable throws an error:

julia> model = Model();

julia> type = :PSD
:PSD
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julia> @variable(model, x[1:2, 1:2], type)
ERROR: At none:1: `@variable(model, x[1:2, 1:2], type)`: Unrecognized positional arguments:

(:PSD,). (You may have passed it as a positional argument, or as a keyword value to
`variable_type`.)

↪→

↪→

If you're trying to create a JuMP extension, you need to implement `build_variable`. Read the
docstring for more details.↪→

Stacktrace:
[...]

Instead, pass PSDCone via the x in Set syntax:

julia> model = Model();

julia> @variable(model, x[1:2, 1:2] in PSDCone())
2×2 LinearAlgebra.Symmetric{VariableRef, Matrix{VariableRef}}:
x[1,1] x[1,2]
x[1,2] x[2,2]

julia> set = PSDCone();

julia> @variable(model, y[1:2, 1:2] in set)
2×2 LinearAlgebra.Symmetric{VariableRef, Matrix{VariableRef}}:
y[1,1] y[1,2]
y[1,2] y[2,2]

or via the set keyword:

julia> model = Model();

julia> @variable(model, x[1:2, 1:2], set = PSDCone())
2×2 LinearAlgebra.Symmetric{VariableRef, Matrix{VariableRef}}:
x[1,1] x[1,2]
x[1,2] x[2,2]

julia> set = PSDCone();

julia> @variable(model, y[1:2, 1:2], set = set)
2×2 LinearAlgebra.Symmetric{VariableRef, Matrix{VariableRef}}:
y[1,1] y[1,2]
y[1,2] y[2,2]

12.14 Symmetric variables

Declare a squarematrix of JuMP variables to be symmetric (but not necessarily positive semidefinite) by passing
Symmetric as an optional positional argument:

julia> model = Model();

julia> @variable(model, x[1:2, 1:2], Symmetric)
2×2 LinearAlgebra.Symmetric{VariableRef, Matrix{VariableRef}}:
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x[1,1] x[1,2]
x[1,2] x[2,2]

The Symmetric argument must provided explicitly to the macro. Passing it via a variable throws an error:

julia> model = Model();

julia> type = :Symmetric
:Symmetric

julia> @variable(model, x[1:2, 1:2], type)
ERROR: At none:1: `@variable(model, x[1:2, 1:2], type)`: Unrecognized positional arguments:

(:Symmetric,). (You may have passed it as a positional argument, or as a keyword value to
`variable_type`.)

↪→

↪→

If you're trying to create a JuMP extension, you need to implement `build_variable`. Read the
docstring for more details.↪→

Stacktrace:
[...]

Instead, pass SymmetricMatrixSpace via the x in Set syntax:

julia> model = Model();

julia> @variable(model, x[1:2, 1:2] in SymmetricMatrixSpace())
2×2 LinearAlgebra.Symmetric{VariableRef, Matrix{VariableRef}}:
x[1,1] x[1,2]
x[1,2] x[2,2]

julia> set = SymmetricMatrixSpace();

julia> @variable(model, y[1:2, 1:2] in set)
2×2 LinearAlgebra.Symmetric{VariableRef, Matrix{VariableRef}}:
y[1,1] y[1,2]
y[1,2] y[2,2]

or via the set keyword:

julia> model = Model();

julia> @variable(model, x[1:2, 1:2], set = SymmetricMatrixSpace())
2×2 LinearAlgebra.Symmetric{VariableRef, Matrix{VariableRef}}:
x[1,1] x[1,2]
x[1,2] x[2,2]

julia> set = SymmetricMatrixSpace();

julia> @variable(model, y[1:2, 1:2], set = set)
2×2 LinearAlgebra.Symmetric{VariableRef, Matrix{VariableRef}}:
y[1,1] y[1,2]
y[1,2] y[2,2]
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12.15 The @variables macro

If you have many @variable calls, JuMP provides the macro @variables that can improve readability:

julia> model = Model();

julia> @variables(model, begin
x
y[i=1:2] >= i, (start = i, base_name = "Y_$i")
z, Bin

end)
(x, VariableRef[Y_1[1], Y_2[2]], z)

julia> print(model)
Feasibility
Subject to
Y_1[1] ≥ 1
Y_2[2] ≥ 2
z binary

The @variables macro returns a tuple of the variables that were defined.

Note

Keyword arguments must be contained within parentheses.

12.16 Variables constrained on creation

All uses of the @variable macro documented so far translate into separate calls for variable creation and the
adding of any bound or integrality constraints.

For example, @variable(model, x >= 0, Int), is equivalent to:

julia> model = Model();

julia> @variable(model, x)
x

julia> set_lower_bound(x, 0.0)

julia> set_integer(x)

Importantly, the bound and integrality constraints are added after the variable has been created.

However, some solvers require a set specifying the variable domain to be given when the variable is first
created. We say that these variables are constrained on creation.

Use in within @variable to access the special syntax for constraining variables on creation.

For example, the following creates a vector of variables that belong to the SecondOrderCone:

julia> model = Model();
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julia> @variable(model, y[1:3] in SecondOrderCone())
3-element Vector{VariableRef}:
y[1]
y[2]
y[3]

For contrast, the standard syntax is as follows:

julia> @variable(model, x[1:3])
3-element Vector{VariableRef}:
x[1]
x[2]
x[3]

julia> @constraint(model, x in SecondOrderCone())
[x[1], x[2], x[3]] ∈ MathOptInterface.SecondOrderCone(3)

An alternate syntax to x in Set is to use the set keyword of @variable. This is most useful when creating
anonymous variables:

julia> model = Model();

julia> x = @variable(model, [1:3], set = SecondOrderCone())
3-element Vector{VariableRef}:
_[1]
_[2]
_[3]

Note

You cannot delete the constraint associated with a variable constrained on creation.

To check if a variable was constrained on creation, use is_variable_in_set, and use VariableInSetRef to
obtain the associated constraint reference:

julia> model = Model();

julia> @variable(model, x[1:2, 1:2], PSD)
2×2 LinearAlgebra.Symmetric{VariableRef, Matrix{VariableRef}}:
x[1,1] x[1,2]
x[1,2] x[2,2]

julia> is_variable_in_set(x)
true

julia> c = VariableInSetRef(x)
[x[1,1] x[1,2]
⋯ x[2,2]] ∈ PSDCone()

julia> @variable(model, y)
y
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julia> is_variable_in_set(y)
false

julia> @variable(model, z in Semicontinuous(1, 2))
z

julia> is_variable_in_set(z)
true

julia> c_z = VariableInSetRef(z)
z ∈ MathOptInterface.Semicontinuous{Int64}(1, 2)

Example: positive semidefinite variables

An alternative to the syntax in Semidefinite variables, declare a matrix of JuMP variables to be positive semidef-
inite using PSDCone:

julia> model = Model();

julia> @variable(model, x[1:2, 1:2] in PSDCone())
2×2 LinearAlgebra.Symmetric{VariableRef, Matrix{VariableRef}}:
x[1,1] x[1,2]
x[1,2] x[2,2]

julia> @variable(model, y[1:2, 1:2], set = PSDCone())
2×2 LinearAlgebra.Symmetric{VariableRef, Matrix{VariableRef}}:
y[1,1] y[1,2]
y[1,2] y[2,2]

Example: symmetric variables

As an alternative to the syntax in Symmetric variables, declare a matrix of JuMP variables to be symmetric
using SymmetricMatrixSpace:

julia> model = Model();

julia> @variable(model, x[1:2, 1:2] in SymmetricMatrixSpace())
2×2 LinearAlgebra.Symmetric{VariableRef, Matrix{VariableRef}}:
x[1,1] x[1,2]
x[1,2] x[2,2]

julia> @variable(model, y[1:2, 1:2], set = SymmetricMatrixSpace())
2×2 LinearAlgebra.Symmetric{VariableRef, Matrix{VariableRef}}:
y[1,1] y[1,2]
y[1,2] y[2,2]

Example: skew-symmetric variables

Declare a matrix of JuMP variables to be skew-symmetric using SkewSymmetricMatrixSpace:
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julia> model = Model();

julia> @variable(model, x[1:2, 1:2] in SkewSymmetricMatrixSpace())
2×2 Matrix{AffExpr}:
0 x[1,2]
-x[1,2] 0

julia> @variable(model, y[1:2, 1:2], set = SkewSymmetricMatrixSpace())
2×2 Matrix{AffExpr}:
0 y[1,2]
-y[1,2] 0

Note

Even though x is a 2 by 2 matrix, only one decision variable is added to model; the remaining elements
in x are linear transformations of the single variable.

Example: Hermitian positive semidefinite variables

Declare a matrix of JuMP variables to be Hermitian positive semidefinite using HermitianPSDCone:

julia> model = Model();

julia> @variable(model, H[1:2, 1:2] in HermitianPSDCone())
2×2 LinearAlgebra.Hermitian{GenericAffExpr{ComplexF64, VariableRef},

Matrix{GenericAffExpr{ComplexF64, VariableRef}}}:↪→

real(H[1,1]) real(H[1,2]) + imag(H[1,2]) im
real(H[1,2]) - imag(H[1,2]) im real(H[2,2])

This adds 4 real variables in the MOI.HermitianPositiveSemidefiniteConeTriangle:

julia> c = VariableInSetRef(H)
[real(H[1,1]) real(H[1,2]) + imag(H[1,2]) im
real(H[1,2]) - imag(H[1,2]) im real(H[2,2])] ∈ HermitianPSDCone()

julia> o = constraint_object(c);

julia> o.func
4-element Vector{VariableRef}:
real(H[1,1])
real(H[1,2])
real(H[2,2])
imag(H[1,2])

julia> o.set
MathOptInterface.HermitianPositiveSemidefiniteConeTriangle(2)

Example: Hermitian variables

Declare a matrix of JuMP variables to be Hermitian using the Hermitian tag:
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julia> model = Model();

julia> @variable(model, x[1:2, 1:2], Hermitian)
2×2 LinearAlgebra.Hermitian{GenericAffExpr{ComplexF64, VariableRef},

Matrix{GenericAffExpr{ComplexF64, VariableRef}}}:↪→

real(x[1,1]) real(x[1,2]) + imag(x[1,2]) im
real(x[1,2]) - imag(x[1,2]) im real(x[2,2])

This is equivalent to declaring the variable in HermitianMatrixSpace:

julia> model = Model();

julia> @variable(model, x[1:2, 1:2] in HermitianMatrixSpace())
2×2 LinearAlgebra.Hermitian{GenericAffExpr{ComplexF64, VariableRef},

Matrix{GenericAffExpr{ComplexF64, VariableRef}}}:↪→

real(x[1,1]) real(x[1,2]) + imag(x[1,2]) im
real(x[1,2]) - imag(x[1,2]) im real(x[2,2])

Why use variables constrained on creation?

For most users, it does not matter if you use the constrained on creation syntax. Therefore, use whatever
syntax you find most convenient.

However, if you use direct_model, you may be forced to use the constrained on creation syntax.

The technical difference between variables constrained on creation and the standard JuMP syntax is that vari-
ables constrained on creation calls MOI.add_constrained_variables, while the standard JuMP syntax calls
MOI.add_variables and then MOI.add_constraint.

Consult the implementation of solver package you are using to see if your solver requires MOI.add_constrained_variables.

12.17 Parameters

Some solvers have explicit support for parameters, which are constants in the model that can be efficiently
updated between solves.

JuMP implements parameters by a decision variable constrained on creation to a value of the Parameter set.
For example, the following creates two parameters, p[1] and p[2], with parameter values 2.0 and 4.0:

julia> model = Model();

julia> @variable(model, x);

julia> @variable(model, p[i in 1:2] in Parameter(2.0 * i))
2-element Vector{VariableRef}:
p[1]
p[2]

Use parameter_value and set_parameter_value to query or update the value of a parameter.
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julia> parameter_value.(p)
2-element Vector{Float64}:
2.0
4.0

julia> set_parameter_value(p[2], 3.0)

julia> parameter_value.(p)
2-element Vector{Float64}:
2.0
3.0

Use is_parameter and ParameterRef to check if the variable is a parameter and to get the constraint that
makes the variable a parameter.

julia> is_parameter(p[1])
true

julia> is_parameter(x)
false

julia> ParameterRef(p[2])
p[2] ∈ MathOptInterface.Parameter{Float64}(3.0)

Create anonymous parameters using the set keyword:

julia> anon_parameter = @variable(model, set = Parameter(1.0))
_[4]

Limitations

Parameters are implemented as decision variables belonging to the Parameter set. If the solver supports the
MOI.Parameter set, it may decide to replace all instances of the parameter variable by the associated constant.
If the solver does not support parameters, it will add the parameter as a decision variable with fixed bounds.

The most important implication of this design is that JuMP treats a parameter multiplied by a decision variable
as a quadratic expression, even though it is equivalent to a linear expression.

julia> begin
model = Model()
@variable(model, x >= 3)
@variable(model, p in Parameter(2))
@objective(model, Min, p * x)
objective_function_type(model)

end
QuadExpr (alias for GenericQuadExpr{Float64, GenericVariableRef{Float64}})

As a consequence, solving a "linear" program with a solver like HiGHS fails:
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julia> using HiGHS

julia> begin
model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, x >= 3)
@variable(model, p in Parameter(2))
@objective(model, Min, p * x)
optimize!(model)
is_solved_and_feasible(model)

end
false

because the model is equivalent to a quadratic program with an indefinite objective:

julia> using HiGHS

julia> begin
model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, x >= 3)
@variable(model, p == 2)
@objective(model, Min, p * x)
optimize!(model)
is_solved_and_feasible(model)

end
false

Note

The quadratic limitation affects only models with multiplicative parameters such as p * x. Functions
that depend additively on parameters such as p + x do not have the limitation because the resulting
function is still affine.

ParametricOptInterface

To avoid the problem of p * x being an indefinite quadratic, use ParametricOptInterface.jl. ParametricOpt-
Interface provides a POI.Optimizer layer that will substitute each parameter with its numeric value prior to
solving. Thus, in the following example, HiGHS will successfully solve a linear program instead of failing to
solve a quadratic program.

julia> using HiGHS

julia> import ParametricOptInterface as POI

julia> begin
model = Model(() -> POI.Optimizer(HiGHS.Optimizer()))
set_silent(model)
@variable(model, x >= 3)
@variable(model, p in Parameter(2))
@objective(model, Min, p * x)
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optimize!(model)
end

julia> is_solved_and_feasible(model)
true

julia> objective_value(model)
6.0

If you use Parameter, then in most cases you should also use ParametricOptInterface.jl. There are two main
exceptions:

1. your solver natively supports the MOI.Parameter set (for example, Ipopt.jl)

2. you have only additive parameters (for example, x + p), and your solver supports some sort of presolve
that can remove fixed variables.

When to use a parameter

Parameters are most useful when solving models in a sequence. For example:

julia> using JuMP, Ipopt

julia> model = Model(Ipopt.Optimizer);

julia> set_silent(model)

julia> @variable(model, x)
x

julia> @variable(model, p in Parameter(1.0))
p

julia> @objective(model, Min, (x - p)^2)
x² - 2 p*x + p²

julia> solution = Dict{Int,Float64}();

julia> for p_value in 1:5
set_parameter_value(p, p_value)
optimize!(model)
assert_is_solved_and_feasible(model)
solution[p_value] = value(x)

end

julia> solution
Dict{Int64, Float64} with 5 entries:
5 => 5.0
4 => 4.0
2 => 2.0
3 => 3.0
1 => 1.0
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Using parameters can be faster than creating a new model from scratch with updated data because JuMP is
able to avoid repeating a number of steps in processing the model before handing it off to the solver.



Chapter 13

Constraints

JuMP is based on the MathOptInterface (MOI) API. Because of this, JuMP uses the following standard form to
represent problems:

min
x∈Rn

f0(x) (13.1)

s.t. fi(x) ∈ Si i = 1 . . .m (13.2)

Each constraint, fi(x) ∈ Si, is composed of a function and a set. For example, instead of calling a⊤x ≤ b a
less-than-or-equal-to constraint, we say that it is a scalar-affine-in-less-than constraint, where the function a⊤x
belongs to the less-than set (−∞, b]. We use the shorthand function-in-set to refer to constraints composed
of different types of functions and sets.

This page explains how to write various types of constraints in JuMP. For nonlinear constraints, see Nonlinear
Modeling instead.

13.1 Add a constraint

Add a constraint to a JuMP model using the @constraint macro. The syntax to use depends on the type of
constraint you wish to add.

Add a linear constraint

Create linear constraints using the @constraint macro:

julia> model = Model();

julia> @variable(model, x[1:3]);

julia> @constraint(model, c1, sum(x) <= 1)
c1 : x[1] + x[2] + x[3] ≤ 1

julia> @constraint(model, c2, x[1] + 2 * x[3] >= 2)
c2 : x[1] + 2 x[3] ≥ 2

julia> @constraint(model, c3, sum(i * x[i] for i in 1:3) == 3)
c3 : x[1] + 2 x[2] + 3 x[3] = 3

599
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julia> @constraint(model, c4, 4 <= 2 * x[2] <= 5)
c4 : 2 x[2] ∈ [4, 5]

Normalization

JuMP normalizes constraints by moving all of the terms containing variables to the left-hand side and all of the
constant terms to the right-hand side. Thus, we get:

julia> model = Model();

julia> @variable(model, x);

julia> @constraint(model, c, 2x + 1 <= 4x + 4)
c : -2 x ≤ 3

Add a quadratic constraint

In addition to affine functions, JuMP also supports constraints with quadratic terms. For example:

julia> model = Model();

julia> @variable(model, x[i=1:2])
2-element Vector{VariableRef}:
x[1]
x[2]

julia> @variable(model, t >= 0)
t

julia> @constraint(model, my_q, x[1]^2 + x[2]^2 <= t^2)
my_q : x[1]² + x[2]² - t² ≤ 0

Tip

Because solvers can take advantage of the knowledge that a constraint is quadratic, prefer adding
quadratic constraints using @constraint, rather than @NLconstraint.

13.2 Vectorized constraints

You can also add constraints to JuMP using vectorized linear algebra. For example:

julia> model = Model();

julia> @variable(model, x[i=1:2])
2-element Vector{VariableRef}:
x[1]
x[2]
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julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4

julia> b = [5, 6]
2-element Vector{Int64}:
5
6

julia> @constraint(model, con_vector, A * x == b)
con_vector : [x[1] + 2 x[2] - 5, 3 x[1] + 4 x[2] - 6] ∈ Zeros()

julia> @constraint(model, con_scalar, A * x .== b)
2-element Vector{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.EqualTo{Float64}}, ScalarShape}}:

↪→

↪→

con_scalar : x[1] + 2 x[2] = 5
con_scalar : 3 x[1] + 4 x[2] = 6

The two constraints, == and .== are similar, but subtly different. The first creates a single constraint that is a
MOI.VectorAffineFunction in MOI.Zeros constraint. The second creates a vector of MOI.ScalarAffineFunction
in MOI.EqualTo constraints.

Which formulation to choose depends on the solver, and what you want to do with the constraint object
con_vector or con_scalar.

• If you are using a conic solver, expect the dual of con_vector to be a Vector{Float64}, and do not
intend to delete a row in the constraint, choose the == formulation.

• If you are using a solver that expects a list of scalar constraints, for example HiGHS, or you wish to delete
part of the constraint or access a single row of the constraint, for example, dual(con_scalar[2]), then
use the broadcast .==.

JuMP reformulates both constraints into the other form if needed by the solver, but choosing the right format
for a particular solver is more efficient.

You can also use <=, .<= , >=, and .>= as comparison operators in the constraint.

julia> @constraint(model, A * x <= b)
[x[1] + 2 x[2] - 5, 3 x[1] + 4 x[2] - 6] ∈ Nonpositives()

julia> @constraint(model, A * x .<= b)
2-element Vector{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.LessThan{Float64}}, ScalarShape}}:

↪→

↪→

x[1] + 2 x[2] ≤ 5
3 x[1] + 4 x[2] ≤ 6

julia> @constraint(model, A * x >= b)
[x[1] + 2 x[2] - 5, 3 x[1] + 4 x[2] - 6] ∈ Nonnegatives()

julia> @constraint(model, A * x .>= b)
2-element Vector{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.GreaterThan{Float64}}, ScalarShape}}:

↪→

↪→
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x[1] + 2 x[2] ≥ 5
3 x[1] + 4 x[2] ≥ 6

13.3 Matrix inequalities

Inequalities between matrices are not supported, due to the common ambiguity between elementwise inequal-
ities and a PSDCone constraint.

julia> model = Model();

julia> @variable(model, x[1:2, 1:2], Symmetric);

julia> @variable(model, y[1:2, 1:2], Symmetric);

julia> @constraint(model, x >= y)
ERROR: At none:1: `@constraint(model, x >= y)`:
The syntax `x >= y` is ambiguous for matrices because we cannot tell if
you intend a positive semidefinite constraint or an elementwise
inequality.

To create a positive semidefinite constraint, pass `PSDCone()` or
`HermitianPSDCone()`:

```julia
@constraint(model, x >= y, PSDCone())
```

To create an element-wise inequality, pass `Nonnegatives()`, or use
broadcasting:

```julia
@constraint(model, x >= y, Nonnegatives())
# or
@constraint(model, x .>= y)
```
Stacktrace:
[...]

Instead, use the Set inequality syntax to specify a set like PSDCone or Nonnegatives:

julia> @constraint(model, x >= y, PSDCone())
[x[1,1] - y[1,1] x[1,2] - y[1,2]
⋯ x[2,2] - y[2,2]] ∈ PSDCone()

julia> @constraint(model, x >= y, Nonnegatives())
[x[1,1] - y[1,1] x[1,2] - y[1,2]
⋯ x[2,2] - y[2,2]] ∈ Nonnegatives()

julia> @constraint(model, x >= y, Nonpositives())
[x[1,1] - y[1,1] x[1,2] - y[1,2]
⋯ x[2,2] - y[2,2]] ∈ Nonpositives()
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julia> @constraint(model, x >= y, Zeros())
[x[1,1] - y[1,1] x[1,2] - y[1,2]
⋯ x[2,2] - y[2,2]] ∈ Zeros()

Special cases

There are two exceptions: if the result of the left-hand sideminus the right-hand side is a LinearAlgebra.Symmetric
matrix or a LinearAlgebra.Hermitian matrix, you may use the non-broadcasting equality syntax:

julia> using LinearAlgebra

julia> model = Model();

julia> @variable(model, X[1:2, 1:2], Symmetric)
2×2 Symmetric{VariableRef, Matrix{VariableRef}}:
X[1,1] X[1,2]
X[1,2] X[2,2]

julia> @constraint(model, X == LinearAlgebra.I)
[X[1,1] - 1 X[1,2]
⋯ X[2,2] - 1] ∈ Zeros()

This will add only three rows to the constraint matrix because the symmetric constraints are redundant. In
contrast, the broadcasting syntax adds four linear constraints:

julia> @constraint(model, X .== LinearAlgebra.I)
2×2 Matrix{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.EqualTo{Float64}}, ScalarShape}}:

↪→

↪→

X[1,1] = 1 X[1,2] = 0
X[1,2] = 0 X[2,2] = 1

The same holds for LinearAlgebra.Hermitian matrices:

julia> using LinearAlgebra

julia> model = Model();

julia> @variable(model, X[1:2, 1:2] in HermitianPSDCone())
2×2 Hermitian{GenericAffExpr{ComplexF64, VariableRef}, Matrix{GenericAffExpr{ComplexF64,

VariableRef}}}:↪→

real(X[1,1]) real(X[1,2]) + imag(X[1,2]) im
real(X[1,2]) - imag(X[1,2]) im real(X[2,2])

julia> @constraint(model, X == LinearAlgebra.I)
[real(X[1,1]) - 1 real(X[1,2]) + imag(X[1,2]) im
real(X[1,2]) - imag(X[1,2]) im real(X[2,2]) - 1] ∈ Zeros()

julia> @constraint(model, X .== LinearAlgebra.I)
2×2 Matrix{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{ComplexF64},
MathOptInterface.EqualTo{ComplexF64}}, ScalarShape}}:

↪→

↪→
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real(X[1,1]) = 1 real(X[1,2]) + imag(X[1,2]) im = 0
real(X[1,2]) - imag(X[1,2]) im = 0 real(X[2,2]) = 1

13.4 Containers of constraints

The @constraint macro supports creating collections of constraints. We'll cover some brief syntax here; read
the Constraint containers section for more details:

Create arrays of constraints:

julia> model = Model();

julia> @variable(model, x[1:3]);

julia> @constraint(model, c[i=1:3], x[i] <= i^2)
3-element Vector{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.LessThan{Float64}}, ScalarShape}}:

↪→

↪→

c[1] : x[1] ≤ 1
c[2] : x[2] ≤ 4
c[3] : x[3] ≤ 9

julia> c[2]
c[2] : x[2] ≤ 4

Sets can be any Julia type that supports iteration:

julia> model = Model();

julia> @variable(model, x[1:3]);

julia> @constraint(model, c[i=2:3, ["red", "blue"]], x[i] <= i^2)
2-dimensional DenseAxisArray{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.LessThan{Float64}}, ScalarShape},2,...} with index sets:

↪→

↪→

Dimension 1, 2:3
Dimension 2, ["red", "blue"]

And data, a 2×2 Matrix{ConstraintRef{Model,
MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.LessThan{Float64}}, ScalarShape}}:

↪→

↪→

c[2,red] : x[2] ≤ 4 c[2,blue] : x[2] ≤ 4
c[3,red] : x[3] ≤ 9 c[3,blue] : x[3] ≤ 9

julia> c[2, "red"]
c[2,red] : x[2] ≤ 4

Sets can depend upon previous indices:

julia> model = Model();

julia> @variable(model, x[1:3]);
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julia> @constraint(model, c[i=1:3, j=i:3], x[i] <= j)
JuMP.Containers.SparseAxisArray{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.LessThan{Float64}}, ScalarShape}, 2, Tuple{Int64, Int64}} with 6 entries:

↪→

↪→

[1, 1] = c[1,1] : x[1] ≤ 1
[1, 2] = c[1,2] : x[1] ≤ 2
[1, 3] = c[1,3] : x[1] ≤ 3
[2, 2] = c[2,2] : x[2] ≤ 2
[2, 3] = c[2,3] : x[2] ≤ 3
[3, 3] = c[3,3] : x[3] ≤ 3

and you can filter elements in the sets using the ; syntax:

julia> model = Model();

julia> @variable(model, x[1:9]);

julia> @constraint(model, c[i=1:9; mod(i, 3) == 0], x[i] <= i)
JuMP.Containers.SparseAxisArray{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.LessThan{Float64}}, ScalarShape}, 1, Tuple{Int64}} with 3 entries:

↪→

↪→

[3] = c[3] : x[3] ≤ 3
[6] = c[6] : x[6] ≤ 6
[9] = c[9] : x[9] ≤ 9

13.5 Registered constraints

When you create constraints, JuMP registers them inside the model using their corresponding symbol. Get a
registered name using model[:key]:

julia> model = Model()
A JuMP Model
├ solver: none
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none

julia> @variable(model, x)
x

julia> @constraint(model, my_c, 2x <= 1)
my_c : 2 x ≤ 1

julia> model
A JuMP Model
├ solver: none
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 1
├ num_constraints: 1
│ └ AffExpr in MOI.LessThan{Float64}: 1
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└ Names registered in the model
└ :my_c, :x

julia> model[:my_c] === my_c
true

13.6 Anonymous constraints

To reduce the likelihood of accidental bugs, and because JuMP registers constraints inside a model, creating
two constraints with the same name is an error:

julia> model = Model();

julia> @variable(model, x)
x

julia> @constraint(model, c, 2x <= 1)
c : 2 x ≤ 1

julia> @constraint(model, c, 2x <= 1)
ERROR: An object of name c is already attached to this model. If this

is intended, consider using the anonymous construction syntax, for example,
`x = @variable(model, [1:N], ...)` where the name of the object does
not appear inside the macro.

Alternatively, use `unregister(model, :c)` to first unregister
the existing name from the model. Note that this will not delete the
object; it will just remove the reference at `model[:c]`.

[...]

A common reason for encountering this error is adding constraints in a loop.

As a work-around, JuMP provides anonymous constraints. Create an anonymous constraint by omitting the
name argument:

julia> model = Model();

julia> @variable(model, x);

julia> c = @constraint(model, 2x <= 1)
2 x ≤ 1

Create a container of anonymous constraints by dropping the name in front of the [:

julia> model = Model();

julia> @variable(model, x[1:3]);

julia> c = @constraint(model, [i = 1:3], x[i] <= i)
3-element Vector{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.LessThan{Float64}}, ScalarShape}}:

↪→

↪→
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x[1] ≤ 1
x[2] ≤ 2
x[3] ≤ 3

13.7 Constraint names

In addition to the symbol that constraints are registered with, constraints have a String name that is used for
printing and writing to file formats.

Get and set the name of a constraint using name(::JuMP.ConstraintRef) and set_name(::JuMP.ConstraintRef,
::String):

julia> model = Model(); @variable(model, x);

julia> @constraint(model, con, x <= 1)
con : x ≤ 1

julia> name(con)
"con"

julia> set_name(con, "my_con_name")

julia> con
my_con_name : x ≤ 1

Override the default choice of name using the base_name keyword:

julia> model = Model(); @variable(model, x);

julia> con = @constraint(model, [i=1:2], x <= i, base_name = "my_con")
2-element Vector{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.LessThan{Float64}}, ScalarShape}}:

↪→

↪→

my_con[1] : x ≤ 1
my_con[2] : x ≤ 2

Note that names apply to each element of the container, not to the container of constraints:

julia> name(con[1])
"my_con[1]"

julia> set_name(con[1], "c")

julia> con
2-element Vector{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.LessThan{Float64}}, ScalarShape}}:

↪→

↪→

c : x ≤ 1
my_con[2] : x ≤ 2
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Tip

For some models, setting the string name of each constraint can take a non-trivial portion of the total
time required to build the model. Turn off String names by passing set_string_name = false to
@constraint:

julia> model = Model();

julia> @variable(model, x);

julia> @constraint(model, con, x <= 2, set_string_name = false)
x ≤ 2

See Disable string names for more information.

Retrieve a constraint by name

Retrieve a constraint from a model using constraint_by_name:

julia> constraint_by_name(model, "c")
c : x ≤ 1

If the name is not present, nothing will be returned:

julia> constraint_by_name(model, "bad_name")

You can only look up individual constraints using constraint_by_name. Something like this will not work:

julia> model = Model(); @variable(model, x);

julia> con = @constraint(model, [i=1:2], x <= i, base_name = "my_con")
2-element Vector{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.LessThan{Float64}}, ScalarShape}}:

↪→

↪→

my_con[1] : x ≤ 1
my_con[2] : x ≤ 2

julia> constraint_by_name(model, "my_con")

To look up a collection of constraints, do not use constraint_by_name. Instead, register them using the
model[:key] = value syntax:

julia> model = Model(); @variable(model, x);

julia> model[:con] = @constraint(model, [i=1:2], x <= i, base_name = "my_con")
2-element Vector{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.LessThan{Float64}}, ScalarShape}}:

↪→

↪→

my_con[1] : x ≤ 1
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my_con[2] : x ≤ 2

julia> model[:con]
2-element Vector{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.LessThan{Float64}}, ScalarShape}}:

↪→

↪→

my_con[1] : x ≤ 1
my_con[2] : x ≤ 2

13.8 String names, symbolic names, and bindings

It's common for new users to experience confusion relating to constraints. Part of the problem is the difference
between the name that a constraint is registered under and the String name used for printing.

Here's a summary of the differences:

• Constraints are created using @constraint.

• Constraints can be named or anonymous.

• Named constraints have the form @constraint(model, c, expr). For named constraints:

– The String name of the constraint is set to "c".

– A Julia variable c is created that binds c to the JuMP constraint.

– The name :c is registered as a key in the model with the value c.

• Anonymous constraints have the form c = @constraint(model, expr). For anonymous constraints:

– The String name of the constraint is set to "".

– You control the name of the Julia variable used as the binding.

– No name is registered as a key in the model.

• The base_name keyword can override the String name of the constraint.

• You can manually register names in the model via model[:key] = value.

Here's an example of the differences:

julia> model = Model();

julia> @variable(model, x)
x

julia> c_binding = @constraint(model, 2x <= 1, base_name = "c")
c : 2 x ≤ 1

julia> model
A JuMP Model
├ solver: none
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 1
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├ num_constraints: 1
│ └ AffExpr in MOI.LessThan{Float64}: 1
└ Names registered in the model
└ :x

julia> c
ERROR: UndefVarError: `c` not defined

julia> c_binding
c : 2 x ≤ 1

julia> name(c_binding)
"c"

julia> model[:c_register] = c_binding
c : 2 x ≤ 1

julia> model
A JuMP Model
├ solver: none
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 1
├ num_constraints: 1
│ └ AffExpr in MOI.LessThan{Float64}: 1
└ Names registered in the model
└ :c_register, :x

julia> model[:c_register]
c : 2 x ≤ 1

julia> model[:c_register] === c_binding
true

julia> c
ERROR: UndefVarError: `c` not defined

13.9 The @constraints macro

If you have many @constraint calls, use the @constraints macro to improve readability:

julia> model = Model();

julia> @variable(model, x);

julia> @constraints(model, begin
2x <= 1
c, x >= -1

end)
(2 x ≤ 1, c : x ≥ -1)

julia> print(model)
Feasibility
Subject to
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c : x ≥ -1
2 x ≤ 1

The @constraints macro returns a tuple of the constraints that were defined.

13.10 Duality

JuMP adopts the notion of conic duality from MathOptInterface. For linear programs, a feasible dual on a >=
constraint is nonnegative and a feasible dual on a <= constraint is nonpositive. If the constraint is an equality
constraint, it depends on which direction is binding.

Warning

JuMP's definition of duality is independent of the objective sense. That is, the sign of feasible duals
associated with a constraint depends on the direction of the constraint and not whether the problem is
maximization or minimization. This is a different convention from linear programming duality
in some common textbooks. If you have a linear program, and you want the textbook definition,
you probably want to use shadow_price and reduced_cost instead.

The dual value associated with a constraint in themost recent solution can be accessed using the dual function.
For example:

julia> model = Model(HiGHS.Optimizer);

julia> set_silent(model)

julia> @variable(model, x)
x

julia> @constraint(model, con, x <= 1)
con : x ≤ 1

julia> @objective(model, Min, -2x)
-2 x

julia> dual_status(model)
NO_SOLUTION::ResultStatusCode = 0

julia> optimize!(model)

julia> dual_status(model)
FEASIBLE_POINT::ResultStatusCode = 1

julia> dual(con)
-2.0

julia> @objective(model, Max, 2x)
2 x

julia> optimize!(model)

julia> dual_status(model)
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FEASIBLE_POINT::ResultStatusCode = 1

julia> dual(con)
-2.0

To help users who may be less familiar with conic duality, JuMP provides shadow_price, which returns a value
that can be interpreted as the improvement in the objective in response to an infinitesimal relaxation (on the
scale of one unit) in the right-hand side of the constraint. shadow_price can be used only on linear constraints
with a <=, >=, or == comparison operator.

In the example above, dual(con) returned -2.0 regardless of the optimization sense. However, in the second
case when the optimization sense is Max, shadow_price returns:

julia> shadow_price(con)
2.0

Duals of variable bounds

To query the dual variables associated with a variable bound, first obtain a constraint reference using one
of UpperBoundRef, LowerBoundRef, or FixRef, and then call dual on the returned constraint reference. The
reduced_cost function may simplify this process as it returns the shadow price of an active bound of a variable
(or zero, if no active bound exists).

julia> model = Model(HiGHS.Optimizer);

julia> set_silent(model)

julia> @variable(model, x <= 1)
x

julia> @objective(model, Min, -2x)
-2 x

julia> optimize!(model)

julia> dual(UpperBoundRef(x))
-2.0

julia> reduced_cost(x)
-2.0

13.11 Modify a constant term

This section explains how to modify the constant term in a constraint. There are multiple ways to achieve this
goal; we explain three options.

Option 1: change the right-hand side

Use set_normalized_rhs to modify the right-hand side (constant) term of a linear or quadratic constraint. Use
normalized_rhs to query the right-hand side term.
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julia> model = Model();

julia> @variable(model, x);

julia> @constraint(model, con, 2x <= 1)
con : 2 x ≤ 1

julia> set_normalized_rhs(con, 3)

julia> con
con : 2 x ≤ 3

julia> normalized_rhs(con)
3.0

Warning

set_normalized_rhs sets the right-hand side term of the normalized constraint. See Normalization
for more details.

Option 2: use fixed variables

If constraints are complicated, for example, they are composed of a number of components, each of which has
a constant term, then it may be difficult to calculate what the right-hand side term is in the standard form.

For this situation, JuMP includes the ability to fix variables to a value using the fix function. Fixing a variable
sets its lower and upper bound to the same value. Thus, changes in a constant term can be simulated by
adding a new variable and fixing it to different values. Here is an example:

julia> model = Model();

julia> @variable(model, x);

julia> @variable(model, const_term)
const_term

julia> @constraint(model, con, 2x <= const_term + 1)
con : 2 x - const_term ≤ 1

julia> fix(const_term, 1.0)

The constraint con is now equivalent to 2x <= 2.

Warning

Fixed variables are not replaced with constants when communicating the problem to a solver. There-
fore, even though const_term is fixed, it is still a decision variable, and so const_term * x is bilinear.
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Option 3: modify the function's constant term

The third option is to use add_to_function_constant. The constant given is added to the function of a func-in-
set constraint. In the following example, adding 2 to the function has the effect of removing 2 to the right-hand
side:

julia> model = Model();

julia> @variable(model, x);

julia> @constraint(model, con, 2x <= 1)
con : 2 x ≤ 1

julia> add_to_function_constant(con, 2)

julia> con
con : 2 x ≤ -1

julia> normalized_rhs(con)
-1.0

In the case of interval constraints, the constant is removed from each bound:

julia> model = Model();

julia> @variable(model, x);

julia> @constraint(model, con, 0 <= 2x + 1 <= 2)
con : 2 x ∈ [-1, 1]

julia> add_to_function_constant(con, 3)

julia> con
con : 2 x ∈ [-4, -2]

13.12 Modify a variable coefficient

Scalar constraints

To modify the coefficients for a linear term in a constraint, use set_normalized_coefficient. To query the
current coefficient, use normalized_coefficient.

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> @constraint(model, con, 2x[1] + x[2] <= 1)
con : 2 x[1] + x[2] ≤ 1

julia> set_normalized_coefficient(con, x[2], 0)

julia> con
con : 2 x[1] ≤ 1
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julia> normalized_coefficient(con, x[2])
0.0

To modify quadratic terms, pass two variables:

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> @constraint(model, con, x[1]^2 + x[1] * x[2] <= 1)
con : x[1]² + x[1]*x[2] ≤ 1

julia> set_normalized_coefficient(con, x[1], x[1], 2)

julia> set_normalized_coefficient(con, x[1], x[2], 3)

julia> con
con : 2 x[1]² + 3 x[1]*x[2] ≤ 1

julia> normalized_coefficient(con, x[1], x[1])
2.0

julia> normalized_coefficient(con, x[1], x[2])
3.0

Warning

set_normalized_coefficient sets the coefficient of the normalized constraint. See Normalization for
more details.

Vector constraints

To modify the coefficients of a vector-valued constraint, use set_normalized_coefficient.

julia> model = Model();

julia> @variable(model, x)
x

julia> @constraint(model, con, [2x + 3x, 4x] in MOI.Nonnegatives(2))
con : [5 x, 4 x] ∈ MathOptInterface.Nonnegatives(2)

julia> set_normalized_coefficient(con, x, [(1, 3.0)])

julia> con
con : [3 x, 4 x] ∈ MathOptInterface.Nonnegatives(2)

julia> set_normalized_coefficient(con, x, [(1, 2.0), (2, 5.0)])

julia> con
con : [2 x, 5 x] ∈ MathOptInterface.Nonnegatives(2)
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13.13 Delete a constraint

Use delete to delete a constraint from a model. Use is_valid to check if a constraint belongs to a model and
has not been deleted.

julia> model = Model();

julia> @variable(model, x);

julia> @constraint(model, con, 2x <= 1)
con : 2 x ≤ 1

julia> is_valid(model, con)
true

julia> delete(model, con)

julia> is_valid(model, con)
false

Deleting a constraint does not unregister the symbolic reference from the model. Therefore, creating a new
constraint of the same name will throw an error:

julia> @constraint(model, con, 2x <= 1)
ERROR: An object of name con is already attached to this model. If this

is intended, consider using the anonymous construction syntax, for example,
`x = @variable(model, [1:N], ...)` where the name of the object does
not appear inside the macro.

Alternatively, use `unregister(model, :con)` to first unregister
the existing name from the model. Note that this will not delete the
object; it will just remove the reference at `model[:con]`.

[...]

After calling delete, call unregister to remove the symbolic reference:

julia> unregister(model, :con)

julia> @constraint(model, con, 2x <= 1)
con : 2 x ≤ 1

Info

delete does not automatically unregister because we do not distinguish between names that are au-
tomatically registered by JuMP macros, and names that are manually registered by the user by setting
values in object_dictionary. In addition, deleting a constraint and then adding a new constraint of
the same name is an easy way to introduce bugs into your code.
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13.14 Start values

Provide a starting value (also called warmstart) for a constraint's primal and dual solutions using set_start_value
and set_dual_start_value.

Query the starting value for a constraint's primal and dual solution using start_value and dual_start_value.
If no start value has been set, the methods will return nothing.

julia> model = Model();

julia> @variable(model, x)
x

julia> @constraint(model, con, x >= 10)
con : x ≥ 10

julia> start_value(con)

julia> set_start_value(con, 10.0)

julia> start_value(con)
10.0

julia> dual_start_value(con)

julia> set_dual_start_value(con, 2)

julia> dual_start_value(con)
2.0

Vector-valued constraints require a vector:

julia> model = Model();

julia> @variable(model, x[1:3])
3-element Vector{VariableRef}:
x[1]
x[2]
x[3]

julia> @constraint(model, con, x in SecondOrderCone())
con : [x[1], x[2], x[3]] in MathOptInterface.SecondOrderCone(3)

julia> dual_start_value(con)

julia> set_dual_start_value(con, [1.0, 2.0, 3.0])

julia> dual_start_value(con)
3-element Vector{Float64}:
1.0
2.0
3.0
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Tip

To simplify setting start values for all variables and constraints in a model, see set_start_values. The
Primal and dual warm-starts tutorial also gives a detailed description of how to iterate over constraints
in the model to set custom start values.

13.15 Constraint containers

Like Variable containers, JuMP provides a mechanism for building groups of constraints compactly. References
to these groups of constraints are returned in containers. Three types of constraint containers are supported:
Arrays, DenseAxisArrays, and SparseAxisArrays. We explain each of these in the following.

Tip

You can read more about containers in the Containers section.

Arrays

One way of adding a group of constraints compactly is the following:

julia> model = Model();

julia> @variable(model, x);

julia> @constraint(model, con[i = 1:3], i * x <= i + 1)
3-element Vector{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.LessThan{Float64}}, ScalarShape}}:

↪→

↪→

con[1] : x ≤ 2
con[2] : 2 x ≤ 3
con[3] : 3 x ≤ 4

JuMP returns references to the three constraints in an Array that is bound to the Julia variable con. This array
can be accessed and sliced as you would with any Julia array:

julia> con[1]
con[1] : x ≤ 2

julia> con[2:3]
2-element Vector{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.LessThan{Float64}}, ScalarShape}}:

↪→

↪→

con[2] : 2 x ≤ 3
con[3] : 3 x ≤ 4

Anonymous containers can also be constructed by dropping the name (for example, con) before the square
brackets:
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julia> con = @constraint(model, [i = 1:2], i * x <= i + 1)
2-element Vector{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.LessThan{Float64}}, ScalarShape}}:

↪→

↪→

x ≤ 2
2 x ≤ 3

Just like @variable, JuMP will form an Array of constraints when it can determine at parse time that the indices
are one-based integer ranges. Therefore con[1:b] will create an Array, but con[a:b] will not. A special case
is con[Base.OneTo(n)] which will produce an Array. If JuMP cannot determine that the indices are one-based
integer ranges (for example, in the case of con[a:b]), JuMP will create a DenseAxisArray instead.

DenseAxisArrays

The syntax for constructing a DenseAxisArray of constraints is very similar to the syntax for constructing a
DenseAxisArray of variables.

julia> model = Model();

julia> @variable(model, x);

julia> @constraint(model, con[i = 1:2, j = 2:3], i * x <= j + 1)
2-dimensional DenseAxisArray{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.LessThan{Float64}}, ScalarShape},2,...} with index sets:

↪→

↪→

Dimension 1, Base.OneTo(2)
Dimension 2, 2:3

And data, a 2×2 Matrix{ConstraintRef{Model,
MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.LessThan{Float64}}, ScalarShape}}:

↪→

↪→

con[1,2] : x ≤ 3 con[1,3] : x ≤ 4
con[2,2] : 2 x ≤ 3 con[2,3] : 2 x ≤ 4

SparseAxisArrays

The syntax for constructing a SparseAxisArray of constraints is very similar to the syntax for constructing a
SparseAxisArray of variables.

julia> model = Model();

julia> @variable(model, x);

julia> @constraint(model, con[i = 1:2, j = 1:2; i != j], i * x <= j + 1)
JuMP.Containers.SparseAxisArray{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.LessThan{Float64}}, ScalarShape}, 2, Tuple{Int64, Int64}} with 2 entries:

↪→

↪→

[1, 2] = con[1,2] : x ≤ 3
[2, 1] = con[2,1] : 2 x ≤ 2
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Warning

If you have many index dimensions and a large amount of sparsity, read Performance considerations.

Forcing the container type

When creating a container of constraints, JuMP will attempt to choose the tightest container type that can
store the constraints. However, because this happens at parse time, it does not always make the best choice.
Just like in @variable, you can force the type of container using the container keyword. For syntax and the
reason behind this, take a look at the variable docs.

Constraints with similar indices

Containers are often used to create constraints over a set of indices. However, you'll often have cases in which
you are repeating the indices:

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> @variable(model, y[1:2]);

julia> @constraints(model, begin
[i=1:2, j=1:2, k=1:2], i * x[j] <= k
[i=1:2, j=1:2, k=1:2], i * y[j] <= k

end);

This is hard to read and leads to a lot of copy-paste. A more readable way is to use a for-loop:

julia> for i=1:2, j=1:2, k=1:2
@constraints(model, begin

i * x[j] <= k
i * y[j] <= k

end)
end

13.16 Accessing constraints from a model

Query the types of function-in-set constraints in a model using list_of_constraint_types:

julia> model = Model();

julia> @variable(model, x[i=1:2] >= i, Int);

julia> @constraint(model, x[1] + x[2] <= 1);

julia> list_of_constraint_types(model)
3-element Vector{Tuple{Type, Type}}:
(AffExpr, MathOptInterface.LessThan{Float64})
(VariableRef, MathOptInterface.GreaterThan{Float64})
(VariableRef, MathOptInterface.Integer)
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For a given combination of function and set type, use num_constraints to access the number of constraints
and all_constraints to access a list of their references:

julia> num_constraints(model, VariableRef, MOI.Integer)
2

julia> cons = all_constraints(model, VariableRef, MOI.Integer)
2-element Vector{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex, MathOptInterface.Integer},
ScalarShape}}:

↪→

↪→

x[1] integer
x[2] integer

You can also count the total number of constraints in the model, but you must explicitly choose whether to
count VariableRef constraints such as bound and integrality constraints:

julia> num_constraints(model; count_variable_in_set_constraints = true)
5

julia> num_constraints(model; count_variable_in_set_constraints = false)
1

The same also applies for all_constraints:

julia> all_constraints(model; include_variable_in_set_constraints = true)
5-element Vector{ConstraintRef}:
x[1] + x[2] ≤ 1
x[1] ≥ 1
x[2] ≥ 2
x[1] integer
x[2] integer

julia> all_constraints(model; include_variable_in_set_constraints = false)
1-element Vector{ConstraintRef}:
x[1] + x[2] ≤ 1

If you need finer-grained control on which constraints to include, use a variant of:

julia> sum(
num_constraints(model, F, S) for
(F, S) in list_of_constraint_types(model) if F != VariableRef

)
1

Use constraint_object to get an instance of an AbstractConstraint object that stores the constraint data:

julia> con = constraint_object(cons[1])
ScalarConstraint{VariableRef, MathOptInterface.Integer}(x[1], MathOptInterface.Integer())

julia> con.func
x[1]
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julia> con.set
MathOptInterface.Integer()

13.17 MathOptInterface constraints

Because JuMP is based on MathOptInterface, you can add any constraints supported by MathOptInterface using
the function-in-set syntax. For a list of supported functions and sets, read Standard form problem.

Note

We use MOI as an alias for the MathOptInterface module. This alias is defined by using JuMP. You
may also define it in your code as follows:

import MathOptInterface as MOI

For example, the following two constraints are equivalent:

julia> model = Model();

julia> @variable(model, x[1:3]);

julia> @constraint(model, 2 * x[1] <= 1)
2 x[1] ≤ 1

julia> @constraint(model, 2 * x[1] in MOI.LessThan(1.0))
2 x[1] ≤ 1

You can also use any set defined by MathOptInterface:

julia> @constraint(model, x - [1; 2; 3] in MOI.Nonnegatives(3))
[x[1] - 1, x[2] - 2, x[3] - 3] ∈ MathOptInterface.Nonnegatives(3)

julia> @constraint(model, x in MOI.ExponentialCone())
[x[1], x[2], x[3]] ∈ MathOptInterface.ExponentialCone()

Info

Similar to how JuMP defines the <= and >= syntax as a convenience way to specify MOI.LessThan and
MOI.GreaterThan constraints, the remaining sections in this page describe functions and syntax that
have been added for the convenience of common modeling situations.

13.18 Set inequality syntax

Formodeling convenience, the syntax @constraint(model, x >= y, Set()) is short-hand for @constraint(model,
x - y in Set()).
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Therefore, the following calls are equivalent:

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> y = [0.5, 0.75];

julia> @constraint(model, x >= y, MOI.Nonnegatives(2))
[x[1] - 0.5, x[2] - 0.75] ∈ MathOptInterface.Nonnegatives(2)

julia> @constraint(model, x - y in MOI.Nonnegatives(2))
[x[1] - 0.5, x[2] - 0.75] ∈ MathOptInterface.Nonnegatives(2)

Non-zero constants are not supported in this syntax:

julia> @constraint(model, x >= 1, MOI.Nonnegatives(2))
ERROR: Operation `sub_mul` between `Vector{VariableRef}` and `Int64` is not allowed. This most

often happens when you write a constraint like `x >= y` where `x` is an array and `y` is a
constant. Use the broadcast syntax `x .- y >= 0` instead.

↪→

↪→

Stacktrace:
[...]

Use instead:

julia> @constraint(model, x .- 1 >= 0, MOI.Nonnegatives(2))
[x[1] - 1, x[2] - 1] ∈ MathOptInterface.Nonnegatives(2)

Warning

The syntax @constraint(model, y <= x, Set()) is supported, but it is not recommended because
the value of the primal and dual solutions associated with the constraint may be the negative of what
you expect.

13.19 Second-order cone constraints

A SecondOrderCone constrains the variables t and x to the set:

||x||2 ≤ t,

and t ≥ 0. It can be added as follows:

julia> model = Model();

julia> @variable(model, t)
t
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julia> @variable(model, x[1:2])
2-element Vector{VariableRef}:
x[1]
x[2]

julia> @constraint(model, [t; x] in SecondOrderCone())
[t, x[1], x[2]] ∈ MathOptInterface.SecondOrderCone(3)

13.20 Rotated second-order cone constraints

A RotatedSecondOrderCone constrains the variables t, u, and x to the set:

||x||22 ≤ 2t · u

and t, u ≥ 0. It can be added as follows:

julia> model = Model();

julia> @variable(model, t)
t

julia> @variable(model, u)
u

julia> @variable(model, x[1:2])
2-element Vector{VariableRef}:
x[1]
x[2]

julia> @constraint(model, [t; u; x] in RotatedSecondOrderCone())
[t, u, x[1], x[2]] ∈ MathOptInterface.RotatedSecondOrderCone(4)

13.21 Special Ordered Sets of Type 1

In a Special Ordered Set of Type 1 (often denoted SOS-I or SOS1), at most one element can take a non-zero
value.

Construct SOS-I constraints using the SOS1 set:

julia> model = Model();

julia> @variable(model, x[1:3])
3-element Vector{VariableRef}:
x[1]
x[2]
x[3]

julia> @constraint(model, x in SOS1())
[x[1], x[2], x[3]] in MathOptInterface.SOS1{Float64}([1.0, 2.0, 3.0])
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Although not required for feasibility, solvers can benefit from an ordering of the variables (for example, the
variables represent different factories to build, at most one factory can be built, and the factories can be
ordered according to cost). To induce an ordering, a vector of weights can be provided, and the variables are
ordered according to their corresponding weight.

For example, in the constraint:

julia> @constraint(model, x in SOS1([3.1, 1.2, 2.3]))
[x[1], x[2], x[3]] in MathOptInterface.SOS1{Float64}([3.1, 1.2, 2.3])

the variables x have precedence x[2], x[3], x[1].

13.22 Special Ordered Sets of Type 2

In a Special Ordered Set of Type 2 (SOS-II), at most two elements can be non-zero, and if there are two non-
zeros, they must be consecutive according to the ordering induced by a weight vector.

Construct SOS-II constraints using the SOS2 set:

julia> @constraint(model, x in SOS2([3.0, 1.0, 2.0]))
[x[1], x[2], x[3]] in MathOptInterface.SOS2{Float64}([3.0, 1.0, 2.0])

The possible non-zero pairs are (x[1], x[3]) and (x[2], x[3]):

If the weight vector is omitted, JuMP induces an ordering from 1:length(x):

julia> @constraint(model, x in SOS2())
[x[1], x[2], x[3]] in MathOptInterface.SOS2{Float64}([1.0, 2.0, 3.0])

13.23 Indicator constraints

Indicator constraints consist of a binary variable and a linear constraint. The constraint holds when the binary
variable takes the value 1. The constraint may or may not hold when the binary variable takes the value 0.

To enforce the constraint x + y <= 1 when the binary variable a is 1, use:

julia> model = Model();

julia> @variable(model, x)
x

julia> @variable(model, y)
y

julia> @variable(model, a, Bin)
a

julia> @constraint(model, a --> {x + y <= 1})
a --> {x + y ≤ 1}

If the constraint must hold when a is zero, add ! or ¬ before the binary variable;
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julia> @constraint(model, !a --> {x + y <= 1})
!a --> {x + y ≤ 1}

Warning

You cannot use an expression for the left-hand side of an indicator constraint.

13.24 Semidefinite constraints

To constrain a matrix to be positive semidefinite (PSD), use PSDCone:

julia> model = Model();

julia> @variable(model, X[1:2, 1:2])
2×2 Matrix{VariableRef}:
X[1,1] X[1,2]
X[2,1] X[2,2]

julia> @constraint(model, X >= 0, PSDCone())
[X[1,1] X[1,2]
X[2,1] X[2,2]] ∈ PSDCone()

Tip

Where possible, prefer constructing a matrix of Semidefinite variables using the @variable macro,
rather than adding a constraint like @constraint(model, X >= 0, PSDCone()). In some solvers,
adding the constraint via @constraint is less efficient, and can result in additional intermediate vari-
ables and constraints being added to the model.

The inequality X >= Y between two square matrices X and Y is understood as constraining X - Y to be positive
semidefinite.

julia> Y = [1 2; 2 1]
2×2 Matrix{Int64}:
1 2
2 1

julia> @constraint(model, X >= Y, PSDCone())
[X[1,1] - 1 X[1,2] - 2
X[2,1] - 2 X[2,2] - 1] ∈ PSDCone()

Warning

The syntax @constraint(model, Y <= X, PSDCone()) is supported, but it is not recommended be-
cause the value of the primal and dual solutions associated with the constraint may be the negative
of what you expect.
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Symmetry

Solvers supporting PSD constraints usually expect to be given a matrix that is symbolically symmetric, that is,
for which the expression in corresponding off-diagonal entries are the same. In our example, the expressions
of entries (1, 2) and (2, 1) are respectively X[1,2] - 2 and X[2,1] - 2 which are different.

To bridge the gap between the constraint modeled and what the solver expects, solvers may add an equality
constraint X[1,2] - 2 == X[2,1] - 2 to force symmetry. Use LinearAlgebra.Symmetric to explicitly tell
the solver that the matrix is symmetric:

julia> import LinearAlgebra

julia> Z = [X[1, 1] X[1, 2]; X[1, 2] X[2, 2]]
2×2 Matrix{VariableRef}:
X[1,1] X[1,2]
X[1,2] X[2,2]

julia> @constraint(model, LinearAlgebra.Symmetric(Z) >= 0, PSDCone())
[X[1,1] X[1,2]
⋯ X[2,2]] ∈ PSDCone()

Note that the lower triangular entries are ignored even if they are different so use it with caution:

julia> @constraint(model, LinearAlgebra.Symmetric(X) >= 0, PSDCone())
[X[1,1] X[1,2]
⋯ X[2,2]] ∈ PSDCone()

(Note that no error is thrown, even though X is not symmetric.)

13.25 Complementarity constraints

A mixed complementarity constraint F(x) ⟂ x consists of finding x in the interval [lb, ub], such that the
following holds:

• F(x) == 0 if lb < x < ub

• F(x) >= 0 if lb == x

• F(x) <= 0 if x == ub

JuMP supports mixed complementarity constraints via complements(F(x), x) or F(x) ⟂ x in the @constraint
macro. The interval set [lb, ub] is obtained from the variable bounds on x.

For example, to define the problem 2x - 1 ⟂ x with x ∈ [0, ∞), do:

julia> model = Model();

julia> @variable(model, x >= 0)
x

julia> @constraint(model, 2x - 1 ⟂ x)
[2 x - 1, x] ∈ MathOptInterface.Complements(2)
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This problem has a unique solution at x = 0.5.

The perp operator ⟂ can be entered in most editors (and the Julia REPL) by typing \perp<tab>.

An alternative approach that does not require the ⟂ symbol uses the complements function as follows:

julia> @constraint(model, complements(2x - 1, x))
[2 x - 1, x] ∈ MathOptInterface.Complements(2)

In both cases, the mapping F(x) is supplied as the first argument, and the matching variable x is supplied as
the second.

Vector-valued complementarity constraints are also supported:

julia> @variable(model, -2 <= y[1:2] <= 2)
2-element Vector{VariableRef}:
y[1]
y[2]

julia> M = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4

julia> q = [5, 6]
2-element Vector{Int64}:
5
6

julia> @constraint(model, M * y + q ⟂ y)
[y[1] + 2 y[2] + 5, 3 y[1] + 4 y[2] + 6, y[1], y[2]] ∈ MathOptInterface.Complements(4)

13.26 Boolean constraints

Add a Boolean constraint (a MOI.EqualTo{Bool} set) using the := operator with a Bool right-hand side term:

julia> model = GenericModel{Bool}();

julia> @variable(model, x[1:2]);

julia> @constraint(model, x[1] || x[2] := true)
x[1] || x[2] = true

julia> @constraint(model, x[1] && x[2] := false)
x[1] && x[2] = false

julia> model
A JuMP Model
├ value_type: Bool
├ solver: none
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 2
├ num_constraints: 2
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│ └ GenericNonlinearExpr{GenericVariableRef{Bool}} in MOI.EqualTo{Bool}: 2
└ Names registered in the model
└ :x

Boolean constraints should not be added using the == operator because JuMP will rewrite the constraint as lhs
- rhs = 0, and because constraints like a == b == c require parentheses to disambiguate between (a ==
b) == c and a == (b == c). In contrast, a == b := c is equivalent to (a == b) := c:

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> rhs = false
false

julia> @constraint(model, (x[1] == x[2]) == rhs)
(x[1] == x[2]) - 0.0 = 0

julia> @constraint(model, x[1] == x[2] := rhs)
x[1] == x[2] = false
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Expressions

JuMP has three types of expressions: affine, quadratic, and nonlinear. These expressions can be inserted into
constraints or into the objective. This is particularly useful if an expression is used in multiple places in the
model.

14.1 Affine expressions

There are four ways of constructing an affine expression in JuMP: with the @expression macro, with operator
overloading, with the AffExpr constructor, and with add_to_expression!.

Macros

The recommended way to create an affine expression is via the @expression macro.

julia> model = Model();

julia> @variable(model, x)
x

julia> @variable(model, y)
y

julia> ex = @expression(model, 2x + y - 1)
2 x + y - 1

This expression can be used in the objective or added to a constraint. For example:

julia> @objective(model, Min, 2 * ex - 1)
4 x + 2 y - 3

julia> objective_function(model)
4 x + 2 y - 3

Just like variables and constraints, named expressions can also be created. For example

julia> model = Model();

630
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julia> @variable(model, x[i = 1:3]);

julia> @expression(model, expr[i = 1:3], i * sum(x[j] for j in i:3));

julia> expr
3-element Vector{AffExpr}:
x[1] + x[2] + x[3]
2 x[2] + 2 x[3]
3 x[3]

Tip

You can read more about containers in the Containers section.

Operator overloading

Expressions can also be created without macros. However, note that in some cases, this can be much slower
that constructing an expression using macros.

julia> model = Model();

julia> @variable(model, x)
x

julia> @variable(model, y)
y

julia> ex = 2x + y - 1
2 x + y - 1

Constructors

A third way to create an affine expression is by the AffExpr constructor. The first argument is the constant
term, and the remaining arguments are variable-coefficient pairs.

julia> model = Model();

julia> @variable(model, x)
x

julia> @variable(model, y)
y

julia> ex = AffExpr(-1.0, x => 2.0, y => 1.0)
2 x + y - 1
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add_to_expression!

The fourth way to create an affine expression is by using add_to_expression!. Compared to the operator over-
loading method, this approach is faster because it avoids constructing temporary objects. The @expression
macro uses add_to_expression! behind-the-scenes.

julia> model = Model();

julia> @variable(model, x)
x

julia> @variable(model, y)
y

julia> ex = AffExpr(-1.0)
-1

julia> add_to_expression!(ex, 2.0, x)
2 x - 1

julia> add_to_expression!(ex, 1.0, y)
2 x + y - 1

add_to_expression! can also be used to sum expressions in-place:

julia> model = Model();

julia> @variable(model, x[1:2])
2-element Vector{VariableRef}:
x[1]
x[2]

julia> @expression(model, ex1, sum(x))
x[1] + x[2]

julia> @expression(model, ex2, 2 * sum(x))
2 x[1] + 2 x[2]

julia> add_to_expression!(ex1, ex2)
3 x[1] + 3 x[2]

julia> ex1
3 x[1] + 3 x[2]

julia> ex2
2 x[1] + 2 x[2]

Warning

Read the section Initializing arrays for some cases to be careful about when using
add_to_expression!.
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Removing zero terms

Use drop_zeros! to remove terms from an affine expression with a 0 coefficient.

julia> model = Model();

julia> @variable(model, x)
x

julia> @expression(model, ex, x + 1 - x)
0 x + 1

julia> drop_zeros!(ex)

julia> ex
1

Coefficients

Use coefficient to return the coefficient associated with a variable in an affine expression.

julia> model = Model();

julia> @variable(model, x)
x

julia> @variable(model, y)
y

julia> @expression(model, ex, 2x + 1)
2 x + 1

julia> coefficient(ex, x)
2.0

julia> coefficient(ex, y)
0.0

14.2 Quadratic expressions

Like affine expressions, there are four ways of constructing a quadratic expression in JuMP: macros, operator
overloading, constructors, and add_to_expression!.

Macros

The @expression macro can be used to create quadratic expressions by including quadratic terms.

julia> model = Model();

julia> @variable(model, x)
x
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julia> @variable(model, y)
y

julia> ex = @expression(model, x^2 + 2 * x * y + y^2 + x + y - 1)
x² + 2 x*y + y² + x + y - 1

Operator overloading

Operator overloading can also be used to create quadratic expressions. The same performance warning (dis-
cussed in the affine expression section) applies.

julia> model = Model();

julia> @variable(model, x)
x

julia> @variable(model, y)
y

julia> ex = x^2 + 2 * x * y + y^2 + x + y - 1
x² + 2 x*y + y² + x + y - 1

Constructors

Quadratic expressions can also be created using the QuadExpr constructor. The first argument is an affine
expression, and the remaining arguments are pairs, where the first term is a JuMP.UnorderedPair and the
second term is the coefficient.

julia> model = Model();

julia> @variable(model, x)
x

julia> @variable(model, y)
y

julia> aff_expr = AffExpr(-1.0, x => 1.0, y => 1.0)
x + y - 1

julia> quad_expr = QuadExpr(
aff_expr,
UnorderedPair(x, x) => 1.0,
UnorderedPair(x, y) => 2.0,
UnorderedPair(y, y) => 1.0,

)
x² + 2 x*y + y² + x + y - 1

add_to_expression!

Finally, add_to_expression! can also be used to add quadratic terms.
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julia> model = Model();

julia> @variable(model, x)
x

julia> @variable(model, y)
y

julia> ex = QuadExpr(x + y - 1.0)
x + y - 1

julia> add_to_expression!(ex, 1.0, x, x)
x² + x + y - 1

julia> add_to_expression!(ex, 2.0, x, y)
x² + 2 x*y + x + y - 1

julia> add_to_expression!(ex, 1.0, y, y)
x² + 2 x*y + y² + x + y - 1

Warning

Read the section Initializing arrays for some cases to be careful about when using
add_to_expression!.

Removing zero terms

Use drop_zeros! to remove terms from a quadratic expression with a 0 coefficient.

julia> model = Model();

julia> @variable(model, x)
x

julia> @expression(model, ex, x^2 + x + 1 - x^2)
0 x² + x + 1

julia> drop_zeros!(ex)

julia> ex
x + 1

Coefficients

Use coefficient to return the coefficient associated with a pair of variables in a quadratic expression.

julia> model = Model();

julia> @variable(model, x)
x
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julia> @variable(model, y)
y

julia> @expression(model, ex, 2*x*y + 3*x)
2 x*y + 3 x

julia> coefficient(ex, x, y)
2.0

julia> coefficient(ex, x, x)
0.0

julia> coefficient(ex, y, x)
2.0

julia> coefficient(ex, x)
3.0

14.3 Nonlinear expressions

Nonlinear expressions in JuMP are represented by a NonlinearExpr object. See Nonlinear expressions in detail
for more details.

14.4 Initializing arrays

JuMP implements zero(AffExpr) and one(AffExpr) to support various functions in LinearAlgebra (for ex-
ample, accessing the off-diagonal of a Diagonal matrix).

julia> zero(AffExpr)
0

julia> one(AffExpr)
1

However, this can result in a subtle bug if you call add_to_expression! or the MutableArithmetics API on an
element created by zeros or ones:

julia> x = zeros(AffExpr, 2)
2-element Vector{AffExpr}:
0
0

julia> add_to_expression!(x[1], 1.1)
1.1

julia> x
2-element Vector{AffExpr}:
1.1
1.1

Notice how we modified x[1], but we also changed x[2]!

https://github.com/jump-dev/MutableArithmetics.jl
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This happened because zeros(AffExpr, 2) calls zero(AffExpr) once to obtain a zero element, and then
creates an appropriately sized array filled with the same element.

This also happens with broadcasting calls containing a conversion of 0 or 1:

julia> x = Vector{AffExpr}(undef, 2)
2-element Vector{AffExpr}:
#undef
#undef

julia> x .= 0
2-element Vector{AffExpr}:
0
0

julia> add_to_expression!(x[1], 1.1)
1.1

julia> x
2-element Vector{AffExpr}:
1.1
1.1

The recommended way to create an array of empty expressions is as follows:

julia> x = Vector{AffExpr}(undef, 2)
2-element Vector{AffExpr}:
#undef
#undef

julia> for i in eachindex(x)
x[i] = AffExpr(0.0)

end

julia> add_to_expression!(x[1], 1.1)
1.1

julia> x
2-element Vector{AffExpr}:
1.1
0

Alternatively, use non-mutating operation to avoid updating x[1] in-place:

julia> x = zeros(AffExpr, 2)
2-element Vector{AffExpr}:
0
0

julia> x[1] += 1.1
1.1

julia> x
2-element Vector{AffExpr}:
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1.1
0

Note that for large expressions this will be slower due to the allocation of additional temporary objects.
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Objectives

This page describes macros and functions related to linear and quadratic objective functions only, unless
otherwise indicated. For nonlinear objective functions, see Nonlinear Modeling.

15.1 Set a linear objective

Use the @objective macro to set a linear objective function.

Use Min to create a minimization objective:

julia> model = Model();

julia> @variable(model, x);

julia> @objective(model, Min, 2x + 1)
2 x + 1

Use Max to create a maximization objective:

julia> model = Model();

julia> @variable(model, x);

julia> @objective(model, Max, 2x + 1)
2 x + 1

15.2 Set a quadratic objective

Use the @objective macro to set a quadratic objective function.

Use ^2 to have a variable squared:

julia> model = Model();

julia> @variable(model, x);

julia> @objective(model, Min, x^2 + 2x + 1)
x² + 2 x + 1
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You can also have bilinear terms between variables:

julia> model = Model();

julia> @variable(model, x)
x

julia> @variable(model, y)
y

julia> @objective(model, Max, x * y + x + y)
x*y + x + y

15.3 Set a nonlinear objective

Use the @objective macro to set a nonlinear objective function:

julia> model = Model();

julia> @variable(model, x <= 1);

julia> @objective(model, Max, log(x))
log(x)

15.4 Query the objective function

Use objective_function to return the current objective function.

julia> model = Model();

julia> @variable(model, x);

julia> @objective(model, Min, 2x + 1)
2 x + 1

julia> objective_function(model)
2 x + 1

15.5 Evaluate the objective function at a point

Use value to evaluate an objective function at a point specifying values for variables.

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> @objective(model, Min, 2x[1]^2 + x[1] + 0.5*x[2])
2 x[1]² + x[1] + 0.5 x[2]
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julia> f = objective_function(model)
2 x[1]² + x[1] + 0.5 x[2]

julia> point = Dict(x[1] => 2.0, x[2] => 1.0);

julia> value(z -> point[z], f)
10.5

15.6 Query the objective sense

Use objective_sense to return the current objective sense.

julia> model = Model();

julia> @variable(model, x);

julia> @objective(model, Min, 2x + 1)
2 x + 1

julia> objective_sense(model)
MIN_SENSE::OptimizationSense = 0

15.7 Modify an objective

To modify an objective, call @objective with the new objective function.

julia> model = Model();

julia> @variable(model, x);

julia> @objective(model, Min, 2x)
2 x

julia> @objective(model, Max, -2x)
-2 x

Alternatively, use set_objective_function.

julia> model = Model();

julia> @variable(model, x);

julia> @objective(model, Min, 2x)
2 x

julia> new_objective = @expression(model, -2 * x)
-2 x

julia> set_objective_function(model, new_objective)
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15.8 Modify an objective coefficient

Use set_objective_coefficient to modify an objective coefficient.

julia> model = Model();

julia> @variable(model, x);

julia> @objective(model, Min, 2x)
2 x

julia> set_objective_coefficient(model, x, 3)

julia> objective_function(model)
3 x

Use set_objective_coefficient with two variables to modify a quadratic objective coefficient:

julia> model = Model();

julia> @variable(model, x);

julia> @variable(model, y);

julia> @objective(model, Min, x^2 + x * y)
x² + x*y

julia> set_objective_coefficient(model, x, x, 2)

julia> set_objective_coefficient(model, x, y, 3)

julia> objective_function(model)
2 x² + 3 x*y

15.9 Modify the objective sense

Use set_objective_sense to modify the objective sense.

julia> model = Model();

julia> @variable(model, x);

julia> @objective(model, Min, 2x)
2 x

julia> objective_sense(model)
MIN_SENSE::OptimizationSense = 0

julia> set_objective_sense(model, MAX_SENSE);

julia> objective_sense(model)
MAX_SENSE::OptimizationSense = 1
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Alternatively, call @objective and pass the existing objective function.

julia> model = Model();

julia> @variable(model, x);

julia> @objective(model, Min, 2x)
2 x

julia> @objective(model, Max, objective_function(model))
2 x

15.10 Remove an objective

To remove an objective function use set_objective_sense to set the sense to FEASIBILITY_SENSE:

julia> model = Model();

julia> @variable(model, x);

julia> @objective(model, Min, 2x);

julia> objective_function(model)
2 x

julia> set_objective_sense(model, FEASIBILITY_SENSE)

julia> objective_sense(model)
FEASIBILITY_SENSE::OptimizationSense = 2

julia> objective_function(model)
0

15.11 Set a vector-valued objective

Define a multi-objective optimization problem by passing a vector of objectives:

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> @objective(model, Min, [1 + x[1], 2 * x[2]])
2-element Vector{AffExpr}:
x[1] + 1
2 x[2]

julia> f = objective_function(model)
2-element Vector{AffExpr}:
x[1] + 1
2 x[2]
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Tip

The Multi-objective knapsack tutorial provides an example of solving amulti-objective integer program.

In most cases, multi-objective optimization solvers will return multiple solutions, corresponding to points on
the Pareto frontier. See Multiple solutions for information on how to query and work with multiple solutions.

Note that you must set a single objective sense, that is, you cannot have both minimization and maximization
objectives. Work around this limitation by choosing Min and negating any objectives you want to maximize:

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> @expression(model, obj1, 1 + x[1])
x[1] + 1

julia> @expression(model, obj2, 2 * x[1])
2 x[1]

julia> @objective(model, Min, [obj1, -obj2])
2-element Vector{AffExpr}:
x[1] + 1
-2 x[1]

Defining your objectives as expressions allows flexibility in how you can solve variations of the same problem,
with some objectives removed and constrained to be no worse that a fixed value.

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> @expression(model, obj1, 1 + x[1])
x[1] + 1

julia> @expression(model, obj2, 2 * x[1])
2 x[1]

julia> @expression(model, obj3, x[1] + x[2])
x[1] + x[2]

julia> @objective(model, Min, [obj1, obj2, obj3]) # Three-objective problem
3-element Vector{AffExpr}:
x[1] + 1
2 x[1]
x[1] + x[2]

julia> # optimize!(model), look at the solution, talk to stakeholders, then
# decide you want to solve a new problem where the third objective is
# removed and constrained to be better than 2.0.
nothing

julia> @objective(model, Min, [obj1, obj2]) # Two-objective problem
2-element Vector{AffExpr}:
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x[1] + 1
2 x[1]

julia> @constraint(model, obj3 <= 2.0)
x[1] + x[2] ≤ 2
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Containers

JuMP provides specialized containers similar to AxisArrays that enable multi-dimensional arrays with non-
integer indices.

These containers are created automatically by JuMP's macros. Each macro has the same basic syntax:

@macroname(model, name[key1=index1, index2; optional_condition], other stuff)

The containers are generated by the name[key1=index1, index2; optional_condition] syntax. Everything
else is specific to the particular macro.

Containers can be named, for example, name[key=index], or unnamed, for example, [key=index]. We call
unnamed containers anonymous.

We call the bits inside the square brackets and before the ; the index sets. The index sets can be named, for
example, [i = 1:4], or they can be unnamed, for example, [1:4].

We call the bit inside the square brackets and after the ; the condition. Conditions are optional.

In addition to the standard JuMP macros like @variable and @constraint, which construct containers of vari-
ables and constraints respectively, you can use Containers.@container to construct containers with arbitrary
elements.

We will use this macro to explain the three types of containers that are natively supported by JuMP: Array,
Containers.DenseAxisArray, and Containers.SparseAxisArray.

16.1 Array

An Array is created when the index sets are rectangular and the index sets are of the form 1:n.

julia> Containers.@container(x[i = 1:2, j = 1:3], (i, j))
2×3 Matrix{Tuple{Int64, Int64}}:
(1, 1) (1, 2) (1, 3)
(2, 1) (2, 2) (2, 3)

The result is a normal Julia Array, so you can do all the usual things.

Slicing

Arrays can be sliced

646

https://github.com/JuliaArrays/AxisArrays.jl


CHAPTER 16. CONTAINERS 647

julia> x[:, 1]
2-element Vector{Tuple{Int64, Int64}}:
(1, 1)
(2, 1)

julia> x[2, :]
3-element Vector{Tuple{Int64, Int64}}:
(2, 1)
(2, 2)
(2, 3)

Looping

Use eachindex to loop over the elements:

julia> for key in eachindex(x)
println(x[key])

end
(1, 1)
(2, 1)
(1, 2)
(2, 2)
(1, 3)
(2, 3)

Get the index sets

Use axes to obtain the index sets:

julia> axes(x)
(Base.OneTo(2), Base.OneTo(3))

Broadcasting

Broadcasting over an Array returns an Array

julia> swap(x::Tuple) = (last(x), first(x))
swap (generic function with 1 method)

julia> swap.(x)
2×3 Matrix{Tuple{Int64, Int64}}:
(1, 1) (2, 1) (3, 1)
(1, 2) (2, 2) (3, 2)

Tables

Use Containers.rowtable to convert the Array into a Tables.jl compatible Vector{<:NamedTuple}:

https://github.com/JuliaData/Tables.jl
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julia> table = Containers.rowtable(x; header = [:I, :J, :value])
6-element Vector{@NamedTuple{I::Int64, J::Int64, value::Tuple{Int64, Int64}}}:
(I = 1, J = 1, value = (1, 1))
(I = 2, J = 1, value = (2, 1))
(I = 1, J = 2, value = (1, 2))
(I = 2, J = 2, value = (2, 2))
(I = 1, J = 3, value = (1, 3))
(I = 2, J = 3, value = (2, 3))

Because it supports the Tables.jl interface, you can pass it to any function which accepts a table as input:

julia> import DataFrames;

julia> DataFrames.DataFrame(table)
6×3 DataFrame
Row │ I J value

│ Int64 Int64 Tuple…
─────┼──────────────────────

1 │ 1 1 (1, 1)
2 │ 2 1 (2, 1)
3 │ 1 2 (1, 2)
4 │ 2 2 (2, 2)
5 │ 1 3 (1, 3)
6 │ 2 3 (2, 3)

16.2 DenseAxisArray

A Containers.DenseAxisArray is created when the index sets are rectangular, but not of the form 1:n. The
index sets can be of any type.

julia> x = Containers.@container([i = 1:2, j = [:A, :B]], (i, j))
2-dimensional DenseAxisArray{Tuple{Int64, Symbol},2,...} with index sets:

Dimension 1, Base.OneTo(2)
Dimension 2, [:A, :B]

And data, a 2×2 Matrix{Tuple{Int64, Symbol}}:
(1, :A) (1, :B)
(2, :A) (2, :B)

Slicing

DenseAxisArrays can be sliced

julia> x[:, :A]
1-dimensional DenseAxisArray{Tuple{Int64, Symbol},1,...} with index sets:

Dimension 1, Base.OneTo(2)
And data, a 2-element Vector{Tuple{Int64, Symbol}}:
(1, :A)
(2, :A)

julia> x[1, :]

https://github.com/JuliaData/Tables.jl
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1-dimensional DenseAxisArray{Tuple{Int64, Symbol},1,...} with index sets:
Dimension 1, [:A, :B]

And data, a 2-element Vector{Tuple{Int64, Symbol}}:
(1, :A)
(1, :B)

Looping

Use eachindex to loop over the elements:

julia> for key in eachindex(x)
println(x[key])

end
(1, :A)
(2, :A)
(1, :B)
(2, :B)

Get the index sets

Use axes to obtain the index sets:

julia> axes(x)
(Base.OneTo(2), [:A, :B])

Broadcasting

Broadcasting over a DenseAxisArray returns a DenseAxisArray

julia> swap(x::Tuple) = (last(x), first(x))
swap (generic function with 1 method)

julia> swap.(x)
2-dimensional DenseAxisArray{Tuple{Symbol, Int64},2,...} with index sets:

Dimension 1, Base.OneTo(2)
Dimension 2, [:A, :B]

And data, a 2×2 Matrix{Tuple{Symbol, Int64}}:
(:A, 1) (:B, 1)
(:A, 2) (:B, 2)

Access internal data

Use Array(x) to copy the internal data array into a new Array:

julia> Array(x)
2×2 Matrix{Tuple{Int64, Symbol}}:
(1, :A) (1, :B)
(2, :A) (2, :B)
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To access the internal data without a copy, use x.data.

julia> x.data
2×2 Matrix{Tuple{Int64, Symbol}}:
(1, :A) (1, :B)
(2, :A) (2, :B)

Tables

Use Containers.rowtable to convert the DenseAxisArray into a Tables.jl compatible Vector{<:NamedTuple}:

julia> table = Containers.rowtable(x; header = [:I, :J, :value])
4-element Vector{@NamedTuple{I::Int64, J::Symbol, value::Tuple{Int64, Symbol}}}:
(I = 1, J = :A, value = (1, :A))
(I = 2, J = :A, value = (2, :A))
(I = 1, J = :B, value = (1, :B))
(I = 2, J = :B, value = (2, :B))

Because it supports the Tables.jl interface, you can pass it to any function which accepts a table as input:

julia> import DataFrames;

julia> DataFrames.DataFrame(table)
4×3 DataFrame
Row │ I J value

│ Int64 Symbol Tuple…
─────┼────────────────────────

1 │ 1 A (1, :A)
2 │ 2 A (2, :A)
3 │ 1 B (1, :B)
4 │ 2 B (2, :B)

Keyword indexing

If all axes are named, you can use keyword indexing:

julia> x[i = 2, j = :A]
(2, :A)

julia> x[i = :, j = :B]
1-dimensional DenseAxisArray{Tuple{Int64, Symbol},1,...} with index sets:

Dimension 1, Base.OneTo(2)
And data, a 2-element Vector{Tuple{Int64, Symbol}}:
(1, :B)
(2, :B)

16.3 SparseAxisArray

A Containers.SparseAxisArray is created when the index sets are non-rectangular. This occurs in two cir-
cumstances:

https://github.com/JuliaData/Tables.jl
https://github.com/JuliaData/Tables.jl
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An index depends on a prior index:

julia> Containers.@container([i = 1:2, j = i:2], (i, j))
JuMP.Containers.SparseAxisArray{Tuple{Int64, Int64}, 2, Tuple{Int64, Int64}} with 3 entries:
[1, 1] = (1, 1)
[1, 2] = (1, 2)
[2, 2] = (2, 2)

The [indices; condition] syntax is used:

julia> x = Containers.@container([i = 1:3, j = [:A, :B]; i > 1], (i, j))
JuMP.Containers.SparseAxisArray{Tuple{Int64, Symbol}, 2, Tuple{Int64, Symbol}} with 4 entries:
[2, A] = (2, :A)
[2, B] = (2, :B)
[3, A] = (3, :A)
[3, B] = (3, :B)

Here we have the index sets i = 1:3, j = [:A, :B], followed by ;, and then a condition, which evaluates
to true or false: i > 1.

Slicing

Slicing is supported:

julia> y = x[:, :B]
JuMP.Containers.SparseAxisArray{Tuple{Int64, Symbol}, 1, Tuple{Int64}} with 2 entries:
[2] = (2, :B)
[3] = (3, :B)

Looping

Use eachindex to loop over the elements:

julia> for key in eachindex(x)
println(x[key])

end
(2, :A)
(2, :B)
(3, :A)
(3, :B)

julia> for key in eachindex(y)
println(y[key])

end
(2, :B)
(3, :B)
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Warning

If you use a macro to construct a SparseAxisArray, then the iteration order is row-major, that is,
indices are varied from right to left. As an example, when iterating over x above, the j index is
iterated, keeping i constant. This order is in contrast to Base.Arrays, which iterate in column-major
order, that is, by varying indices from left to right.

Broadcasting

Broadcasting over a SparseAxisArray returns a SparseAxisArray

julia> swap(x::Tuple) = (last(x), first(x))
swap (generic function with 1 method)

julia> swap.(y)
JuMP.Containers.SparseAxisArray{Tuple{Symbol, Int64}, 1, Tuple{Int64}} with 2 entries:
[2] = (:B, 2)
[3] = (:B, 3)

Tables

Use Containers.rowtable to convert the SparseAxisArray into a Tables.jl compatible Vector{<:NamedTuple}:

julia> table = Containers.rowtable(x; header = [:I, :J, :value])
4-element Vector{@NamedTuple{I::Int64, J::Symbol, value::Tuple{Int64, Symbol}}}:
(I = 2, J = :A, value = (2, :A))
(I = 2, J = :B, value = (2, :B))
(I = 3, J = :A, value = (3, :A))
(I = 3, J = :B, value = (3, :B))

Because it supports the Tables.jl interface, you can pass it to any function which accepts a table as input:

julia> import DataFrames;

julia> DataFrames.DataFrame(table)
4×3 DataFrame
Row │ I J value

│ Int64 Symbol Tuple…
─────┼────────────────────────

1 │ 2 A (2, :A)
2 │ 2 B (2, :B)
3 │ 3 A (3, :A)
4 │ 3 B (3, :B)

Keyword indexing

If all axes are named, you can use keyword indexing:

https://github.com/JuliaData/Tables.jl
https://github.com/JuliaData/Tables.jl
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julia> x[i = 2, j = :A]
(2, :A)

julia> x[i = :, j = :B]
JuMP.Containers.SparseAxisArray{Tuple{Int64, Symbol}, 1, Tuple{Int64}} with 2 entries:
[2] = (2, :B)
[3] = (3, :B)

16.4 Forcing the container type

Pass container = T to use T as the container. For example:

julia> Containers.@container([i = 1:2, j = 1:2], i + j, container = Array)
2×2 Matrix{Int64}:
2 3
3 4

julia> Containers.@container([i = 1:2, j = 1:2], i + j, container = Dict)
Dict{Tuple{Int64, Int64}, Int64} with 4 entries:
(1, 2) => 3
(1, 1) => 2
(2, 2) => 4
(2, 1) => 3

You can also pass DenseAxisArray or SparseAxisArray.

16.5 How different container types are chosen

If the compiler can prove at compile time that the index sets are rectangular, and indexed by a compact set
of integers that start at 1, Containers.@container will return an array. This is the case if your index sets are
visible to the macro as 1:n:

julia> Containers.@container([i=1:3, j=1:5], i + j)
3×5 Matrix{Int64}:
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8

or an instance of Base.OneTo:

julia> set = Base.OneTo(3)
Base.OneTo(3)

julia> Containers.@container([i=set, j=1:5], i + j)
3×5 Matrix{Int64}:
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8
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If the compiler can prove that the index set is rectangular, but not necessarily of the form 1:n at compile time,
then a Containers.DenseAxisArray will be constructed instead:

julia> set = 1:3
1:3

julia> Containers.@container([i=set, j=1:5], i + j)
2-dimensional DenseAxisArray{Int64,2,...} with index sets:

Dimension 1, 1:3
Dimension 2, Base.OneTo(5)

And data, a 3×5 Matrix{Int64}:
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8

Info

What happened here? Although we know that set contains 1:3, at compile time the typeof(set)
is a UnitRange{Int}. Therefore, Julia can't prove that the range starts at 1 (it only finds this out at
runtime), and it defaults to a DenseAxisArray. The case where we explicitly wrote i = 1:3 worked
because the macro can "see" the 1 at compile time.

However, if you know that the indices do form an Array, you can force the container type with container =
Array:

julia> set = 1:3
1:3

julia> Containers.@container([i=set, j=1:5], i + j, container = Array)
3×5 Matrix{Int64}:
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8

Here's another example with something similar:

julia> a = 1
1

julia> Containers.@container([i=a:3, j=1:5], i + j)
2-dimensional DenseAxisArray{Int64,2,...} with index sets:

Dimension 1, 1:3
Dimension 2, Base.OneTo(5)

And data, a 3×5 Matrix{Int64}:
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8

julia> Containers.@container([i=1:a, j=1:5], i + j)
1×5 Matrix{Int64}:
2 3 4 5 6
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Finally, if the compiler cannot prove that the index set is rectangular, a Containers.SparseAxisArray will be
created.

This occurs when some indices depend on a previous one:

julia> Containers.@container([i=1:3, j=1:i], i + j)
JuMP.Containers.SparseAxisArray{Int64, 2, Tuple{Int64, Int64}} with 6 entries:
[1, 1] = 2
[2, 1] = 3
[2, 2] = 4
[3, 1] = 4
[3, 2] = 5
[3, 3] = 6

or if there is a condition on the index sets:

julia> Containers.@container([i = 1:5; isodd(i)], i^2)
JuMP.Containers.SparseAxisArray{Int64, 1, Tuple{Int64}} with 3 entries:
[1] = 1
[3] = 9
[5] = 25

The condition can depend on multiple indices, the only requirement is that it is an expression that returns true
or false:

julia> condition(i, j) = isodd(i) && iseven(j)
condition (generic function with 1 method)

julia> Containers.@container([i = 1:2, j = 1:4; condition(i, j)], i + j)
JuMP.Containers.SparseAxisArray{Int64, 2, Tuple{Int64, Int64}} with 2 entries:
[1, 2] = 3
[1, 4] = 5
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Solutions

This section of the manual describes how to access a solved solution to a problem. It uses the following model
as an example:

julia> begin
model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, x >= 0)
@variable(model, y[[:a, :b]] <= 1)
@objective(model, Max, -12x - 20y[:a])
@expression(model, my_expr, 6x + 8y[:a])
@constraint(model, my_expr >= 100)
@constraint(model, c1, 7x + 12y[:a] >= 120)
optimize!(model)
print(model)

end
Max -12 x - 20 y[a]
Subject to
6 x + 8 y[a] ≥ 100
c1 : 7 x + 12 y[a] ≥ 120
x ≥ 0
y[a] ≤ 1
y[b] ≤ 1

17.1 Check if an optimal solution exists

Use is_solved_and_feasible to check if the solver found an optimal solution:

julia> is_solved_and_feasible(model)
true

By default, is_solved_and_feasible returns true for both global and local optima. Pass allow_local =
false to check if the solver found a globally optimal solution:

julia> is_solved_and_feasible(model; allow_local = false)
true

656
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Pass dual = true to check if the solver found an optimal dual solution in addition to an optimal primal solution:

julia> is_solved_and_feasible(model; dual = true)
true

If this function returns false, use the functionsmentioned below like solution_summary, termination_status,
primal_status, and dual_status to understand what solution (if any) the solver found.

17.2 Solutions summary

solution_summary can be used for checking the summary of the optimization solutions.

julia> solution_summary(model)
solution_summary(; result = 1, verbose = false)
├ solver_name : HiGHS
├ Termination
│ ├ termination_status : OPTIMAL
│ ├ result_count : 1
│ ├ raw_status : kHighsModelStatusOptimal
│ └ objective_bound : -2.05143e+02
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : FEASIBLE_POINT
│ ├ objective_value : -2.05143e+02
│ ├ dual_objective_value : -2.05143e+02
│ └ relative_gap : 1.38546e-16
└ Work counters
├ solve_time (sec) : 5.93345e-04
├ simplex_iterations : 2
├ barrier_iterations : 0
└ node_count : -1

julia> solution_summary(model; verbose = true)
solution_summary(; result = 1, verbose = true)
├ solver_name : HiGHS
├ Termination
│ ├ termination_status : OPTIMAL
│ ├ result_count : 1
│ ├ raw_status : kHighsModelStatusOptimal
│ └ objective_bound : -2.05143e+02
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : FEASIBLE_POINT
│ ├ objective_value : -2.05143e+02
│ ├ dual_objective_value : -2.05143e+02
│ ├ relative_gap : 1.38546e-16
│ ├ value
│ │ ├ x : 1.54286e+01
│ │ ├ y[a] : 1.00000e+00
│ │ └ y[b] : 1.00000e+00
│ └ dual
│ └ c1 : 1.71429e+00
└ Work counters
├ solve_time (sec) : 5.93345e-04
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├ simplex_iterations : 2
├ barrier_iterations : 0
└ node_count : -1

17.3 Why did the solver stop?

Usetermination_status to understand why the solver stopped.

julia> termination_status(model)
OPTIMAL::TerminationStatusCode = 1

The MOI.TerminationStatusCode enum describes the full list of statuses that could be returned.

Common return values include OPTIMAL, LOCALLY_SOLVED, INFEASIBLE, DUAL_INFEASIBLE, and TIME_LIMIT.

Info

A return status of OPTIMAL means the solver found (and proved) a globally optimal solution. A return
status of LOCALLY_SOLVEDmeans the solver found a locally optimal solution (whichmay also be globally
optimal, but it could not prove so).

Warning

A return status of DUAL_INFEASIBLE does not guarantee that the primal is unbounded. When the dual
is infeasible, the primal is unbounded if there exists a feasible primal solution.

Use raw_status to get a solver-specific string explaining why the optimization stopped:

julia> raw_status(model)
"kHighsModelStatusOptimal"

17.4 Primal solutions

Primal solution status

Use primal_status to return an MOI.ResultStatusCode enum describing the status of the primal solution.

julia> primal_status(model)
FEASIBLE_POINT::ResultStatusCode = 1

Other common returns are NO_SOLUTION, and INFEASIBILITY_CERTIFICATE. The first means that the solver
doesn't have a solution to return, and the second means that the primal solution is a certificate of dual infea-
sibility (a primal unbounded ray).
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Objective values

The objective value of a solved problem can be obtained via objective_value. The best known bound on the
optimal objective value can be obtained via objective_bound. If the solver supports it, the value of the dual
objective can be obtained via dual_objective_value.

julia> objective_value(model)
-205.14285714285714

julia> objective_bound(model)
-205.1428571428571

julia> dual_objective_value(model)
-205.1428571428571

Primal solution values

If the solver has a primal solution to return, use value to access it:

julia> value(x)
15.428571428571429

Broadcast value over containers:

julia> value.(y)
1-dimensional DenseAxisArray{Float64,1,...} with index sets:

Dimension 1, [:a, :b]
And data, a 2-element Vector{Float64}:
1.0
1.0

value also works on expressions:

julia> value(my_expr)
100.57142857142857

and constraints:

julia> value(c1)
120.0

Info

Calling value on a constraint returns the constraint function evaluated at the solution.
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Unbounded rays

If the termination_status is DUAL_INFEASIBLE and primal_status is INFEASIBILITY_CERTIFICATE, then the
value is a certificate of dual infeasibility. If a feasible primal solution exists, the certificate is an unbounded ray
of the primal problem. The objective_value is the value of the objective, evaluated using the ray, excluding
any constant term. For more details, see Infeasibility certificates.

julia> using HiGHS

julia> model = Model(HiGHS.Optimizer);

julia> set_silent(model)

julia> set_attribute(model, "presolve", "off")

julia> @variable(model, x[1:2]);

julia> @objective(model, Max, sum(x) + 2.0);

julia> @constraint(model, 2 * x[1] + x[2] <= 0);

julia> optimize!(model)

julia> termination_status(model)
DUAL_INFEASIBLE::TerminationStatusCode = 3

julia> primal_status(model)
INFEASIBILITY_CERTIFICATE::ResultStatusCode = 4

julia> d = value.(x)
2-element Vector{Float64}:
-0.5
1.0

julia> objective_value(model)
0.5

17.5 Dual solutions

Dual solution status

Use dual_status to return an MOI.ResultStatusCode enum describing the status of the dual solution.

julia> dual_status(model)
FEASIBLE_POINT::ResultStatusCode = 1

Other common returns are NO_SOLUTION, and INFEASIBILITY_CERTIFICATE. The first means that the solver
doesn't have a solution to return, and the second means that the dual solution is a certificate of primal infea-
sibility (a dual unbounded ray).

Dual solution values

If the solver has a dual solution to return, use dual to access it:
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julia> dual(c1)
1.7142857142857142

Query the duals of variable bounds using LowerBoundRef, UpperBoundRef, and FixRef:

julia> dual(LowerBoundRef(x))
0.0

julia> dual.(UpperBoundRef.(y))
1-dimensional DenseAxisArray{Float64,1,...} with index sets:

Dimension 1, [:a, :b]
And data, a 2-element Vector{Float64}:
-0.5714285714285694
0.0

Warning

JuMP's definition of duality is independent of the objective sense. That is, the sign of feasible duals
associated with a constraint depends on the direction of the constraint and not whether the problem is
maximization or minimization. This is a different convention from linear programming duality
in some common textbooks. If you have a linear program, and you want the textbook definition,
you probably want to use shadow_price and reduced_cost instead.

julia> shadow_price(c1)
1.7142857142857142

julia> reduced_cost(x)
-0.0

julia> reduced_cost.(y)
1-dimensional DenseAxisArray{Float64,1,...} with index sets:

Dimension 1, [:a, :b]
And data, a 2-element Vector{Float64}:
0.5714285714285694
-0.0

Unbounded rays

If the termination_status is INFEASIBLE and dual_status is INFEASIBILITY_CERTIFICATE, then the dual
is a certificate of primal infeasibility. If a feasible dual solution exists, the certificate is an unbounded ray of
the dual problem. The dual_objective_value is the value of the dual objective, evaluated using the ray,
excluding any constant term. For more details, see Infeasibility certificates.

julia> using HiGHS

julia> model = Model(HiGHS.Optimizer);

julia> set_silent(model)
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julia> set_attribute(model, "presolve", "off")

julia> @variable(model, x[1:2] >= 0);

julia> @objective(model, Max, sum(x) + 0.5);

julia> @constraint(model, c, 2 * x[1] + x[2] <= -1);

julia> optimize!(model)

julia> termination_status(model)
INFEASIBLE::TerminationStatusCode = 2

julia> dual_status(model)
INFEASIBILITY_CERTIFICATE::ResultStatusCode = 4

julia> d_c = dual(c)
-1.0

julia> d_x = dual.(LowerBoundRef.(x))
2-element Vector{Float64}:
2.0
1.0

julia> dual_objective_value(model)
-1.0

17.6 Recommended workflow

You should always check whether the solver found a solution before calling solution functions like value or
objective_value.

A simple approach for small scripts and notebooks is to use is_solved_and_feasible:

julia> function solve_and_print_solution(model)
optimize!(model)
if !is_solved_and_feasible(model; dual = true)

error(
"""
The model was not solved correctly:
termination_status : $(termination_status(model))
primal_status : $(primal_status(model))
dual_status : $(dual_status(model))
raw_status : $(raw_status(model))
""",

)
end
println("Solution is optimal")
println(" objective value = ", objective_value(model))
println(" primal solution: x = ", value(x))
println(" dual solution: c1 = ", dual(c1))
return

end
solve_and_print_solution (generic function with 1 method)
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julia> solve_and_print_solution(model)
Solution is optimal
objective value = -205.14285714285714
primal solution: x = 15.428571428571429
dual solution: c1 = 1.7142857142857142

For code like libraries that should be more robust to the range of possible termination and result statuses, do
some variation of the following:

julia> function solve_and_print_solution(model)
optimize!(model)
status = termination_status(model)
if status in (OPTIMAL, LOCALLY_SOLVED)

println("Solution is optimal")
elseif status in (ALMOST_OPTIMAL, ALMOST_LOCALLY_SOLVED)

println("Solution is optimal to a relaxed tolerance")
elseif status == TIME_LIMIT

println(
"Solver stopped due to a time limit. If a solution is available, " *
"it may be suboptimal."

)
elseif status in (

ITERATION_LIMIT, NODE_LIMIT, SOLUTION_LIMIT, MEMORY_LIMIT,
OBJECTIVE_LIMIT, NORM_LIMIT, OTHER_LIMIT,

)
println(

"Solver stopped due to a limit. If a solution is available, it " *
"may be suboptimal."

)
elseif status in (INFEASIBLE, LOCALLY_INFEASIBLE)

println("The problem is primal infeasible")
elseif status == DUAL_INFEASIBLE

println(
"The problem is dual infeasible. If a primal feasible solution " *
"exists, the problem is unbounded. To check, set the objective " *
"to `@objective(model, Min, 0)` and re-solve. If the problem is " *
"feasible, the primal is unbounded. If the problem is " *
"infeasible, both the primal and dual are infeasible.",

)
elseif status == INFEASIBLE_OR_UNBOUNDED

println(
"The model is either infeasible or unbounded. Set the objective " *
"to `@objective(model, Min, 0)` and re-solve to disambiguate. If " *
"the problem was infeasible, it will still be infeasible. If the " *
"problem was unbounded, it will now have a finite optimal solution.",

)
else

println(
"The model was not solved correctly. The termination status is $status",

)
end
if primal_status(model) in (FEASIBLE_POINT, NEARLY_FEASIBLE_POINT)

println(" objective value = ", objective_value(model))
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println(" primal solution: x = ", value(x))
elseif primal_status(model) == INFEASIBILITY_CERTIFICATE

println(" primal certificate: x = ", value(x))
end
if dual_status(model) in (FEASIBLE_POINT, NEARLY_FEASIBLE_POINT)

println(" dual solution: c1 = ", dual(c1))
elseif dual_status(model) == INFEASIBILITY_CERTIFICATE

println(" dual certificate: c1 = ", dual(c1))
end
return

end
solve_and_print_solution (generic function with 1 method)

julia> solve_and_print_solution(model)
Solution is optimal
objective value = -205.14285714285714
primal solution: x = 15.428571428571429
dual solution: c1 = 1.7142857142857142

17.7 OptimizeNotCalled errors

Due to differences in how solvers cache solutions internally, modifying a model after calling optimize! will
reset the model into the OPTIMIZE_NOT_CALLED state. If you then attempt to query solution information, an
OptimizeNotCalled error will be thrown.

If you are iteratively querying solution information and modifying a model, query all the results first, then
modify the problem.

For example, instead of:

julia> model = Model(HiGHS.Optimizer);

julia> set_silent(model)

julia> @variable(model, x >= 0);

julia> optimize!(model)

julia> termination_status(model)
OPTIMAL::TerminationStatusCode = 1

julia> set_upper_bound(x, 1)

julia> x_val = value(x)
┌ Warning: The model has been modified since the last call to `optimize!` (or `optimize!` has not

been called yet). If you are iteratively querying solution information and modifying a model,
query all the results first, then modify the model.

↪→

↪→

└ @ JuMP ~/.julia/dev/JuMP/src/optimizer_interface.jl:1085
ERROR: OptimizeNotCalled()
Stacktrace:
[...]

julia> termination_status(model)
OPTIMIZE_NOT_CALLED::TerminationStatusCode = 0
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do

julia> model = Model(HiGHS.Optimizer);

julia> set_silent(model)

julia> @variable(model, x >= 0);

julia> optimize!(model);

julia> x_val = value(x)
0.0

julia> termination_status(model)
OPTIMAL::TerminationStatusCode = 1

julia> set_upper_bound(x, 1)

julia> set_lower_bound(x, x_val)

julia> termination_status(model)
OPTIMIZE_NOT_CALLED::TerminationStatusCode = 0

If you know that your particular solver supports querying solution information after modifications, you can use
direct_model to bypass the OPTIMIZE_NOT_CALLED state:

julia> model = direct_model(HiGHS.Optimizer());

julia> set_silent(model)

julia> @variable(model, x >= 0);

julia> optimize!(model)

julia> termination_status(model)
OPTIMAL::TerminationStatusCode = 1

julia> set_upper_bound(x, 1)

julia> x_val = value(x)
0.0

julia> set_lower_bound(x, x_val)

julia> termination_status(model)
OPTIMAL::TerminationStatusCode = 1

Warning

Be careful doing this. If your particular solver does not support querying solution information after
modification, it may silently return incorrect solutions or throw an error.
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17.8 Accessing attributes

MathOptInterface definesmanymodel attributes that can be queried. Some attributes can be directly accessed
by getter functions. These include:

• solve_time

• relative_gap

• simplex_iterations

• barrier_iterations

• node_count

17.9 Sensitivity analysis for LP

Given an LP problem and an optimal solution corresponding to a basis, we can question how much an objective
coefficient or standard form right-hand side coefficient (c.f., normalized_rhs) can change without violating
primal or dual feasibility of the basic solution.

Note that not all solvers compute the basis, and for sensitivity analysis, the solver interface must implement
MOI.ConstraintBasisStatus.

Tip

Read the Sensitivity analysis of a linear program for more information on sensitivity analysis.

To give a simple example, we could analyze the sensitivity of the optimal solution to the following (non-
degenerate) LP problem:

julia> begin
model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, x[1:2])
set_lower_bound(x[2], -0.5)
set_upper_bound(x[2], 0.5)
@constraint(model, c1, x[1] + x[2] <= 1)
@constraint(model, c2, x[1] - x[2] <= 1)
@objective(model, Max, x[1])
print(model)

end
Max x[1]
Subject to
c1 : x[1] + x[2] ≤ 1
c2 : x[1] - x[2] ≤ 1
x[2] ≥ -0.5
x[2] ≤ 0.5

To analyze the sensitivity of the problem we could check the allowed perturbation ranges of, for example, the
cost coefficients and the right-hand side coefficient of the constraint c1 as follows:
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julia> optimize!(model)

julia> value.(x)
2-element Vector{Float64}:
1.0
-0.0

julia> report = lp_sensitivity_report(model);

julia> x1_lo, x1_hi = report[x[1]]
(-1.0, Inf)

julia> println("The objective coefficient of x[1] could decrease by $(x1_lo) or increase by
$(x1_hi).")↪→

The objective coefficient of x[1] could decrease by -1.0 or increase by Inf.

julia> x2_lo, x2_hi = report[x[2]]
(-1.0, 1.0)

julia> println("The objective coefficient of x[2] could decrease by $(x2_lo) or increase by
$(x2_hi).")↪→

The objective coefficient of x[2] could decrease by -1.0 or increase by 1.0.

julia> c_lo, c_hi = report[c1]
(-1.0, 1.0)

julia> println("The RHS of c1 could decrease by $(c_lo) or increase by $(c_hi).")
The RHS of c1 could decrease by -1.0 or increase by 1.0.

The range associated with a variable is the range of the allowed perturbation of the corresponding objective
coefficient. Note that the current primal solution remains optimal within this range; however the correspond-
ing dual solution might change since a cost coefficient is perturbed. Similarly, the range associated with a
constraint is the range of the allowed perturbation of the corresponding right-hand side coefficient. In this
range the current dual solution remains optimal, but the optimal primal solution might change.

If the problem is degenerate, there are multiple optimal bases and hence these ranges might not be as intuitive
and seem too narrow, for example, a larger cost coefficient perturbation might not invalidate the optimality of
the current primal solution. Moreover, if a problem is degenerate, due to finite precision, it can happen that, for
example, a perturbation seems to invalidate a basis even though it doesn't (again providing too narrow ranges).
To prevent this, increase the atol keyword argument to lp_sensitivity_report. Note that this might make
the ranges too wide for numerically challenging instances. Thus, do not blindly trust these ranges, especially
not for highly degenerate or numerically unstable instances.

17.10 Conflicts

When the model you input is infeasible, some solvers can help you find the cause of this infeasibility by offering
a conflict, that is, a subset of the constraints that create this infeasibility. Depending on the solver, this can
also be called an IIS (irreducible inconsistent subsystem).

If supported by the solver, use compute_conflict! to trigger the computation of a conflict. Once this process
is finished, query the MOI.ConflictStatus attribute to check if a conflict was found.

If found, copy the IIS to a new model using copy_conflict, which you can then print or write to a file for easier
debugging:
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julia> using JuMP

julia> import Gurobi

julia> model = Model(Gurobi.Optimizer);

julia> set_silent(model)

julia> @variable(model, x >= 0)
x

julia> @constraint(model, c1, x >= 2)
c1 : x ≥ 2.0

julia> @constraint(model, c2, x <= 1)
c2 : x ≤ 1.0

julia> optimize!(model)

julia> compute_conflict!(model)

julia> if get_attribute(model, MOI.ConflictStatus()) == MOI.CONFLICT_FOUND
iis_model, _ = copy_conflict(model)
print(iis_model)

end
Feasibility
Subject to
c1 : x ≥ 2.0
c2 : x ≤ 1.0

If you needmore control over the list of constraints that appear in the conflict, iterate over the list of constraints
and query the MOI.ConstraintConflictStatus attribute:

julia> list_of_conflicting_constraints = ConstraintRef[]
ConstraintRef[]

julia> for (F, S) in list_of_constraint_types(model)
for con in all_constraints(model, F, S)

if get_attribute(con, MOI.ConstraintConflictStatus()) == MOI.IN_CONFLICT
push!(list_of_conflicting_constraints, con)

end
end

end

julia> list_of_conflicting_constraints
2-element Vector{ConstraintRef}:
c1 : x ≥ 2.0
c2 : x ≤ 1.0

17.11 Multiple solutions

Some solvers support returning multiple solutions. You can check how many solutions are available to query
using result_count.
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Functions for querying the solutions, for example, primal_status, dual_status, value, dual, and solution_summary
all take an additional keyword argument result which can be used to specify which result to return.

Warning

Even if termination_status is OPTIMAL, some of the returned solutions may be suboptimal. However,
if the solver found at least one optimal solution, then result = 1will always return an optimal solution.
Use objective_value to assess the quality of the remaining solutions.

julia> using JuMP

julia> import MultiObjectiveAlgorithms as MOA

julia> import HiGHS

julia> model = Model(() -> MOA.Optimizer(HiGHS.Optimizer));

julia> set_attribute(model, MOA.Algorithm(), MOA.Dichotomy())

julia> set_silent(model)

julia> @variable(model, x1 >= 0)
x1

julia> @variable(model, 0 <= x2 <= 3)
x2

julia> @objective(model, Min, [3x1 + x2, -x1 - 2x2])
2-element Vector{AffExpr}:
3 x1 + x2
-x1 - 2 x2

julia> @constraint(model, 3x1 - x2 <= 6)
3 x1 - x2 ≤ 6

julia> optimize!(model)

julia> solution_summary(model; result = 1)
solution_summary(; result = 1, verbose = false)
├ solver_name : MOA[algorithm=MultiObjectiveAlgorithms.Dichotomy, optimizer=HiGHS]
├ Termination
│ ├ termination_status : OPTIMAL
│ ├ result_count : 3
│ ├ raw_status : Solve complete. Found 3 solution(s)
│ └ objective_bound : [0.00000e+00,-9.00000e+00]
├ Solution (result = 1)
│ ├ primal_status : FEASIBLE_POINT
│ ├ dual_status : NO_SOLUTION
│ └ objective_value : [0.00000e+00,0.00000e+00]
└ Work counters
└ solve_time (sec) : 1.88589e-03

julia> for i in 1:result_count(model)
println("Solution $i")
println(" x = ", value.([x1, x2]; result = i))
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println(" obj = ", objective_value(model; result = i))
end

Solution 1
x = [0.0, 0.0]

obj = [0.0, 0.0]
Solution 2

x = [0.0, 3.0]
obj = [3.0, -6.0]
Solution 3

x = [3.0, 3.0]
obj = [12.0, -9.0]

Tip

The Multi-objective knapsack tutorial provides more examples of querying multiple solutions.

17.12 Checking feasibility of solutions

To check the feasibility of a primal solution, use primal_feasibility_report, which takes a model, a dictio-
nary mapping each variable to a primal solution value (defaults to the last solved solution), and a tolerance
atol (defaults to 0.0).

The function returns a dictionary which maps the infeasible constraint references to the distance between the
primal value of the constraint and the nearest point in the corresponding set. A point is classed as infeasible
if the distance is greater than the supplied tolerance atol.

julia> model = Model(HiGHS.Optimizer);

julia> set_silent(model)

julia> @variable(model, x >= 1, Int);

julia> @variable(model, y);

julia> @constraint(model, c1, x + y <= 1.95);

julia> point = Dict(x => 1.9, y => 0.06);

julia> primal_feasibility_report(model, point)
Dict{Any, Float64} with 2 entries:
x integer => 0.1
c1 : x + y ≤ 1.95 => 0.01

julia> primal_feasibility_report(model, point; atol = 0.02)
Dict{Any, Float64} with 1 entry:
x integer => 0.1

If the point is feasible, an empty dictionary is returned:

julia> primal_feasibility_report(model, Dict(x => 1.0, y => 0.0))
Dict{Any, Float64}()
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To use the primal solution from a solve, omit the point argument:

julia> optimize!(model)

julia> primal_feasibility_report(model; atol = 0.0)
Dict{Any, Float64}()

Calling primal_feasibility_reportwithout the point argument is useful when primal_status is FEASIBLE_POINT
or NEARLY_FEASIBLE_POINT, and you want to assess the solution quality.

Warning

To apply primal_feasibility_report to infeasible models, you must also provide a candidate point
(solvers generally do not provide one). To diagnose the source of infeasibility, see Conflicts.

Pass skip_mising = true to skip constraints which contain variables that are not in point:

julia> primal_feasibility_report(model, Dict(x => 2.1); skip_missing = true)
Dict{Any, Float64} with 1 entry:
x integer => 0.1

You can also use the functional form, where the first argument is a function that maps variables to their primal
values:

julia> optimize!(model)

julia> primal_feasibility_report(v -> value(v), model)
Dict{Any, Float64}()
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Solver-independent Callbacks

Some mixed-integer (linear, conic, and nonlinear) programming solvers offer the ability to modify the solve
process. Examples include changing branching decisions in branch-and-bound, adding custom cutting planes,
providing custom heuristics to find feasible solutions, or implementing on-demand separators to add new
constraints only when they are violated by the current solution (also known as lazy constraints).

While historically this functionality has been limited to solver-specific interfaces, JuMP provides solver-independent
support for three types of callbacks:

1. lazy constraints

2. user-cuts

3. heuristic solutions

Even though JuMP provides a solver-independent way of writing these three callbacks, you should not assume
that you will see identical behavior when running the same code on different solvers. For example, some solvers
may ignore user-cuts for various reasons, while other solvers may add every user-cut. Read the underlying
solver's callback documentation to understand details specific to each solver.

18.1 Available solvers

Solver-independent callback support is limited to a few solvers, including:

• CPLEX

• GLPK

• Gurobi

• SCIP (SCIP does not support lazy constraints).

• Xpress

Each solver listed above also provides a solver-dependent callback to provide access to the full range of solver-
specific features. Consult the solver's README for an example of how to use the solver-dependent callback.
This will require you to understand the C interface of the solver.
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https://github.com/jump-dev/CPLEX.jl
https://github.com/jump-dev/GLPK.jl
https://github.com/jump-dev/Gurobi.jl
https://github.com/scipopt/SCIP.jl
https://github.com/jump-dev/Xpress.jl
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18.2 Things you can and cannot do during solver-independent callbacks

There is a limited range of things you can do during a callback. Only use the functions and macros explicitly
stated in this page of the documentation, or in the Callbacks tutorial.

Using any other part of the JuMP API (for example, adding a constraint with @constraint or modifying a variable
bound with set_lower_bound) is undefined behavior, and your solver may throw an error, return an incorrect
solution, or result in a segfault that aborts Julia.

In each of the three solver-independent callbacks, there are two things you may query:

• callback_node_status returns an MOI.CallbackNodeStatusCode enum indicating if the current primal
solution is integer feasible.

• callback_value returns the current primal solution of a variable.

If you need to query any other information, use a solver-dependent callback instead. Each solver supporting a
solver-dependent callback has information on how to use it in the README of their GitHub repository.

You can only set each callback once. Calling set_attribute twice will over-write the earlier callback. In
addition, if you use a solver-independent callback, you cannot set a solver-dependent callback.

18.3 Lazy constraints

Lazy constraints are useful when the full set of constraints is too large to explicitly include in the initial for-
mulation. When a MIP solver reaches a new solution, for example with a heuristic or by solving a problem at
a node in the branch-and-bound tree, it will give the user the chance to provide constraints that would make
the current solution infeasible. For some more information about lazy constraints, see this blog post by Paul
Rubin.

A lazy constraint callback can be set using the following syntax:

julia> model = Model();

julia> @variable(model, x <= 10, Int)
x

julia> @objective(model, Max, x)
x

julia> function my_callback_function(cb_data)
status = callback_node_status(cb_data, model)
if status == MOI.CALLBACK_NODE_STATUS_FRACTIONAL

# `callback_value(cb_data, x)` is not integer (to some tolerance).
# If, for example, your lazy constraint generator requires an
# integer-feasible primal solution, you can add a `return` here.
return

elseif status == MOI.CALLBACK_NODE_STATUS_INTEGER
# `callback_value(cb_data, x)` is integer (to some tolerance).

else
@assert status == MOI.CALLBACK_NODE_STATUS_UNKNOWN
# `callback_value(cb_data, x)` might be fractional or integer.

end
x_val = callback_value(cb_data, x)
if x_val > 2 + 1e-6

https://orinanobworld.blogspot.com/2012/08/user-cuts-versus-lazy-constraints.html
https://orinanobworld.blogspot.com/2012/08/user-cuts-versus-lazy-constraints.html
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con = @build_constraint(x <= 2)
MOI.submit(model, MOI.LazyConstraint(cb_data), con)

end
return

end
my_callback_function (generic function with 1 method)

julia> set_attribute(model, MOI.LazyConstraintCallback(), my_callback_function)

Notes

• The lazy constraint callback may be called at fractional or integer nodes in the branch-and-bound tree.
Use callback_node_status to distinguish.

• There is no guarantee that the callback is called at every primal solution.

• The solvermay visit a point that was cut off by a previous lazy constraint, for example, because the earlier
lazy constraint was removed during presolve. If this happens, you must re-add the lazy constraint.

• Only add a lazy constraint if the primal solution violates the constraint. Adding the lazy constraint irre-
spective of feasibility may result in the solver returning an incorrect solution, or lead to many constraints
being added, slowing down the solution process. For example, instead of:

model = Model()
@variable(model, x <= 10, Int)
@objective(model, Max, x)
function bad_callback_function(cb_data)

con = @build_constraint(x <= 2)
MOI.submit(model, MOI.LazyConstraint(cb_data), con)
return

end

do

function good_callback_function(cb_data)
if callback_value(cb_data, x) > 2

con = @build_constraint(x <= 2)
MOI.submit(model, MOI.LazyConstraint(cb_data), con)

end
return

end
set_attribute(model, MOI.LazyConstraintCallback(), good_callback_function)

18.4 User cuts

User cuts, or simply cuts, provide a way for the user to tighten the LP relaxation using problem-specific knowl-
edge that the solver cannot or is unable to infer from the model. Just like with lazy constraints, when a MIP
solver reaches a new node in the branch-and-bound tree, it will give the user the chance to provide cuts to
make the current relaxed (fractional) solution infeasible in the hopes of obtaining an integer solution. For more
details about the difference between user cuts and lazy constraints see the aforementioned blog post.

A user-cut callback can be added using the following syntax:

https://orinanobworld.blogspot.com/2012/08/user-cuts-versus-lazy-constraints.html
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julia> model = Model();

julia> @variable(model, x <= 10.5, Int)
x

julia> @objective(model, Max, x)
x

julia> function my_callback_function(cb_data)
x_val = callback_value(cb_data, x)
con = @build_constraint(x <= floor(x_val))
MOI.submit(model, MOI.UserCut(cb_data), con)
return

end
my_callback_function (generic function with 1 method)

julia> set_attribute(model, MOI.UserCutCallback(), my_callback_function)

Notes

• User cutsmust not change the set of integer feasible solutions. Equivalently, user cuts can only remove
fractional solutions. If you add a cut that removes an integer solution (even one that is not optimal), the
solver may return an incorrect solution.

• The user-cut callback may be called at fractional nodes in the branch-and-bound tree. There is no
guarantee that the callback is called at every fractional primal solution.

18.5 Heuristic solutions

Integer programming solvers frequently include heuristics that run at the nodes of the branch-and-bound tree.
They aim to find integer solutions quicker than plain branch-and-bound would to tighten the bound, allowing
us to fathom nodes quicker and to tighten the integrality gap.

Some heuristics take integer solutions and explore their "local neighborhood" (for example, flipping binary
variables, fix some variables and solve a smaller MILP) and others take fractional solutions and attempt to
round them in an intelligent way.

You may want to add a heuristic of your own if you have some special insight into the problem structure that
the solver is not aware of, for example, you can consistently take fractional solutions and intelligently guess
integer solutions from them.

A heuristic solution callback can be added using the following syntax:

julia> model = Model();

julia> @variable(model, x <= 10.5, Int);

julia> @objective(model, Max, x);

julia> function my_callback_function(cb_data)
status = MOI.submit(

model,
MOI.HeuristicSolution(cb_data),
[x],
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# Heuristic solution by rounding down to nearest integer
Float64[floor(Int, callback_value(cb_data, x))],

)
println(

"I submitted a heuristic solution, and the status was: ",
status,

)
return

end
my_callback_function (generic function with 1 method)

julia> set_attribute(model, MOI.HeuristicCallback(), my_callback_function)

MOI.submit returns a MOI.HeuristicSolutionStatus enum that indicates whether the solver accepted the
solution. The possible return codes are:

• MOI.HEURISTIC_SOLUTION_ACCEPTED

• MOI.HEURISTIC_SOLUTION_REJECTED

• MOI.HEURISTIC_SOLUTION_UNKNOWN

Notes

• Some solvers may accept partial solutions. Others require a feasible integer solution for every variable.
If in doubt, provide a complete solution.

• The heuristic solution callback may be called at fractional nodes in the branch-and-bound tree. There is
no guarantee that the callback is called at every fractional primal solution.



Chapter 19

Complex number support

This page explains the complex-valued variables and constraints that JuMP supports. For a worked-example
using these features, read the Example: quantum state discrimination tutorial.

19.1 Complex-valued variables

Create a complex-valued variable using ComplexPlane:

julia> model = Model();

julia> @variable(model, x in ComplexPlane())
real(x) + imag(x) im

Note that x is not a VariableRef; instead, it is an affine expression with Complex{Float64}-valued coefficients:

julia> typeof(x)
GenericAffExpr{ComplexF64, VariableRef}

Behind the scenes, JuMP has created two real-valued variables, with names "real(x)" and "imag(x)":

julia> all_variables(model)
2-element Vector{VariableRef}:
real(x)
imag(x)

julia> name.(all_variables(model))
2-element Vector{String}:
"real(x)"
"imag(x)"

Use the real and imag functions on x to return a real-valued affine expression representing each variable:

julia> typeof(real(x))
AffExpr (alias for GenericAffExpr{Float64, GenericVariableRef{Float64}})

julia> typeof(imag(x))
AffExpr (alias for GenericAffExpr{Float64, GenericVariableRef{Float64}})
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To create an anonymous variable, use the set keyword argument:

julia> model = Model();

julia> x = @variable(model, set = ComplexPlane())
_[1] + _[2] im

19.2 Complex-valued variable and start values bounds

Because complex-valued variables lack a total ordering, the definition of a variable bound for a complex-valued
variable is ambiguous. If you pass a real- or complex-valued argument to keywords such as lower_bound,
upper_bound, and start_value, JuMP will apply the real and imaginary parts to the associated real-valued
variables.

julia> model = Model();

julia> @variable(
model,
x in ComplexPlane(),
lower_bound = 1.0,
upper_bound = 2.0 + 3.0im,
start = 4im,

)
real(x) + imag(x) im

julia> vars = all_variables(model)
2-element Vector{VariableRef}:
real(x)
imag(x)

julia> lower_bound.(vars)
2-element Vector{Float64}:
1.0
0.0

julia> upper_bound.(vars)
2-element Vector{Float64}:
2.0
3.0

julia> start_value.(vars)
2-element Vector{Float64}:
0.0
4.0

You can modify the bounds and start values by passing imag(x) or real(x) to the appropriate function:

julia> set_lower_bound(imag(x), 2)

julia> lower_bound(imag(x))
2.0
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julia> delete_upper_bound(real(x))

julia> has_upper_bound(real(x))
false

julia> set_start_value(imag(x), 3)

julia> start_value(imag(x))
3.0

19.3 Complex-valued equality constraints

JuMP reformulates complex-valued equality constraints into two real-valued constraints: one representing the
real part, and one representing the imaginary part. Thus, complex-valued equality constraints can be solved
any solver that supports the real-valued constraint type.

For example:

julia> model = Model(HiGHS.Optimizer);

julia> set_silent(model)

julia> @variable(model, x[1:2]);

julia> @constraint(model, (1 + 2im) * x[1] + 3 * x[2] == 4 + 5im)
(1 + 2im) x[1] + 3 x[2] = (4 + 5im)

julia> optimize!(model)

julia> value.(x)
2-element Vector{Float64}:
2.5
0.5

is equivalent to

julia> model = Model(HiGHS.Optimizer);

julia> set_silent(model)

julia> @variable(model, x[1:2]);

julia> @constraint(model, 1 * x[1] + 3 * x[2] == 4) # real component
x[1] + 3 x[2] = 4

julia> @constraint(model, 2 * x[1] == 5) # imag component
2 x[1] = 5

julia> optimize!(model)

julia> value.(x)
2-element Vector{Float64}:
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2.5
0.5

This also applies if the variables are complex-valued:

julia> model = Model(HiGHS.Optimizer);

julia> set_silent(model)

julia> @variable(model, x in ComplexPlane());

julia> @constraint(model, (1 + 2im) * x + 3 * x == 4 + 5im)
(4 + 2im) real(x) + (-2 + 4im) imag(x) = (4 + 5im)

julia> optimize!(model)

julia> value(x)
1.3 + 0.6000000000000001im

which is equivalent to

julia> model = Model(HiGHS.Optimizer);

julia> set_silent(model)

julia> @variable(model, x_real);

julia> @variable(model, x_imag);

julia> @constraint(model, x_real - 2 * x_imag + 3 * x_real == 4)
4 x_real - 2 x_imag = 4

julia> @constraint(model, x_imag + 2 * x_real + 3 * x_imag == 5)
2 x_real + 4 x_imag = 5

julia> optimize!(model)

julia> value(x_real) + value(x_imag) * im
1.3 + 0.6000000000000001im

19.4 Hermitian PSD Cones

JuMP supports creating matrices where are Hermitian.

julia> model = Model();

julia> @variable(model, H[1:3, 1:3] in HermitianPSDCone())
3×3 LinearAlgebra.Hermitian{GenericAffExpr{ComplexF64, VariableRef},

Matrix{GenericAffExpr{ComplexF64, VariableRef}}}:↪→

real(H[1,1]) … real(H[1,3]) + imag(H[1,3]) im
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real(H[1,2]) - imag(H[1,2]) im real(H[2,3]) + imag(H[2,3]) im
real(H[1,3]) - imag(H[1,3]) im real(H[3,3])

Behind the scenes, JuMP has created nine real-valued decision variables:

julia> all_variables(model)
9-element Vector{VariableRef}:
real(H[1,1])
real(H[1,2])
real(H[2,2])
real(H[1,3])
real(H[2,3])
real(H[3,3])
imag(H[1,2])
imag(H[1,3])
imag(H[2,3])

and a Vector{VariableRef}-in-MOI.HermitianPositiveSemidefiniteConeTriangle constraint:

julia> num_constraints(model, Vector{VariableRef}, MOI.HermitianPositiveSemidefiniteConeTriangle)
1

The MOI.HermitianPositiveSemidefiniteConeTriangle set can be efficiently bridged to MOI.PositiveSemidefiniteConeTriangle,
so it can be solved by any solver that supports PSD constraints.

Each element of H is an affine expression with Complex{Float64}-valued coefficients:

julia> typeof(H[1, 1])
GenericAffExpr{ComplexF64, VariableRef}

julia> typeof(H[2, 1])
GenericAffExpr{ComplexF64, VariableRef}

Start values

When setting the start value, you must be careful to set only the upper triangle of real variables, and the upper
triangle excluding the diagonal of imaginary variables:

julia> import LinearAlgebra

julia> function set_hermitian_start(
H::LinearAlgebra.Hermitian,
start::LinearAlgebra.Hermitian,

)
for j in 1:size(H, 2), i in 1:j

set_start_value(real(H[i, j]), real(start[i, j]))
if i < j

set_start_value(imag(H[i, j]), imag(start[i, j]))
end

end
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return
end

set_hermitian_start (generic function with 1 method)

julia> H0 = LinearAlgebra.Hermitian(
[1 (2+3im) (5+6im); (2-3im) 4 (7+8im); (5-6im) (7-8im) 9],

)
3×3 LinearAlgebra.Hermitian{Complex{Int64}, Matrix{Complex{Int64}}}:
1+0im 2+3im 5+6im
2-3im 4+0im 7+8im
5-6im 7-8im 9+0im

julia> set_hermitian_start(H, H0)

julia> start_value.(all_variables(model))
9-element Vector{Float64}:
1.0
2.0
4.0
5.0
7.0
9.0
3.0
6.0
8.0

19.5 Hermitian PSD constraints

The HermitianPSDCone can also be used in the @constraint macro:

julia> model = Model();

julia> @variable(model, x[1:2])
2-element Vector{VariableRef}:
x[1]
x[2]

julia> import LinearAlgebra

julia> H = LinearAlgebra.Hermitian([x[1] 1im; -1im -x[2]])
2×2 LinearAlgebra.Hermitian{GenericAffExpr{ComplexF64, VariableRef},

Matrix{GenericAffExpr{ComplexF64, VariableRef}}}:↪→

x[1] im
-im -x[2]

julia> @constraint(model, H in HermitianPSDCone())
[x[1] im
-im -x[2]] ∈ HermitianPSDCone()
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Note

The matrix H in H in HermitianPSDCone() must be a LinearAlgebra.Hermitian matrix type. A
build_constraint error will be thrown if the matrix is a different matrix type.



Chapter 20

Nonlinear Modeling

JuMP has support for nonlinear (convex and nonconvex) optimization problems. JuMP is able to automatically
provide exact, sparse second-order derivatives to solvers. This information can improve solver accuracy and
performance.

20.1 Set a nonlinear objective

Use @objective to set a nonlinear objective.

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> @objective(model, Min, exp(x[1]) - sqrt(x[2]))
exp(x[1]) - sqrt(x[2])

To modify a nonlinear objective, call @objective again.

20.2 Add a nonlinear constraint

Use @constraint to add a nonlinear constraint.

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> @constraint(model, exp(x[1]) <= 1)
exp(x[1]) - 1.0 ≤ 0

julia> @constraint(model, con[i = 1:2], 2^x[i] >= i)
2-element Vector{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarNonlinearFunction,
MathOptInterface.GreaterThan{Float64}}, ScalarShape}}:

↪→

↪→

con[1] : (2.0 ^ x[1]) - 1.0 ≥ 0
con[2] : (2.0 ^ x[2]) - 2.0 ≥ 0

Delete a nonlinear constraint using delete:

684
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julia> delete(model, con[1])

20.3 Add a parameter

Some solvers have explicit support for parameters, which are constants in the model that can be efficiently
updated between solves.

JuMP implements parameters by a decision variable constrained on creation to the Parameter set.

julia> model = Model();

julia> @variable(model, x);

julia> @variable(model, p[i = 1:2] in Parameter(i))
2-element Vector{VariableRef}:
p[1]
p[2]

julia> parameter_value(p[1])
1.0

julia> set_parameter_value(p[1], 3.5)

julia> @objective(model, Max, log(p[1] * x + p[2]))
log(p[1]*x + p[2])

See Parameters for more information on how to create and manage parameters.

Parameters are most useful when solving nonlinear models in a sequence:

julia> using JuMP, Ipopt

julia> model = Model(Ipopt.Optimizer);

julia> set_silent(model)

julia> @variable(model, x)
x

julia> @variable(model, p in Parameter(1.0))
p

julia> @objective(model, Min, (x - p)^2)
x² - 2 p*x + p²

julia> optimize!(model)

julia> value(x)
1.0

julia> set_parameter_value(p, 5.0)

julia> optimize!(model)
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julia> value(x)
5.0

Using parameters can be faster than creating a new model from scratch with updated data because JuMP is
able to avoid repeating a number of steps in processing the model before handing it off to the solver.

20.4 Create a nonlinear expression

Use @expression to create nonlinear expression objects:

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> expr = @expression(model, exp(x[1]) + sqrt(x[2]))
exp(x[1]) + sqrt(x[2])

julia> my_anon_expr = @expression(model, [i = 1:2], sin(x[i]))
2-element Vector{NonlinearExpr}:
sin(x[1])
sin(x[2])

julia> @expression(model, my_expr[i = 1:2], sin(x[i]))
2-element Vector{NonlinearExpr}:
sin(x[1])
sin(x[2])

A NonlinearExpr can be used in @objective, @constraint, and even nested in other @expressions.

julia> @objective(model, Min, expr^2 + 1)
((exp(x[1]) + sqrt(x[2])) ^ 2.0) + 1.0

julia> @constraint(model, [i = 1:2], my_expr[i] <= i)
2-element Vector{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarNonlinearFunction,
MathOptInterface.LessThan{Float64}}, ScalarShape}}:

↪→

↪→

sin(x[1]) - 1.0 ≤ 0
sin(x[2]) - 2.0 ≤ 0

julia> @expression(model, nested[i = 1:2], sin(my_expr[i]))
2-element Vector{NonlinearExpr}:
sin(sin(x[1]))
sin(sin(x[2]))

Use value to query the value of a nonlinear expression:

julia> set_start_value(x[1], 1.0)

julia> value(start_value, nested[1])
0.7456241416655579
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julia> sin(sin(1.0))
0.7456241416655579

20.5 Common subexpressions

JuMP does not perform common subexpression elimination. Instead, if you re-use an expression in multiple
places, JuMP will insert a copy of the expression.

JuMP's lack of common subexpression elimination is a common cause of performance problems, particularly
in nonlinear models with a pattern like sum(t / common_term for t in terms). One example is the logistic
loss:

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> @expression(model, expr, sum(exp.(x)))
0.0 + exp(x[2]) + exp(x[1])

julia> @objective(model, Min, sum(exp(x[i]) / expr for i in 1:2))
(exp(x[1]) / (0.0 + exp(x[2]) + exp(x[1]))) + (exp(x[2]) / (0.0 + exp(x[2]) + exp(x[1])))

In this model, JuMP will compute the value (and derivatives) of the denominator twice, without realizing that it
is the same expression.

As a work-around, create a new @variable and use an == @constraint to constrain the value of the variable
to the subexpression.

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> @variable(model, expr);

julia> @constraint(model, expr == sum(exp.(x)))
expr - (0.0 + exp(x[2]) + exp(x[1])) = 0

julia> @objective(model, Min, sum(exp(x[i]) / expr for i in 1:2))
(exp(x[1]) / expr) + (exp(x[2]) / expr)

The reason JuMP does not perform common subexpression elimination automatically is for simplicity, and
because there is a trade-off: for simple expressions, the extra complexity of detecting and merging common
subexpressions may outweigh the cost of computing them independently. Instead, we leave it to the user to
decide which expressions to extract as common subexpressions.

20.6 Automatic differentiation

JuMP computes first- and second-order derivatives using sparse reverse-mode automatic differentiation. For
details, see ReverseAD.

For a tutorial on how to construct and query the derivatives, see Computing Hessians

https://en.wikipedia.org/wiki/Common_subexpression_elimination
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20.7 Nonlinear expressions in detail

Nonlinear expressions in JuMP are represented by a NonlinearExpr object.

Constructors

Nonlinear expressions can be created using the NonlinearExpr constructors:

julia> model = Model();

julia> @variable(model, x);

julia> expr = NonlinearExpr(:sin, Any[x])
sin(x)

or via operator overloading:

julia> model = Model();

julia> @variable(model, x);

julia> expr = sin(x)
sin(x)

Supported arguments

Nonlinear expressions can contain a mix of numbers, AffExpr, QuadExpr, and other NonlinearExpr:

julia> model = Model();

julia> @variable(model, x);

julia> aff = x + 1;

julia> quad = x^2 + x;

julia> expr = cos(x) * sin(quad) + aff
(cos(x) * sin(x² + x)) + (x + 1)

Supported operators

The list of supported operators may vary between solvers. Given an optimizer, query the list of supported
operators using MOI.ListOfSupportedNonlinearOperators:

julia> import Ipopt

julia> import MathOptInterface as MOI

julia> MOI.get(Ipopt.Optimizer(), MOI.ListOfSupportedNonlinearOperators())
85-element Vector{Symbol}:
:+
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:-
:abs
:sqrt
:cbrt
:abs2
:inv
:log
:log10
:log2
�
:min
:max
:&&
:||
:<=
:(==)
:>=
:<
:>

In some univariate cases, the operator is defined in SpecialFunctions.jl. To use these functions, you must
explicitly import SpecialFunctions.jl

julia> import Ipopt

julia> op = MOI.get(Ipopt.Optimizer(), MOI.ListOfSupportedNonlinearOperators());

julia> :erfcx in op
true

julia> :dawson in op
true

julia> import SpecialFunctions

julia> model = Model();

julia> @variable(model, x)
x

julia> @expression(model, SpecialFunctions.erfcx(x))
erfcx(x)

julia> @expression(model, SpecialFunctions.dawson(x))
dawson(x)

Limitations

Some nonlinear expressions cannot be created via operator overloading. For example, to minimize the likeli-
hood of bugs in user-code, we have not overloaded comparisons such as < and >= between JuMP objects:

https://github.com/JuliaMath/SpecialFunctions.jl
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julia> model = Model();

julia> @variable(model, x);

julia> x < 1
ERROR: Cannot evaluate `<` between a variable and a number.
[...]

Instead, wrap the expression in the @expression macro:

julia> model = Model();

julia> @variable(model, x);

julia> expr = @expression(model, x < 1)
x < 1

For technical reasons, other operators that are not overloaded include ||, &&, and ifelse.

julia> model = Model();

julia> @variable(model, x);

julia> expr = @expression(model, ifelse(x < -1 || x >= 1, x^2, 0.0))
ifelse((x < -1) || (x >= 1), x², 0.0)

As an alternative, use the JuMP.op_ functions, which fallback to the various comparison and logical operators:

julia> model = Model();

julia> @variable(model, x);

julia> expr = op_ifelse(
op_or(op_strictly_less_than(x, -1), op_greater_than_or_equal_to(x, 1)),
x^2,
0.0,

)
ifelse((x < -1) || (x >= 1), x², 0.0)

The available functions are:

Fields

Each NonlinearExpr has two fields.

The .head field is a Symbol that represents the operator being called:

julia> expr.head
:sin
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JuMP function Julia function

op_ifelse ifelse
op_and &&
op_or ||
op_greater_than_or_equal_to >=
op_less_than_or_equal_to <=
op_equal_to ==
op_strictly_greater_than >
op_strictly_less_than <

The .args field is a Vector{Any} containing the arguments to the operator:

julia> expr.args
1-element Vector{Any}:
x

Forcing nonlinear expressions

The JuMP macros and operator overloading will preferentially build affine (GenericAffExpr) and quadratic
(GenericQuadExpr) expressions instead of GenericNonlinearExpr. For example:

julia> model = Model();

julia> @variable(model, x);

julia> f = (x - 0.1)^2
x² - 0.2 x + 0.010000000000000002

julia> typeof(f)
QuadExpr (alias for GenericQuadExpr{Float64, GenericVariableRef{Float64}})

To override this behavior, use the @force_nonlinear macro:

julia> g = @force_nonlinear((x - 0.1)^2)
(x - 0.1) ^ 2

julia> typeof(g)
NonlinearExpr (alias for GenericNonlinearExpr{GenericVariableRef{Float64}})

Warning

Use this macro only if necessary. See the docstring of @force_nonlinear for more details on when
you should use it.
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20.8 Function tracing

Nonlinear expressions can be constructed using function tracing. Function tracing is when you call a regular
Julia function with JuMP variables as arguments and the function builds a nonlinear expression via operator
overloading. For example:

julia> using JuMP

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> f(x::Vector{VariableRef}) = 2 * sin(x[1]^2) + sqrt(x[2])
f (generic function with 1 method)

julia> y = f(x)
(2.0 * sin(x[1]²)) + sqrt(x[2])

julia> typeof(y)
NonlinearExpr (alias for GenericNonlinearExpr{GenericVariableRef{Float64}})

julia> @objective(model, Max, f(x))
(2.0 * sin(x[1]²)) + sqrt(x[2])

Function tracing supports functions which return vectors or arrays of NonlinearExpr:

julia> using JuMP

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> f(x::Vector{VariableRef}) = sqrt.(x)
f (generic function with 1 method)

julia> y = f(x)
2-element Vector{NonlinearExpr}:
sqrt(x[1])
sqrt(x[2])

julia> typeof(y)
Vector{NonlinearExpr} (alias for Array{GenericNonlinearExpr{GenericVariableRef{Float64}}, 1})

julia> @constraint(model, f(x) .<= 2)
2-element Vector{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarNonlinearFunction,
MathOptInterface.LessThan{Float64}}, ScalarShape}}:

↪→

↪→

sqrt(x[1]) - 2.0 ≤ 0
sqrt(x[2]) - 2.0 ≤ 0

julia> @objective(model, Max, sum(f(x)))
0.0 + sqrt(x[2]) + sqrt(x[1])

Because function tracing uses operator overloading, there are many functions for which it will not work. For
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example:

julia> using JuMP

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> f(x::Vector{VariableRef}) = x[1] > 1 ? 0 : x[2]
f (generic function with 1 method)

julia> f(x)
ERROR: Cannot evaluate `>` between a variable and a number.
[...]

In these cases, you should define a User-defined operator using the @operator macro.

20.9 User-defined operators

In addition to a standard list of univariate and multivariate operators recognized by the MOI.Nonlinear sub-
module, JuMP supports user-defined operators, which let you represent nonlinear functions that cannot (or
should not) be traced, for example, because they rely on non-Julia subroutines.

Warning

User-defined operators must return a scalar output. For a work-around, see User-defined operators
with vector outputs.

Add an operator

Add a user-defined operator using the @operator macro:

julia> using JuMP

julia> square(x) = x^2
square (generic function with 1 method)

julia> f(x, y) = (x - 1)^2 + (y - 2)^2
f (generic function with 1 method)

julia> model = Model();

julia> @operator(model, op_square, 1, square)
NonlinearOperator(square, :op_square)

julia> @operator(model, op_f, 2, f)
NonlinearOperator(f, :op_f)

julia> @variable(model, x[1:2]);

julia> @objective(model, Min, op_f(x[1], op_square(x[2])))
op_f(x[1], op_square(x[2]))
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The arguments to @operator are:

1. The model to which the operator is added.

2. A Julia symbol object which serves as the name of the user-defined operator in JuMP expressions. This
name must not be the same as that of the function.

3. The number of scalar input arguments that the function takes.

4. A Julia method which computes the function.

Warning

User-defined operators cannot be deleted.

You can obtain a reference to the operator using the model[:key] syntax:

julia> using JuMP

julia> square(x) = x^2
square (generic function with 1 method)

julia> model = Model();

julia> @operator(model, op_square, 1, square)
NonlinearOperator(square, :op_square)

julia> op_square_2 = model[:op_square]
NonlinearOperator(square, :op_square)

Automatic differentiation

JuMP computes first- and second-order derivatives of expressions using ReverseAD, which implements sparse
reverse-mode automatic differentiation. However, because ReverseAD requires the algebraic expression as
input, JuMP cannot use ReverseAD to differentiate user-defined operators.

Instead, unless Gradients and Hessians are explicitly provided, user-defined operators must support automatic
differentiation by ForwardDiff.jl.

The use of FowardDiff.jl has two important implications:

1. ForwardDiff.jl supports only a limited subset of Julia. If you encounter an error adding the operator, see
Common mistakes when writing a user-defined operator.

2. Differentiating operators with many arguments is slow. In general, you should try to keep the number
of arguments to less than 100, and ideally, to less than 10.

Because of the use of ForwardDiff, in most cases, you should prefer to use function tracing instead of defining
a user-defined operator.

https://github.com/JuliaDiff/ForwardDiff.jl
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Add an operator without macros

The @operator macro is syntactic sugar for add_nonlinear_operator. Thus, the non-macro version of the
preceding example is:

julia> using JuMP

julia> square(x) = x^2
square (generic function with 1 method)

julia> f(x, y) = (x - 1)^2 + (y - 2)^2
f (generic function with 1 method)

julia> model = Model();

julia> op_square = add_nonlinear_operator(model, 1, square; name = :op_square)
NonlinearOperator(square, :op_square)

julia> model[:op_square] = op_square
NonlinearOperator(square, :op_square)

julia> op_f = add_nonlinear_operator(model, 2, f; name = :op_f)
NonlinearOperator(f, :op_f)

julia> model[:op_f] = op_f
NonlinearOperator(f, :op_f)

julia> @variable(model, x[1:2]);

julia> @objective(model, Min, op_f(x[1], op_square(x[2])))
op_f(x[1], op_square(x[2]))

Operators with the same name as an existing function

A common error encountered is the following:

julia> using JuMP

julia> model = Model();

julia> f(x) = x^2
f (generic function with 1 method)

julia> @operator(model, f, 1, f)
ERROR: Unable to add the nonlinear operator `:f` with the same name as
an existing function.
[...]

This error occurs because @operator(model, f, 1, f) is equivalent to:

julia> f = add_nonlinear_operator(model, 1, f; name = :f)

but f already exists as a Julia function.
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If you evaluate the function without adding it as an operator, JuMP will trace the function using operator over-
loading:

julia> @variable(model, x);

julia> f(x)
x²

To force JuMP to treat f as a user-defined operator and not trace it, add the operator using add_nonlinear_operator
and define a new method which manually creates a NonlinearExpr:

julia> _ = add_nonlinear_operator(model, 1, f; name = :f)
NonlinearOperator(f, :f)

julia> f(x::AbstractJuMPScalar) = NonlinearExpr(:f, Any[x])
f (generic function with 2 methods)

julia> @expression(model, log(f(x)))
log(f(x))

Gradients and Hessians

By default, JuMP will use automatic differentiation to compute the gradient and Hessian of user-defined oper-
ators. If your function is not amenable to the default automatic differentiation, or you can compute analytic
derivatives, you may pass additional arguments to @operator to compute the first- and second-derivatives.

Tip

The tutorial Automatic differentiation of user-defined operators has examples of how to use third-party
Julia packages to compute automatic derivatives.

Univariate functions

For univariate functions, a gradient function ∇f returns a number that represents the first-order derivative. You
may, in addition, pass a third function which returns a number representing the second-order derivative:

julia> using JuMP

julia> f(x) = x^2
f (generic function with 1 method)

julia> ∇f(x) = 2x
∇f (generic function with 1 method)

julia> ∇²f(x) = 2
∇²f (generic function with 1 method)

julia> model = Model();

julia> @operator(model, op_f, 1, f, ∇f, ∇²f) # Providing ∇²f is optional
NonlinearOperator(f, :op_f)
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julia> @variable(model, x)
x

julia> @objective(model, Min, op_f(x))
op_f(x)

Multivariate functions

For multivariate functions, the gradient function ∇f must take an AbstractVector as the first argument that
is filled in-place. The Hessian function, ∇²f, must take an AbstractMatrix as the first argument, the lower-
triangular of which is filled in-place:

julia> using JuMP

julia> f(x...) = (1 - x[1])^2 + 100 * (x[2] - x[1]^2)^2
f (generic function with 1 method)

julia> function ∇f(g::AbstractVector{T}, x::T...) where {T}
g[1] = 400 * x[1]^3 - 400 * x[1] * x[2] + 2 * x[1] - 2
g[2] = 200 * (x[2] - x[1]^2)
return

end
∇f (generic function with 1 method)

julia> function ∇²f(H::AbstractMatrix{T}, x::T...) where {T}
H[1, 1] = 1200 * x[1]^2 - 400 * x[2] + 2
# H[1, 2] = -400 * x[1] <-- Not needed. Fill the lower-triangular only.
H[2, 1] = -400 * x[1]
H[2, 2] = 200.0
return

end
∇²f (generic function with 1 method)

julia> model = Model();

julia> @operator(model, rosenbrock, 2, f, ∇f, ∇²f) # Providing ∇²f is optional
NonlinearOperator(f, :rosenbrock)

julia> @variable(model, x[1:2])
2-element Vector{VariableRef}:
x[1]
x[2]

julia> @objective(model, Min, rosenbrock(x[1], x[2]))
rosenbrock(x[1], x[2])

You may assume the Hessian matrix H is initialized with zeros, and because H is symmetric, you need only
to fill in the non-zero lower-triangular terms. The matrix type passed in as H depends on the automatic dif-
ferentiation system, so make sure the first argument to the Hessian function supports an AbstractMatrix (it
may be something other than Matrix{Float64}). Moreover, you may assume only that H supports size(H)
and setindex!. Finally, the matrix is treated as dense, so the performance will be poor on functions with
high-dimensional input.
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User-defined operators with vector inputs

User-defined operators which take vectors as input arguments (for example, f(x::Vector)) are not supported.
Instead, use Julia's splatting syntax to create a function with scalar arguments. For example, instead of:

f(x::Vector) = sum(x[i]^i for i in 1:length(x))

define:

f(x...) = sum(x[i]^i for i in 1:length(x))

Another approach is to define the splatted function as an anonymous function:

julia> using JuMP

julia> model = Model();

julia> @variable(model, x[1:5])
5-element Vector{VariableRef}:
x[1]
x[2]
x[3]
x[4]
x[5]

julia> f(x::Vector) = sum(x[i]^i for i in 1:length(x))
f (generic function with 1 method)

julia> @operator(model, op_f, 5, (x...) -> f(collect(x)))
NonlinearOperator(#6, :op_f)

julia> @objective(model, Min, op_f(x...))
op_f(x[1], x[2], x[3], x[4], x[5])

If the operator takes several vector inputs, write a function that takes the splatted arguments and reconstructs
the required vector inputs:

julia> using JuMP

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> @variable(model, y[1:2]);

julia> @variable(model, z);

julia> f(x::Vector, y::Vector, z) = sum((x[i] * y[i])^z for i in 1:2)
f (generic function with 1 method)

julia> f(x, y, z)
((x[1]*y[1]) ^ z) + ((x[2]*y[2]) ^ z)
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julia> f_splat(args...) = f(collect(args[1:2]), collect(args[3:4]), args[5])
f_splat (generic function with 1 method)

julia> f_splat(x..., y..., z)
((x[1]*y[1]) ^ z) + ((x[2]*y[2]) ^ z)

julia> @operator(model, op_f, 5, f_splat)
NonlinearOperator(f_splat, :op_f)

julia> @objective(model, Min, op_f(x..., y..., z))
op_f(x[1], x[2], y[1], y[2], z)

Common mistakes when writing a user-defined operator

JuMP uses ForwardDiff.jl to compute the first-order derivatives of user-defined operators. ForwardDiff has a
number of limitations that you should be aware of when writing user-defined operators.

The rest of this section provides debugging advice and explains some common mistakes.

Warning

Get an error like No method matching Float64(::ForwardDiff.Dual)? Read this section.

Debugging

If you add an operator that does not support ForwardDiff, a long error message will be printed. You can review
the stacktrace for more information, but it can often be hard to understand why and where your function is
failing.

It may be helpful to debug the operator outside of JuMP as follows.

If the operator is univariate, do:

julia> import ForwardDiff

julia> my_operator(a) = a^2
my_operator (generic function with 1 method)

julia> ForwardDiff.derivative(my_operator, 1.0)
2.0

If the operator is multivariate, do:

julia> import ForwardDiff

julia> my_operator(a, b) = a^2 + b^2
my_operator (generic function with 1 method)

julia> ForwardDiff.gradient(x -> my_operator(x...), [1.0, 2.0])
2-element Vector{Float64}:
2.0
4.0

https://github.com/JuliaDiff/ForwardDiff.jl
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Note that even though the operator takes the splatted arguments, ForwardDiff.gradient requires a vector
as input.

Operator calls something unsupported by ForwardDiff

ForwardDiff works by overloading many Julia functions for a special type ForwardDiff.Dual <: Real. If your
operator attempts to call a function for which an overload has not been defined, a MethodError will be thrown.

For example, your operator cannot call external C functions, or be the optimal objective value of a JuMP model.

julia> import ForwardDiff

julia> my_operator_bad(x) = @ccall sqrt(x::Cdouble)::Cdouble
my_operator_bad (generic function with 1 method)

julia> ForwardDiff.derivative(my_operator_bad, 1.0)
ERROR: MethodError: no method matching

Float64(::ForwardDiff.Dual{ForwardDiff.Tag{typeof(my_operator_bad), Float64}, Float64, 1})↪→

[...]

Unfortunately, the list of calls supported by ForwardDiff is too large to enumerate what is an isn't allowed, so
the best advice is to try and see if it works.

Operator does not accept splatted input

The operator takes f(x::Vector) as input, instead of the splatted f(x...).

julia> import ForwardDiff

julia> my_operator_bad(x::Vector) = sum(x[i]^2 for i in eachindex(x))
my_operator_bad (generic function with 1 method)

julia> my_operator_good(x...) = sum(x[i]^2 for i in eachindex(x))
my_operator_good (generic function with 1 method)

julia> ForwardDiff.gradient(x -> my_operator_bad(x...), [1.0, 2.0])
ERROR: MethodError: no method matching

my_operator_bad(::ForwardDiff.Dual{ForwardDiff.Tag{var"#5#6", Float64}, Float64, 2},
::ForwardDiff.Dual{ForwardDiff.Tag{var"#5#6", Float64}, Float64, 2})

↪→

↪→

[...]

julia> ForwardDiff.gradient(x -> my_operator_good(x...), [1.0, 2.0])
2-element Vector{Float64}:
2.0
4.0

Operator assumes Float64 as input

The operator assumes Float64 will be passed as input, but it must work for any generic Real type.

julia> import ForwardDiff

julia> my_operator_bad(x::Float64...) = sum(x[i]^2 for i in eachindex(x))
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my_operator_bad (generic function with 1 method)

julia> my_operator_good(x::Real...) = sum(x[i]^2 for i in eachindex(x))
my_operator_good (generic function with 1 method)

julia> ForwardDiff.gradient(x -> my_operator_bad(x...), [1.0, 2.0])
ERROR: MethodError: no method matching

my_operator_bad(::ForwardDiff.Dual{ForwardDiff.Tag{var"#5#6", Float64}, Float64, 2},
::ForwardDiff.Dual{ForwardDiff.Tag{var"#5#6", Float64}, Float64, 2})

↪→

↪→

[...]

julia> ForwardDiff.gradient(x -> my_operator_good(x...), [1.0, 2.0])
2-element Vector{Float64}:
2.0
4.0

Operator allocates Float64 storage

The operator allocates temporary storage using zeros(3) or similar. This defaults to Float64, so use zeros(T,
3) instead.

julia> import ForwardDiff

julia> function my_operator_bad(x::Real...)
# This line is problematic. zeros(n) is short for zeros(Float64, n)
y = zeros(length(x))
for i in eachindex(x)

y[i] = x[i]^2
end
return sum(y)

end
my_operator_bad (generic function with 1 method)

julia> function my_operator_good(x::T...) where {T<:Real}
y = zeros(T, length(x))
for i in eachindex(x)

y[i] = x[i]^2
end
return sum(y)

end
my_operator_good (generic function with 1 method)

julia> ForwardDiff.gradient(x -> my_operator_bad(x...), [1.0, 2.0])
ERROR: MethodError: no method matching Float64(::ForwardDiff.Dual{ForwardDiff.Tag{var"#1#2",

Float64}, Float64, 2})↪→

[...]

julia> ForwardDiff.gradient(x -> my_operator_good(x...), [1.0, 2.0])
2-element Vector{Float64}:
2.0
4.0



Chapter 21

Nonlinear Modeling (Legacy)

Warning

This page describes the legacy nonlinear interface to JuMP. It has a number of quirks and limitations
that prompted the development of a new nonlinear interface. The new interface is documented at
Nonlinear Modeling. This legacy interface will remain for all future v1.X releases of JuMP. The two
nonlinear interfaces cannot be combined.

JuMP has support for general smooth nonlinear (convex and nonconvex) optimization problems. JuMP is able to
provide exact, sparse second-order derivatives to solvers. This information can improve solver accuracy and
performance.

There are three main changes to solve nonlinear programs in JuMP.

• Use @NLobjective instead of @objective

• Use @NLconstraint instead of @constraint

• Use @NLexpression instead of @expression

Info

There are some restrictions on what syntax you can use in the @NLxxx macros. Make sure to read the
Syntax notes.

21.1 Set a nonlinear objective

Use @NLobjective to set a nonlinear objective.

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> @NLobjective(model, Min, exp(x[1]) - sqrt(x[2]))

To modify a nonlinear objective, call @NLobjective again.

702
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21.2 Add a nonlinear constraint

Use @NLconstraint to add a nonlinear constraint.

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> @NLconstraint(model, exp(x[1]) <= 1)
exp(x[1]) - 1.0 ≤ 0

julia> @NLconstraint(model, [i = 1:2], x[i]^i >= i)
2-element Vector{NonlinearConstraintRef{ScalarShape}}:
x[1] ^ 1.0 - 1.0 ≥ 0
x[2] ^ 2.0 - 2.0 ≥ 0

julia> @NLconstraint(model, con[i = 1:2], prod(x[j] for j = 1:i) == i)
2-element Vector{NonlinearConstraintRef{ScalarShape}}:
(*)(x[1]) - 1.0 = 0
x[1] * x[2] - 2.0 = 0

Info

You can only create nonlinear constraints with <=, >=, and ==. More general Nonlinear-in-Set con-
straints are not supported.

Delete a nonlinear constraint using delete:

julia> delete(model, con[1])

21.3 Create a nonlinear expression

Use @NLexpression to create nonlinear expression objects. The syntax is identical to @expression, except
that the expression can contain nonlinear terms.

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> expr = @NLexpression(model, exp(x[1]) + sqrt(x[2]))
subexpression[1]: exp(x[1]) + sqrt(x[2])

julia> my_anon_expr = @NLexpression(model, [i = 1:2], sin(x[i]))
2-element Vector{NonlinearExpression}:
subexpression[2]: sin(x[1])
subexpression[3]: sin(x[2])

julia> @NLexpression(model, my_expr[i = 1:2], sin(x[i]))
2-element Vector{NonlinearExpression}:
subexpression[4]: sin(x[1])
subexpression[5]: sin(x[2])
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Nonlinear expression can be used in @NLobjective, @NLconstraint, and even nested in other @NLexpressions.

julia> @NLobjective(model, Min, expr^2 + 1)

julia> @NLconstraint(model, [i = 1:2], my_expr[i] <= i)
2-element Vector{NonlinearConstraintRef{ScalarShape}}:
subexpression[4] - 1.0 ≤ 0
subexpression[5] - 2.0 ≤ 0

julia> @NLexpression(model, nested[i = 1:2], sin(my_expr[i]))
2-element Vector{NonlinearExpression}:
subexpression[6]: sin(subexpression[4])
subexpression[7]: sin(subexpression[5])

Use value to query the value of a nonlinear expression:

julia> set_start_value(x[1], 1.0)

julia> value(start_value, nested[1])
0.7456241416655579

julia> sin(sin(1.0))
0.7456241416655579

21.4 Create a nonlinear parameter

For nonlinear models only, JuMP offers a syntax for explicit "parameter" objects, which are constants in the
model that can be efficiently updated between solves.

Nonlinear parameters are declared by using the @NLparameter macro and may be indexed by arbitrary sets
analogously to JuMP variables and expressions.

The initial value of the parameter must be provided on the right-hand side of the == sign.

julia> model = Model();

julia> @variable(model, x);

julia> @NLparameter(model, p[i = 1:2] == i)
2-element Vector{NonlinearParameter}:
parameter[1] == 1.0
parameter[2] == 2.0

Create anonymous parameters using the value keyword:

julia> anon_parameter = @NLparameter(model, value = 1)
parameter[3] == 1.0
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Info

A parameter is not an optimization variable. It must be fixed to a value with ==. If you want a parameter
that is <= or >=, create a variable instead using @variable.

Use value and set_value to query or update the value of a parameter.

julia> value.(p)
2-element Vector{Float64}:
1.0
2.0

julia> set_value(p[2], 3.0)
3.0

julia> value.(p)
2-element Vector{Float64}:
1.0
3.0

Nonlinear parameters must be used within nonlinear macros only.

When to use a parameter

Nonlinear parameters are useful when solving nonlinear models in a sequence:

using JuMP, Ipopt
model = Model(Ipopt.Optimizer)
set_silent(model)
@variable(model, z)
@NLparameter(model, x == 1.0)
@NLobjective(model, Min, (z - x)^2)
optimize!(model)
@show value(z) # Equals 1.0.

# Now, update the value of x to solve a different problem.
set_value(x, 5.0)
optimize!(model)
@show value(z) # Equals 5.0

value(z) = 1.0
value(z) = 5.0

Info

Using nonlinear parameters can be faster than creating a new model from scratch with updated data
because JuMP is able to avoid repeating a number of steps in processing the model before handing it
off to the solver.
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21.5 Syntax notes

The syntax accepted in nonlinear macros is more restricted than the syntax for linear and quadratic macros.
We note some important points below.

Scalar operations only

Except for the splatting syntax discussed below, all expressions must be simple scalar operations. You cannot
use dot, matrix-vector products, vector slices, etc.

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> @variable(model, y);

julia> c = [1, 2];

julia> @NLobjective(model, Min, c' * x + 3y)
ERROR: Unexpected array [1 2] in nonlinear expression. Nonlinear expressions may contain only

scalar expressions.↪→

[...]

Translate vector operations into explicit sum() operations:

julia> @NLobjective(model, Min, sum(c[i] * x[i] for i = 1:2) + 3y)

Or use an @expression:

julia> @expression(model, expr, c' * x)
x[1] + 2 x[2]

julia> @NLobjective(model, Min, expr + 3y)

Splatting

The splatting operator ... is recognized in a very restricted setting for expanding function arguments. The
expression splatted can be only a symbol. More complex expressions are not recognized.

julia> model = Model();

julia> @variable(model, x[1:3]);

julia> @NLconstraint(model, *(x...) <= 1.0)
x[1] * x[2] * x[3] - 1.0 ≤ 0

julia> @NLconstraint(model, *((x / 2)...) <= 0.0)
ERROR: Unsupported use of the splatting operator. JuMP supports splatting only symbols. For

example, `x...` is ok, but `(x + 1)...`, `[x; y]...` and `g(f(y)...)` are not.↪→

https://docs.julialang.org/en/v1/manual/faq/#...-splits-one-argument-into-many-different-arguments-in-function-calls-1
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21.6 User-defined Functions

JuMP natively supports the set of univariate and multivariate functions recognized by the MOI.Nonlinear sub-
module. In addition to this list of functions, it is possible to register custom user-defined nonlinear functions.
User-defined functions can be used anywhere in @NLobjective, @NLconstraint, and @NLexpression.

JuMP will attempt to automatically register functions it detects in your nonlinear expressions, which usually
means manually registering a function is not needed. Two exceptions are if you want to provide custom deriva-
tives, or if the function is not available in the scope of the nonlinear expression.

Warning

User-defined functions must return a scalar output. For a work-around, see User-defined operators with
vector outputs.

Automatic differentiation

JuMP does not support black-box optimization, so all user-defined functions must provide derivatives in some
form. Fortunately, JuMP supports automatic differentiation of user-defined functions, a feature to our
knowledge not available in any comparable modeling systems.

Info

Automatic differentiation is not finite differencing. JuMP's automatically computed derivatives are not
subject to approximation error.

JuMP uses ForwardDiff.jl to perform automatic differentiation; see the ForwardDiff.jl documentation for a de-
scription of how to write a function suitable for automatic differentiation.

Common mistakes when writing a user-defined function

Warning

Get an error like No method matching Float64(::ForwardDiff.Dual)? Read this section, and see
the guidelines at ForwardDiff.jl.

The most common error is that your user-defined function is not generic with respect to the number type, that
is, don't assume that the input to the function is Float64.

f(x::Float64) = 2 * x # This will not work.
f(x::Real) = 2 * x # This is good.
f(x) = 2 * x # This is also good.

Another reason you may encounter this error is if you create arrays inside your function which are Float64.

function bad_f(x...)
y = zeros(length(x)) # This constructs an array of `Float64`!
for i = 1:length(x)

y[i] = x[i]^i
end
return sum(y)

https://github.com/JuliaDiff/ForwardDiff.jl
https://www.juliadiff.org/ForwardDiff.jl/v0.10.2/user/limitations.html
https://www.juliadiff.org/ForwardDiff.jl/release-0.10/user/limitations.html
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end

function good_f(x::T...) where {T<:Real}
y = zeros(T, length(x)) # Construct an array of type `T` instead!
for i = 1:length(x)

y[i] = x[i]^i
end
return sum(y)

end

Register a function

To register a user-defined function with derivatives computed by automatic differentiation, use the register
method as in the following example:

square(x) = x^2
f(x, y) = (x - 1)^2 + (y - 2)^2

model = Model()

register(model, :square, 1, square; autodiff = true)
register(model, :my_f, 2, f; autodiff = true)

@variable(model, x[1:2] >= 0.5)
@NLobjective(model, Min, my_f(x[1], square(x[2])))

The above code creates a JuMP model with the objective function (x[1] - 1)^2 + (x[2]^2 - 2)^2. The
arguments to register are:

1. The model for which the functions are registered.

2. A Julia symbol object which serves as the name of the user-defined function in JuMP expressions.

3. The number of input arguments that the function takes.

4. The Julia method which computes the function

5. A flag to instruct JuMP to compute exact gradients automatically.

Tip

The symbol :my_f doesn't have to match the name of the function f. However, it's more readable if it
does. Make sure you use my_f and not f in the macros.

Warning

User-defined functions cannot be re-registered and will not update if you modify the underlying Julia
function. If you want to change a user-defined function between solves, rebuild the model or use a
different name. To use a different name programmatically, see Raw expression input.
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Register a function and gradient

Forward-mode automatic differentiation as implemented by ForwardDiff.jl has a computational cost that scales
linearly with the number of input dimensions. As such, it is not the most efficient way to compute gradients of
user-defined functions if the number of input arguments is large. In this case, users may want to provide their
own routines for evaluating gradients.

Univariate functions

For univariate functions, the gradient function ∇f returns a number that represents the first-order derivative:

f(x) = x^2
∇f(x) = 2x
model = Model()
register(model, :my_square, 1, f, ∇f; autodiff = true)
@variable(model, x >= 0)
@NLobjective(model, Min, my_square(x))

If autodiff = true, JuMP will use automatic differentiation to compute the hessian.

Multivariate functions

For multivariate functions, the gradient function ∇f must take a gradient vector as the first argument that is
filled in-place:

f(x, y) = (x - 1)^2 + (y - 2)^2
function ∇f(g::AbstractVector{T}, x::T, y::T) where {T}

g[1] = 2 * (x - 1)
g[2] = 2 * (y - 2)
return

end

model = Model()
register(model, :my_square, 2, f, ∇f)
@variable(model, x[1:2] >= 0)
@NLobjective(model, Min, my_square(x[1], x[2]))

Warning

Make sure the first argument to ∇f supports an AbstractVector, and do not assume the input is
Float64.

Register a function, gradient, and hessian

You can also register a function with the second-order derivative information, which is a scalar for univariate
functions, and a symmetric matrix for multivariate functions.

Univariate functions

Pass a function which returns a number representing the second-order derivative:
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f(x) = x^2
∇f(x) = 2x
∇²f(x) = 2
model = Model()
register(model, :my_square, 1, f, ∇f, ∇²f)
@variable(model, x >= 0)
@NLobjective(model, Min, my_square(x))

Multivariate functions

For multivariate functions, the hessian function ∇²f must take an AbstractMatrix as the first argument, the
lower-triangular of which is filled in-place:

f(x...) = (1 - x[1])^2 + 100 * (x[2] - x[1]^2)^2
function ∇f(g, x...)

g[1] = 400 * x[1]^3 - 400 * x[1] * x[2] + 2 * x[1] - 2
g[2] = 200 * (x[2] - x[1]^2)
return

end
function ∇²f(H, x...)

H[1, 1] = 1200 * x[1]^2 - 400 * x[2] + 2
# H[1, 2] = -400 * x[1] <-- Not needed. Fill the lower-triangular only.
H[2, 1] = -400 * x[1]
H[2, 2] = 200.0
return

end

model = Model()
register(model, :rosenbrock, 2, f, ∇f, ∇²f)
@variable(model, x[1:2])
@NLobjective(model, Min, rosenbrock(x[1], x[2]))

Warning

You may assume the Hessian matrix H is initialized with zeros, and because H is symmetric, you need
only to fill in the non-zero of the lower-triangular terms. The matrix type passed in as H depends on the
automatic differentiation system, so make sure the first argument to the Hessian function supports an
AbstractMatrix (it may be something other than Matrix{Float64}). However, you may assume only
that H supports size(H) and setindex!. Finally, the matrix is treated as dense, so the performance
will be poor on functions with high-dimensional input.

User-defined functions with vector inputs

User-defined functions which take vectors as input arguments (for example, f(x::Vector)) are not supported.
Instead, use Julia's splatting syntax to create a function with scalar arguments. For example, instead of

f(x::Vector) = sum(x[i]^i for i in 1:length(x))

define:
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f(x...) = sum(x[i]^i for i in 1:length(x))

This function f can be used in a JuMP model as follows:

model = Model()
@variable(model, x[1:5] >= 0)
f(x...) = sum(x[i]^i for i in 1:length(x))
register(model, :f, 5, f; autodiff = true)
@NLobjective(model, Min, f(x...))

Tip

Make sure to read the syntax restrictions of Splatting.

21.7 Factors affecting solution time

The execution time when solving a nonlinear programming problem can be divided into two parts, the time
spent in the optimization algorithm (the solver) and the time spent evaluating the nonlinear functions and
corresponding derivatives. Ipopt explicitly displays these two timings in its output, for example:

Total CPU secs in IPOPT (w/o function evaluations) = 7.412
Total CPU secs in NLP function evaluations = 2.083

For Ipopt in particular, one can improve the performance by installing advanced sparse linear algebra packages,
see Installation Guide. For other solvers, see their respective documentation for performance tips.

The function evaluation time, on the other hand, is the responsibility of the modeling language. JuMP computes
derivatives by using reverse-mode automatic differentiation with graph coloringmethods for exploiting sparsity
of the Hessian matrix. As a conservative bound, JuMP's performance here currently may be expected to be
within a factor of 5 of AMPL's. Our paper in SIAM Review has more details.

21.8 Querying derivatives from a JuMP model

For some advanced use cases, one may want to directly query the derivatives of a JuMP model instead of
handing the problem off to a solver. Internally, JuMP implements the MOI.AbstractNLPEvaluator interface. To
obtain an NLP evaluator object from a JuMP model, use NLPEvaluator. index returns the MOI.VariableIndex
corresponding to a JuMP variable. MOI.VariableIndex itself is a type-safe wrapper for Int64 (stored in the
.value field.)

For example:

julia> raw_index(v::MOI.VariableIndex) = v.value
raw_index (generic function with 1 method)

julia> model = Model();

julia> @variable(model, x)
x

https://mlubin.github.io/pdf/jump-sirev.pdf
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julia> @variable(model, y)
y

julia> @NLobjective(model, Min, sin(x) + sin(y))

julia> values = zeros(2)
2-element Vector{Float64}:
0.0
0.0

julia> x_index = raw_index(JuMP.index(x))
1

julia> y_index = raw_index(JuMP.index(y))
2

julia> values[x_index] = 2.0
2.0

julia> values[y_index] = 3.0
3.0

julia> d = NLPEvaluator(model)
Nonlinear.Evaluator with available features:
* :Grad
* :Jac
* :JacVec
* :Hess
* :HessVec
* :ExprGraph

julia> MOI.initialize(d, [:Grad])

julia> MOI.eval_objective(d, values)
1.0504174348855488

julia> sin(2.0) + sin(3.0)
1.0504174348855488

julia> ∇f = zeros(2)
2-element Vector{Float64}:
0.0
0.0

julia> MOI.eval_objective_gradient(d, ∇f, values)

julia> ∇f[x_index], ∇f[y_index]
(-0.4161468365471424, -0.9899924966004454)

julia> cos(2.0), cos(3.0)
(-0.4161468365471424, -0.9899924966004454)

Only nonlinear constraints (those addedwith @NLconstraint), and nonlinear objectives (addedwith @NLobjective)
exist in the scope of the NLPEvaluator.
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The NLPEvaluator does not evaluate derivatives of linear or quadratic constraints or objectives.

The indexmethod applied to a nonlinear constraint reference object returns its index as a MOI.Nonlinear.ConstraintIndex.
For example:

julia> model = Model();

julia> @variable(model, x);

julia> @NLconstraint(model, cons1, sin(x) <= 1);

julia> @NLconstraint(model, cons2, x + 5 == 10);

julia> typeof(cons1)
NonlinearConstraintRef{ScalarShape} (alias for ConstraintRef{GenericModel{Float64},

MathOptInterface.Nonlinear.ConstraintIndex, ScalarShape})↪→

julia> index(cons1)
MathOptInterface.Nonlinear.ConstraintIndex(1)

julia> index(cons2)
MathOptInterface.Nonlinear.ConstraintIndex(2)

Note that for one-sided nonlinear constraints, JuMP subtracts any values on the right-hand side when computing
expressions. In other words, one-sided nonlinear constraints are always transformed to have a right-hand side
of zero.

This method of querying derivatives directly from a JuMP model is convenient for interacting with the model
in a structured way, for example, for accessing derivatives of specific variables. For example, in statistical
maximum likelihood estimation problems, one is often interested in the Hessian matrix at the optimal solution,
which can be queried using the NLPEvaluator.

21.9 Raw expression input

Warning

This section requires advanced knowledge of Julia's Expr. You should read the Expressions and evalu-
ation section of the Julia documentation first.

In addition to the @NLexpression, @NLobjective and @NLconstraintmacros, it is also possible to provide Julia
Expr objects directly by using add_nonlinear_expression, set_nonlinear_objective and add_nonlinear_constraint.

This input form may be useful if the expressions are generated programmatically, or if you experience compi-
lation issues with the macro input (see Known performance issues for more information).

Add a nonlinear expression

Use add_nonlinear_expression to add a nonlinear expression to the model.

julia> model = Model();

julia> @variable(model, x)
x

https://docs.julialang.org/en/v1/manual/metaprogramming/#Expressions-and-evaluation
https://docs.julialang.org/en/v1/manual/metaprogramming/#Expressions-and-evaluation
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julia> expr = :($(x) + sin($(x)^2))
:(x + sin(x ^ 2))

julia> expr_ref = add_nonlinear_expression(model, expr)
subexpression[1]: x + sin(x ^ 2.0)

This is equivalent to

julia> model = Model();

julia> @variable(model, x);

julia> expr_ref = @NLexpression(model, x + sin(x^2))
subexpression[1]: x + sin(x ^ 2.0)

Note

You must interpolate the variables directly into the expression expr.

Set the objective function

Use set_nonlinear_objective to set a nonlinear objective.

julia> model = Model();

julia> @variable(model, x);

julia> expr = :($(x) + $(x)^2)
:(x + x ^ 2)

julia> set_nonlinear_objective(model, MIN_SENSE, expr)

This is equivalent to

julia> model = Model();

julia> @variable(model, x);

julia> @NLobjective(model, Min, x + x^2)

Note

You must use MIN_SENSE or MAX_SENSE instead of Min and Max.

Add a constraint

Use add_nonlinear_constraint to add a nonlinear constraint.
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julia> model = Model();

julia> @variable(model, x);

julia> expr = :($(x) + $(x)^2)
:(x + x ^ 2)

julia> add_nonlinear_constraint(model, :($(expr) <= 1))
(x + x ^ 2.0) - 1.0 ≤ 0

This is equivalent to

julia> model = Model();

julia> @variable(model, x);

julia> @NLconstraint(model, Min, x + x^2 <= 1)
(x + x ^ 2.0) - 1.0 ≤ 0

More complicated examples

Raw expression input is most useful when the expressions are generated programmatically, often in conjunction
with user-defined functions.

As an example, we construct a model with the nonlinear constraints f(x) <= 1, where f(x) = x^2 and f(x)
= sin(x)^2:

julia> function main(functions::Vector{Function})
model = Model()
@variable(model, x)
for (i, f) in enumerate(functions)

f_sym = Symbol("f_$(i)")
register(model, f_sym, 1, f; autodiff = true)
add_nonlinear_constraint(model, :($(f_sym)($(x)) <= 1))

end
print(model)
return

end
main (generic function with 1 method)

julia> main([x -> x^2, x -> sin(x)^2])
Feasibility
Subject to
f_1(x) - 1.0 ≤ 0
f_2(x) - 1.0 ≤ 0

As another example, we construct a model with the constraint x^2 + sin(x)^2 <= 1:

julia> function main(functions::Vector{Function})
model = Model()
@variable(model, x)



CHAPTER 21. NONLINEAR MODELING (LEGACY) 716

expr = Expr(:call, :+)
for (i, f) in enumerate(functions)

f_sym = Symbol("f_$(i)")
register(model, f_sym, 1, f; autodiff = true)
push!(expr.args, :($(f_sym)($(x))))

end
add_nonlinear_constraint(model, :($(expr) <= 1))
print(model)
return

end
main (generic function with 1 method)

julia> main([x -> x^2, x -> sin(x)^2])
Feasibility
Subject to
(f_1(x) + f_2(x)) - 1.0 ≤ 0

Registered functions with a variable number of arguments

User defined functions require a fixed number of input arguments. However, sometimes you will want to use
a registered function like:

julia> f(x...) = sum(exp(x[i]^2) for i in 1:length(x));

with different numbers of arguments.

The solution is to register the same function f for each unique number of input arguments, making sure to use
a unique name each time. For example:

julia> A = [[1], [1, 2], [2, 3, 4], [1, 3, 4, 5]];

julia> model = Model();

julia> @variable(model, x[1:5]);

julia> funcs = Set{Symbol}();

julia> for a in A
key = Symbol("f$(length(a))")
if !(key in funcs)

push!(funcs, key)
register(model, key, length(a), f; autodiff = true)

end
add_nonlinear_constraint(model, :($key($(x[a]...)) <= 1))

end

julia> print(model)
Feasibility
Subject to
f1(x[1]) - 1.0 ≤ 0
f2(x[1], x[2]) - 1.0 ≤ 0
f3(x[2], x[3], x[4]) - 1.0 ≤ 0
f4(x[1], x[3], x[4], x[5]) - 1.0 ≤ 0
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21.10 Known performance issues

The macro-based input to JuMP's nonlinear interface can cause a performance issue if you:

1. write a macro with a large number (hundreds) of terms

2. call that macro from within a function instead of from the top-level in global scope.

The first issue does not depend on the number of resulting terms in the mathematical expression, but rather
the number of terms in the Julia Expr representation of that expression. For example, the expression sum(x[i]
for i in 1:1_000_000) contains one million mathematical terms, but the Expr representation is just a single
sum.

The most common cause, other than a lot of tedious typing, is if you write a program that automatically writes
a JuMP model as a text file, which you later execute. One example is MINLPlib.jl which automatically transpiled
models in the GAMS scalar format into JuMP examples.

As a rule of thumb, if you are writing programs to automatically generate expressions for the JuMP macros, you
should target the Raw expression input instead. For more information, read MathOptInterface Issue#1997.

https://github.com/lanl-ansi/MINLPLib.jl
https://github.com/jump-dev/MathOptInterface.jl/issues/1997
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Chapter 22

Docstrings

22.1 JuMP

JuMP

This page lists the public API of JuMP.

Info

This page is an unstructured list of the JuMP API. For a more structured overview, read the Manual or
Tutorial parts of this documentation.

Load all of the public the API into the current scope with:

using JuMP

Alternatively, load only the module with:

import JuMP

and then prefix all calls with JuMP. to create JuMP.<NAME>.

@build_constraint

JuMP.@build_constraint – Macro.

@build_constraint(constraint_expr)

Constructs a ScalarConstraint or VectorConstraint using the same machinery as @constraint but
without adding the constraint to a model.

Constraints using broadcast operators like x .<= 1 are also supported andwill create arrays of ScalarConstraint
or VectorConstraint.

Example

719
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julia> model = Model();

julia> @variable(model, x);

julia> @build_constraint(2x >= 1)
ScalarConstraint{AffExpr, MathOptInterface.GreaterThan{Float64}}(2 x,

MathOptInterface.GreaterThan{Float64}(1.0))↪→

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> @build_constraint(x .>= 0)
2-element Vector{ScalarConstraint{AffExpr, MathOptInterface.GreaterThan{Float64}}}:
ScalarConstraint{AffExpr, MathOptInterface.GreaterThan{Float64}}(x[1],

MathOptInterface.GreaterThan{Float64}(-0.0))↪→

ScalarConstraint{AffExpr, MathOptInterface.GreaterThan{Float64}}(x[2],
MathOptInterface.GreaterThan{Float64}(-0.0))↪→

source

@constraint

JuMP.@constraint – Macro.

@constraint(model, expr, args...; kwargs...)
@constraint(model, [index_sets...], expr, args...; kwargs...)
@constraint(model, name, expr, args...; kwargs...)
@constraint(model, name[index_sets...], expr, args...; kwargs...)

Add a constraint described by the expression expr.

The name argument is optional. If index sets are passed, a container is built and the constraint may depend
on the indices of the index sets.

The expression expr may be one of following forms:

• func in set, constraining the function func to belong to the set set, which is either a MOI.AbstractSet
or one of the JuMP shortcuts like SecondOrderCone or PSDCone

• a <op> b, where <op> is one of ==, ≥, >=, ≤, <=

• l <= f <= u or u >= f >= l, constraining the expression f to lie between l and u

• f(x) ⟂ x, which defines a complementarity constraint

• z --> {expr}, which defines an indicator constraint that activates when z is 1

• !z --> {expr}, which defines an indicator constraint that activates when z is 0

• z <--> {expr}, which defines a reified constraint

• expr := rhs, which defines a Boolean equality constraint

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros/@constraint.jl#L233-L263
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Broadcasted comparison operators like .== are also supported for the case when the left- and right-hand
sides of the comparison operator are arrays.

JuMP extensions may additionally provide support for constraint expressions which are not listed here.

Keyword arguments

• base_name: sets the name prefix used to generate constraint names. It corresponds to the constraint
name for scalar constraints, otherwise, the constraint names are set to base_name[...] for each
index ....

• container = :Auto: force the container type by passing container = Array,

container = DenseAxisArray, container = SparseAxisArray, or any another container type which is
supported by a JuMP extension.

• set_string_name::Bool = true: control whether to set the MOI.ConstraintName attribute. Pass-
ing set_string_name = false can improve performance.

Other keyword arguments may be supported by JuMP extensions.

Example

julia> model = Model();

julia> @variable(model, x[1:3]);

julia> @variable(model, z, Bin);

julia> @constraint(model, x in SecondOrderCone())
[x[1], x[2], x[3]] ∈ MathOptInterface.SecondOrderCone(3)

julia> @constraint(model, [i in 1:3], x[i] == i)
3-element Vector{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.EqualTo{Float64}}, ScalarShape}}:

↪→

↪→

x[1] = 1
x[2] = 2
x[3] = 3

julia> @constraint(model, x .== [1, 2, 3])
3-element Vector{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.EqualTo{Float64}}, ScalarShape}}:

↪→

↪→

x[1] = 1
x[2] = 2
x[3] = 3

julia> @constraint(model, con_name, 1 <= x[1] + x[2] <= 3)
con_name : x[1] + x[2] ∈ [1, 3]

julia> @constraint(model, con_perp[i in 1:3], x[i] - 1 ⟂ x[i])
3-element Vector{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.VectorAffineFunction{Float64},
MathOptInterface.Complements}, VectorShape}}:

↪→

↪→

con_perp[1] : [x[1] - 1, x[1]] ∈ MathOptInterface.Complements(2)
con_perp[2] : [x[2] - 1, x[2]] ∈ MathOptInterface.Complements(2)
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con_perp[3] : [x[3] - 1, x[3]] ∈ MathOptInterface.Complements(2)

julia> @constraint(model, z --> {x[1] >= 0})
z --> {x[1] ≥ 0}

julia> @constraint(model, !z --> {2 * x[2] <= 3})
!z --> {2 x[2] ≤ 3}

source

@constraints

JuMP.@constraints – Macro.

@constraints(model, args...)

Adds groups of constraints at once, in the same fashion as the @constraint macro.

The model must be the first argument, and multiple constraints can be added on multiple lines wrapped
in a begin ... end block.

The macro returns a tuple containing the constraints that were defined.

Example

julia> model = Model();

julia> @variable(model, w);

julia> @variable(model, x);

julia> @variable(model, y);

julia> @variable(model, z[1:3]);

julia> @constraints(model, begin
x >= 1
y - w <= 2
sum_to_one[i=1:3], z[i] + y == 1

end);

julia> print(model)
Feasibility
Subject to
sum_to_one[1] : y + z[1] = 1
sum_to_one[2] : y + z[2] = 1
sum_to_one[3] : y + z[3] = 1
x ≥ 1
-w + y ≤ 2

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros/@constraint.jl#L6-L100
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros/@constraint.jl#L189-L228
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@expression

JuMP.@expression – Macro.

@expression(model::GenericModel, expression)
@expression(model::GenericModel, [index_sets...], expression)
@expression(model::GenericModel, name, expression)
@expression(model::GenericModel, name[index_sets...], expression)

Efficiently builds and returns an expression.

The name argument is optional. If index sets are passed, a container is built and the expression may depend
on the indices of the index sets.

Keyword arguments

• container = :Auto: force the container type by passing container = Array, container = DenseAxisArray,
container = SparseAxisArray, or any another container type which is supported by a JuMP exten-
sion.

Example

julia> model = Model();

julia> @variable(model, x[1:5]);

julia> @expression(model, shared, sum(i * x[i] for i in 1:5))
x[1] + 2 x[2] + 3 x[3] + 4 x[4] + 5 x[5]

julia> shared
x[1] + 2 x[2] + 3 x[3] + 4 x[4] + 5 x[5]

In the same way as @variable, the second argument may define index sets, and those indices can be used
in the construction of the expressions:

julia> model = Model();

julia> @variable(model, x[1:3]);

julia> @expression(model, expr[i = 1:3], i * sum(x[j] for j in 1:3))
3-element Vector{AffExpr}:
x[1] + x[2] + x[3]
2 x[1] + 2 x[2] + 2 x[3]
3 x[1] + 3 x[2] + 3 x[3]

Anonymous syntax is also supported:

julia> model = Model();

julia> @variable(model, x[1:3]);

julia> expr = @expression(model, [i in 1:3], i * sum(x[j] for j in 1:3))
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3-element Vector{AffExpr}:
x[1] + x[2] + x[3]
2 x[1] + 2 x[2] + 2 x[3]
3 x[1] + 3 x[2] + 3 x[3]

source

@expressions

JuMP.@expressions – Macro.

@expressions(model, args...)

Adds multiple expressions to model at once, in the same fashion as the @expression macro.

The model must be the first argument, and multiple expressions can be added on multiple lines wrapped
in a begin ... end block.

The macro returns a tuple containing the expressions that were defined.

Example

julia> model = Model();

julia> @variable(model, x);

julia> @variable(model, y);

julia> @variable(model, z[1:2]);

julia> a = [4, 5];

julia> @expressions(model, begin
my_expr, x^2 + y^2
my_expr_1[i = 1:2], a[i] - z[i]

end)
(x² + y², AffExpr[-z[1] + 4, -z[2] + 5])

source

@force_nonlinear

JuMP.@force_nonlinear – Macro.

@force_nonlinear(expr)

Change the parsing of expr to construct GenericNonlinearExpr instead of GenericAffExpr or GenericQuadExpr.

This macro works by walking expr and substituting all calls to +, -, *, /, and ^ in favor of ones that construct
GenericNonlinearExpr.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros/@expression.jl#L6-L65
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros/@expression.jl#L104-L134
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This macro will error if the resulting expression does not produce a GenericNonlinearExpr because, for
example, it is used on an expression that does not use the basic arithmetic operators.

When to use this macro

In most cases, you should not use this macro.

Use this macro only if the intended output type is a GenericNonlinearExpr and the regular macro calls
destroy problem structure, or in rare cases, if the regular macro calls introduce a large amount of interme-
diate variables, for example, because they promote types to a common quadratic expression.

Example

Use-case one: preserve problem structure.

julia> model = Model();

julia> @variable(model, x);

julia> @expression(model, (x - 0.1)^2)
x² - 0.2 x + 0.010000000000000002

julia> @expression(model, @force_nonlinear((x - 0.1)^2))
(x - 0.1) ^ 2

julia> (x - 0.1)^2
x² - 0.2 x + 0.010000000000000002

julia> @force_nonlinear((x - 0.1)^2)
(x - 0.1) ^ 2

Use-case two: reduce allocations

In this example, we know that x * 2.0 * (1 + x) * x is going to construct a nonlinear expression.

However, the default parsing first constructs:

• the GenericAffExpr a = x * 2.0,

• another GenericAffExpr b = 1 + x

• the GenericQuadExpr c = a * b

• a GenericNonlinearExpr *(c, x)

In contrast, the modified parsing constructs:

• the GenericNonlinearExpr a = GenericNonlinearExpr(:+, 1, x)

• the GenericNonlinearExpr GenericNonlinearExpr(:*, x, 2.0, a, x)

This results in significantly fewer allocations.

julia> model = Model();

julia> @variable(model, x);

julia> @expression(model, x * 2.0 * (1 + x) * x)
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(2 x² + 2 x) * x

julia> @expression(model, @force_nonlinear(x * 2.0 * (1 + x) * x))
x * 2.0 * (1 + x) * x

julia> @allocated @expression(model, x * 2.0 * (1 + x) * x)
3680

julia> @allocated @expression(model, @force_nonlinear(x * 2.0 * (1 + x) * x))
768

source

@objective

JuMP.@objective – Macro.

@objective(model::GenericModel, sense, func)

Set the objective sense to sense and objective function to func.

sense

The objective sense must be either be the literals Min or Max, or one of the three MOI.OptimizationSense
enum values (MIN_SENSE, MAX_SENSE, or FEASIBILITY_SENSE).

In order to set the sense programmatically, that is, when sense is a Julia variable whose value is the sense,
you must use a MOI.OptimizationSense.

FEASIBILITY_SENSE

FEASIBILITY_SENSE implies that there is no objective function. Therefore, you should not set sense to
FEASIBILITY_SENSE with a non-zero func.

To reset themodel to FEASIBILITY_SENSE, do @objective(model, FEASIBILITY_SENSE, 0), or use set_objective_sense:
set_objective_sense(model, FEASIBILITY_SENSE).

Example

Minimize the value of the variable x, do:

julia> model = Model();

julia> @variable(model, x)
x

julia> @objective(model, Min, x)
x

Maximize the value of the affine expression 2x - 1:

julia> model = Model();

julia> @variable(model, x)

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros/@force_nonlinear.jl#L12-L92


CHAPTER 22. DOCSTRINGS 727

x

julia> @objective(model, Max, 2x - 1)
2 x - 1

Set the objective sense programmatically:

julia> model = Model();

julia> @variable(model, x)
x

julia> sense = MIN_SENSE
MIN_SENSE::OptimizationSense = 0

julia> @objective(model, sense, x^2 - 2x + 1)
x² - 2 x + 1

Remove an objective function:

julia> model = Model();

julia> @variable(model, x >= 0);

julia> @objective(model, Min, 2x + 1)
2 x + 1

julia> print(model)
Min 2 x + 1
Subject to
x ≥ 0

julia> @objective(model, FEASIBILITY_SENSE, 0)
0

julia> print(model)
Feasibility
Subject to
x ≥ 0

source

@operator

JuMP.@operator – Macro.

@operator(model, operator, dim, f[, ∇f[, ∇²f]])

Add the nonlinear operator operator in model with dim arguments, and create a new NonlinearOperator
object called operator in the current scope.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros/@objective.jl#L6-L90
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The function f evaluates the operator and must return a scalar.

The optional function ∇f evaluates the first derivative, and the optional function ∇²f evaluates the second
derivative.

∇²f may be provided only if ∇f is also provided.

Univariate syntax

If dim == 1, then the method signatures of each function must be:

• f(::T)::T where {T<:Real}

• ∇f(::T)::T where {T<:Real}

• ∇²f(::T)::T where {T<:Real}

Multivariate syntax

If dim > 1, then the method signatures of each function must be:

• f(x::T...)::T where {T<:Real}

• ∇f(g::AbstractVector{T}, x::T...)::Nothing where {T<:Real}

• ∇²f(H::AbstractMatrix{T}, x::T...)::Nothing where {T<:Real}

Where the gradient vector g and Hessian matrix H are filled in-place. For the Hessian, you must fill in the
non-zero lower-triangular entries only. Setting an off-diagonal upper-triangular element may error.

Example

julia> model = Model();

julia> @variable(model, x)
x

julia> f(x::Float64) = x^2
f (generic function with 1 method)

julia> ∇f(x::Float64) = 2 * x
∇f (generic function with 1 method)

julia> ∇²f(x::Float64) = 2.0
∇²f (generic function with 1 method)

julia> @operator(model, op_f, 1, f, ∇f, ∇²f)
NonlinearOperator(f, :op_f)

julia> @objective(model, Min, op_f(x))
op_f(x)

julia> op_f(2.0)
4.0

julia> model[:op_f]
NonlinearOperator(f, :op_f)

julia> model[:op_f](x)
op_f(x)
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Non-macro version

This macro is provided as helpful syntax that matches the style of the rest of the JuMP macros. However,
you may also add operators outside the macro using add_nonlinear_operator. For example:

julia> model = Model();

julia> f(x) = x^2
f (generic function with 1 method)

julia> @operator(model, op_f, 1, f)
NonlinearOperator(f, :op_f)

is equivalent to

julia> model = Model();

julia> f(x) = x^2
f (generic function with 1 method)

julia> op_f = model[:op_f] = add_nonlinear_operator(model, 1, f; name = :op_f)
NonlinearOperator(f, :op_f)

source

@variable

JuMP.@variable – Macro.

@variable(model, expr, args..., kw_args...)

Add a variable to the model model described by the expression expr, the positional arguments args and
the keyword arguments kw_args.

Anonymous and named variables

expr must be one of the forms:

• Omitted, like @variable(model), which creates an anonymous variable

• A single symbol like @variable(model, x)

• A container expression like @variable(model, x[i=1:3])

• An anonymous container expression like @variable(model, [i=1:3])

Bounds

In addition, the expression can have bounds, such as:

• @variable(model, x >= 0)

• @variable(model, x <= 0)

• @variable(model, x == 0)

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/nlp_expr.jl#L1032-L1124
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• @variable(model, 0 <= x <= 1)

and bounds can depend on the indices of the container expressions:

• @variable(model, -i <= x[i=1:3] <= i)

Sets

You can explicitly specify the set to which the variable belongs:

• @variable(model, x in MOI.Interval(0.0, 1.0))

For more information on this syntax, read Variables constrained on creation.

Positional arguments

The recognized positional arguments in args are the following:

• Bin: restricts the variable to the MOI.ZeroOne set, that is, {0, 1}. For example, @variable(model,
x, Bin). Note: you cannot use @variable(model, Bin), use the binary keyword instead.

• Int: restricts the variable to the set of integers, that is, ..., -2, -1, 0, 1, 2, ... For example, @variable(model,
x, Int). Note: you cannot use @variable(model, Int), use the integer keyword instead.

• Symmetric: Only available when creating a square matrix of variables, that is when expr is of the
form varname[1:n,1:n] or varname[i=1:n,j=1:n], it creates a symmetric matrix of variables.

• PSD: A restrictive extension to Symmetricwhich constraints a square matrix of variables to Symmetric
and constrains to be positive semidefinite.

Keyword arguments

Four keyword arguments are useful in all cases:

• base_name: Sets the name prefix used to generate variable names. It corresponds to the variable
name for scalar variable, otherwise, the variable names are set to base_name[...] for each index
... of the axes axes.

• start::Float64: specify the value passed to set_start_value for each variable

• container: specify the container type. See Forcing the container type for more information.

• set_string_name::Bool = true: control whether to set the MOI.VariableName attribute. Passing
set_string_name = false can improve performance.

Other keyword arguments are needed to disambiguate sitations with anonymous variables:

• lower_bound::Float64: an alternative to x >= lb, sets the value of the variable lower bound.

• upper_bound::Float64: an alternative to x <= ub, sets the value of the variable upper bound.

• binary::Bool: an alternative to passing Bin, sets whether the variable is binary or not.

• integer::Bool: an alternative to passing Int, sets whether the variable is integer or not.

• set::MOI.AbstractSet: an alternative to using x in set

• variable_type: used by JuMP extensions. See Extend @variable for more information.

Example

The following are equivalent ways of creating a variable x of name x with lower bound 0:
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julia> model = Model();

julia> @variable(model, x >= 0)
x

julia> model = Model();

julia> @variable(model, x, lower_bound = 0)
x

julia> model = Model();

julia> x = @variable(model, base_name = "x", lower_bound = 0)
x

Other examples:

julia> model = Model();

julia> @variable(model, x[i=1:3] <= i, Int, start = sqrt(i), lower_bound = -i)
3-element Vector{VariableRef}:
x[1]
x[2]
x[3]

julia> @variable(model, y[i=1:3], container = DenseAxisArray, set = MOI.ZeroOne())
1-dimensional DenseAxisArray{VariableRef,1,...} with index sets:

Dimension 1, Base.OneTo(3)
And data, a 3-element Vector{VariableRef}:
y[1]
y[2]
y[3]

julia> @variable(model, z[i=1:3], set_string_name = false)
3-element Vector{VariableRef}:
_[7]
_[8]
_[9]

source

@variables

JuMP.@variables – Macro.

@variables(model, args...)

Adds multiple variables to model at once, in the same fashion as the @variable macro.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros/@variable.jl#L6-L141
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The model must be the first argument, and multiple variables can be added on multiple lines wrapped in
a begin ... end block.

The macro returns a tuple containing the variables that were defined.

Example

julia> model = Model();

julia> @variables(model, begin
x
y[i = 1:2] >= 0, (start = i)
z, Bin, (start = 0, base_name = "Z")

end)
(x, VariableRef[y[1], y[2]], Z)

Note

Keyword arguments must be contained within parentheses (refer to the example above).

source

add_bridge

JuMP.add_bridge – Function.

add_bridge(
model::GenericModel{T},
BT::Type{<:MOI.Bridges.AbstractBridge};
coefficient_type::Type{S} = T,

) where {T,S}

Add BT{T} to the list of bridges that can be used to transform unsupported constraints into an equivalent
formulation using only constraints supported by the optimizer.

See also: remove_bridge.

Example

julia> model = Model();

julia> add_bridge(model, MOI.Bridges.Constraint.SOCtoNonConvexQuadBridge)

julia> add_bridge(
model,
MOI.Bridges.Constraint.NumberConversionBridge;
coefficient_type = Complex{Float64}

)

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros/@variable.jl#L330-L357
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/JuMP.jl#L716-L742
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add_constraint

JuMP.add_constraint – Function.

add_constraint(
model::GenericModel,
con::AbstractConstraint,
name::String= "",

)

This method should only be implemented by developers creating JuMP extensions. It should never be called
by users of JuMP.

source

add_nonlinear_operator

JuMP.add_nonlinear_operator – Function.

add_nonlinear_operator(
model::Model,
dim::Int,
f::Function,
[∇f::Function,]
[∇²f::Function];
[name::Symbol = Symbol(f),]

)

Add a new nonlinear operator with dim input arguments to model and associate it with the name name.

The function f evaluates the operator and must return a scalar.

The optional function ∇f evaluates the first derivative, and the optional function ∇²f evaluates the second
derivative.

∇²f may be provided only if ∇f is also provided.

Univariate syntax

If dim == 1, then the method signatures of each function must be:

• f(::T)::T where {T<:Real}

• ∇f(::T)::T where {T<:Real}

• ∇²f(::T)::T where {T<:Real}

Multivariate syntax

If dim > 1, then the method signatures of each function must be:

• f(x::T...)::T where {T<:Real}

• ∇f(g::AbstractVector{T}, x::T...)::Nothing where {T<:Real}

• ∇²f(H::AbstractMatrix{T}, x::T...)::Nothing where {T<:Real}

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L1019-L1028
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Where the gradient vector g and Hessian matrix H are filled in-place. For the Hessian, you must fill in the
non-zero lower-triangular entries only. Setting an off-diagonal upper-triangular element may error.

Example

julia> model = Model();

julia> @variable(model, x)
x

julia> f(x::Float64) = x^2
f (generic function with 1 method)

julia> ∇f(x::Float64) = 2 * x
∇f (generic function with 1 method)

julia> ∇²f(x::Float64) = 2.0
∇²f (generic function with 1 method)

julia> op_f = add_nonlinear_operator(model, 1, f, ∇f, ∇²f)
NonlinearOperator(f, :f)

julia> @objective(model, Min, op_f(x))
f(x)

julia> op_f(2.0)
4.0

source

add_to_expression!

JuMP.add_to_expression! – Function.

add_to_expression!(expression, terms...)

Updates expression in-place to expression + (*)(terms...).

This is typically much more efficient than expression += (*)(terms...) because it avoids the temorary
allocation of the right-hand side term.

For example, add_to_expression!(expression, a, b) produces the same result as expression += a*b,
and add_to_expression!(expression, a) produces the same result as expression += a.

When to implement

Only a few methods are defined, mostly for internal use, and only for the cases when:

1. they can be implemented efficiently

2. expression is capable of storing the result. For example, add_to_expression!(::AffExpr, ::GenericVariableRef,
::GenericVariableRef) is not defined because a GenericAffExpr cannot store the product of two
variables.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/nlp_expr.jl#L910-L976
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Example

julia> model = Model();

julia> @variable(model, x)
x

julia> expr = 2 + x
x + 2

julia> add_to_expression!(expr, 3, x)
4 x + 2

julia> expr
4 x + 2

julia> model = Model();

julia> @variable(model, x[1:2])
2-element Vector{VariableRef}:
x[1]
x[2]

julia> @expression(model, ex1, sum(x))
x[1] + x[2]

julia> @expression(model, ex2, 2 * sum(x))
2 x[1] + 2 x[2]

julia> add_to_expression!(ex1, ex2)
3 x[1] + 3 x[2]

julia> ex1
3 x[1] + 3 x[2]

julia> ex2
2 x[1] + 2 x[2]

source

add_to_function_constant

JuMP.add_to_function_constant – Function.

add_to_function_constant(constraint::ConstraintRef, value)

Add value to the function constant term of constraint.

Note that for scalar constraints, JuMP will aggregate all constant terms onto the right-hand side of the
constraint so instead of modifying the function, the set will be translated by -value. For example, given a
constraint 2x <= 3, add_to_function_constant(c, 4) will modify it to 2x <= -1.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/aff_expr.jl#L486-L550
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Example

For scalar constraints, the set is translated by -value:

julia> model = Model();

julia> @variable(model, x);

julia> @constraint(model, con, 0 <= 2x - 1 <= 2)
con : 2 x ∈ [1, 3]

julia> add_to_function_constant(con, 4)

julia> con
con : 2 x ∈ [-3, -1]

For vector constraints, the constant is added to the function:

julia> model = Model();

julia> @variable(model, x);

julia> @variable(model, y);

julia> @constraint(model, con, [x + y, x, y] in SecondOrderCone())
con : [x + y, x, y] ∈ MathOptInterface.SecondOrderCone(3)

julia> add_to_function_constant(con, [1, 2, 2])

julia> con
con : [x + y + 1, x + 2, y + 2] ∈ MathOptInterface.SecondOrderCone(3)

source

add_variable

JuMP.add_variable – Function.

add_variable(m::GenericModel, v::AbstractVariable, name::String = "")

This method should only be implemented by developers creating JuMP extensions. It should never be called
by users of JuMP.

source

all_constraints

JuMP.all_constraints – Function.

all_constraints(model::GenericModel, function_type, set_type)::Vector{<:ConstraintRef}

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L1222-L1267
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L2141-L2146
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Return a list of all constraints currently in the model where the function has type function_type and the
set has type set_type. The constraints are ordered by creation time.

See also list_of_constraint_types and num_constraints.

Example

julia> model = Model();

julia> @variable(model, x >= 0, Bin);

julia> @constraint(model, 2x <= 1);

julia> all_constraints(model, VariableRef, MOI.GreaterThan{Float64})
1-element Vector{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,
MathOptInterface.GreaterThan{Float64}}, ScalarShape}}:

↪→

↪→

x ≥ 0

julia> all_constraints(model, VariableRef, MOI.ZeroOne)
1-element Vector{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex, MathOptInterface.ZeroOne},
ScalarShape}}:

↪→

↪→

x binary

julia> all_constraints(model, AffExpr, MOI.LessThan{Float64})
1-element Vector{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.LessThan{Float64}}, ScalarShape}}:

↪→

↪→

2 x ≤ 1

source

all_constraints(
model::GenericModel;
include_variable_in_set_constraints::Bool,

)::Vector{ConstraintRef}

Return a list of all constraints in model.

If include_variable_in_set_constraints == true, then VariableRef constraints such as VariableRef-
in-Integer are included. To return only the structural constraints (for example, the rows in the constraint
matrix of a linear program), pass include_variable_in_set_constraints = false.

Example

julia> model = Model();

julia> @variable(model, x >= 0, Int);

julia> @constraint(model, 2x <= 1);

julia> @NLconstraint(model, x^2 <= 1);

julia> all_constraints(model; include_variable_in_set_constraints = true)

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L1590-L1620
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4-element Vector{ConstraintRef}:
2 x ≤ 1
x ≥ 0
x integer
x ^ 2.0 - 1.0 ≤ 0

julia> all_constraints(model; include_variable_in_set_constraints = false)
2-element Vector{ConstraintRef}:
2 x ≤ 1
x ^ 2.0 - 1.0 ≤ 0

Performance considerations

Note that this function is type-unstable because it returns an abstractly typed vector. If performance is a
problem, consider using list_of_constraint_types and a function barrier. See the Performance tips for
extensions section of the documentation for more details.

source

all_variables

JuMP.all_variables – Function.

all_variables(model::GenericModel{T})::Vector{GenericVariableRef{T}} where {T}

Returns a list of all variables currently in the model. The variables are ordered by creation time.

Example

julia> model = Model();

julia> @variable(model, x);

julia> @variable(model, y);

julia> all_variables(model)
2-element Vector{VariableRef}:
x
y

source

anonymous_name

JuMP.anonymous_name – Function.

anonymous_name(::MIME, x::AbstractVariableRef)

The name to use for an anonymous variable x when printing.

Example

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L1729-L1772
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L2663-L2683
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julia> model = Model();

julia> x = @variable(model);

julia> anonymous_name(MIME("text/plain"), x)
"_[1]"

source

assert_is_solved_and_feasible

JuMP.assert_is_solved_and_feasible – Function.

assert_is_solved_and_feasible(model::GenericModel; kwargs...)

A function calls is_solved_and_feasible and, if the return is false, errors with an informative error
message describing the state of the solver.

Keyword arguments

See is_solved_and_feasible for a description of all keyword arguments.

Example

julia> import Ipopt

julia> model = Model(Ipopt.Optimizer);

julia> is_solved_and_feasible(model)
false

julia> assert_is_solved_and_feasible(model)
ERROR: The model was not solved correctly. Here is the output of `solution_summary` to help

debug why this happened:↪→

solution_summary(; result = 1, verbose = false)
├ solver_name : Ipopt
├ Termination
│ ├ termination_status : OPTIMIZE_NOT_CALLED
│ ├ result_count : 0
│ └ raw_status : optimize not called
└ Solution (result = 1)
├ primal_status : NO_SOLUTION
└ dual_status : NO_SOLUTION

Stacktrace:
[...]

source

backend

JuMP.backend – Function.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/print.jl#L783-L798
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L965-L1001
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backend(model::GenericModel)

Return the lower-level MathOptInterface model that sits underneath JuMP. This model depends on which
operating mode JuMP is in (see mode).

• If JuMP is in DIRECT mode (that is, the model was created using direct_model), the backend will be
the optimizer passed to direct_model.

• If JuMP is in MANUAL or AUTOMATIC mode, the backend is a MOI.Utilities.CachingOptimizer.

Use index to get the index of a variable or constraint in the backend model.

Warning

This function should only be used by advanced users looking to access low-level MathOptInterface
or solver-specific functionality.

Notes

If JuMP is not in DIRECT mode, the type returned by backend may change between any JuMP releases.
Therefore, only use the public API exposed by MathOptInterface, and do not access internal fields. If you
require access to the innermost optimizer, see unsafe_backend. Alternatively, use direct_model to create
a JuMP model in DIRECT mode.

See also: unsafe_backend.

Example

julia> import HiGHS

julia> model = direct_model(HiGHS.Optimizer());

julia> set_silent(model)

julia> @variable(model, x >= 0)
x

julia> highs = backend(model)
A HiGHS model with 1 columns and 0 rows.

julia> index(x)
MOI.VariableIndex(1)

source

barrier_iterations

JuMP.barrier_iterations – Function.

barrier_iterations(model::GenericModel)

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/JuMP.jl#L417-L464
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If available, returns the cumulative number of barrier iterations during the most-recent optimization (the
MOI.BarrierIterations attribute).

Throws a MOI.GetAttributeNotAllowed error if the attribute is not implemented by the solver.

Example

julia> import HiGHS

julia> model = Model(HiGHS.Optimizer);

julia> set_silent(model)

julia> optimize!(model)

julia> barrier_iterations(model)
0

source

bridge_constraints

JuMP.bridge_constraints – Function.

bridge_constraints(model::GenericModel)

When in direct mode, return false.

When in manual or automatic mode, return a Bool indicating whether the optimizer is set and unsupported
constraints are automatically bridged to equivalent supported constraints when an appropriate transfor-
mation is available.

Example

julia> import Ipopt

julia> model = Model(Ipopt.Optimizer);

julia> bridge_constraints(model)
true

julia> model = Model(Ipopt.Optimizer; add_bridges = false);

julia> bridge_constraints(model)
false

source

build_constraint

JuMP.build_constraint – Function.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L1076-L1099
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/JuMP.jl#L658-L683
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build_constraint(error_fn::Function, func, set, args...; kwargs...)

This method should only be implemented by developers creating JuMP extensions. It should never be called
by users of JuMP.

source

build_variable

JuMP.build_variable – Function.

build_variable(
error_fn::Function,
info::VariableInfo,
args...;
kwargs...,

)

Return a new AbstractVariable object.

This method should only be implemented by developers creating JuMP extensions. It should never be called
by users of JuMP.

Arguments

• error_fn: a function to call instead of error. error_fn annotates the error message with additional
information for the user.

• info: an instance of VariableInfo. This has a variety of fields relating to the variable such as
info.lower_bound and info.binary.

• args: optional additional positional arguments for extending the @variable macro.

• kwargs: optional keyword arguments for extending the @variable macro.

See also: @variable

Warning

Extensions should define a method with ONE positional argument to dispatch the call to a different
method. Creating an extension that relies on multiple positional arguments leads to MethodErrors
if the user passes the arguments in the wrong order.

Example

@variable(model, x, Foo)

will call

build_variable(error_fn::Function, info::VariableInfo, ::Type{Foo})

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros/@constraint.jl#L977-L982
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Passing special-case positional arguments such as Bin, Int, and PSD is okay, along with keyword argu-
ments:

@variable(model, x, Int, Foo(), mykwarg = true)
# or
@variable(model, x, Foo(), Int, mykwarg = true)

will call

build_variable(error_fn::Function, info::VariableInfo, ::Foo; mykwarg)

and info.integer will be true.

Note that the order of the positional arguments does not matter.

source

callback_node_status

JuMP.callback_node_status – Function.

callback_node_status(cb_data, model::GenericModel)

Return an MOI.CallbackNodeStatusCode enum, indicating if the current primal solution available from
callback_value is integer feasible.

Example

julia> import Gurobi

julia> model = Model(Gurobi.Optimizer);

julia> set_silent(model)

julia> @variable(model, x <= 10, Int);

julia> @objective(model, Max, x);

julia> function my_callback_function(cb_data, cb_where)
status = callback_node_status(cb_data, model)
if status == MOI.CALLBACK_NODE_STATUS_INTEGER

println("Status is: ", status)
end
return

end
my_callback_function (generic function with 1 method)

julia> set_attribute(model, Gurobi.CallbackFunction(), my_callback_function)

julia> optimize!(model)
Status is: CALLBACK_NODE_STATUS_INTEGER

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros/@variable.jl#L610-L666
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/callbacks.jl#L11-L44
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callback_value

JuMP.callback_value – Function.

callback_value(cb_data, x::GenericVariableRef)
callback_value(cb_data, x::Union{GenericAffExpr,GenericQuadExpr})

Return the primal solution of x inside a callback.

cb_data is the argument to the callback function, and the type is dependent on the solver.

Use callback_node_status to check whether a solution is available.

Example

julia> import Gurobi

julia> model = Model(Gurobi.Optimizer);

julia> set_silent(model)

julia> @variable(model, x <= 10, Int);

julia> @objective(model, Max, x);

julia> function my_callback_function(cb_data, cb_where)
status = callback_node_status(cb_data, model)
if status == MOI.CALLBACK_NODE_STATUS_INTEGER

Gurobi.load_callback_variable_primal(cb_data, cb_where)
println("Solution is: ", callback_value(cb_data, x))

end
return

end
my_callback_function (generic function with 1 method)

julia> set_attribute(model, Gurobi.CallbackFunction(), my_callback_function)

julia> optimize!(model)
Solution is: 10.0

source

check_belongs_to_model

JuMP.check_belongs_to_model – Function.

check_belongs_to_model(x::AbstractJuMPScalar, model::AbstractModel)
check_belongs_to_model(x::AbstractConstraint, model::AbstractModel)

Throw VariableNotOwned if the owner_model of x is not model.

Example

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/callbacks.jl#L58-L97
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julia> model = Model();

julia> @variable(model, x);

julia> check_belongs_to_model(x, model)

julia> model_2 = Model();

julia> check_belongs_to_model(x, model_2)
ERROR: VariableNotOwned{VariableRef}(x): the variable x cannot be used in this model because
it belongs to a different model.
[...]

source

coefficient

JuMP.coefficient – Function.

coefficient(v1::GenericVariableRef{T}, v2::GenericVariableRef{T}) where {T}

Return one(T) if v1 == v2 and zero(T) otherwise.

This is a fallback for other coefficient methods to simplify code in which the expression may be a single
variable.

Example

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> coefficient(x[1], x[1])
1.0

julia> coefficient(x[1], x[2])
0.0

source

coefficient(a::GenericAffExpr{C,V}, v::V) where {C,V}

Return the coefficient associated with variable v in the affine expression a.

Example

julia> model = Model();

julia> @variable(model, x);

julia> expr = 2.0 * x + 1.0;

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L339-L362
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L398-L419
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julia> coefficient(expr, x)
2.0

source

coefficient(a::GenericQuadExpr{C,V}, v1::V, v2::V) where {C,V}

Return the coefficient associated with the term v1 * v2 in the quadratic expression a.

Note that coefficient(a, v1, v2) is the same as coefficient(a, v2, v1).

Example

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> expr = 2.0 * x[1] * x[2];

julia> coefficient(expr, x[1], x[2])
2.0

julia> coefficient(expr, x[2], x[1])
2.0

julia> coefficient(expr, x[1], x[1])
0.0

source

coefficient(a::GenericQuadExpr{C,V}, v::V) where {C,V}

Return the coefficient associated with variable v in the affine component of a.

Example

julia> model = Model();

julia> @variable(model, x);

julia> expr = 2.0 * x^2 + 3.0 * x;

julia> coefficient(expr, x)
3.0

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/aff_expr.jl#L280-L297
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/quad_expr.jl#L198-L224
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/quad_expr.jl#L229-L247
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compute_conflict!

JuMP.compute_conflict! – Function.

compute_conflict!(model::GenericModel)

Compute a conflict if the model is infeasible.

The conflict is also called the Irreducible Infeasible Subsystem (IIS).

If an optimizer has not been set yet (see set_optimizer), a NoOptimizer error is thrown.

The status of the conflict can be checked with the MOI.ConflictStatus model attribute. Then, the status
for each constraint can be queried with the MOI.ConstraintConflictStatus attribute.

See also: copy_conflict

Example

julia> using JuMP

julia> model = Model(Gurobi.Optimizer);

julia> set_silent(model)

julia> @variable(model, x >= 0);

julia> @constraint(model, c1, x >= 2);

julia> @constraint(model, c2, x <= 1);

julia> optimize!(model)

julia> compute_conflict!(model)

julia> get_attribute(model, MOI.ConflictStatus())
CONFLICT_FOUND::ConflictStatusCode = 3

source

constant

JuMP.constant – Function.

constant(aff::GenericAffExpr{C,V})::C

Return the constant of the affine expression.

Example

julia> model = Model();

julia> @variable(model, x);

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L687-L725
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julia> aff = 2.0 * x + 3.0;

julia> constant(aff)
3.0

source

constant(quad::GenericQuadExpr{C,V})::C

Return the constant of the quadratic expression.

Example

julia> model = Model();

julia> @variable(model, x);

julia> quad = 2.0 * x^2 + 3.0;

julia> constant(quad)
3.0

source

constraint_by_name

JuMP.constraint_by_name – Function.

constraint_by_name(model::AbstractModel, name::String, [F, S])::Union{ConstraintRef,Nothing}

Return the reference of the constraint with name attribute name or Nothing if no constraint has this name
attribute.

Throws an error if several constraints have name as their name attribute.

If F and S are provided, this method addititionally throws an error if the constraint is not an F-in-S contraint
where F is either the JuMP or MOI type of the function and S is the MOI type of the set.

Providing F and S is recommended if you know the type of the function and set since its returned type can
be inferred while for the method above (that is, without F and S), the exact return type of the constraint
index cannot be inferred.

Example

julia> model = Model();

julia> @variable(model, x)
x

julia> @constraint(model, con, x^2 == 1)

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/aff_expr.jl#L423-L440
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/quad_expr.jl#L358-L375
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con : x² = 1

julia> constraint_by_name(model, "kon")

julia> constraint_by_name(model, "con")
con : x² = 1

julia> constraint_by_name(model, "con", AffExpr, MOI.EqualTo{Float64})

julia> constraint_by_name(model, "con", QuadExpr, MOI.EqualTo{Float64})
con : x² = 1

source

constraint_object

JuMP.constraint_object – Function.

constraint_object(con_ref::ConstraintRef)

Return the underlying constraint data for the constraint referenced by con_ref.

Example

A scalar constraint:

julia> model = Model();

julia> @variable(model, x);

julia> @constraint(model, c, 2x <= 1)
c : 2 x ≤ 1

julia> object = constraint_object(c)
ScalarConstraint{AffExpr, MathOptInterface.LessThan{Float64}}(2 x,

MathOptInterface.LessThan{Float64}(1.0))↪→

julia> typeof(object)
ScalarConstraint{AffExpr, MathOptInterface.LessThan{Float64}}

julia> object.func
2 x

julia> object.set
MathOptInterface.LessThan{Float64}(1.0)

A vector constraint:

julia> model = Model();

julia> @variable(model, x[1:3]);

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L427-L465
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julia> @constraint(model, c, x in SecondOrderCone())
c : [x[1], x[2], x[3]] ∈ MathOptInterface.SecondOrderCone(3)

julia> object = constraint_object(c)
VectorConstraint{VariableRef, MathOptInterface.SecondOrderCone, VectorShape}(VariableRef[x[1],

x[2], x[3]], MathOptInterface.SecondOrderCone(3), VectorShape())↪→

julia> typeof(object)
VectorConstraint{VariableRef, MathOptInterface.SecondOrderCone, VectorShape}

julia> object.func
3-element Vector{VariableRef}:
x[1]
x[2]
x[3]

julia> object.set
MathOptInterface.SecondOrderCone(3)

source

constraint_ref_with_index

JuMP.constraint_ref_with_index – Function.

constraint_ref_with_index(model::AbstractModel, index::MOI.ConstraintIndex)

Return a ConstraintRef of model corresponding to index.

This function is a helper function used internally by JuMP and some JuMP extensions. It should not need to
be called in user-code.

source

constraint_string

JuMP.constraint_string – Function.

constraint_string(
mode::MIME,
ref::ConstraintRef;
in_math_mode::Bool = false,

)

Return a string representation of the constraint ref, given the mode.

Example

julia> model = Model();

julia> @variable(model, x);

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L779-L832
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L501-L508
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julia> @constraint(model, c, 2 * x <= 1);

julia> constraint_string(MIME("text/plain"), c)
"c : 2 x ≤ 1"

source

constraints_string

JuMP.constraints_string – Function.

constraints_string(mode, model::AbstractModel)::Vector{String}

Return a list of Strings describing each constraint of the model.

Example

julia> model = Model();

julia> @variable(model, x >= 0);

julia> @constraint(model, c, 2 * x <= 1);

julia> constraints_string(MIME("text/plain"), model)
2-element Vector{String}:
"c : 2 x ≤ 1"
"x ≥ 0"

source

copy_conflict

JuMP.copy_conflict – Function.

copy_conflict(model::GenericModel)

Return a copy of the current conflict for the model model and a GenericReferenceMap that can be used to
obtain the variable and constraint reference of the new model corresponding to a given model's reference.

This is a convenience function that provides a filtering function for copy_model.

Note

Model copy is not supported in DIRECTmode, that is, when a model is constructed using the direct_model
constructor instead of the Model constructor. Moreover, independently on whether an optimizer was pro-
vided at model construction, the new model will have no optimizer, that is, an optimizer will have to be
provided to the new model in the optimize! call.

Example

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/print.jl#L1132-L1153
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/print.jl#L631-L650
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In the following example, a model model is constructed with a variable x and two constraints c1 and c2.
This model has no solution, as the two constraints are mutually exclusive. The solver is asked to compute
a conflict with compute_conflict!. The parts of model participating in the conflict are then copied into a
model iis_model.

julia> using JuMP

julia> import Gurobi

julia> model = Model(Gurobi.Optimizer);

julia> set_silent(model)

julia> @variable(model, x >= 0)
x

julia> @constraint(model, c1, x >= 2)
c1 : x ≥ 2

julia> @constraint(model, c2, x <= 1)
c2 : x ≤ 1

julia> optimize!(model)

julia> compute_conflict!(model)

julia> if get_attribute(model, MOI.ConflictStatus()) == MOI.CONFLICT_FOUND
iis_model, reference_map = copy_conflict(model)
print(iis_model)

end
Feasibility
Subject to
c1 : x ≥ 2
c2 : x ≤ 1

source

copy_extension_data

JuMP.copy_extension_data – Function.

copy_extension_data(data, new_model::AbstractModel, model::AbstractModel)

Return a copy of the extension data data of the model model to the extension data of the new model
new_model.

A method should be added for any JuMP extension storing data in the ext field.

This method should only be implemented by developers creating JuMP extensions. It should never be called
by users of JuMP.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/copy.jl#L256-L314
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Warning

Do not engage in type piracy by implementing this method for types of data that you did not
define! JuMP extensions should store types that they define in model.ext, rather than regular Julia
types.

source

copy_model

JuMP.copy_model – Function.

copy_model(model::GenericModel; filter_constraints::Union{Nothing, Function}=nothing)

Return a copy of the model model and a GenericReferenceMap that can be used to obtain the variable and
constraint reference of the newmodel corresponding to a given model's reference. A Base.copy(::AbstractModel)
method has also been implemented, it is similar to copy_model but does not return the reference map.

If the filter_constraints argument is given, only the constraints for which this function returns true
will be copied. This function is given a constraint reference as argument.

Note

Model copy is not supported in DIRECTmode, that is, when a model is constructed using the direct_model
constructor instead of the Model constructor. Moreover, independently on whether an optimizer was pro-
vided at model construction, the new model will have no optimizer, that is, an optimizer will have to be
provided to the new model in the optimize! call.

Example

In the following example, a model model is constructed with a variable x and a constraint cref. It is then
copied into a model new_model with the new references assigned to x_new and cref_new.

julia> model = Model();

julia> @variable(model, x)
x

julia> @constraint(model, cref, x == 2)
cref : x = 2

julia> new_model, reference_map = copy_model(model);

julia> x_new = reference_map[x]
x

julia> cref_new = reference_map[cref]
cref : x = 2

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/copy.jl#L6-L21
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/copy.jl#L102-L146
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delete

JuMP.delete – Function.

delete(model::GenericModel, con_ref::ConstraintRef)

Delete the constraint associated with constraint_ref from the model model.

Note that delete does not unregister the name from the model, so adding a new constraint of the same
name will throw an error. Use unregister to unregister the name after deletion.

Example

julia> model = Model();

julia> @variable(model, x);

julia> @constraint(model, c, 2x <= 1)
c : 2 x ≤ 1

julia> delete(model, c)

julia> unregister(model, :c)

julia> print(model)
Feasibility
Subject to

julia> model[:c]
ERROR: KeyError: key :c not found
Stacktrace:
[...]

source

delete(model::GenericModel, con_refs::Vector{<:ConstraintRef})

Delete the constraints associated with con_refs from the model model.

Solvers may implement specialized methods for deleting multiple constraints of the same concrete type.
These methods may be more efficient than repeatedly calling the single constraint delete method.

See also: unregister

Example

julia> model = Model();

julia> @variable(model, x[1:3]);

julia> @constraint(model, c, 2 * x .<= 1)
3-element Vector{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.LessThan{Float64}}, ScalarShape}}:

↪→

↪→

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L529-L561
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c : 2 x[1] ≤ 1
c : 2 x[2] ≤ 1
c : 2 x[3] ≤ 1

julia> delete(model, c)

julia> unregister(model, :c)

julia> print(model)
Feasibility
Subject to

julia> model[:c]
ERROR: KeyError: key :c not found
Stacktrace:
[...]

source

delete(model::GenericModel, variable_ref::GenericVariableRef)

Delete the variable associated with variable_ref from the model model.

Note that delete does not unregister the name from the model, so adding a new variable of the same
name will throw an error. Use unregister to unregister the name after deletion.

Example

julia> model = Model();

julia> @variable(model, x)
x

julia> delete(model, x)

julia> unregister(model, :x)

julia> print(model)
Feasibility
Subject to

julia> model[:x]
ERROR: KeyError: key :x not found
Stacktrace:
[...]

source

delete(model::GenericModel, variable_refs::Vector{<:GenericVariableRef})

Delete the variables associated with variable_refs from the model model. Solvers may implement meth-
ods for deleting multiple variables that are more efficient than repeatedly calling the single variable delete
method.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L573-L610
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L443-L473
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See also: unregister

Example

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> delete(model, x)

julia> unregister(model, :x)

julia> print(model)
Feasibility
Subject to

julia> model[:x]
ERROR: KeyError: key :x not found
Stacktrace:
[...]

source

delete_lower_bound

JuMP.delete_lower_bound – Function.

delete_lower_bound(v::GenericVariableRef)

Delete the lower bound constraint of a variable.

See also LowerBoundRef, has_lower_bound, lower_bound, set_lower_bound.

Example

julia> model = Model();

julia> @variable(model, x >= 1.0);

julia> has_lower_bound(x)
true

julia> delete_lower_bound(x)

julia> has_lower_bound(x)
false

source

delete_upper_bound

JuMP.delete_upper_bound – Function.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L486-L515
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L910-L933
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delete_upper_bound(v::GenericVariableRef)

Delete the upper bound constraint of a variable.

Errors if one does not exist.

See also UpperBoundRef, has_upper_bound, upper_bound, set_upper_bound.

Example

julia> model = Model();

julia> @variable(model, x <= 1.0);

julia> has_upper_bound(x)
true

julia> delete_upper_bound(x)

julia> has_upper_bound(x)
false

source

direct_generic_model

JuMP.direct_generic_model – Function.

direct_generic_model(
value_type::Type{T},
backend::MOI.ModelLike;

) where {T<:Real}

Return a new JuMP model using backend to store the model and solve it.

As opposed to the Model constructor, no cache of the model is stored outside of backend and no bridges
are automatically applied to backend.

Notes

The absence of a cache reduces the memory footprint but, it is important to bear in mind the following
implications of creating models using this direct mode:

• When backend does not support an operation, such asmodifying constraints or adding variables/constraints
after solving, an error is thrown. For models created using the Model constructor, such situations can
be dealt with by storing the modifications in a cache and loading them into the optimizer when
optimize! is called.

• No constraint bridging is supported by default.

• The optimizer used cannot be changed the model is constructed.

• The model created cannot be copied.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L1081-L1106
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source

direct_generic_model(::Type{T}, factory::MOI.OptimizerWithAttributes)

Create a direct_generic_model using factory, a MOI.OptimizerWithAttributes object created by optimizer_with_attributes.

Example

julia> import HiGHS

julia> optimizer = optimizer_with_attributes(
HiGHS.Optimizer,
"presolve" => "off",
MOI.Silent() => true,

);

julia> model = direct_generic_model(Float64, optimizer)
A JuMP Model
├ mode: DIRECT
├ solver: HiGHS
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none

is equivalent to:

julia> import HiGHS

julia> model = direct_generic_model(Float64, HiGHS.Optimizer())
A JuMP Model
├ mode: DIRECT
├ solver: HiGHS
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none

julia> set_attribute(model, "presolve", "off")

julia> set_attribute(model, MOI.Silent(), true)

source

direct_model

JuMP.direct_model – Function.

direct_model(backend::MOI.ModelLike)

Return a new JuMP model using backend to store the model and solve it.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/JuMP.jl#L209-L234
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/JuMP.jl#L257-L300
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As opposed to the Model constructor, no cache of the model is stored outside of backend and no bridges
are automatically applied to backend.

Notes

The absence of a cache reduces the memory footprint but, it is important to bear in mind the following
implications of creating models using this direct mode:

• When backend does not support an operation, such asmodifying constraints or adding variables/constraints
after solving, an error is thrown. For models created using the Model constructor, such situations can
be dealt with by storing the modifications in a cache and loading them into the optimizer when
optimize! is called.

• No constraint bridging is supported by default.

• The optimizer used cannot be changed the model is constructed.

• The model created cannot be copied.

source

direct_model(factory::MOI.OptimizerWithAttributes)

Create a direct_model using factory, a MOI.OptimizerWithAttributes object created by optimizer_with_attributes.

Example

julia> import HiGHS

julia> optimizer = optimizer_with_attributes(
HiGHS.Optimizer,
"presolve" => "off",
MOI.Silent() => true,

);

julia> model = direct_model(optimizer)
A JuMP Model
├ mode: DIRECT
├ solver: HiGHS
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none

is equivalent to:

julia> import HiGHS

julia> model = direct_model(HiGHS.Optimizer())
A JuMP Model
├ mode: DIRECT
├ solver: HiGHS
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/JuMP.jl#L341-L363
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└ Names registered in the model: none

julia> set_attribute(model, "presolve", "off")

julia> set_attribute(model, MOI.Silent(), true)

source

drop_zeros!

JuMP.drop_zeros! – Function.

drop_zeros!(expr::GenericAffExpr)

Remove terms in the affine expression with 0 coefficients.

Example

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> expr = x[1] + x[2];

julia> add_to_expression!(expr, -1.0, x[1])
0 x[1] + x[2]

julia> drop_zeros!(expr)

julia> expr
x[2]

source

drop_zeros!(expr::GenericQuadExpr)

Remove terms in the quadratic expression with 0 coefficients.

Example

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> expr = x[1]^2 + x[2]^2;

julia> add_to_expression!(expr, -1.0, x[1], x[1])
0 x[1]² + x[2]²

julia> drop_zeros!(expr)

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/JuMP.jl#L366-L409
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/aff_expr.jl#L302-L324
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julia> expr
x[2]²

source

dual

JuMP.dual – Function.

dual(con_ref::ConstraintRef; result::Int = 1)

Return the dual value of constraint con_ref associated with result index result of the most-recent solution
returned by the solver.

Use dual_status to check if a result exists before asking for values.

See also: result_count, shadow_price.

Example

julia> import HiGHS

julia> model = Model(HiGHS.Optimizer);

julia> set_silent(model)

julia> @variable(model, x);

julia> @constraint(model, c, x <= 1)
c : x ≤ 1

julia> @objective(model, Max, 2 * x + 1);

julia> optimize!(model)

julia> dual_status(model)
FEASIBLE_POINT::ResultStatusCode = 1

julia> dual(c)
-2.0

source

dual_objective_value

JuMP.dual_objective_value – Function.

dual_objective_value(model::GenericModel; result::Int = 1)

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/quad_expr.jl#L250-L272
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L1368-L1402
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Return the value of the objective of the dual problem associated with result index result of themost-recent
solution returned by the solver.

Throws MOI.UnsupportedAttribute{MOI.DualObjectiveValue} if the solver does not support this at-
tribute.

This function is equivalent to querying the MOI.DualObjectiveValue attribute.

See also: result_count.

Example

julia> import HiGHS

julia> model = Model(HiGHS.Optimizer);

julia> set_silent(model)

julia> @variable(model, x >= 1);

julia> @objective(model, Min, 2 * x + 1);

julia> optimize!(model)

julia> dual_objective_value(model)
3.0

julia> dual_objective_value(model; result = 2)
ERROR: Result index of attribute MathOptInterface.DualObjectiveValue(2) out of bounds. There are

currently 1 solution(s) in the model.↪→

Stacktrace:
[...]

source

dual_shape

JuMP.dual_shape – Function.

dual_shape(shape::AbstractShape)::AbstractShape

Returns the shape of the dual space of the space of objects of shape shape. By default, the dual_shape
of a shape is itself. See the examples section below for an example for which this is not the case.

Example

Consider polynomial constraints for which the dual is moment constraints and moment constraints for
which the dual is polynomial constraints. Shapes for polynomials can be defined as follows:

struct Polynomial
coefficients::Vector{Float64}
monomials::Vector{Monomial}

end
struct PolynomialShape <: AbstractShape

monomials::Vector{Monomial}

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/objective.jl#L125-L162
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end
JuMP.reshape_vector(x::Vector, shape::PolynomialShape) = Polynomial(x, shape.monomials)

and a shape for moments can be defined as follows:

struct Moments
coefficients::Vector{Float64}
monomials::Vector{Monomial}

end
struct MomentsShape <: AbstractShape

monomials::Vector{Monomial}
end
JuMP.reshape_vector(x::Vector, shape::MomentsShape) = Moments(x, shape.monomials)

Then dual_shape allows the definition of the shape of the dual of polynomial and moment constraints:

dual_shape(shape::PolynomialShape) = MomentsShape(shape.monomials)
dual_shape(shape::MomentsShape) = PolynomialShape(shape.monomials)

source

dual_start_value

JuMP.dual_start_value – Function.

dual_start_value(con_ref::ConstraintRef)

Return the dual start value (MOI attribute ConstraintDualStart) of the constraint con_ref.

If no dual start value has been set, dual_start_value will return nothing.

See also set_dual_start_value.

Example

julia> model = Model();

julia> @variable(model, x, start = 2.0);

julia> @constraint(model, c, [2x] in Nonnegatives())
c : [2 x] ∈ Nonnegatives()

julia> set_dual_start_value(c, [0.0])

julia> dual_start_value(c)
1-element Vector{Float64}:
0.0

julia> set_dual_start_value(c, nothing)

julia> dual_start_value(c)

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/shapes.jl#L19-L58
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source

dual_status

JuMP.dual_status – Function.

dual_status(model::GenericModel; result::Int = 1)

Return a MOI.ResultStatusCode describing the status of the most recent dual solution of the solver (that
is, the MOI.DualStatus attribute) associated with the result index result.

See also: result_count.

Example

julia> import Ipopt

julia> model = Model(Ipopt.Optimizer);

julia> dual_status(model; result = 2)
NO_SOLUTION::ResultStatusCode = 0

source

error_if_direct_mode

JuMP.error_if_direct_mode – Function.

error_if_direct_mode(model::GenericModel, func::Symbol)

Errors if model is in direct mode during a call from the function named func.

Used internally within JuMP, or by JuMP extensions who do not want to support models in direct mode.

Example

julia> import HiGHS

julia> model = direct_model(HiGHS.Optimizer());

julia> error_if_direct_mode(model, :foo)
ERROR: The `foo` function is not supported in DIRECT mode.
Stacktrace:
[...]

source

fix

JuMP.fix – Function.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L102-L132
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L844-L863
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L369-L390
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fix(v::GenericVariableRef, value::Number; force::Bool = false)

Fix a variable to a value. Update the fixing constraint if one exists, otherwise create a new one.

If the variable already has variable bounds and force=false, calling fix will throw an error. If force=true,
existing variable bounds will be deleted, and the fixing constraint will be added. Note a variable will have
no bounds after a call to unfix.

See also FixRef, is_fixed, fix_value, unfix.

Example

julia> model = Model();

julia> @variable(model, x);

julia> is_fixed(x)
false

julia> fix(x, 1.0)

julia> is_fixed(x)
true

julia> model = Model();

julia> @variable(model, 0 <= x <= 1);

julia> is_fixed(x)
false

julia> fix(x, 1.0; force = true)

julia> is_fixed(x)
true

source

fix_discrete_variables

JuMP.fix_discrete_variables – Function.

fix_discrete_variables([var_value::Function = value,] model::GenericModel)

Modifies model to convert all binary and integer variables to continuous variables with fixed bounds of
var_value(x).

Return

Returns a function that can be called without any arguments to restore the original model. The behavior
of this function is undefined if additional changes are made to the affected variables in the meantime.

Notes

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L1176-L1219
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• An error is thrown if semi-continuous or semi-integer constraints are present (support may be added
for these in the future).

• All other constraints are ignored (left in place). This includes discrete constraints like SOS and indi-
cator constraints.

Example

julia> model = Model();

julia> @variable(model, x, Bin, start = 1);

julia> @variable(model, 1 <= y <= 10, Int, start = 2);

julia> @objective(model, Min, x + y);

julia> undo_relax = fix_discrete_variables(start_value, model);

julia> print(model)
Min x + y
Subject to
x = 1
y = 2

julia> undo_relax()

julia> print(model)
Min x + y
Subject to
y ≥ 1
y ≤ 10
y integer
x binary

source

fix_value

JuMP.fix_value – Function.

fix_value(v::GenericVariableRef)

Return the value to which a variable is fixed.

Error if one does not exist.

See also FixRef, is_fixed, fix, unfix.

Example

julia> model = Model();

julia> @variable(model, x == 1);

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L2801-L2849
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julia> fix_value(x)
1.0

source

flatten!

JuMP.flatten! – Function.

flatten!(expr::GenericNonlinearExpr)

Flatten a nonlinear expression in-place by lifting nested + and * nodes into a single n-ary operation.

Motivation

Nonlinear expressions created using operator overloading can be deeply nested and unbalanced. For
example, prod(x for i in 1:4) creates *(x, *(x, *(x, x))) instead of the more preferable *(x, x,
x, x).

Example

julia> model = Model();

julia> @variable(model, x)
x

julia> y = prod(x for i in 1:4)
((x²) * x) * x

julia> flatten!(y)
(x²) * x * x

julia> flatten!(sin(prod(x for i in 1:4)))
sin((x²) * x * x)

source

function_string

JuMP.function_string – Function.

function_string(
mode::MIME,
func::Union{JuMP.AbstractJuMPScalar,Vector{<:JuMP.AbstractJuMPScalar}},

)

Return a String representing the function func using print mode mode.

Example

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L1294-L1313
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/nlp_expr.jl#L435-L464
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julia> model = Model();

julia> @variable(model, x);

julia> function_string(MIME("text/plain"), 2 * x + 1)
"2 x + 1"

source

get_attribute

JuMP.get_attribute – Function.

get_attribute(model::GenericModel, attr::MOI.AbstractModelAttribute)
get_attribute(x::GenericVariableRef, attr::MOI.AbstractVariableAttribute)
get_attribute(cr::ConstraintRef, attr::MOI.AbstractConstraintAttribute)

Get the value of a solver-specifc attribute attr.

This is equivalent to calling MOI.get with the associated MOI model and, for variables and constraints, with
the associated MOI.VariableIndex or MOI.ConstraintIndex.

Example

julia> model = Model();

julia> @variable(model, x)
x

julia> @constraint(model, c, 2 * x <= 1)
c : 2 x ≤ 1

julia> get_attribute(model, MOI.Name())
""

julia> get_attribute(x, MOI.VariableName())
"x"

julia> get_attribute(c, MOI.ConstraintName())
"c"

source

get_attribute(
model::Union{GenericModel,MOI.OptimizerWithAttributes},
attr::Union{AbstractString,MOI.AbstractOptimizerAttribute},

)

Get the value of a solver-specifc attribute attr.

This is equivalent to calling MOI.get with the associated MOI model.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/print.jl#L809-L827
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L1298-L1329
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If attr is an AbstractString, it is converted to MOI.RawOptimizerAttribute.

Example

julia> import HiGHS

julia> opt = optimizer_with_attributes(HiGHS.Optimizer, "output_flag" => true);

julia> model = Model(opt);

julia> get_attribute(model, "output_flag")
true

julia> get_attribute(model, MOI.RawOptimizerAttribute("output_flag"))
true

julia> get_attribute(opt, "output_flag")
true

julia> get_attribute(opt, MOI.RawOptimizerAttribute("output_flag"))
true

source

has_duals

JuMP.has_duals – Function.

has_duals(model::GenericModel; result::Int = 1)

Return true if the solver has a dual solution in result index result available to query, otherwise return
false.

See also dual, shadow_price, and result_count.

Example

julia> import HiGHS

julia> model = Model(HiGHS.Optimizer);

julia> set_silent(model)

julia> @variable(model, x);

julia> @constraint(model, c, x <= 1)
c : x ≤ 1

julia> @objective(model, Max, 2 * x + 1);

julia> has_duals(model)
false

julia> optimize!(model)

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L1345-L1379
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julia> has_duals(model)
true

source

has_lower_bound

JuMP.has_lower_bound – Function.

has_lower_bound(v::GenericVariableRef)

Return true if v has a lower bound. If true, the lower bound can be queried with lower_bound.

See also LowerBoundRef, lower_bound, set_lower_bound, delete_lower_bound.

Example

julia> model = Model();

julia> @variable(model, x >= 1.0);

julia> has_lower_bound(x)
true

source

has_start_value

JuMP.has_start_value – Function.

has_start_value(variable::AbstractVariableRef)

Return true if the variable has a start value set, otherwise return false.

See also: start_value, set_start_value.

Example

julia> model = Model();

julia> @variable(model, x, start = 1.5);

julia> @variable(model, y);

julia> has_start_value(x)
true

julia> has_start_value(y)
false

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L1331-L1363
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L792-L811
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julia> start_value(x)
1.5

julia> set_start_value(y, 2.0)

julia> has_start_value(y)
true

julia> start_value(y)
2.0

source

has_upper_bound

JuMP.has_upper_bound – Function.

has_upper_bound(v::GenericVariableRef)

Return true if v has a upper bound. If true, the upper bound can be queried with upper_bound.

See also UpperBoundRef, upper_bound, set_upper_bound, delete_upper_bound.

Example

julia> model = Model();

julia> @variable(model, x <= 1.0);

julia> has_upper_bound(x)
true

source

has_values

JuMP.has_values – Function.

has_values(model::GenericModel; result::Int = 1)

Return true if the solver has a primal solution in result index result available to query, otherwise return
false.

See also value and result_count.

Example

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L1984-L2017
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L965-L984
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julia> import HiGHS

julia> model = Model(HiGHS.Optimizer);

julia> set_silent(model)

julia> @variable(model, x);

julia> @constraint(model, c, x <= 1)
c : x ≤ 1

julia> @objective(model, Max, 2 * x + 1);

julia> has_values(model)
false

julia> optimize!(model)

julia> has_values(model)
true

source

in_set_string

JuMP.in_set_string – Function.

in_set_string(mode::MIME, set)

Return a String representing the membership to the set set using print mode mode.

Extensions

JuMP extensions may extend this method for new set types to improve the legibility of their printing.

Example

julia> in_set_string(MIME("text/plain"), MOI.Interval(1.0, 2.0))
"∈ [1, 2]"

source

index

JuMP.index – Function.

index(cr::ConstraintRef)::MOI.ConstraintIndex

Return the index of the constraint that corresponds to cr in the MOI backend.

Example

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L2104-L2136
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/print.jl#L1048-L1065
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julia> model = Model();

julia> @variable(model, x);

julia> @constraint(model, c, x >= 0);

julia> index(c)
MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},

MathOptInterface.GreaterThan{Float64}}(1)↪→

source

index(v::GenericVariableRef)::MOI.VariableIndex

Return the index of the variable that corresponds to v in the MOI backend.

Example

julia> model = Model();

julia> @variable(model, x);

julia> index(x)
MOI.VariableIndex(1)

source

is_binary

JuMP.is_binary – Function.

is_binary(v::GenericVariableRef)

Return true if v is constrained to be binary.

See also BinaryRef, set_binary, unset_binary.

Example

julia> model = Model();

julia> @variable(model, x, Bin);

julia> is_binary(x)
true

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L32-L49
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L568-L583
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L1486-L1503
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is_fixed

JuMP.is_fixed – Function.

is_fixed(v::GenericVariableRef)

Return true if v is a fixed variable. If true, the fixed value can be queried with fix_value.

See also FixRef, fix_value, fix, unfix.

Example

julia> model = Model();

julia> @variable(model, x);

julia> is_fixed(x)
false

julia> fix(x, 1.0)

julia> is_fixed(x)
true

source

is_integer

JuMP.is_integer – Function.

is_integer(v::GenericVariableRef)

Return true if v is constrained to be integer.

See also IntegerRef, set_integer, unset_integer.

Example

julia> model = Model();

julia> @variable(model, x);

julia> is_integer(x)
false

julia> set_integer(x)

julia> is_integer(x)
true

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L1140-L1163
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L1349-L1371
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is_parameter

JuMP.is_parameter – Function.

is_parameter(x::GenericVariableRef)::Bool

Return true if x is constrained to be a parameter.

See also ParameterRef, set_parameter_value, parameter_value.

Example

julia> model = Model();

julia> @variable(model, p in Parameter(2))
p

julia> is_parameter(p)
true

julia> @variable(model, x)
x

julia> is_parameter(x)
false

source

is_solved_and_feasible

JuMP.is_solved_and_feasible – Function.

is_solved_and_feasible(
model::GenericModel;
allow_local::Bool = true,
allow_almost::Bool = false,
dual::Bool = false,
result::Int = 1,

)

Return true if:

• the termination_status is one of:

– OPTIMAL (the solver found a global optimum)
– LOCALLY_SOLVED (the solver found a local optimum, which may also be the global optimum, but
the solver could not prove so).

• the primal_status of the result index result is FEASIBLE_POINT.

This function is conservative, in that it returns false for situations like the solver terminating with a feasible
solution due to a time limit.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L1658-L1683
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If this function returns false, use termination_status, result_count, primal_status and dual_status
to understand what solutions are available (if any).

See also: assert_is_solved_and_feasible.

Keyword arguments

allow_local

If allow_local = false, then this function returns true only if the termination_status is OPTIMAL.

allow_almost

If allow_almost = true, then the termination_statusmay additionally be ALMOST_OPTIMAL or ALMOST_LOCALLY_SOLVED
(if allow_local), and the primal_status and dual_statusmay additionally be NEARLY_FEASIBLE_POINT.

dual

If dual, additionally check that an optimal dual solution is available via dual_status. The allow_ keywords
control both the primal and dual solutions.

result

The index of the result to query. This value is passed to the result keyword arguments of primal_status
and dual_status.

Example

julia> import Ipopt

julia> model = Model(Ipopt.Optimizer);

julia> is_solved_and_feasible(model)
false

julia> is_solved_and_feasible(
model;
allow_almost = true,
dual = true,
result = 2,

)
false

source

is_valid

JuMP.is_valid – Function.

is_valid(model::GenericModel, con_ref::ConstraintRef{<:AbstractModel})

Return true if con_ref refers to a valid constraint in model.

Example

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L868-L936
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julia> model = Model();

julia> @variable(model, x);

julia> @constraint(model, c, 2 * x <= 1);

julia> is_valid(model, c)
true

julia> model_2 = Model();

julia> is_valid(model_2, c)
false

source

is_valid(model::GenericModel, variable_ref::GenericVariableRef)

Return true if variable refers to a valid variable in model.

Example

julia> model = Model();

julia> @variable(model, x);

julia> is_valid(model, x)
true

julia> model_2 = Model();

julia> is_valid(model_2, x)
false

source

is_variable_in_set

JuMP.is_variable_in_set – Function.

is_variable_in_set(
model::GenericModel,
x::Union{AbstractJuMPScalar,AbstractArray{<:AbstractJuMPScalar}},

)::Bool

Return a Bool if VariableInSetRef returns a valid constraint reference without erroring.

Exceptions

This function does not apply for variable bounds or integrality restrictions of a scalar variable. For example:

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L626-L648
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L531-L551
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julia> model = Model();

julia> @variable(model, x >= 0, Int)
x

julia> is_variable_in_set(x)
false

Use instead is_integer, is_binary, has_lower_bound, has_upper_bound, and is_fixed.

julia> model = Model();

julia> @variable(model, x >= 0, Int)
x

julia> is_integer(x)
true

julia> has_lower_bound(x)
true

Example

julia> model = Model();

julia> @variable(model, x[1:2, 1:2], PSD)
2×2 LinearAlgebra.Symmetric{VariableRef, Matrix{VariableRef}}:
x[1,1] x[1,2]
x[1,2] x[2,2]

julia> is_variable_in_set(x)
true

julia> c = VariableInSetRef(x)
[x[1,1] x[1,2]
⋯ x[2,2]] ∈ PSDCone()

julia> @variable(model, y)
y

julia> is_variable_in_set(y)
false

julia> @variable(model, z in Semicontinuous(1, 2))
z

julia> is_variable_in_set(z)
true

julia> c_z = VariableInSetRef(z)
z ∈ MathOptInterface.Semicontinuous{Int64}(1, 2)

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L1762-L1834
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isequal_canonical

JuMP.isequal_canonical – Function.

isequal_canonical(
x::T,
y::T

) where {T<:AbstractJuMPScalar,AbstractArray{<:AbstractJuMPScalar}}

Return true if x is equal to y after dropping zeros and disregarding the order.

This method is mainly useful for testing, because fallbacks like x == y do not account for valid mathemat-
ical comparisons like x[1] + 0 x[2] + 1 == x[1] + 1.

Example

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> a = x[1] + 1.0
x[1] + 1

julia> b = x[1] + x[2] + 1.0
x[1] + x[2] + 1

julia> add_to_expression!(b, -1.0, x[2])
x[1] + 0 x[2] + 1

julia> a == b
false

julia> isequal_canonical(a, b)
true

source

jump_function

JuMP.jump_function – Function.

jump_function(model::AbstractModel, x::MOI.AbstractFunction)

Given an MathOptInterface object x, return the JuMP equivalent.

See also: moi_function.

Example

julia> model = Model();

julia> @variable(model, x);

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/JuMP.jl#L1239-L1273
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julia> f = 2.0 * index(x) + 1.0
1.0 + 2.0 MOI.VariableIndex(1)

julia> jump_function(model, f)
2 x + 1

source

jump_function_type

JuMP.jump_function_type – Function.

jump_function_type(model::AbstractModel, ::Type{T}) where {T}

Given an MathOptInterface object type T, return the JuMP equivalent.

See also: moi_function_type.

Example

julia> model = Model();

julia> jump_function_type(model, MOI.ScalarAffineFunction{Float64})
AffExpr (alias for GenericAffExpr{Float64, GenericVariableRef{Float64}})

source

latex_formulation

JuMP.latex_formulation – Function.

latex_formulation(model::AbstractModel)

Wrap model in a type so that it can be pretty-printed as text/latex in a notebook like IJulia, or in Docu-
menter.

To render themodel, end the cell with latex_formulation(model), or call display(latex_formulation(model))
in to force the display of the model from inside a function.

source

linear_terms

JuMP.linear_terms – Function.

linear_terms(aff::GenericAffExpr{C,V})

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/aff_expr.jl#L820-L840
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/aff_expr.jl#L843-L858
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/print.jl#L17-L26
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Provides an iterator over coefficient-variable tuples (a_i::C, x_i::V) in the linear part of the affine ex-
pression.

source

linear_terms(quad::GenericQuadExpr{C,V})

Provides an iterator over tuples (coefficient::C, variable::V) in the linear part of the quadratic ex-
pression.

source

list_of_constraint_types

JuMP.list_of_constraint_types – Function.

list_of_constraint_types(model::GenericModel)::Vector{Tuple{Type,Type}}

Return a list of tuples of the form (F, S) where F is a JuMP function type and S is an MOI set type such
that all_constraints(model, F, S) returns a nonempty list.

Example

julia> model = Model();

julia> @variable(model, x >= 0, Bin);

julia> @constraint(model, 2x <= 1);

julia> list_of_constraint_types(model)
3-element Vector{Tuple{Type, Type}}:
(AffExpr, MathOptInterface.LessThan{Float64})
(VariableRef, MathOptInterface.GreaterThan{Float64})
(VariableRef, MathOptInterface.ZeroOne)

Performance considerations

Iterating over the list of function and set types is a type-unstable operation. Consider using a function
barrier. See the Performance tips for extensions section of the documentation for more details.

source

lower_bound

JuMP.lower_bound – Function.

lower_bound(v::GenericVariableRef)

Return the lower bound of a variable. Error if one does not exist.

See also LowerBoundRef, has_lower_bound, set_lower_bound, delete_lower_bound.

Example

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/aff_expr.jl#L453-L458
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/quad_expr.jl#L378-L383
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L1652-L1680
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julia> model = Model();

julia> @variable(model, x >= 1.0);

julia> lower_bound(x)
1.0

source

lp_matrix_data

JuMP.lp_matrix_data – Function.

lp_matrix_data(model::GenericModel{T})

Given a JuMP model of a linear program, return an LPMatrixData{T} struct storing data for an equivalent
linear program in the form:

minc⊤x+ c0

bl ≤ Ax ≤ bu

xl ≤ x ≤ xu

where elements in x may be continuous, integer, or binary variables.

Fields

The struct returned by lp_matrix_data has the fields:

• A::SparseArrays.SparseMatrixCSC{T,Int}: the constraint matrix in sparse matrix form.

• b_lower::Vector{T}: the dense vector of row lower bounds. If missing, the value of typemin(T) is
used.

• b_upper::Vector{T}: the dense vector of row upper bounds. If missing, the value of typemax(T) is
used.

• x_lower::Vector{T}: the dense vector of variable lower bounds. If missing, the value of typemin(T)
is used.

• x_upper::Vector{T}: the dense vector of variable upper bounds. If missing, the value of typemax(T)
is used.

• c::Vector{T}: the dense vector of linear objective coefficients

• c_offset::T: the constant term in the objective function.

• sense::MOI.OptimizationSense: the objective sense of the model.

• integers::Vector{Int}: the sorted list of column indices that are integer variables.

• binaries::Vector{Int}: the sorted list of column indices that are binary variables.

• variables::Vector{GenericVariableRef{T}}: a vector of GenericVariableRef, corresponding to
order of the columns in the matrix form.

• affine_constraints::Vector{ConstraintRef}: a vector of ConstraintRef, corresponding to the
order of rows in the matrix form.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L939-L957
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Limitations

The models supported by lp_matrix_data are intentionally limited to linear programs.

Example

julia> model = Model();

julia> @variable(model, x[1:2] >= 0);

julia> @constraint(model, x[1] + 2 * x[2] <= 1);

julia> @objective(model, Max, x[2]);

julia> data = lp_matrix_data(model);

julia> data.A
1×2 SparseArrays.SparseMatrixCSC{Float64, Int64} with 2 stored entries:
1.0 2.0

julia> data.b_lower
1-element Vector{Float64}:
-Inf

julia> data.b_upper
1-element Vector{Float64}:
1.0

julia> data.x_lower
2-element Vector{Float64}:
0.0
0.0

julia> data.x_upper
2-element Vector{Float64}:
Inf
Inf

julia> data.c
2-element Vector{Float64}:
0.0
1.0

julia> data.c_offset
0.0

julia> data.sense
MAX_SENSE::OptimizationSense = 1

source

lp_sensitivity_report

JuMP.lp_sensitivity_report – Function.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/lp_matrix_data.jl#L28-L119
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lp_sensitivity_report(model::GenericModel{T}; atol::T =
Base.rtoldefault(T))::SensitivityReport{T} where {T}↪→

Given a linear program model with a current optimal basis, return a SensitivityReport object, which
maps:

• Every variable reference to a tuple (d_lo, d_hi)::Tuple{T,T}, explaining how much the objective
coefficient of the corresponding variable can change by, such that the original basis remains optimal.

• Every constraint reference to a tuple (d_lo, d_hi)::Tuple{T,T}, explaining how much the right-
hand side of the corresponding constraint can change by, such that the basis remains optimal.

Both tuples are relative, rather than absolute. So given a objective coefficient of 1.0 and a tuple (-0.5,
0.5), the objective coefficient can range between 1.0 - 0.5 an 1.0 + 0.5.

atol is the primal/dual optimality tolerance, and should match the tolerance of the solver used to compute
the basis.

Note: interval constraints are NOT supported.

Example

julia> import HiGHS

julia> model = Model(HiGHS.Optimizer);

julia> set_silent(model)

julia> @variable(model, -1 <= x <= 2)
x

julia> @objective(model, Min, x)
x

julia> optimize!(model)

julia> report = lp_sensitivity_report(model; atol = 1e-7);

julia> dx_lo, dx_hi = report[x]
(-1.0, Inf)

julia> println(
"The objective coefficient of `x` can decrease by $dx_lo or " *
"increase by $dx_hi."

)
The objective coefficient of `x` can decrease by -1.0 or increase by Inf.

julia> dRHS_lo, dRHS_hi = report[LowerBoundRef(x)]
(-Inf, 3.0)

julia> println(
"The lower bound of `x` can decrease by $dRHS_lo or increase " *
"by $dRHS_hi."

)
The lower bound of `x` can decrease by -Inf or increase by 3.0.
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source

map_coefficients

JuMP.map_coefficients – Function.

map_coefficients(f::Function, a::GenericAffExpr)

Apply f to the coefficients and constant term of an GenericAffExpr a and return a new expression.

See also: map_coefficients_inplace!

Example

julia> model = Model();

julia> @variable(model, x);

julia> a = GenericAffExpr(1.0, x => 1.0)
x + 1

julia> map_coefficients(c -> 2 * c, a)
2 x + 2

julia> a
x + 1

source

map_coefficients(f::Function, a::GenericQuadExpr)

Apply f to the coefficients and constant term of an GenericQuadExpr a and return a new expression.

See also: map_coefficients_inplace!

Example

julia> model = Model();

julia> @variable(model, x);

julia> a = @expression(model, x^2 + x + 1)
x² + x + 1

julia> map_coefficients(c -> 2 * c, a)
2 x² + 2 x + 2

julia> a
x² + x + 1

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/lp_sensitivity2.jl#L19-L78
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/aff_expr.jl#L366-L390
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/quad_expr.jl#L313-L337
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map_coefficients_inplace!

JuMP.map_coefficients_inplace! – Function.

map_coefficients_inplace!(f::Function, a::GenericAffExpr)

Apply f to the coefficients and constant term of an GenericAffExpr a and update them in-place.

See also: map_coefficients

Example

julia> model = Model();

julia> @variable(model, x);

julia> a = GenericAffExpr(1.0, x => 1.0)
x + 1

julia> map_coefficients_inplace!(c -> 2 * c, a)
2 x + 2

julia> a
2 x + 2

source

map_coefficients_inplace!(f::Function, a::GenericQuadExpr)

Apply f to the coefficients and constant term of an GenericQuadExpr a and update them in-place.

See also: map_coefficients

Example

julia> model = Model();

julia> @variable(model, x);

julia> a = @expression(model, x^2 + x + 1)
x² + x + 1

julia> map_coefficients_inplace!(c -> 2 * c, a)
2 x² + 2 x + 2

julia> a
2 x² + 2 x + 2

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/aff_expr.jl#L332-L356
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/quad_expr.jl#L279-L303
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mode

JuMP.mode – Function.

mode(model::GenericModel)

Return the ModelMode of model.

Example

julia> model = Model();

julia> mode(model)
AUTOMATIC::ModelMode = 0

source

model_convert

JuMP.model_convert – Function.

model_convert(
model::AbstractModel,
rhs::Union{

AbstractConstraint,
Number,
AbstractJuMPScalar,
MOI.AbstractSet,

},
)

Convert the coefficients and constants of functions and sets in the rhs to the coefficient type value_type(typeof(model)).

Purpose

Creating and adding a constraint is a two-step process. The first step calls build_constraint, and the
result of that is passed to add_constraint.

However, because build_constraint does not take the model as an argument, the coefficients and con-
stants of the function or set might be different than value_type(typeof(model)).

Therefore, the result of build_constraint is converted in a call to model_convert before the result is
passed to add_constraint.

source

model_string

JuMP.model_string – Function.

model_string(mode::MIME, model::AbstractModel)

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/JuMP.jl#L592-L605
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros.jl#L281-L307
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Return a String representation of model given the mode.

Example

julia> model = Model();

julia> @variable(model, x >= 0);

julia> print(model_string(MIME("text/plain"), model))
Feasibility
Subject to
x ≥ 0

source

moi_function

JuMP.moi_function – Function.

moi_function(x::AbstractJuMPScalar)
moi_function(x::AbstractArray{<:AbstractJuMPScalar})

Given a JuMP object x, return the MathOptInterface equivalent.

See also: jump_function.

Example

julia> model = Model();

julia> @variable(model, x);

julia> f = 2.0 * x + 1.0
2 x + 1

julia> moi_function(f)
1.0 + 2.0 MOI.VariableIndex(1)

source

moi_function_type

JuMP.moi_function_type – Function.

moi_function_type(::Type{T}) where {T}

Given a JuMP object type T, return the MathOptInterface equivalent.

See also: jump_function_type.

Example

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/print.jl#L542-L559
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/aff_expr.jl#L759-L780
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julia> moi_function_type(AffExpr)
MathOptInterface.ScalarAffineFunction{Float64}

source

moi_set

JuMP.moi_set – Function.

moi_set(constraint::AbstractConstraint)

Return the set of the constraint constraint in the function-in-set form as a MathOptInterface.AbstractSet.

moi_set(s::AbstractVectorSet, dim::Int)

Returns the MOI set of dimension dim corresponding to the JuMP set s.

moi_set(s::AbstractScalarSet)

Returns the MOI set corresponding to the JuMP set s.

source

name

JuMP.name – Function.

name(con_ref::ConstraintRef)

Get a constraint's name attribute.

Example

julia> model = Model();

julia> @variable(model, x);

julia> @constraint(model, c, [2x] in Nonnegatives())
c : [2 x] ∈ Nonnegatives()

julia> name(c)
"c"

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/aff_expr.jl#L804-L817
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L763-L776
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L359-L377
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name(v::GenericVariableRef)::String

Get a variable's name attribute.

Example

julia> model = Model();

julia> @variable(model, x[1:2])
2-element Vector{VariableRef}:
x[1]
x[2]

julia> name(x[1])
"x[1]"

source

name(model::AbstractModel)

Return the MOI.Name attribute of model's backend, or a default if empty.

Example

julia> model = Model();

julia> name(model)
"A JuMP Model"

source

node_count

JuMP.node_count – Function.

node_count(model::GenericModel)

If available, returns the total number of branch-and-bound nodes explored during the most recent opti-
mization in a Mixed Integer Program (the MOI.NodeCount attribute).

Throws a MOI.GetAttributeNotAllowed error if the attribute is not implemented by the solver.

Example

julia> import HiGHS

julia> model = Model(HiGHS.Optimizer);

julia> set_silent(model)

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L621-L639
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/print.jl#L188-L202
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julia> optimize!(model)

julia> node_count(model)
0

source

normalized_coefficient

JuMP.normalized_coefficient – Function.

normalized_coefficient(
constraint::ConstraintRef,
variable::GenericVariableRef,

)

Return the coefficient associated with variable in constraint after JuMP has normalized the constraint
into its standard form.

See also set_normalized_coefficient.

Example

julia> model = Model();

julia> @variable(model, x)
x

julia> @constraint(model, con, 2x + 3x <= 2)
con : 5 x ≤ 2

julia> normalized_coefficient(con, x)
5.0

julia> @constraint(model, con_vec, [x, 2x + 1, 3] >= 0)
con_vec : [x, 2 x + 1, 3] ∈ Nonnegatives()

julia> normalized_coefficient(con_vec, x)
2-element Vector{Tuple{Int64, Float64}}:
(1, 1.0)
(2, 2.0)

source

normalized_coefficient(
constraint::ConstraintRef,
variable_1::GenericVariableRef,
variable_2::GenericVariableRef,

)

Return the quadratic coefficient associated with variable_1 and variable_2 in constraint after JuMP
has normalized the constraint into its standard form.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L1104-L1128
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L3237-L3270
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See also set_normalized_coefficient.

Example

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> @constraint(model, con, 2x[1]^2 + 3 * x[1] * x[2] + x[2] <= 2)
con : 2 x[1]² + 3 x[1]*x[2] + x[2] ≤ 2

julia> normalized_coefficient(con, x[1], x[1])
2.0

julia> normalized_coefficient(con, x[1], x[2])
3.0

julia> @constraint(model, con_vec, x.^2 <= [1, 2])
con_vec : [x[1]² - 1, x[2]² - 2] ∈ Nonpositives()

julia> normalized_coefficient(con_vec, x[1], x[1])
1-element Vector{Tuple{Int64, Float64}}:
(1, 1.0)

julia> normalized_coefficient(con_vec, x[1], x[2])
Tuple{Int64, Float64}[]

source

normalized_rhs

JuMP.normalized_rhs – Function.

normalized_rhs(constraint::ConstraintRef)

Return the right-hand side term of constraint after JuMP has converted the constraint into its normalized
form.

See also set_normalized_rhs.

Example

julia> model = Model();

julia> @variable(model, x);

julia> @constraint(model, con, 2x + 1 <= 2)
con : 2 x ≤ 1

julia> normalized_rhs(con)
1.0

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L3286-L3324
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L1156-L1177
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num_constraints

JuMP.num_constraints – Function.

num_constraints(model::GenericModel, function_type, set_type)::Int64

Return the number of constraints currently in the model where the function has type function_type and
the set has type set_type.

See also list_of_constraint_types and all_constraints.

Example

julia> model = Model();

julia> @variable(model, x >= 0, Bin);

julia> @variable(model, y);

julia> @constraint(model, y in MOI.GreaterThan(1.0));

julia> @constraint(model, y <= 1.0);

julia> @constraint(model, 2x <= 1);

julia> num_constraints(model, VariableRef, MOI.GreaterThan{Float64})
2

julia> num_constraints(model, VariableRef, MOI.ZeroOne)
1

julia> num_constraints(model, AffExpr, MOI.LessThan{Float64})
2

source

num_constraints(model::GenericModel; count_variable_in_set_constraints::Bool)

Return the number of constraints in model.

If count_variable_in_set_constraints == true, then VariableRef constraints such as VariableRef-
in-Integer are included. To count only the number of structural constraints (for example, the rows in the
constraint matrix of a linear program), pass count_variable_in_set_constraints = false.

Example

julia> model = Model();

julia> @variable(model, x >= 0, Int);

julia> @constraint(model, 2x <= 1);

julia> num_constraints(model; count_variable_in_set_constraints = true)

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L1543-L1575


CHAPTER 22. DOCSTRINGS 794

3

julia> num_constraints(model; count_variable_in_set_constraints = false)
1

source

num_variables

JuMP.num_variables – Function.

num_variables(model::GenericModel)::Int64

Returns number of variables in model.

Example

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> num_variables(model)
2

source

object_dictionary

JuMP.object_dictionary – Function.

object_dictionary(model::GenericModel)

Return the dictionary that maps the symbol name of a variable, constraint, or expression to the corre-
sponding object.

Objects are registered to a specific symbol in the macros. For example, @variable(model, x[1:2, 1:2])
registers the array of variables x to the symbol :x.

This method should be defined for any subtype of AbstractModel.

See also: unregister.

Example

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> object_dictionary(model)
Dict{Symbol, Any} with 1 entry:
:x => VariableRef[x[1], x[2]]

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L1690-L1715
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L6-L21
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/JuMP.jl#L989-L1014
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objective_bound

JuMP.objective_bound – Function.

objective_bound(model::GenericModel)

Return the best known bound on the optimal objective value after a call to optimize!(model).

For scalar-valued objectives, this function returns a Float64. For vector-valued objectives, it returns a
Vector{Float64}.

In the case of a vector-valued objective, this returns the ideal point, that is, the point obtained if each
objective was optimized independently.

This function is equivalent to querying the MOI.ObjectiveBound attribute.

Example

julia> import HiGHS

julia> model = Model(HiGHS.Optimizer);

julia> set_silent(model)

julia> @variable(model, x >= 1, Int);

julia> @objective(model, Min, 2 * x + 1);

julia> optimize!(model)

julia> objective_bound(model)
3.0

source

objective_function

JuMP.objective_function – Function.

objective_function(
model::GenericModel,
::Type{F} = objective_function_type(model),

) where {F}

Return an object of type F representing the objective function.

Errors if the objective is not convertible to type F.

This function is equivalent to querying the MOI.ObjectiveFunction{F} attribute.

Example

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/objective.jl#L44-L76
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julia> model = Model();

julia> @variable(model, x)
x

julia> @objective(model, Min, 2x + 1)
2 x + 1

julia> objective_function(model, AffExpr)
2 x + 1

julia> objective_function(model, QuadExpr)
2 x + 1

julia> typeof(objective_function(model, QuadExpr))
QuadExpr (alias for GenericQuadExpr{Float64, GenericVariableRef{Float64}})

We see with the last two commands that even if the objective function is affine, as it is convertible to a
quadratic function, it can be queried as a quadratic function and the result is quadratic.

However, it is not convertible to a variable:

julia> objective_function(model, VariableRef)
ERROR: InexactError: convert(MathOptInterface.VariableIndex, 1.0 + 2.0 MOI.VariableIndex(1))
[...]

source

objective_function_string

JuMP.objective_function_string – Function.

objective_function_string(mode, model::AbstractModel)::String

Return a String describing the objective function of the model.

Example

julia> model = Model();

julia> @variable(model, x);

julia> @objective(model, Min, 2 * x);

julia> objective_function_string(MIME("text/plain"), model)
"2 x"

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/objective.jl#L377-L422
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/print.jl#L567-L584
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objective_function_type

JuMP.objective_function_type – Function.

objective_function_type(model::GenericModel)::AbstractJuMPScalar

Return the type of the objective function.

This function is equivalent to querying the MOI.ObjectiveFunctionType attribute.

Example

julia> model = Model();

julia> @variable(model, x);

julia> @objective(model, Min, 2 * x + 1);

julia> objective_function_type(model)
AffExpr (alias for GenericAffExpr{Float64, GenericVariableRef{Float64}})

source

objective_sense

JuMP.objective_sense – Function.

objective_sense(model::GenericModel)::MOI.OptimizationSense

Return the objective sense.

This function is equivalent to querying the MOI.ObjectiveSense attribute.

Example

julia> model = Model();

julia> objective_sense(model)
FEASIBILITY_SENSE::OptimizationSense = 2

julia> @variable(model, x);

julia> @objective(model, Max, x)
x

julia> objective_sense(model)
MAX_SENSE::OptimizationSense = 1

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/objective.jl#L349-L369
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/objective.jl#L170-L193
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objective_value

JuMP.objective_value – Function.

objective_value(model::GenericModel; result::Int = 1)

Return the objective value associated with result index result of the most-recent solution returned by the
solver.

For scalar-valued objectives, this function returns a Float64. For vector-valued objectives, it returns a
Vector{Float64}.

This function is equivalent to querying the MOI.ObjectiveValue attribute.

See also: result_count.

Example

julia> import HiGHS

julia> model = Model(HiGHS.Optimizer);

julia> set_silent(model)

julia> @variable(model, x >= 1);

julia> @objective(model, Min, 2 * x + 1);

julia> optimize!(model)

julia> objective_value(model)
3.0

julia> objective_value(model; result = 2)
ERROR: Result index of attribute MathOptInterface.ObjectiveValue(2) out of bounds. There are

currently 1 solution(s) in the model.↪→

Stacktrace:
[...]

source

op_ifelse

JuMP.op_ifelse – Function.

op_ifelse(a, x, y)

A function that falls back to ifelse(a, x, y), but when called with a JuMP variables or expression in the
first argument, returns a GenericNonlinearExpr.

Example

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/objective.jl#L81-L117
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julia> model = Model();

julia> @variable(model, x);

julia> op_ifelse(true, 1.0, 2.0)
1.0

julia> op_ifelse(x, 1.0, 2.0)
ifelse(x, 1.0, 2.0)

julia> op_ifelse(true, x, 2.0)
x

source

op_string

JuMP.op_string – Function.

op_string(mime::MIME, x::GenericNonlinearExpr, ::Val{op}) where {op}

Return the string that should be printed for the operator op when function_string is called with mime and
x.

Example

julia> model = Model();

julia> @variable(model, x[1:2], Bin);

julia> f = @expression(model, x[1] || x[2]);

julia> op_string(MIME("text/plain"), f, Val(:||))
"||"

source

operator_to_set

JuMP.operator_to_set – Function.

operator_to_set(error_fn::Function, ::Val{sense_symbol})

Converts a sense symbol to a set set such that @constraint(model, func sense_symbol 0) is equiva-
lent to @constraint(model, func in set) for any func::AbstractJuMPScalar.

Example

Once a custom set is defined you can directly create a JuMP constraint with it:

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros.jl#L6-L29
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/nlp_expr.jl#L162-L180
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julia> struct CustomSet{T} <: MOI.AbstractScalarSet
value::T

end

julia> Base.copy(x::CustomSet) = CustomSet(x.value)

julia> model = Model();

julia> @variable(model, x)
x

julia> cref = @constraint(model, x in CustomSet(1.0))
x ∈ CustomSet{Float64}(1.0)

However, there might be an appropriate sign that could be used in order to provide a more convenient
syntax:

julia> JuMP.operator_to_set(::Function, ::Val{:�}) = CustomSet(0.0)

julia> MOIU.supports_shift_constant(::Type{<:CustomSet}) = true

julia> MOIU.shift_constant(set::CustomSet, value) = CustomSet(set.value + value)

julia> cref = @constraint(model, x � 1)
x ∈ CustomSet{Float64}(1.0)

Note that the whole function is first moved to the right-hand side, then the sign is transformed into a set
with zero constant and finally the constant is moved to the set with MOIU.shift_constant.

source

operator_warn

JuMP.operator_warn – Function.

operator_warn(model::AbstractModel)
operator_warn(model::GenericModel)

This function is called on the model whenever two affine expressions are added together without using
destructive_add!, and at least one of the two expressions has more than 50 terms.

For the case of Model, if this function is called more than 20,000 times then a warning is generated once.

This method should only be implemented by developers creating JuMP extensions. It should never be called
by users of JuMP.

source

optimize!

JuMP.optimize! – Function.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros/@constraint.jl#L505-L546
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/operators.jl#L300-L313
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optimize!(
model::GenericModel;
ignore_optimize_hook = (model.optimize_hook === nothing),
kwargs...,

)

Optimize the model.

If an optimizer has not been set yet (see set_optimizer), a NoOptimizer error is thrown.

If ignore_optimize_hook == true, the optimize hook is ignored and themodel is solved as if the hook was
not set. Keyword arguments kwargs are passed to the optimize_hook. An error is thrown if optimize_hook
is nothing and keyword arguments are provided.

Example

julia> import HiGHS

julia> model = Model(HiGHS.Optimizer);

julia> set_silent(model)

julia> function my_optimize_hook(model; foo)
println("Hook called with foo = ", foo)
return optimize!(model; ignore_optimize_hook = true)

end
my_optimize_hook (generic function with 1 method)

julia> set_optimize_hook(model, my_optimize_hook)
my_optimize_hook (generic function with 1 method)

julia> optimize!(model; foo = 2)
Hook called with foo = 2

source

optimizer_index

JuMP.optimizer_index – Function.

optimizer_index(x::GenericVariableRef)::MOI.VariableIndex
optimizer_index(x::ConstraintRef{<:GenericModel})::MOI.ConstraintIndex

Return the variable or constraint index that corresponds to x in the associatedmodel unsafe_backend(owner_model(x)).

This function should be used with unsafe_backend.

As a safer alternative, use backend and index. See the docstrings of backend and unsafe_backend for
more details.

Throws

• Throws NoOptimizer if no optimizer is set.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L521-L559
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• Throws an ErrorException if the optimizer is set but is not attached.

• Throws an ErrorException if the index is bridged.

Example

julia> import HiGHS

julia> model = Model(HiGHS.Optimizer);

julia> set_silent(model)

julia> @variable(model, x >= 0)
x

julia> MOI.Utilities.attach_optimizer(model)

julia> highs = unsafe_backend(model)
A HiGHS model with 1 columns and 0 rows.

julia> optimizer_index(x)
MOI.VariableIndex(1)

source

optimizer_with_attributes

JuMP.optimizer_with_attributes – Function.

optimizer_with_attributes(optimizer_constructor, attrs::Pair...)

Groups an optimizer constructor with the list of attributes attrs. Note that it is equivalent to MOI.OptimizerWithAttributes.

When provided to the Model constructor or to set_optimizer, it creates an optimizer by calling optimizer_constructor(),
and then sets the attributes using set_attribute.

See also: set_attribute, get_attribute.

Note

The string names of the attributes are specific to each solver. One should consult the solver's documen-
tation to find the attributes of interest.

Example

julia> import HiGHS

julia> optimizer = optimizer_with_attributes(
HiGHS.Optimizer, "presolve" => "off", MOI.Silent() => true,

);

julia> model = Model(optimizer);

is equivalent to:

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L1623-L1661
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julia> import HiGHS

julia> model = Model(HiGHS.Optimizer);

julia> set_attribute(model, "presolve", "off")

julia> set_attribute(model, MOI.Silent(), true)

source

owner_model

JuMP.owner_model – Function.

owner_model(s::AbstractJuMPScalar)

Return the model owning the scalar s.

Example

julia> model = Model();

julia> @variable(model, x);

julia> owner_model(x) === model
true

source

parameter_value

JuMP.parameter_value – Function.

parameter_value(x::GenericVariableRef)

Return the value of the parameter x.

Errors if x is not a parameter.

See also ParameterRef, is_parameter, set_parameter_value.

Example

julia> model = Model();

julia> @variable(model, p in Parameter(2))
p

julia> parameter_value(p)
2.0

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L6-L46
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/JuMP.jl#L1193-L1208
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julia> set_parameter_value(p, 2.5)

julia> parameter_value(p)
2.5

source

parse_constraint

JuMP.parse_constraint – Function.

parse_constraint(error_fn::Function, expr::Expr)

The entry-point for all constraint-related parsing.

Arguments

• The error_fn function is passed everywhere to provide better error messages
• expr comes from the @constraint macro. There are two possibilities:

– @constraint(model, expr)
– @constraint(model, name[args], expr)

In both cases, expr is the main component of the constraint.

Supported syntax

JuMP currently supports the following expr objects:

• lhs <= rhs

• lhs == rhs

• lhs >= rhs

• l <= body <= u

• u >= body >= l

• lhs ⟂ rhs

• lhs in rhs

• lhs ∈ rhs

• z --> {constraint}

• !z --> {constraint}

• z <--> {constraint}

• !z <--> {constraint}

• z => {constraint}

• !z => {constraint}

as well as all broadcasted variants.

Extensions

The infrastructure behind parse_constraint is extendable. See parse_constraint_head and parse_constraint_call
for details.

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L1724-L1750
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros/@constraint.jl#L273-L309
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parse_constraint_call

JuMP.parse_constraint_call – Function.

parse_constraint_call(
error_fn::Function,
is_vectorized::Bool,
::Val{op},
args...,

)

Implement this method to intercept the parsing of a :call expression with operator op.

Warning

Extending the constraint macro at parse time is an advanced operation and has the potential to
interfere with existing JuMP syntax. Please discuss with the developer chatroom before publishing
any code that implements these methods.

Arguments

• error_fn: a function that accepts a String and throws the string as an error, along with some
descriptive information of the macro from which it was thrown.

• is_vectorized: a boolean to indicate if op should be broadcast or not

• op: the first element of the .args field of the Expr to intercept

• args...: the .args field of the Expr.

Returns

This function must return:

• parse_code::Expr: an expression containing any setup or rewriting code that needs to be called
before build_constraint

• build_code::Expr: an expression that calls build_constraint( or build_constraint.( depending
on is_vectorized.

See also: parse_constraint_head, build_constraint

source

parse_constraint_call(
error_fn::Function,
vectorized::Bool,
::Val{op},
lhs,
rhs,

) where {op}

Fallback handler for binary operators. These might be infix operators like @constraint(model, lhs op
rhs), or normal operators like @constraint(model, op(lhs, rhs)).

https://gitter.im/JuliaOpt/jump-dev
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros/@constraint.jl#L712-L748
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In both cases, we rewrite as lhs - rhs in operator_to_set(error_fn, op).

See operator_to_set for details.

source

parse_constraint_head

JuMP.parse_constraint_head – Function.

parse_constraint_head(error_fn::Function, ::Val{head}, args...)

Implement this method to intercept the parsing of an expression with head head.

Warning

Extending the constraint macro at parse time is an advanced operation and has the potential to
interfere with existing JuMP syntax. Please discuss with the developer chatroom before publishing
any code that implements these methods.

Arguments

• error_fn: a function that accepts a String and throws the string as an error, along with some
descriptive information of the macro from which it was thrown.

• head: the .head field of the Expr to intercept

• args...: the .args field of the Expr.

Returns

This function must return:

• is_vectorized::Bool: whether the expression represents a broadcasted expression like x .<= 1

• parse_code::Expr: an expression containing any setup or rewriting code that needs to be called
before build_constraint

• build_code::Expr: an expression that calls build_constraint( or build_constraint.( depending
on is_vectorized.

Existing implementations

JuMP currently implements:

• ::Val{:call}, which forwards calls to parse_constraint_call

• ::Val{:comparison}, which handles the special case of l <= body <= u.

See also: parse_constraint_call, build_constraint

source

parse_one_operator_variable

JuMP.parse_one_operator_variable – Function.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros/@constraint.jl#L803-L819
https://gitter.im/JuliaOpt/jump-dev
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros/@constraint.jl#L375-L414
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parse_one_operator_variable(
error_fn::Function,
info_expr::_VariableInfoExpr,
sense::Val{S},
value,

) where {S}

Update infoexr for a variable expression in the @variable macro of the form variable name S value.

source

parse_ternary_variable

JuMP.parse_ternary_variable – Function.

parse_ternary_variable(error_fn, info_expr, lhs_sense, lhs, rhs_sense, rhs)

A hook for JuMP extensions to intercept the parsing of a :comparison expression, which has the form lhs
lhs_sense variable rhs_sense rhs.

source

parse_variable

JuMP.parse_variable – Function.

parse_variable(error_fn::Function, ::_VariableInfoExpr, args...)

A hook for extensions to intercept the parsing of inequality constraints in the @variable macro.

source

primal_feasibility_report

JuMP.primal_feasibility_report – Function.

primal_feasibility_report(
model::GenericModel{T},
point::AbstractDict{GenericVariableRef{T},T} = _last_primal_solution(model),
atol::T = zero(T),
skip_missing::Bool = false,

)::Dict{Any,T}

Given a dictionary point, which maps variables to primal values, return a dictionary whose keys are the
constraints with an infeasibility greater than the supplied tolerance atol. The value corresponding to each
key is the respective infeasibility. Infeasibility is defined as the distance between the primal value of the
constraint (see MOI.ConstraintPrimal) and the nearest point by Euclidean distance in the corresponding
set.

Notes

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros/@variable.jl#L463-L473
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros/@variable.jl#L558-L563
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros/@variable.jl#L366-L371
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• If skip_missing = true, constraints containing variables that are not in point will be ignored.

• If skip_missing = false and a partial primal solution is provided, an error will be thrown.

• If no point is provided, the primal solution from the last time the model was solved is used.

Example

julia> model = Model();

julia> @variable(model, 0.5 <= x <= 1);

julia> primal_feasibility_report(model, Dict(x => 0.2))
Dict{Any, Float64} with 1 entry:
x ≥ 0.5 => 0.3

source

primal_feasibility_report(
point::Function,
model::GenericModel{T};
atol::T = zero(T),
skip_missing::Bool = false,

) where {T}

A form of primal_feasibility_report where a function is passed as the first argument instead of a
dictionary as the second argument.

Example

julia> model = Model();

julia> @variable(model, 0.5 <= x <= 1, start = 1.3);

julia> primal_feasibility_report(model) do v
return start_value(v)

end
Dict{Any, Float64} with 1 entry:
x ≤ 1 => 0.3

source

primal_status

JuMP.primal_status – Function.

primal_status(model::GenericModel; result::Int = 1)

Return a MOI.ResultStatusCode describing the status of the most recent primal solution of the solver
(that is, the MOI.PrimalStatus attribute) associated with the result index result.

See also: result_count.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/feasibility_checker.jl#L16-L51
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/feasibility_checker.jl#L74-L98
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Example

julia> import Ipopt

julia> model = Model(Ipopt.Optimizer);

julia> primal_status(model; result = 2)
NO_SOLUTION::ResultStatusCode = 0

source

print_active_bridges

JuMP.print_active_bridges – Function.

print_active_bridges([io::IO = stdout,] model::GenericModel)

Print a list of the variable, constraint, and objective bridges that are currently used in the model.

source

print_active_bridges([io::IO = stdout,] model::GenericModel, ::Type{F}) where {F}

Print a list of bridges required for an objective function of type F.

source

print_active_bridges(
[io::IO = stdout,]
model::GenericModel,
F::Type,
S::Type{<:MOI.AbstractSet},

)

Print a list of bridges required for a constraint of type F-in-S.

source

print_active_bridges(
[io::IO = stdout,]
model::GenericModel,
S::Type{<:MOI.AbstractSet},

)

Print a list of bridges required to add a variable constrained to the set S.

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L820-L839
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/JuMP.jl#L838-L843
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/JuMP.jl#L850-L854
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/JuMP.jl#L861-L870
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/JuMP.jl#L882-L890
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print_bridge_graph

JuMP.print_bridge_graph – Function.

print_bridge_graph([io::IO,] model::GenericModel)

Print the hyper-graph containing all variable, constraint, and objective types that could be obtained by
bridging the variables, constraints, and objectives that are present in the model.

Warning

This function is intended for advanced users. If you want to see only the bridges that are currently
used, use print_active_bridges instead.

Explanation of output

Each node in the hyper-graph corresponds to a variable, constraint, or objective type.

• Variable nodes are indicated by [ ]

• Constraint nodes are indicated by ( )

• Objective nodes are indicated by | |

The number inside each pair of brackets is an index of the node in the hyper-graph.

Note that this hyper-graph is the full list of possible transformations. When the bridged model is created,
we select the shortest hyper-path(s) from this graph, so many nodes may be un-used.

For more information, see Legat, B., Dowson, O., Garcia, J., and Lubin, M. (2020). "MathOptInterface: a
data structure for mathematical optimization problems." URL: https://arxiv.org/abs/2002.03447

source

print_macro_timing_summary

JuMP.print_macro_timing_summary – Function.

print_macro_timing_summary([io::IO = stdout], model::GenericModel)

Print a summary of the runtime of each macro.

Before calling this method, you must have enabled the macro timing feature using set_macro_timing.

Example

julia> begin
model = Model()
set_macro_timing(model, true)
@variable(model, x[1:2])
@objective(model, Min, sum(x))

end;

julia> print_macro_timing_summary(model)

https://arxiv.org/abs/2002.03447
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/JuMP.jl#L801-L829
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Total time inside macros: 5.33690e-02 seconds
│
├ 2.96490e-02 s [55.55%]
│ ├ REPL[8]:3
│ └ `@variable(model, x[1:2])`
│
└ 2.37200e-02 s [44.45%]
├ REPL[8]:4
└ `@objective(model, Min, sum(x))`

source

quad_terms

JuMP.quad_terms – Function.

quad_terms(quad::GenericQuadExpr{C,V})

Provides an iterator over tuples (coefficient::C, var_1::V, var_2::V) in the quadratic part of the
quadratic expression.

source

raw_status

JuMP.raw_status – Function.

raw_status(model::GenericModel)

Return the reason why the solver stopped in its own words (that is, the MathOptInterface model attribute
MOI.RawStatusString).

Example

julia> import Ipopt

julia> model = Model(Ipopt.Optimizer);

julia> raw_status(model)
"optimize not called"

source

read_from_file

JuMP.read_from_file – Function.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros.jl#L547-L576
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/quad_expr.jl#L396-L401
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L786-L802
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read_from_file(
filename::String;
format::MOI.FileFormats.FileFormat = MOI.FileFormats.FORMAT_AUTOMATIC,
kwargs...,

)

Return a JuMP model read from filename in the format format.

See MOI.FileFormats.FileFormat for a list of supported formats.

Keyword arguments

Other kwargs are passed to the Model constructor of the chosen format.

For details, see the docstring each file format's Model constructor. For example, MOI.FileFormats.MPS.Model.

Nonlinear models

Tomaintain backwards compatibility, nonlinearmodels in .mof.json and .nl files are parsed into a MOI.NLPBlock.
To parse as MOI.ScalarNonlinearFunction, pass the keyword use_nlp_block = false.

Compression

If the filename ends in .gz, the file will be uncompressed using GZip.

If the filename ends in .bz2, the file will be uncompressed using BZip2.

Example

julia> model = Model();

julia> @variable(model, x >= 0);

julia> @objective(model, Min, log(x));

julia> filename = joinpath(mktempdir(), "model.mof.json");

julia> write_to_file(model, filename)

julia> new_model = read_from_file(filename; use_nlp_block = false)
A JuMP Model
├ solver: none
├ objective_sense: MIN_SENSE
│ └ objective_function_type: NonlinearExpr
├ num_variables: 1
├ num_constraints: 1
│ └ VariableRef in MOI.GreaterThan{Float64}: 1
└ Names registered in the model: none

julia> print(new_model)
Min log(x)
Subject to
x ≥ 0

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/file_formats.jl#L217-L275
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reduced_cost

JuMP.reduced_cost – Function.

reduced_cost(x::GenericVariableRef{T})::T where {T}

Return the reduced cost associated with variable x.

One interpretation of the reduced cost is that it is the change in the objective from an infinitesimal relax-
ation of the variable bounds.

This method is equivalent to querying the shadow price of the active variable bound (if one exists and is
active).

See also: shadow_price.

Example

julia> import HiGHS

julia> model = Model(HiGHS.Optimizer);

julia> set_silent(model)

julia> @variable(model, x <= 1);

julia> @objective(model, Max, 2 * x + 1);

julia> optimize!(model)

julia> dual_status(model)
FEASIBLE_POINT::ResultStatusCode = 1

julia> reduced_cost(x)
2.0

source

relative_gap

JuMP.relative_gap – Function.

relative_gap(model::GenericModel)

Return the final relative optimality gap after a call to optimize!(model).

Exact value depends upon implementation of MOI.RelativeGap by the particular solver used for optimiza-
tion.

This function is equivalent to querying the MOI.RelativeGap attribute.

Example

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L2606-L2640
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julia> import HiGHS

julia> model = Model(HiGHS.Optimizer);

julia> set_silent(model)

julia> @variable(model, x >= 1, Int);

julia> @objective(model, Min, 2 * x + 1);

julia> optimize!(model)

julia> relative_gap(model)
0.0

source

relax_integrality

JuMP.relax_integrality – Function.

relax_integrality(model::GenericModel)

Modifies model to "relax" all binary and integrality constraints on variables. Specifically,

• Binary constraints are deleted, and variable bounds are tightened if necessary to ensure the variable
is constrained to the interval [0, 1].

• Integrality constraints are deleted without modifying variable bounds.

• An error is thrown if semi-continuous or semi-integer constraints are present (support may be added
for these in the future).

• All other constraints are ignored (left in place). This includes discrete constraints like SOS and indi-
cator constraints.

Returns a function that can be called without any arguments to restore the original model. The behavior
of this function is undefined if additional changes are made to the affected variables in the meantime.

Example

julia> model = Model();

julia> @variable(model, x, Bin);

julia> @variable(model, 1 <= y <= 10, Int);

julia> @objective(model, Min, x + y);

julia> undo_relax = relax_integrality(model);

julia> print(model)
Min x + y
Subject to

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/objective.jl#L11-L39
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x ≥ 0
y ≥ 1
x ≤ 1
y ≤ 10

julia> undo_relax()

julia> print(model)
Min x + y
Subject to
y ≥ 1
y ≤ 10
y integer
x binary

source

relax_with_penalty!

JuMP.relax_with_penalty! – Function.

relax_with_penalty!(
model::GenericModel{T},
[penalties::Dict{ConstraintRef,T}];
[default::Union{Nothing,Real} = nothing,]

) where {T}

Destructively modify the model in-place to create a penalized relaxation of the constraints.

Warning

This is a destructive routine that modifies the model in-place. If you don't want to modify the
original model, use copy_model to create a copy before calling relax_with_penalty!.

Reformulation

See MOI.Utilities.ScalarPenaltyRelaxation for details of the reformulation.

For each constraint ci, the penalty passed to MOI.Utilities.ScalarPenaltyRelaxation is get(penalties,
ci, default). If the value is nothing, because ci does not exist in penalties and default = nothing,
then the constraint is skipped.

Return value

This function returns a Dict{ConstraintRef,AffExpr} that maps each constraint index to the correspond-
ing y + z as an AffExpr. In an optimal solution, query the value of these functions to compute the violation
of each constraint.

Relax a subset of constraints

To relax a subset of constraints, pass a penalties dictionary and set default = nothing.

Example

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L2747-L2796
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julia> function new_model()
model = Model()
@variable(model, x)
@objective(model, Max, 2x + 1)
@constraint(model, c1, 2x - 1 <= -2)
@constraint(model, c2, 3x >= 0)
return model

end
new_model (generic function with 1 method)

julia> model_1 = new_model();

julia> penalty_map = relax_with_penalty!(model_1; default = 2.0);

julia> penalty_map[model_1[:c1]]
_[3]

julia> penalty_map[model_1[:c2]]
_[2]

julia> print(model_1)
Max 2 x - 2 _[2] - 2 _[3] + 1
Subject to
c2 : 3 x + _[2] ≥ 0
c1 : 2 x - _[3] ≤ -1
_[2] ≥ 0
_[3] ≥ 0

julia> model_2 = new_model();

julia> relax_with_penalty!(model_2, Dict(model_2[:c2] => 3.0))
Dict{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.GreaterThan{Float64}}, ScalarShape}, AffExpr} with 1 entry:

↪→

↪→

c2 : 3 x + _[2] ≥ 0 => _[2]

julia> print(model_2)
Max 2 x - 3 _[2] + 1
Subject to
c2 : 3 x + _[2] ≥ 0
c1 : 2 x ≤ -1
_[2] ≥ 0

source

remove_bridge

JuMP.remove_bridge – Function.

remove_bridge(
model::GenericModel{S},
BT::Type{<:MOI.Bridges.AbstractBridge};
coefficient_type::Type{T} = S,

) where {S,T}

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L1787-L1868
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Remove BT{T} from the list of bridges that can be used to transform unsupported constraints into an
equivalent formulation using only constraints supported by the optimizer.

See also: add_bridge.

Example

julia> model = Model();

julia> add_bridge(model, MOI.Bridges.Constraint.SOCtoNonConvexQuadBridge)

julia> remove_bridge(model, MOI.Bridges.Constraint.SOCtoNonConvexQuadBridge)

julia> add_bridge(
model,
MOI.Bridges.Constraint.NumberConversionBridge;
coefficient_type = Complex{Float64},

)

julia> remove_bridge(
model,
MOI.Bridges.Constraint.NumberConversionBridge;
coefficient_type = Complex{Float64},

)

source

reshape_set

JuMP.reshape_set – Function.

reshape_set(vectorized_set::MOI.AbstractSet, shape::AbstractShape)

Return a set in its original shape shape given its vectorized form vectorized_form.

Example

Given a SymmetricMatrixShape of vectorized form [1, 2, 3] in MOI.PositiveSemidefinieConeTriangle(2),
the following code returns the set of the original constraint Symmetric(Matrix[1 2; 2 3]) in PSDCone():

julia> reshape_set(MOI.PositiveSemidefiniteConeTriangle(2), SymmetricMatrixShape(2))
PSDCone()

source

reshape_vector

JuMP.reshape_vector – Function.

reshape_vector(vectorized_form::Vector, shape::AbstractShape)

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/JuMP.jl#L753-L787
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/shapes.jl#L61-L78
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Return an object in its original shape shape given its vectorized form vectorized_form.

Example

Given a SymmetricMatrixShape of vectorized form [1, 2, 3], the following code returns the matrix
Symmetric(Matrix[1 2; 2 3]):

julia> reshape_vector([1, 2, 3], SymmetricMatrixShape(2))
2×2 LinearAlgebra.Symmetric{Int64, Matrix{Int64}}:
1 2
2 3

source

result_count

JuMP.result_count – Function.

result_count(model::GenericModel)

Return the number of results available to query after a call to optimize!.

Example

julia> import Ipopt

julia> model = Model(Ipopt.Optimizer);

julia> result_count(model)
0

source

reverse_sense

JuMP.reverse_sense – Function.

reverse_sense(::Val{T}) where {T}

Given an (in)equality symbol T, return a new Val object with the opposite (in)equality symbol.

This function is intended for use in JuMP extensions.

Example

julia> reverse_sense(Val(:>=))
Val{:<=}()

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/shapes.jl#L81-L98
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L762-L778
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros/@variable.jl#L403-L417
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set_attribute

JuMP.set_attribute – Function.

set_attribute(model::GenericModel, attr::MOI.AbstractModelAttribute, value)
set_attribute(x::GenericVariableRef, attr::MOI.AbstractVariableAttribute, value)
set_attribute(cr::ConstraintRef, attr::MOI.AbstractConstraintAttribute, value)

Set the value of a solver-specifc attribute attr to value.

This is equivalent to calling MOI.set with the associated MOI model and, for variables and constraints, with
the associated MOI.VariableIndex or MOI.ConstraintIndex.

Example

julia> model = Model();

julia> @variable(model, x)
x

julia> @constraint(model, c, 2 * x <= 1)
c : 2 x ≤ 1

julia> set_attribute(model, MOI.Name(), "model_new")

julia> set_attribute(x, MOI.VariableName(), "x_new")

julia> set_attribute(c, MOI.ConstraintName(), "c_new")

source

set_attribute(
model::Union{GenericModel,MOI.OptimizerWithAttributes},
attr::Union{AbstractString,MOI.AbstractOptimizerAttribute},
value,

)

Set the value of a solver-specifc attribute attr to value.

This is equivalent to calling MOI.set with the associated MOI model.

If attr is an AbstractString, it is converted to MOI.RawOptimizerAttribute.

Example

julia> import HiGHS

julia> opt = optimizer_with_attributes(HiGHS.Optimizer, "output_flag" => false);

julia> model = Model(opt);

julia> set_attribute(model, "output_flag", false)

julia> set_attribute(model, MOI.RawOptimizerAttribute("output_flag"), true)

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L1422-L1450
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julia> set_attribute(opt, "output_flag", true)

julia> set_attribute(opt, MOI.RawOptimizerAttribute("output_flag"), false)

source

set_attributes

JuMP.set_attributes – Function.

set_attributes(
destination::Union{

GenericModel,
MOI.OptimizerWithAttributes,
GenericVariableRef,
ConstraintRef,

},
pairs::Pair...,

)

Given a list of attribute => value pairs, calls set_attribute(destination, attribute, value) for
each pair.

See also: set_attribute, get_attribute.

Example

julia> import Ipopt

julia> model = Model(Ipopt.Optimizer);

julia> set_attributes(model, "tol" => 1e-4, "max_iter" => 100)

is equivalent to:

julia> import Ipopt

julia> model = Model(Ipopt.Optimizer);

julia> set_attribute(model, "tol", 1e-4)

julia> set_attribute(model, "max_iter", 100)

source

set_binary

JuMP.set_binary – Function.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L1480-L1511
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L1540-L1575
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set_binary(v::GenericVariableRef)

Add a constraint on the variable v that it must take values in the set {0, 1}.
See also BinaryRef, is_binary, unset_binary.

Example

julia> model = Model();

julia> @variable(model, x);

julia> is_binary(x)
false

julia> set_binary(x)

julia> is_binary(x)
true

source

set_dual_start_value

JuMP.set_dual_start_value – Function.

set_dual_start_value(con_ref::ConstraintRef, value)

Set the dual start value (MOI attribute ConstraintDualStart) of the constraint con_ref to value.

To remove a dual start value set it to nothing.

See also dual_start_value.

Example

julia> model = Model();

julia> @variable(model, x, start = 2.0);

julia> @constraint(model, c, [2x] in Nonnegatives())
c : [2 x] ∈ Nonnegatives()

julia> set_dual_start_value(c, [0.0])

julia> dual_start_value(c)
1-element Vector{Float64}:
0.0

julia> set_dual_start_value(c, nothing)

julia> dual_start_value(c)

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L1516-L1539
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L159-L189
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set_integer

JuMP.set_integer – Function.

set_integer(variable_ref::GenericVariableRef)

Add an integrality constraint on the variable variable_ref.

See also IntegerRef, is_integer, unset_integer.

Example

julia> model = Model();

julia> @variable(model, x);

julia> is_integer(x)
false

julia> set_integer(x)

julia> is_integer(x)
true

source

set_lower_bound

JuMP.set_lower_bound – Function.

set_lower_bound(v::GenericVariableRef, lower::Number)

Set the lower bound of a variable. If one does not exist, create a new lower bound constraint.

See also LowerBoundRef, has_lower_bound, lower_bound, delete_lower_bound.

Example

julia> model = Model();

julia> @variable(model, x >= 1.0);

julia> lower_bound(x)
1.0

julia> set_lower_bound(x, 2.0)

julia> lower_bound(x)
2.0

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L1384-L1406
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L828-L852
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set_macro_timing

JuMP.set_macro_timing – Function.

set_macro_timing(::GenericModel, value::Bool)

Turn on (if value, or off, if !value) JuMP's built-in profiling of model construction macros.

Use print_macro_timing_summary to display a summary.

Example

julia> begin
model = Model()
set_macro_timing(model, true)
@variable(model, x[1:2])
@objective(model, Min, sum(x))

end;

julia> print_macro_timing_summary(model)
Total time inside macros: 5.33690e-02 seconds
│
├ 2.96490e-02 s [55.55%]
│ ├ REPL[8]:3
│ └ `@variable(model, x[1:2])`
│
└ 2.37200e-02 s [44.45%]
├ REPL[8]:4
└ `@objective(model, Min, sum(x))`

source

set_name

JuMP.set_name – Function.

set_name(con_ref::ConstraintRef, s::AbstractString)

Set a constraint's name attribute.

Example

julia> model = Model();

julia> @variable(model, x);

julia> @constraint(model, c, [2x] in Nonnegatives())
c : [2 x] ∈ Nonnegatives()

julia> set_name(c, "my_constraint")

julia> name(c)

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros.jl#L503-L532
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"my_constraint"

julia> c
my_constraint : [2 x] ∈ Nonnegatives()

source

set_name(v::GenericVariableRef, s::AbstractString)

Set a variable's name attribute.

Example

julia> model = Model();

julia> @variable(model, x)
x

julia> set_name(x, "x_foo")

julia> x
x_foo

julia> name(x)
"x_foo"

source

set_name(model::GenericModel, name::AbstractString)

Set the MOI.Name attribute of model's backend to name.

Example

julia> model = Model();

julia> set_name(model, "My Model")

julia> name(model)
"My Model"

source

set_normalized_coefficient

JuMP.set_normalized_coefficient – Function.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L395-L418
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L648-L669
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/print.jl#L215-L230
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set_normalized_coefficient(
constraint::ConstraintRef,
variable::GenericVariableRef,
value::Number,

)

Set the coefficient of variable in the constraint constraint to value.

Note that prior to this step, JuMP will aggregate multiple terms containing the same variable. For example,
given a constraint 2x + 3x <= 2, set_normalized_coefficient(con, x, 4) will create the constraint
4x <= 2.

Example

julia> model = Model();

julia> @variable(model, x)
x

julia> @constraint(model, con, 2x + 3x <= 2)
con : 5 x ≤ 2

julia> set_normalized_coefficient(con, x, 4)

julia> con
con : 4 x ≤ 2

source

set_normalized_coefficient(
constraints::AbstractVector{

<:ConstraintRef{<:AbstractModel,<:MOI.ConstraintIndex{F}},
},
variables::AbstractVector{<:AbstractVariableRef},
coeffs::AbstractVector{<:Number},

) where {
T,
F<:Union{MOI.ScalarAffineFunction{T},MOI.ScalarQuadraticFunction{T}},

}

Set multiple coefficient of variables in the constraints constraints to coeffs.

Concrete types

Note that constraintsmust be a concrete vector of a single constraint type. You cannot mix, for example,
<= and >= constraints in the same vector.

Normalization

Note that prior to this step, JuMP will aggregate multiple terms containing the same variable. For ex-
ample, given a constraint 2x + 3x <= 2, set_normalized_coefficient(con, [x], [4]) will create the
constraint 4x <= 2.

Example

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L2939-L2968
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julia> model = Model();

julia> @variable(model, x)
x

julia> @variable(model, y)
y

julia> @constraint(model, con, 2x + 3x + 4y <= 2)
con : 5 x + 4 y ≤ 2

julia> set_normalized_coefficient([con, con], [x, y], [6, 7])

julia> con
con : 6 x + 7 y ≤ 2

source

set_normalized_coefficient(
con_ref::ConstraintRef,
variable::AbstractVariableRef,
new_coefficients::Vector{Tuple{Int64,T}},

)

Set the coefficients of variable in the constraint con_ref to new_coefficients, where each element in
new_coefficients is a tuple which maps the row to a new coefficient.

Note that prior to this step, during constraint creation, JuMP will aggregate multiple terms containing the
same variable.

Example

julia> model = Model();

julia> @variable(model, x)
x

julia> @constraint(model, con, [2x + 3x, 4x] in MOI.Nonnegatives(2))
con : [5 x, 4 x] ∈ MathOptInterface.Nonnegatives(2)

julia> set_normalized_coefficient(con, x, [(1, 2.0), (2, 5.0)])

julia> con
con : [2 x, 5 x] ∈ MathOptInterface.Nonnegatives(2)

source

set_normalized_coefficient(
constraint::ConstraintRef,
variable_1:GenericVariableRef,
variable_2:GenericVariableRef,
value::Number,

)

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L2984-L3029
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L3052-L3082
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Set the quadratic coefficient associated with variable_1 and variable_2 in the constraint constraint to
value.

Note that prior to this step, JuMP will aggregate multiple terms containing the same variable. For exam-
ple, given a constraint 2x^2 + 3x^2 <= 2, set_normalized_coefficient(con, x, x, 4) will create the
constraint 4x^2 <= 2.

Example

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> @constraint(model, con, 2x[1]^2 + 3 * x[1] * x[2] + x[2] <= 2)
con : 2 x[1]² + 3 x[1]*x[2] + x[2] ≤ 2

julia> set_normalized_coefficient(con, x[1], x[1], 4)

julia> set_normalized_coefficient(con, x[1], x[2], 5)

julia> con
con : 4 x[1]² + 5 x[1]*x[2] + x[2] ≤ 2

source

set_normalized_coefficient(
constraints::AbstractVector{<:ConstraintRef},
variables_1:AbstractVector{<:GenericVariableRef},
variables_2:AbstractVector{<:GenericVariableRef},
values::AbstractVector{<:Number},

)

Setmultiple quadratic coefficients associated with variables_1 and variables_2 in the constraints constraints
to values.

Note that prior to this step, JuMP will aggregate multiple terms containing the same variable. For example,
given a constraint 2x^2 + 3x^2 <= 2, set_normalized_coefficient(con, [x], [x], [4]) will create
the constraint 4x^2 <= 2.

Example

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> @constraint(model, con, 2x[1]^2 + 3 * x[1] * x[2] + x[2] <= 2)
con : 2 x[1]² + 3 x[1]*x[2] + x[2] ≤ 2

julia> set_normalized_coefficient([con, con], [x[1], x[1]], [x[1], x[2]], [4, 5])

julia> con
con : 4 x[1]² + 5 x[1]*x[2] + x[2] ≤ 2

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L3114-L3146
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L3171-L3202
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set_normalized_rhs

JuMP.set_normalized_rhs – Function.

set_normalized_rhs(constraint::ConstraintRef, value::Number)

Set the right-hand side term of constraint to value.

Note that prior to this step, JuMP will aggregate all constant terms onto the right-hand side of the constraint.
For example, given a constraint 2x + 1 <= 2, set_normalized_rhs(con, 4) will create the constraint 2x
<= 4, not 2x + 1 <= 4.

Example

julia> model = Model();

julia> @variable(model, x);

julia> @constraint(model, con, 2x + 1 <= 2)
con : 2 x ≤ 1

julia> set_normalized_rhs(con, 4)

julia> con
con : 2 x ≤ 4

source

set_normalized_rhs(
constraints::AbstractVector{<:ConstraintRef},
values::AbstractVector{<:Number}

)

Set the right-hand side terms of all constraints to values.

Note that prior to this step, JuMP will aggregate all constant terms onto the right-hand side of the con-
straint. For example, given a constraint 2x + 1 <= 2, set_normalized_rhs([con], [4]) will create the
constraint 2x <= 4, not 2x + 1 <= 4.

Example

julia> model = Model();

julia> @variable(model, x);

julia> @constraint(model, con1, 2x + 1 <= 2)
con1 : 2 x ≤ 1

julia> @constraint(model, con2, 3x + 2 <= 4)
con2 : 3 x ≤ 2

julia> set_normalized_rhs([con1, con2], [4, 5])

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L1059-L1084
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julia> con1
con1 : 2 x ≤ 4

julia> con2
con2 : 3 x ≤ 5

source

set_objective

JuMP.set_objective – Function.

set_objective(model::AbstractModel, sense::MOI.OptimizationSense, func)

The functional equivalent of the @objective macro.

This function sets the objective sense and objective function simultaneously, and it is equivalent to calling
set_objective_sense followed by set_objective_function.

This is a low-level function; the recommended way to set the objective function and sense is with the
@objective macro.

FEASIBILITY_SENSE

You should not set sense to FEASIBILITY_SENSE because FEASIBILITY_SENSE implies that there is no
objective function.

Instead of set_objective(model, FEASIBILITY_SENSE, f), do set_objective_sense(model, FEASIBILITY_SENSE).

Example

julia> model = Model();

julia> @variable(model, x);

julia> set_objective(model, MIN_SENSE, x)

julia> objective_sense(model)
MIN_SENSE::OptimizationSense = 0

julia> objective_function(model)
x

source

set_objective_coefficient

JuMP.set_objective_coefficient – Function.

set_objective_coefficient(
model::GenericModel,
variable::GenericVariableRef,
coefficient::Real,

)

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L1102-L1136
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/objective.jl#L307-L342
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Set the linear objective coefficient associated with variable to coefficient.

Note: this function will throw an error if a nonlinear objective is set.

Example

julia> model = Model();

julia> @variable(model, x);

julia> @objective(model, Min, 2x + 1)
2 x + 1

julia> set_objective_coefficient(model, x, 3)

julia> objective_function(model)
3 x + 1

source

set_objective_coefficient(
model::GenericModel,
variables::Vector{<:GenericVariableRef},
coefficients::Vector{<:Real},

)

Set multiple linear objective coefficients associated with variables to coefficients, in a single call.

Note: this function will throw an error if a nonlinear objective is set.

Example

julia> model = Model();

julia> @variable(model, x);

julia> @variable(model, y);

julia> @objective(model, Min, 3x + 2y + 1)
3 x + 2 y + 1

julia> set_objective_coefficient(model, [x, y], [5, 4])

julia> objective_function(model)
5 x + 4 y + 1

source

set_objective_coefficient(
model::GenericModel{T},
variable_1::GenericVariableRef{T},
variable_2::GenericVariableRef{T},
coefficient::Real,

) where {T}

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/objective.jl#L440-L466
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/objective.jl#L517-L546
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Set the quadratic objective coefficient associated with variable_1 and variable_2 to coefficient.

Note: this function will throw an error if a nonlinear objective is set.

Example

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> @objective(model, Min, x[1]^2 + x[1] * x[2])
x[1]² + x[1]*x[2]

julia> set_objective_coefficient(model, x[1], x[1], 2)

julia> set_objective_coefficient(model, x[1], x[2], 3)

julia> objective_function(model)
2 x[1]² + 3 x[1]*x[2]

source

set_objective_coefficient(
model::GenericModel{T},
variables_1::AbstractVector{<:GenericVariableRef{T}},
variables_2::AbstractVector{<:GenericVariableRef{T}},
coefficients::AbstractVector{<:Real},

) where {T}

Setmultiple quadratic objective coefficients associated with variables_1 and variables_2 to coefficients,
in a single call.

Note: this function will throw an error if a nonlinear objective is set.

Example

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> @objective(model, Min, x[1]^2 + x[1] * x[2])
x[1]² + x[1]*x[2]

julia> set_objective_coefficient(model, [x[1], x[1]], [x[1], x[2]], [2, 3])

julia> objective_function(model)
2 x[1]² + 3 x[1]*x[2]

source

set_objective_function

JuMP.set_objective_function – Function.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/objective.jl#L598-L628
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/objective.jl#L683-L711
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set_objective_function(model::GenericModel, func::MOI.AbstractFunction)
set_objective_function(model::GenericModel, func::AbstractJuMPScalar)
set_objective_function(model::GenericModel, func::Real)
set_objective_function(model::GenericModel, func::Vector{<:AbstractJuMPScalar})

Set the objective function of model to the given function func.

See also: @objective, set_objective_function, set_objective

Example

julia> model = Model();

julia> @variable(model, x);

julia> @objective(model, Min, x);

julia> objective_function(model)
x

julia> set_objective_function(model, 2 * x + 1)

julia> objective_function(model)
2 x + 1

source

set_objective_sense

JuMP.set_objective_sense – Function.

set_objective_sense(model::GenericModel, sense::MOI.OptimizationSense)

Sets the objective sense of the model to the given sense.

See also: @objective, set_objective_function, set_objective

FEASIBILITY_SENSE

Setting the objective sense to FEASIBILITY_SENSE will remove any existing objective.

Example

julia> model = Model();

julia> objective_sense(model)
FEASIBILITY_SENSE::OptimizationSense = 2

julia> set_objective_sense(model, MOI.MAX_SENSE)

julia> objective_sense(model)
MAX_SENSE::OptimizationSense = 1

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/objective.jl#L229-L256
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/objective.jl#L198-L223
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set_optimize_hook

JuMP.set_optimize_hook – Function.

set_optimize_hook(model::GenericModel, f::Union{Function,Nothing})

Set the function f as the optimize hook for model.

f should have a signature f(model::GenericModel; kwargs...), where the kwargs are those passed to
optimize!.

Notes

• The optimize hook should generally modify the model, or some external state in some way, and
then call optimize!(model; ignore_optimize_hook = true) to optimize the problem, bypassing
the hook.

• Use set_optimize_hook(model, nothing) to unset an optimize hook.

Example

julia> model = Model();

julia> function my_hook(model::Model; kwargs...)
println(kwargs)
println("Calling with `ignore_optimize_hook = true`")
optimize!(model; ignore_optimize_hook = true)
return

end
my_hook (generic function with 1 method)

julia> set_optimize_hook(model, my_hook)
my_hook (generic function with 1 method)

julia> optimize!(model; test_arg = true)
Base.Pairs{Symbol, Bool, Tuple{Symbol}, @NamedTuple{test_arg::Bool}}(:test_arg => 1)
Calling with `ignore_optimize_hook = true`
ERROR: NoOptimizer()
[...]

source

set_optimizer

JuMP.set_optimizer – Function.

set_optimizer(
model::GenericModel,
optimizer_factory;
add_bridges::Bool = true,
kwargs...,

)

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/JuMP.jl#L1102-L1139
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Creates an empty MOI.AbstractOptimizer instance by calling MOI.instantiate on optimizer_factory
and sets it as the optimizer of model.

Specifically, optimizer_factorymust be callable with zero arguments and return an empty MOI.AbstractOptimizer.

If add_bridges is true, constraints and objectives that are not supported by the optimizer are automatically
bridged to equivalent supported formulation. Passing add_bridges = false can improve performance if
the solver natively supports all of the elements in model.

Additional kwargs are passed to MOI.instantiate.

See set_attribute for setting solver-specific parameters of the optimizer.

Example

julia> import HiGHS

julia> model = Model();

julia> set_optimizer(model, () -> HiGHS.Optimizer())

julia> set_optimizer(model, HiGHS.Optimizer; add_bridges = false)

source

set_parameter_value

JuMP.set_parameter_value – Function.

set_parameter_value(x::GenericVariableRef, value)

Update the parameter constraint on the variable x to value.

Errors if x is not a parameter.

See also ParameterRef, is_parameter, parameter_value.

Example

julia> model = Model();

julia> @variable(model, p in Parameter(2))
p

julia> parameter_value(p)
2.0

julia> set_parameter_value(p, 2.5)

julia> parameter_value(p)
2.5

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L458-L494
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L1688-L1714
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set_silent

JuMP.set_silent – Function.

set_silent(model::GenericModel)

Takes precedence over any other attribute controlling verbosity and requires the solver to produce no
output.

See also: unset_silent.

Example

julia> import Ipopt

julia> model = Model(Ipopt.Optimizer);

julia> set_silent(model)

julia> get_attribute(model, MOI.Silent())
true

julia> unset_silent(model)

julia> get_attribute(model, MOI.Silent())
false

source

set_start_value

JuMP.set_start_value – Function.

set_start_value(con_ref::ConstraintRef, value)

Set the primal start value (MOI.ConstraintPrimalStart) of the constraint con_ref to value.

To remove a primal start value set it to nothing.

See also start_value.

Example

julia> model = Model();

julia> @variable(model, x, start = 2.0);

julia> @constraint(model, c, [2x] in Nonnegatives())
c : [2 x] ∈ Nonnegatives()

julia> set_start_value(c, [4.0])

julia> start_value(c)

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L154-L179
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1-element Vector{Float64}:
4.0

julia> set_start_value(c, nothing)

julia> start_value(c)

source

set_start_value(variable::GenericVariableRef, value::Union{Real,Nothing})

Set the start value (MOI.VariablePrimalStart) of the variable to value.

Pass nothing to unset the start value.

Note: VariablePrimalStarts are sometimes called "MIP-starts" or "warmstarts".

See also: has_start_value, start_value.

Example

julia> model = Model();

julia> @variable(model, x, start = 1.5);

julia> @variable(model, y);

julia> has_start_value(x)
true

julia> has_start_value(y)
false

julia> start_value(x)
1.5

julia> set_start_value(x, nothing)

julia> has_start_value(x)
false

julia> set_start_value(y, 2.0)

julia> has_start_value(y)
true

julia> start_value(y)
2.0

source

set_start_values

JuMP.set_start_values – Function.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L239-L269
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L2024-L2067
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set_start_values(
model::GenericModel;
variable_primal_start::Union{Nothing,Function} = value,
constraint_primal_start::Union{Nothing,Function} = value,
constraint_dual_start::Union{Nothing,Function} = dual,
nonlinear_dual_start::Union{Nothing,Function} = nonlinear_dual_start_value,

)

Set the primal and dual starting values in model using the functions provided.

If any keyword argument is nothing, the corresponding start value is skipped.

If the optimizer does not support setting the starting value, the value will be skipped.

variable_primal_start

This function controls the primal starting solution for the variables. It is equivalent to calling set_start_value
for each variable, or setting the MOI.VariablePrimalStart attribute.

If it is a function, it must have the form variable_primal_start(x::VariableRef) that maps each vari-
able x to the starting primal value.

The default is value.

constraint_primal_start

This function controls the primal starting solution for the constraints. It is equivalent to calling set_start_value
for each constraint, or setting the MOI.ConstraintPrimalStart attribute.

If it is a function, it must have the form constraint_primal_start(ci::ConstraintRef) that maps each
constraint ci to the starting primal value.

The default is value.

constraint_dual_start

This function controls the dual starting solution for the constraints. It is equivalent to calling set_dual_start_value
for each constraint, or setting the MOI.ConstraintDualStart attribute.

If it is a function, it must have the form constraint_dual_start(ci::ConstraintRef) that maps each
constraint ci to the starting dual value.

The default is dual.

nonlinear_dual_start

This function controls the dual starting solution for the nonlinear constraints It is equivalent to calling
set_nonlinear_dual_start_value.

If it is a function, it must have the form nonlinear_dual_start(model::GenericModel) that returns a
vector corresponding to the dual start of the constraints.

The default is nonlinear_dual_start_value.

source

set_string_names_on_creation

JuMP.set_string_names_on_creation – Function.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L1668-L1726
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set_string_names_on_creation(model::GenericModel, value::Bool)

Set the default argument of the set_string_name keyword in the @variable and @constraint macros to
value.

The set_string_name keyword is used to determine whether to assign String names to all variables and
constraints in model.

By default, value is true. However, for larger models calling set_string_names_on_creation(model,
false) can improve performance at the cost of reducing the readability of printing and solver logmessages.

Example

julia> import HiGHS

julia> model = Model(HiGHS.Optimizer);

julia> set_string_names_on_creation(model)
true

julia> set_string_names_on_creation(model, false)

julia> set_string_names_on_creation(model)
false

source

set_time_limit_sec

JuMP.set_time_limit_sec – Function.

set_time_limit_sec(model::GenericModel, limit::Float64)

Set the time limit (in seconds) of the solver.

Can be unset using unset_time_limit_sec or with limit set to nothing.

See also: unset_time_limit_sec, time_limit_sec.

Example

julia> import Ipopt

julia> model = Model(Ipopt.Optimizer);

julia> time_limit_sec(model)

julia> set_time_limit_sec(model, 60.0)

julia> time_limit_sec(model)
60.0

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/JuMP.jl#L612-L640


CHAPTER 22. DOCSTRINGS 839

julia> unset_time_limit_sec(model)

julia> time_limit_sec(model)

source

set_upper_bound

JuMP.set_upper_bound – Function.

set_upper_bound(v::GenericVariableRef, upper::Number)

Set the upper bound of a variable. If one does not exist, create an upper bound constraint.

See also UpperBoundRef, has_upper_bound, upper_bound, delete_upper_bound.

Example

julia> model = Model();

julia> @variable(model, x <= 1.0);

julia> upper_bound(x)
1.0

julia> set_upper_bound(x, 2.0)

julia> upper_bound(x)
2.0

source

shadow_price

JuMP.shadow_price – Function.

shadow_price(con_ref::ConstraintRef)

Return the change in the objective from an infinitesimal relaxation of the constraint.

The shadow price is computed from dual and can be queried only when the objective_sense is MIN_SENSE
or MAX_SENSE (not FEASIBILITY_SENSE).

See also reduced_cost.

Comparison to dual

The shadow prices differ at most in sign from the dual value depending on the objective_sense. The
differences are summarized in the table:

Notes

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L216-L244
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L999-L1023
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MIN_SENSE MAX_SENSE

f(x) <= b dual(con_ref) -dual(con_ref)
f(x) >= b -dual(con_ref) dual(con_ref)

This function simply translates signs from dual and does not validate the conditions needed to guarantee
the sensitivity interpretation of the shadow price. The caller is responsible, for example, for checking
whether the solver converged to an optimal primal-dual pair or a proof of infeasibility.

The relaxation of equality constraints (and hence the shadow price) is defined based on which sense of the
equality constraint is active.

Example

julia> import HiGHS

julia> model = Model(HiGHS.Optimizer);

julia> set_silent(model)

julia> @variable(model, x);

julia> @constraint(model, c, x <= 1)
c : x ≤ 1

julia> @objective(model, Max, 2 * x + 1);

julia> optimize!(model)

julia> dual_status(model)
FEASIBLE_POINT::ResultStatusCode = 1

julia> shadow_price(c)
2.0

julia> dual(c)
-2.0

source

shape

JuMP.shape – Function.

shape(c::AbstractConstraint)::AbstractShape

Return the shape of the constraint c.

Example

julia> model = Model();

julia> @variable(model, x[1:2]);

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L1421-L1480
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julia> c = @constraint(model, x[2] <= 1);

julia> shape(constraint_object(c))
ScalarShape()

julia> d = @constraint(model, x in SOS1());

julia> shape(constraint_object(d))
VectorShape()

source

show_backend_summary

JuMP.show_backend_summary – Function.

show_backend_summary(io::IO, model::GenericModel)

Print a summary of the optimizer backing model.

Extensions

AbstractModels should implement this method.

Example

julia> model = Model();

julia> show_backend_summary(stdout, model)
Model mode: AUTOMATIC
CachingOptimizer state: NO_OPTIMIZER
Solver name: No optimizer attached.

source

show_constraints_summary

JuMP.show_constraints_summary – Function.

show_constraints_summary(io::IO, model::AbstractModel)

Write to io a summary of the number of constraints.

Extensions

AbstractModels should implement this method.

Example

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/shapes.jl#L103-L125
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/print.jl#L388-L407
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julia> model = Model();

julia> @variable(model, x >= 0);

julia> show_constraints_summary(stdout, model)
`VariableRef`-in-`MathOptInterface.GreaterThan{Float64}`: 1 constraint

source

show_objective_function_summary

JuMP.show_objective_function_summary – Function.

show_objective_function_summary(io::IO, model::AbstractModel)

Write to io a summary of the objective function type.

Extensions

AbstractModels should implement this method.

Example

julia> model = Model();

julia> show_objective_function_summary(stdout, model)
Objective function type: AffExpr

source

simplex_iterations

JuMP.simplex_iterations – Function.

simplex_iterations(model::GenericModel)

If available, returns the cumulative number of simplex iterations during the most-recent optimization (the
MOI.SimplexIterations attribute).

Throws a MOI.GetAttributeNotAllowed error if the attribute is not implemented by the solver.

Example

julia> import HiGHS

julia> model = Model(HiGHS.Optimizer);

julia> set_silent(model)

julia> optimize!(model)

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/print.jl#L356-L375
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/print.jl#L327-L344
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julia> simplex_iterations(model)
0

source

solution_summary

JuMP.solution_summary – Function.

solution_summary(model::GenericModel; result::Int = 1, verbose::Bool = false)

Return a struct that can be used print a summary of the solution in result result.

If verbose=true, write out the primal solution for every variable and the dual solution for every constraint,
excluding those with empty names.

Example

When called at the REPL, the summary is automatically printed:

julia> model = Model();

julia> solution_summary(model)
solution_summary(; result = 1, verbose = false)
├ solver_name : No optimizer attached.
├ Termination
│ ├ termination_status : OPTIMIZE_NOT_CALLED
│ ├ result_count : 0
│ └ raw_status : optimize not called
└ Solution (result = 1)
├ primal_status : NO_SOLUTION
└ dual_status : NO_SOLUTION

Use print to force the printing of the summary from inside a function:

julia> model = Model();

julia> function foo(model)
print(solution_summary(model))
return

end
foo (generic function with 1 method)

julia> foo(model)
solution_summary(; result = 1, verbose = false)
├ solver_name : No optimizer attached.
├ Termination
│ ├ termination_status : OPTIMIZE_NOT_CALLED
│ ├ result_count : 0
│ └ raw_status : optimize not called
└ Solution (result = 1)
├ primal_status : NO_SOLUTION
└ dual_status : NO_SOLUTION

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L1048-L1071
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source

solve_time

JuMP.solve_time – Function.

solve_time(model::GenericModel)

If available, returns the solve time in wall-clock seconds reported by the solver (the MOI.SolveTimeSec
attribute).

Throws a MOI.GetAttributeNotAllowed error if the attribute is not implemented by the solver.

Example

julia> import HiGHS

julia> model = Model(HiGHS.Optimizer);

julia> set_silent(model)

julia> optimize!(model)

julia> solve_time(model)
1.0488089174032211e-5

source

solver_name

JuMP.solver_name – Function.

solver_name(model::GenericModel)

If available, returns the MOI.SolverName property of the underlying optimizer.

Returns "No optimizer attached." in AUTOMATIC or MANUAL modes when no optimizer is attached.

Returns "SolverName() attribute not implemented by the optimizer." if the attribute is not imple-
mented.

Example

julia> import Ipopt

julia> model = Model(Ipopt.Optimizer);

julia> solver_name(model)
"Ipopt"

julia> model = Model();

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/solution_summary.jl#L38-L86
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L1020-L1043


CHAPTER 22. DOCSTRINGS 845

julia> solver_name(model)
"No optimizer attached."

julia> model = Model(MOI.FileFormats.MPS.Model);

julia> solver_name(model)
"SolverName() attribute not implemented by the optimizer."

source

start_value

JuMP.start_value – Function.

start_value(con_ref::ConstraintRef)

Return the primal start value (MOI.ConstraintPrimalStart) of the constraint con_ref.

If no primal start value has been set, start_value will return nothing.

See also set_start_value.

Example

julia> model = Model();

julia> @variable(model, x, start = 2.0);

julia> @constraint(model, c, [2x] in Nonnegatives())
c : [2 x] ∈ Nonnegatives()

julia> set_start_value(c, [4.0])

julia> start_value(c)
1-element Vector{Float64}:
4.0

julia> set_start_value(c, nothing)

julia> start_value(c)

source

start_value(v::GenericVariableRef)

Return the start value (MOI.VariablePrimalStart) of the variable v.

Note: VariablePrimalStarts are sometimes called "MIP-starts" or "warmstarts".

See also: has_start_value, set_start_value.

Example

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L329-L361
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L319-L349
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julia> model = Model();

julia> @variable(model, x, start = 1.5);

julia> @variable(model, y);

julia> has_start_value(x)
true

julia> has_start_value(y)
false

julia> start_value(x)
1.5

julia> set_start_value(y, 2.0)

julia> has_start_value(y)
true

julia> start_value(y)
2.0

source

termination_status

JuMP.termination_status – Function.

termination_status(model::GenericModel)

Return a MOI.TerminationStatusCode describing why the solver stopped (that is, the MOI.TerminationStatus
attribute).

Example

julia> import Ipopt

julia> model = Model(Ipopt.Optimizer);

julia> termination_status(model)
OPTIMIZE_NOT_CALLED::TerminationStatusCode = 0

source

time_limit_sec

JuMP.time_limit_sec – Function.

time_limit_sec(model::GenericModel)

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L1944-L1979
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L734-L750
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Return the time limit (in seconds) of the model.

Returns nothing if unset.

See also: set_time_limit_sec, unset_time_limit_sec.

Example

julia> import Ipopt

julia> model = Model(Ipopt.Optimizer);

julia> time_limit_sec(model)

julia> set_time_limit_sec(model, 60.0)

julia> time_limit_sec(model)
60.0

julia> unset_time_limit_sec(model)

julia> time_limit_sec(model)

source

triangle_vec

JuMP.triangle_vec – Function.

triangle_vec(matrix::Matrix)

Return the upper triangle of a matrix concatenated into a vector in the order required by JuMP and Math-
OptInterface for Triangle sets.

Example

julia> model = Model();

julia> @variable(model, X[1:3, 1:3], Symmetric);

julia> @variable(model, t)
t

julia> @constraint(model, [t; triangle_vec(X)] in MOI.RootDetConeTriangle(3))
[t, X[1,1], X[1,2], X[2,2], X[1,3], X[2,3], X[3,3]] ∈ MathOptInterface.RootDetConeTriangle(3)

source

unfix

JuMP.unfix – Function.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L285-L312
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/sd.jl#L245-L264
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unfix(v::GenericVariableRef)

Delete the fixing constraint of a variable.

Error if one does not exist.

See also FixRef, is_fixed, fix_value, fix.

Example

julia> model = Model();

julia> @variable(model, x == 1);

julia> is_fixed(x)
true

julia> unfix(x)

julia> is_fixed(x)
false

source

unregister

JuMP.unregister – Function.

unregister(model::GenericModel, key::Symbol)

Unregister the name key from model so that a new variable, constraint, or expression can be created with
the same key.

Note that this will not delete the object model[key]; it will just remove the reference at model[key]. To
delete the object, use delete as well.

See also: delete, object_dictionary.

Example

julia> model = Model();

julia> @variable(model, x)
x

julia> @variable(model, x)
ERROR: An object of name x is already attached to this model. If this

is intended, consider using the anonymous construction syntax, for example,
`x = @variable(model, [1:N], ...)` where the name of the object does
not appear inside the macro.

Alternatively, use `unregister(model, :x)` to first unregister

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L1263-L1288
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the existing name from the model. Note that this will not delete the
object; it will just remove the reference at `model[:x]`.

Stacktrace:
[...]

julia> num_variables(model)
1

julia> unregister(model, :x)

julia> @variable(model, x)
x

julia> num_variables(model)
2

source

unsafe_backend

JuMP.unsafe_backend – Function.

unsafe_backend(model::GenericModel)

Return the innermost optimizer associated with the JuMP model model.

This function should only be used by advanced users looking to access low-level solver-specific
functionality. It has a high-risk of incorrect usage. We strongly suggest you use the alternative
suggested below.

See also: backend.

To obtain the index of a variable or constraint in the unsafe backend, use optimizer_index.

Unsafe behavior

This function is unsafe for two main reasons.

First, the formulation and order of variables and constraints in the unsafe backend may be different to the
variables and constraints in model. This can happen because of bridges, or because the solver requires
the variables or constraints in a specific order. In addition, the variable or constraint index returned by
index at the JuMP level may be different to the index of the corresponding variable or constraint in the
unsafe_backend. There is no solution to this. Use the alternative suggested below instead.

Second, the unsafe_backend may be empty, or lack some modifications made to the JuMP model. Thus,
before calling unsafe_backend you should first call MOI.Utilities.attach_optimizer to ensure that the
backend is synchronized with the JuMP model.

julia> import HiGHS

julia> model = Model(HiGHS.Optimizer)
A JuMP Model
├ solver: HiGHS

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/JuMP.jl#L1017-L1060
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├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none

julia> MOI.Utilities.attach_optimizer(model)

julia> inner = unsafe_backend(model)
A HiGHS model with 0 columns and 0 rows.

Moreover, if you modify the JuMP model, the reference you have to the backend (that is, inner in the
example above) may be out-dated, and you should call MOI.Utilities.attach_optimizer again.

This function is also unsafe in the reverse direction: if you modify the unsafe backend, for example, by
adding a new constraint to inner, the changes may be silently discarded by JuMP when the JuMP model is
modified or solved.

Alternative

Instead of unsafe_backend, create a model using direct_model and call backend instead.

For example, instead of:

julia> import HiGHS

julia> model = Model(HiGHS.Optimizer);

julia> set_silent(model)

julia> @variable(model, x >= 0)
x

julia> MOI.Utilities.attach_optimizer(model)

julia> highs = unsafe_backend(model)
A HiGHS model with 1 columns and 0 rows.

julia> optimizer_index(x)
MOI.VariableIndex(1)

Use:

julia> import HiGHS

julia> model = direct_model(HiGHS.Optimizer());

julia> set_silent(model)

julia> @variable(model, x >= 0)
x

julia> highs = backend(model) # No need to call `attach_optimizer`.
A HiGHS model with 1 columns and 0 rows.
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julia> index(x)
MOI.VariableIndex(1)

source

unset_binary

JuMP.unset_binary – Function.

unset_binary(variable_ref::GenericVariableRef)

Remove the binary constraint on the variable variable_ref.

See also BinaryRef, is_binary, set_binary.

Example

julia> model = Model();

julia> @variable(model, x, Bin);

julia> is_binary(x)
true

julia> unset_binary(x)

julia> is_binary(x)
false

source

unset_integer

JuMP.unset_integer – Function.

unset_integer(variable_ref::GenericVariableRef)

Remove the integrality constraint on the variable variable_ref.

Errors if one does not exist.

See also IntegerRef, is_integer, set_integer.

Example

julia> model = Model();

julia> @variable(model, x, Int);

julia> is_integer(x)
true

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/JuMP.jl#L467-L567
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L1560-L1582
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julia> unset_integer(x)

julia> is_integer(x)
false

source

unset_silent

JuMP.unset_silent – Function.

unset_silent(model::GenericModel)

Neutralize the effect of the set_silent function and let the solver attributes control the verbosity.

See also: set_silent.

Example

julia> import Ipopt

julia> model = Model(Ipopt.Optimizer);

julia> set_silent(model)

julia> get_attribute(model, MOI.Silent())
true

julia> unset_silent(model)

julia> get_attribute(model, MOI.Silent())
false

source

unset_time_limit_sec

JuMP.unset_time_limit_sec – Function.

unset_time_limit_sec(model::GenericModel)

Unset the time limit of the solver.

See also: set_time_limit_sec, time_limit_sec.

Example

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L1427-L1451
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L185-L210
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julia> import Ipopt

julia> model = Model(Ipopt.Optimizer);

julia> time_limit_sec(model)

julia> set_time_limit_sec(model, 60.0)

julia> time_limit_sec(model)
60.0

julia> unset_time_limit_sec(model)

julia> time_limit_sec(model)

source

upper_bound

JuMP.upper_bound – Function.

upper_bound(v::GenericVariableRef)

Return the upper bound of a variable.

Error if one does not exist.

See also UpperBoundRef, has_upper_bound, set_upper_bound, delete_upper_bound.

Example

julia> model = Model();

julia> @variable(model, x <= 1.0);

julia> upper_bound(x)
1.0

source

value

JuMP.value – Function.

value(con_ref::ConstraintRef; result::Int = 1)

Return the primal value of constraint con_ref associated with result index result of the most-recent
solution returned by the solver.

That is, if con_ref is the reference of a constraint func-in-set, it returns the value of func evaluated at
the value of the variables (given by value(::GenericVariableRef)).

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L254-L279
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L1112-L1132
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Use primal_status to check if a result exists before asking for values.

See also: result_count.

Note

For scalar constraints, the constant is moved to the set so it is not taken into account in the primal value
of the constraint. For instance, the constraint @constraint(model, 2x + 3y + 1 == 5) is transformed
into 2x + 3y-in-MOI.EqualTo(4) so the value returned by this function is the evaluation of 2x + 3y.

source

value(var_value::Function, con_ref::ConstraintRef)

Evaluate the primal value of the constraint con_ref using var_value(v) as the value for each variable v.

source

value(v::GenericVariableRef; result = 1)

Return the value of variable v associated with result index result of the most-recent returned by the
solver.

Use primal_status to check if a result exists before asking for values.

See also: result_count.

source

value(var_value::Function, v::GenericVariableRef)

Evaluate the value of the variable v as var_value(v).

source

value(var_value::Function, ex::GenericAffExpr)

Evaluate ex using var_value(v) as the value for each variable v.

source

value(v::GenericAffExpr; result::Int = 1)

Return the value of the GenericAffExpr v associated with result index result of the most-recent solution
returned by the solver.

See also: result_count.

source

value(var_value::Function, ex::GenericQuadExpr)

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L1280-L1301
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L1309-L1314
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L2081-L2090
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L2095-L2099
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/aff_expr.jl#L408-L412
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/aff_expr.jl#L725-L732
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Evaluate ex using var_value(v) as the value for each variable v.

source

value(v::GenericQuadExpr; result::Int = 1)

Return the value of the GenericQuadExpr v associated with result index result of the most-recent solution
returned by the solver.

Replaces getvalue for most use cases.

See also: result_count.

source

value(p::NonlinearParameter)

Return the current value stored in the nonlinear parameter p.

Example

julia> model = Model();

julia> @NLparameter(model, p == 10)
p == 10.0

julia> value(p)
10.0

source

value(ex::NonlinearExpression; result::Int = 1)

Return the value of the NonlinearExpression ex associated with result index result of the most-recent
solution returned by the solver.

See also: result_count.

source

value(var_value::Function, ex::NonlinearExpression)

Evaluate ex using var_value(v) as the value for each variable v.

source

value(c::NonlinearConstraintRef; result::Int = 1)

Return the value of the NonlinearConstraintRef c associated with result index result of the most-recent
solution returned by the solver.

See also: result_count.

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/quad_expr.jl#L838-L842
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/quad_expr.jl#L859-L868
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/nlp.jl#L268-L284
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/nlp.jl#L405-L412
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/nlp.jl#L443-L447
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/nlp.jl#L608-L615
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value(var_value::Function, c::NonlinearConstraintRef)

Evaluate c using var_value(v) as the value for each variable v.

source

value_type

JuMP.value_type – Function.

value_type(::Type{<:Union{AbstractModel,AbstractVariableRef}})

Return the return type of value for variables of that model. It defaults to Float64 if it is not implemented.

Example

julia> value_type(GenericModel{BigFloat})
BigFloat

source

variable_by_name

JuMP.variable_by_name – Function.

variable_by_name(
model::AbstractModel,
name::String,

)::Union{AbstractVariableRef,Nothing}

Returns the reference of the variable with name attribute name or Nothing if no variable has this name
attribute. Throws an error if several variables have name as their name attribute.

Example

julia> model = Model();

julia> @variable(model, x)
x

julia> variable_by_name(model, "x")
x

julia> @variable(model, base_name="x")
x

julia> variable_by_name(model, "x")
ERROR: Multiple variables have the name x.
Stacktrace:
[1] error(::String) at ./error.jl:33

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/nlp.jl#L622-L626
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/JuMP.jl#L82-L94
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[2] get(::MOIU.Model{Float64}, ::Type{MathOptInterface.VariableIndex}, ::String) at
/home/blegat/.julia/dev/MathOptInterface/src/Utilities/model.jl:222↪→

[3] get at /home/blegat/.julia/dev/MathOptInterface/src/Utilities/universalfallback.jl:201
[inlined]↪→

[4]
get(::MathOptInterface.Utilities.CachingOptimizer{MathOptInterface.AbstractOptimizer,MathOptInterface.Utilities.UniversalFallback{MOIU.Model{Float64}}},
::Type{MathOptInterface.VariableIndex}, ::String) at
/home/blegat/.julia/dev/MathOptInterface/src/Utilities/cachingoptimizer.jl:490

↪→

↪→

↪→

[5] variable_by_name(::GenericModel, ::String) at
/home/blegat/.julia/dev/JuMP/src/variables.jl:268↪→

[6] top-level scope at none:0

julia> var = @variable(model, base_name="y")
y

julia> variable_by_name(model, "y")
y

julia> set_name(var, "z")

julia> variable_by_name(model, "y")

julia> variable_by_name(model, "z")
z

julia> @variable(model, u[1:2])
2-element Vector{VariableRef}:
u[1]
u[2]

julia> variable_by_name(model, "u[2]")
u[2]

source

variable_ref_type

JuMP.variable_ref_type – Function.

variable_ref_type(::Union{F,Type{F}}) where {F}

A helper function used internally by JuMP and some JuMP extensions. Returns the variable type associated
with the model or expression type F.

source

vectorize

JuMP.vectorize – Function.

vectorize(matrix::AbstractMatrix, ::Shape)

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L675-L730
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L225-L230
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Convert the matrix into a vector according to Shape.

source

write_to_file

JuMP.write_to_file – Function.

write_to_file(
model::GenericModel,
filename::String;
format::MOI.FileFormats.FileFormat = MOI.FileFormats.FORMAT_AUTOMATIC,
kwargs...,

)

Write the JuMP model model to filename in the format format.

See MOI.FileFormats.FileFormat for a list of supported formats.

Compression

If the filename ends in .gz, the file will be compressed using GZip.

If the filename ends in .bz2, the file will be compressed using BZip2.

Keyword arguments

Other kwargs are passed to the Model constructor of the chosen format.

For details, see the docstring each file format's Model constructor. For example, MOI.FileFormats.MPS.Model.

Example

julia> model = Model();

julia> @variable(model, x >= 0);

julia> @objective(model, Min, 2 * x + 1);

julia> filename = joinpath(mktempdir(), "model.mps");

julia> write_to_file(model, filename; generic_names = true)

julia> print(read(filename, String))
NAME
ROWS
N OBJ
COLUMNS

C1 OBJ 2
RHS

rhs OBJ -1
RANGES
BOUNDS
LO bounds C1 0
PL bounds C1
ENDATA

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/sd.jl#L11-L15
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Solver-specific formats

write_to_file calls a Julia function from the MathOptInterface package that is independent of the choice
of solver. That is, it does not call a solver's internal API to write a model to disk.

For MPS files in particular, write_to_filemay not support the full range of features that a solver's internal
API supports. This is because some solvers have defined solver-specific extensions to the MPS format,
whereas our Julia implementation supports only features which are standardized across multiple solvers.

To write a file to disk using the solver's internal API, use direct_model and call the solver's C API. For
example:

julia> import HiGHS

julia> model = direct_model(HiGHS.Optimizer());

julia> set_silent(model)

julia> @variable(model, x >= 0);

julia> @objective(model, Min, 2 * x + 1);

julia> filename = joinpath(mktempdir(), "model.mps");

julia> HiGHS.Highs_writeModel(backend(model), filename);

julia> print(read(filename, String))
NAME
ROWS
N Obj
COLUMNS

x Obj 2
RHS

RHS_V Obj -1
ENDATA

source

AbstractConstraint

JuMP.AbstractConstraint – Type.

abstract type AbstractConstraint

An abstract base type for all constraint types. AbstractConstraints store the function and set directly,
unlike ConstraintRefs that are merely references to constraints stored in a model. AbstractConstraints
do not need to be attached to a model.

source

AbstractJuMPScalar

JuMP.AbstractJuMPScalar – Type.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/file_formats.jl#L31-L124
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L657-L664
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AbstractJuMPScalar <: MutableArithmetics.AbstractMutable

Abstract base type for all scalar types

The subtyping of AbstractMutable will allow calls of some Base functions to be redirected to a method in
MA that handles type promotion more carefully (for example the promotion in sparse matrix products in
SparseArrays usually does not work for JuMP types) and exploits the mutability of AffExpr and QuadExpr.

source

AbstractModel

JuMP.AbstractModel – Type.

AbstractModel

An abstract type that should be subtyped for users creating JuMP extensions.

source

AbstractScalarSet

JuMP.AbstractScalarSet – Type.

AbstractScalarSet

An abstract type for defining new scalar sets in JuMP.

Implement moi_set(::AbstractScalarSet) to convert the type into an MOI set.

See also: moi_set.

source

AbstractShape

JuMP.AbstractShape – Type.

AbstractShape

Abstract vectorizable shape. Given a flat vector form of an object of shape shape, the original object can
be obtained by reshape_vector.

source

AbstractVariable

JuMP.AbstractVariable – Type.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/JuMP.jl#L1142-L1151
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/JuMP.jl#L75-L79
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/sets.jl#L258-L266
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/shapes.jl#L11-L16
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AbstractVariable

Variable returned by build_variable. It represents a variable that has not been added yet to any model.
It can be added to a given model with add_variable.

source

AbstractVariableRef

JuMP.AbstractVariableRef – Type.

AbstractVariableRef

Variable returned by add_variable. Affine (resp. quadratic) operations with variables of type V<:AbstractVariableRef
and coefficients of type T create a GenericAffExpr{T,V} (resp. GenericQuadExpr{T,V}).

source

AbstractVectorSet

JuMP.AbstractVectorSet – Type.

AbstractVectorSet

An abstract type for defining new sets in JuMP.

Implement moi_set(::AbstractVectorSet, dim::Int) to convert the type into an MOI set.

See also: moi_set.

source

AffExpr

JuMP.AffExpr – Type.

AffExpr

Alias for GenericAffExpr{Float64,VariableRef}, the specific GenericAffExpr used by JuMP.

source

ArrayShape

JuMP.ArrayShape – Type.

ArrayShape{N}(dims::NTuple{N,Int}) where {N}

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L26-L32
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L216-L222
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/sets.jl#L11-L20
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/aff_expr.jl#L701-L706
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An AbstractShape that represents array-valued constraints.

Example

julia> model = Model();

julia> @variable(model, x[1:2, 1:3]);

julia> c = @constraint(model, x >= 0, Nonnegatives())
[x[1,1] x[1,2] x[1,3]
x[2,1] x[2,2] x[2,3]] ∈ Nonnegatives()

julia> shape(constraint_object(c))
ArrayShape{2}((2, 3))

source

BinaryRef

JuMP.BinaryRef – Function.

BinaryRef(v::GenericVariableRef)

Return a constraint reference to the constraint constraining v to be binary. Errors if one does not exist.

See also is_binary, set_binary, unset_binary.

Example

julia> model = Model();

julia> @variable(model, x, Bin);

julia> BinaryRef(x)
x binary

source

BridgeableConstraint

JuMP.BridgeableConstraint – Type.

BridgeableConstraint(
constraint::C,
bridge_type::B;
coefficient_type::Type{T} = Float64,

) where {C<:AbstractConstraint,B<:Type{<:MOI.Bridges.AbstractBridge},T}

An AbstractConstraint representinng that constraint that can be bridged by the bridge of type bridge_type{coefficient_type}.

Adding a BridgeableConstraint to a model is equivalent to:

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/shapes.jl#L176-L195
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L1588-L1606
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add_bridge(model, bridge_type; coefficient_type = coefficient_type)
add_constraint(model, constraint)

Example

Given a new scalar set type CustomSet with a bridge CustomBridge that can bridge F-in-CustomSet con-
straints, when the user does:

model = Model()
@variable(model, x)
@constraint(model, x + 1 in CustomSet())
optimize!(model)

with an optimizer that does not support F-in-CustomSet constraints, the constraint will not be bridged
unless they first call add_bridge(model, CustomBridge).

In order to automatically add the CustomBridge to any model to which an F-in-CustomSet is added, add
the following method:

function JuMP.build_constraint(
error_fn::Function,
func::AbstractJuMPScalar,
set::CustomSet,

)
constraint = ScalarConstraint(func, set)
return BridgeableConstraint(constraint, CustomBridge)

end

Note

JuMP extensions should extend JuMP.build_constraint only if they also defined CustomSet, for three
reasons:

1. It is problematic if multiple extensions overload the same JuMP method.

2. A missing method will not inform the users that they forgot to load the extension module defining
the build_constraint method.

3. Defining a method where neither the function nor any of the argument types are defined in the
package is called type piracy and is discouraged in the Julia style guide.

source

ComplexPlane

JuMP.ComplexPlane – Type.

ComplexPlane

Complex plane object that can be used to create a complex variable in the @variable macro.

Example

https://docs.julialang.org/en/v1/manual/style-guide/index.html#Avoid-type-piracy-1
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L667-L721
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Consider the following example:

julia> model = Model();

julia> @variable(model, x in ComplexPlane())
real(x) + imag(x) im

julia> all_variables(model)
2-element Vector{VariableRef}:
real(x)
imag(x)

We see in the output of the last command that two real variables were created. The Julia variable x binds
to an affine expression in terms of these two variables that parametrize the complex plane.

source

ComplexVariable

JuMP.ComplexVariable – Type.

ComplexVariable{S,T,U,V} <: AbstractVariable

A struct used when adding complex variables.

See also: ComplexPlane.

source

ConstraintNotOwned

JuMP.ConstraintNotOwned – Type.

struct ConstraintNotOwned{C<:ConstraintRef} <: Exception
constraint_ref::C

end

An error thrownwhen the constraint constraint_refwas used in amodel different to owner_model(constraint_ref).

Example

julia> model = Model();

julia> @variable(model, x);

julia> @constraint(model, c, x >= 0)
c : x ≥ 0

julia> model_new = Model();

julia> MOI.get(model_new, MOI.ConstraintName(), c)
ERROR: ConstraintNotOwned{ConstraintRef{Model,

MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.GreaterThan{Float64}}, ScalarShape}}(c : x ≥ 0)

↪→

↪→

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L2470-L2495
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L2498-L2504
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Stacktrace:
[...]

source

ConstraintRef

JuMP.ConstraintRef – Type.

ConstraintRef

Holds a reference to the model and the corresponding MOI.ConstraintIndex.

source

FixRef

JuMP.FixRef – Function.

FixRef(v::GenericVariableRef)

Return a constraint reference to the constraint fixing the value of v.

Errors if one does not exist.

See also is_fixed, fix_value, fix, unfix.

Example

julia> model = Model();

julia> @variable(model, x == 1);

julia> FixRef(x)
x = 1

source

GenericAffExpr

JuMP.GenericAffExpr – Type.

mutable struct GenericAffExpr{CoefType,VarType} <: AbstractJuMPScalar
constant::CoefType
terms::OrderedDict{VarType,CoefType}

end

An expression type representing an affine expression of the form:
∑
aixi + c.

Fields

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L52-L77
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L11-L15
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L1319-L1339
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• .constant: the constant c in the expression.
• .terms: an OrderedDict, with keys of VarType and values of CoefType describing the sparse vector

a.

Example

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> expr = x[2] + 3.0 * x[1] + 4.0
x[2] + 3 x[1] + 4

julia> expr.constant
4.0

julia> expr.terms
OrderedCollections.OrderedDict{VariableRef, Float64} with 2 entries:
x[2] => 1.0
x[1] => 3.0

source

GenericModel

JuMP.GenericModel – Type.

GenericModel{T}([optimizer_factory]; kwargs...) where {T<:Real}

Create a new instance of a JuMP model.

If optimizer_factory is provided, the model is initialized with the optimizer using set_optimizer(model,
optimizer_factory; kwargs...). See set_optimizer for details on kwargs.

If optimizer_factory is not provided, use set_optimizer to set the optimizer before calling optimize!.

Value type T

Passing a type other than Float64 as the value type T is an advanced operation. The value type must
match that expected by the chosen optimizer. Consult the optimizers documentation for details.

If not documented, assume that the optimizer supports only Float64.

Choosing an unsupported value typewill throw an MOI.UnsupportedConstraint or an MOI.UnsupportedAttribute
error, the timing of which (during the model construction or during a call to optimize!) depends on how
the solver is interfaced to JuMP.

Example

julia> model = GenericModel{BigFloat}();

julia> typeof(model)
GenericModel{BigFloat}

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/aff_expr.jl#L105-L138
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/JuMP.jl#L162-L195
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GenericNonlinearExpr

JuMP.GenericNonlinearExpr – Type.

GenericNonlinearExpr{V}(head::Symbol, args::Vector{Any})
GenericNonlinearExpr{V}(head::Symbol, args::Any...)

The scalar-valued nonlinear function head(args...), represented as a symbolic expression tree, with the
call operator head and ordered arguments in args.

V is the type of AbstractVariableRef present in the expression, and is used to help dispatch JuMP exten-
sions.

head

The head::Symbol must be an operator supported by the model.

The default list of supported univariate operators is given by:

• MOI.Nonlinear.DEFAULT_UNIVARIATE_OPERATORS

and the default list of supported multivariate operators is given by:

• MOI.Nonlinear.DEFAULT_MULTIVARIATE_OPERATORS

Additional operators can be add using @operator.

See the full list of operators supported by a MOI.ModelLike by querying the MOI.ListOfSupportedNonlinearOperators
attribute.

args

The vector args contains the arguments to the nonlinear function. If the operator is univariate, it must
contain one element. Otherwise, it may contain multiple elements.

Given a subtype of AbstractVariableRef, V, for GenericNonlinearExpr{V}, each element must be one
of the following:

• A constant value of type <:Real

• A V

• A GenericAffExpr{T,V}

• A GenericQuadExpr{T,V}

• A GenericNonlinearExpr{V}

where T<:Real and T == value_type(V).

Unsupported operators

If the optimizer does not support head, an MOI.UnsupportedNonlinearOperator error will be thrown.

There is no guarantee about when this error will be thrown; it may be thrown when the function is first
added to the model, or it may be thrown when optimize! is called.

Example

To represent the function f(x) = sin(x)2, do:
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julia> model = Model();

julia> @variable(model, x)
x

julia> f = sin(x)^2
sin(x) ^ 2.0

julia> f = GenericNonlinearExpr{VariableRef}(
:^,
GenericNonlinearExpr{VariableRef}(:sin, x),
2.0,

)
sin(x) ^ 2.0

source

GenericQuadExpr

JuMP.GenericQuadExpr – Type.

mutable struct GenericQuadExpr{CoefType,VarType} <: AbstractJuMPScalar
aff::GenericAffExpr{CoefType,VarType}
terms::OrderedDict{UnorderedPair{VarType}, CoefType}

end

An expression type representing an quadratic expression of the form:
∑
qi,jxixj +

∑
aixi + c.

Fields

• .aff: an GenericAffExpr representing the affine portion of the expression.

• .terms: an OrderedDict, with keys of UnorderedPair{VarType} and values of CoefType, describing
the sparse list of terms q.

Example

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> expr = 2.0 * x[1]^2 + x[1] * x[2] + 3.0 * x[1] + 4.0
2 x[1]² + x[1]*x[2] + 3 x[1] + 4

julia> expr.aff
3 x[1] + 4

julia> expr.terms
OrderedCollections.OrderedDict{UnorderedPair{VariableRef}, Float64} with 2 entries:
UnorderedPair{VariableRef}(x[1], x[1]) => 2.0
UnorderedPair{VariableRef}(x[1], x[2]) => 1.0

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/nlp_expr.jl#L6-L79
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/quad_expr.jl#L48-L82
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GenericReferenceMap

JuMP.GenericReferenceMap – Type.

GenericReferenceMap{T}

Mapping between variable and constraint reference of a model and its copy. The reference of the copied
model can be obtained by indexing the map with the reference of the corresponding reference of the
original model.

source

GenericVariableRef

JuMP.GenericVariableRef – Type.

GenericVariableRef{T} <: AbstractVariableRef

Holds a reference to the model and the corresponding MOI.VariableIndex.

source

GreaterThanZero

JuMP.GreaterThanZero – Type.

GreaterThanZero()

A struct used to intercept when >= or ≥ is used in a macro via operator_to_set.

This struct is not the same as Nonnegatives so that we can disambiguate x >= y and x - y in Nonnegatives().

This struct is not intended for general usage, but it may be useful to some JuMP extensions.

Example

julia> operator_to_set(error, Val(:>=))
GreaterThanZero()

source

HermitianMatrixAdjointShape

JuMP.HermitianMatrixAdjointShape – Type.

HermitianMatrixAdjointShape(side_dimension)

The dual_shape of HermitianMatrixShape.

This shape is not intended for regular use.

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/copy.jl#L34-L40
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L255-L259
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros/@constraint.jl#L606-L624
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/sd.jl#L580-L586
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HermitianMatrixShape

JuMP.HermitianMatrixShape – Type.

HermitianMatrixShape(
side_dimension::Int;
needs_adjoint_dual::Bool = false,

)

The shape object for a Hermitian square matrix of side_dimension rows and columns.

The vectorized form corresponds to MOI.HermitianPositiveSemidefiniteConeTriangle.

needs_adjoint_dual

By default, the dual_shape of HermitianMatrixShape is also HermitianMatrixShape. This is true for
cases such as a LinearAlgebra.Hermitian matrix in HermitianPSDCone.

However, JuMP also supports LinearAlgebra.Hermitianmatrix in Zeros, which is interpreted as an element-
wise equality constraint. By exploiting symmetry, we pass only the upper triangle of the equality con-
straints. This works for the primal, but it leads to a factor of 2 difference in the off-diagonal dual elements.
(The dual value of the (i, j) element in the triangle formulation should be divided by 2 when spread
across the (i, j) and (j, i) elements in the square matrix formulation.) If the constraint has this dual
inconsistency, set needs_adjoint_dual = true.

source

HermitianMatrixSpace

JuMP.HermitianMatrixSpace – Type.

HermitianMatrixSpace()

Use in the @variable macro to constrain a matrix of variables to be hermitian.

Example

julia> model = Model();

julia> @variable(model, Q[1:2, 1:2] in HermitianMatrixSpace())
2×2 LinearAlgebra.Hermitian{GenericAffExpr{ComplexF64, VariableRef},

Matrix{GenericAffExpr{ComplexF64, VariableRef}}}:↪→

real(Q[1,1]) real(Q[1,2]) + imag(Q[1,2]) im
real(Q[1,2]) - imag(Q[1,2]) im real(Q[2,2])

source

HermitianPSDCone

JuMP.HermitianPSDCone – Type.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/sd.jl#L497-L523
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/sd.jl#L56-L72
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HermitianPSDCone

Hermitian positive semidefinite cone object that can be used to create a Hermitian positive semidefinite
square matrix in the @variable and @constraint macros.

Example

Consider the following example:

julia> model = Model();

julia> @variable(model, H[1:3, 1:3] in HermitianPSDCone())
3×3 LinearAlgebra.Hermitian{GenericAffExpr{ComplexF64, VariableRef},

Matrix{GenericAffExpr{ComplexF64, VariableRef}}}:↪→

real(H[1,1]) … real(H[1,3]) + imag(H[1,3]) im
real(H[1,2]) - imag(H[1,2]) im real(H[2,3]) + imag(H[2,3]) im
real(H[1,3]) - imag(H[1,3]) im real(H[3,3])

julia> c = constraint_object(VariableInSetRef(H));

julia> c.func
9-element Vector{VariableRef}:
real(H[1,1])
real(H[1,2])
real(H[2,2])
real(H[1,3])
real(H[2,3])
real(H[3,3])
imag(H[1,2])
imag(H[1,3])
imag(H[2,3])

julia> c.set
MathOptInterface.HermitianPositiveSemidefiniteConeTriangle(3)

We see in the output of the last commands that 9 real variables were created. The matrix H constrains
affine expressions in terms of these 9 variables that parametrize a Hermitian matrix.

source

IntegerRef

JuMP.IntegerRef – Function.

IntegerRef(v::GenericVariableRef)

Return a constraint reference to the constraint constraining v to be integer.

Errors if one does not exist.

See also is_integer, set_integer, unset_integer.

Example

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/sd.jl#L455-L494
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julia> model = Model();

julia> @variable(model, x, Int);

julia> IntegerRef(x)
x integer

source

LPMatrixData

JuMP.LPMatrixData – Type.

LPMatrixData{T}

The struct returned by lp_matrix_data. See lp_matrix_data for a description of the public fields.

source

LessThanZero

JuMP.LessThanZero – Type.

GreaterThanZero()

A struct used to intercept when <= or ≤ is used in a macro via operator_to_set.

This struct is not the same as Nonpositives so that we can disambiguate x <= y and x - y in Nonpositives().

This struct is not intended for general usage, but it may be useful to some JuMP extensions.

Example

julia> operator_to_set(error, Val(:<=))
LessThanZero()

source

LinearTermIterator

JuMP.LinearTermIterator – Type.

LinearTermIterator{GAE<:GenericAffExpr}

A struct that implements the iterate protocol in order to iterate over tuples of (coefficient, variable)
in the GenericAffExpr.

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L1457-L1476
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/lp_matrix_data.jl#L6-L11
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros/@constraint.jl#L658-L676
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/aff_expr.jl#L443-L448
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LowerBoundRef

JuMP.LowerBoundRef – Function.

LowerBoundRef(v::GenericVariableRef)

Return a constraint reference to the lower bound constraint of v.

Errors if one does not exist.

See also has_lower_bound, lower_bound, set_lower_bound, delete_lower_bound.

Example

julia> model = Model();

julia> @variable(model, x >= 1.0);

julia> LowerBoundRef(x)
x ≥ 1

source

Model

JuMP.Model – Type.

Model([optimizer_factory;] add_bridges::Bool = true)

Create a new instance of a JuMP model.

If optimizer_factory is provided, themodel is initialized with thhe optimizer returned by MOI.instantiate(optimizer_factory).

If optimizer_factory is not provided, use set_optimizer to set the optimizer before calling optimize!.

If add_bridges, JuMP adds a MOI.Bridges.LazyBridgeOptimizer to automatically reformulate the prob-
lem into a form supported by the optimizer.

Example

julia> import Ipopt

julia> model = Model(Ipopt.Optimizer);

julia> solver_name(model)
"Ipopt"

julia> import HiGHS

julia> import MultiObjectiveAlgorithms as MOA

julia> model = Model(() -> MOA.Optimizer(HiGHS.Optimizer); add_bridges = false);

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L882-L902
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/JuMP.jl#L308-L338
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ModelMode

JuMP.ModelMode – Type.

ModelMode

An enum to describe the state of the CachingOptimizer inside a JuMP model.

See also: mode.

Values

Possible values are:

AUTOMATIC : moi_backend field holds a CachingOptimizer in AUTOMATIC mode.

MANUAL : moi_backend field holds a CachingOptimizer in MANUAL mode.

DIRECT : moi_backend field holds an AbstractOptimizer. No extra copy of themodel is stored. The moi_backend
must support add_constraint etc.

source

NLPEvaluator

JuMP.NLPEvaluator – Function.

NLPEvaluator(
model::Model,
_differentiation_backend::MOI.Nonlinear.AbstractAutomaticDifferentiation =

MOI.Nonlinear.SparseReverseMode(),
)

Return an MOI.AbstractNLPEvaluator constructed from model

Warning

Before using, you must initialize the evaluator using MOI.initialize.

Experimental

These features may change or be removed in any future version of JuMP.

Pass _differentiation_backend to specify the differentiation backend used to compute derivatives.

source

NoOptimizer

JuMP.NoOptimizer – Type.

struct NoOptimizer <: Exception end

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/JuMP.jl#L44-L59
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/nlp.jl#L975-L994
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An error thrown when no optimizer is set and one is required.

The optimizer can be provided to the Model constructor or by calling set_optimizer.

Example

julia> model = Model();

julia> optimize!(model)
ERROR: NoOptimizer()
Stacktrace:
[...]

source

NonlinearExpr

JuMP.NonlinearExpr – Type.

NonlinearExpr

Alias for GenericNonlinearExpr{VariableRef}, the specific GenericNonlinearExpr used by JuMP.

source

NonlinearOperator

JuMP.NonlinearOperator – Type.

NonlinearOperator(func::Function, head::Symbol)

A callable struct (functor) representing a function named head.

When called with AbstractJuMPScalars, the struct returns a GenericNonlinearExpr.

When called with non-JuMP types, the struct returns the evaluation of func(args...).

Unless head is special-cased by the optimizer, the operator must have already been added to the model
using add_nonlinear_operator or @operator.

Example

julia> model = Model();

julia> @variable(model, x)
x

julia> f(x::Float64) = x^2
f (generic function with 1 method)

julia> ∇f(x::Float64) = 2 * x
∇f (generic function with 1 method)

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L1163-L1181
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/nlp_expr.jl#L140-L145
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julia> ∇²f(x::Float64) = 2.0
∇²f (generic function with 1 method)

julia> @operator(model, op_f, 1, f, ∇f, ∇²f)
NonlinearOperator(f, :op_f)

julia> bar = NonlinearOperator(f, :op_f)
NonlinearOperator(f, :op_f)

julia> @objective(model, Min, bar(x))
op_f(x)

julia> bar(2.0)
4.0

source

Nonnegatives

JuMP.Nonnegatives – Type.

Nonnegatives()

The JuMP equivalent of the MOI.Nonnegatives set, in which the dimension is inferred from the correspond-
ing function.

Example

julia> model = Model();

julia> @variable(model, x[1:2])
2-element Vector{VariableRef}:
x[1]
x[2]

julia> @constraint(model, x in Nonnegatives())
[x[1], x[2]] ∈ Nonnegatives()

julia> A = [1 2; 3 4];

julia> b = [5, 6];

julia> @constraint(model, A * x >= b)
[x[1] + 2 x[2] - 5, 3 x[1] + 4 x[2] - 6] ∈ Nonnegatives()

source

Nonpositives

JuMP.Nonpositives – Type.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/nlp_expr.jl#L847-L891
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros/@constraint.jl#L577-L603
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Nonpositives()

The JuMP equivalent of the MOI.Nonpositives set, in which the dimension is inferred from the correspond-
ing function.

Example

julia> model = Model();

julia> @variable(model, x[1:2])
2-element Vector{VariableRef}:
x[1]
x[2]

julia> @constraint(model, x in Nonpositives())
[x[1], x[2]] ∈ Nonpositives()

julia> A = [1 2; 3 4];

julia> b = [5, 6];

julia> @constraint(model, A * x <= b)
[x[1] + 2 x[2] - 5, 3 x[1] + 4 x[2] - 6] ∈ Nonpositives()

source

OptimizationSense

JuMP.OptimizationSense – Type.

OptimizationSense

An Enum for the value of the ObjectiveSense attribute.

Values

MIN_SENSE

The goal is to minimize the objective function.

MAX_SENSE

The goal is to maximize the objective function.

FEASIBILITY_SENSE

The model does not have an objective function.

source

OptimizeNotCalled

JuMP.OptimizeNotCalled – Type.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros/@constraint.jl#L629-L655
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1338-L1354
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struct OptimizeNotCalled <: Exception end

An error thrown when a result attribute cannot be queried before optimize! is called.

Example

julia> import Ipopt

julia> model = Model(Ipopt.Optimizer);

julia> objective_value(model)
ERROR: OptimizeNotCalled()
Stacktrace:
[...]

source

PSDCone

JuMP.PSDCone – Type.

PSDCone

Positive semidefinite cone object that can be used to constrain a square matrix to be positive semidefinite
in the @constraint macro.

If the matrix has type Symmetric then the columns vectorization (the vector obtained by concatenating the
columns) of its upper triangular part is constrained to belong to the MOI.PositiveSemidefiniteConeTriangle
set, otherwise its column vectorization is constrained to belong to the MOI.PositiveSemidefiniteConeSquare
set.

Example

Non-symmetric case:

julia> model = Model();

julia> @variable(model, x);

julia> a = [x 2x; 2x x];

julia> b = [1 2; 2 4];

julia> cref = @constraint(model, a >= b, PSDCone())
[x - 1 2 x - 2
2 x - 2 x - 4] ∈ PSDCone()

julia> jump_function(constraint_object(cref))
4-element Vector{AffExpr}:
x - 1
2 x - 2
2 x - 2

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L1142-L1160
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x - 4

julia> moi_set(constraint_object(cref))
MathOptInterface.PositiveSemidefiniteConeSquare(2)

Symmetric case:

julia> using LinearAlgebra # For Symmetric

julia> model = Model();

julia> @variable(model, x);

julia> a = [x 2x; 2x x];

julia> b = [1 2; 2 4];

julia> cref = @constraint(model, Symmetric(a - b) in PSDCone())
[x - 1 2 x - 2
⋯ x - 4] ∈ PSDCone()

julia> jump_function(constraint_object(cref))
3-element Vector{AffExpr}:
x - 1
2 x - 2
x - 4

julia> moi_set(constraint_object(cref))
MathOptInterface.PositiveSemidefiniteConeTriangle(2)

source

Parameter

JuMP.Parameter – Type.

Parameter(value)

A short-cut for the MOI.Parameter set.

Example

julia> model = Model();

julia> @variable(model, x in Parameter(2))
x

julia> print(model)
Feasibility
Subject to
x ∈ MathOptInterface.Parameter{Float64}(2.0)

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/sd.jl#L75-L140
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source

ParameterRef

JuMP.ParameterRef – Function.

ParameterRef(x::GenericVariableRef)

Return a constraint reference to the constraint constraining x to be a parameter.

Errors if one does not exist.

See also is_parameter, set_parameter_value, parameter_value.

Example

julia> model = Model();

julia> @variable(model, p in Parameter(2))
p

julia> ParameterRef(p)
p ∈ MathOptInterface.Parameter{Float64}(2.0)

julia> @variable(model, x);

julia> ParameterRef(x)
ERROR: Variable x is not a parameter.
Stacktrace:
[...]

source

QuadExpr

JuMP.QuadExpr – Type.

QuadExpr

An alias for GenericQuadExpr{Float64,VariableRef}, the specific GenericQuadExpr used by JuMP.

source

QuadTermIterator

JuMP.QuadTermIterator – Type.

QuadTermIterator{GQE<:GenericQuadExpr}

A struct that implements the iterate protocol in order to iterate over tuples of (coefficient, variable,
variable) in the GenericQuadExpr.

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/sets.jl#L373-L391
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L1616-L1645
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/quad_expr.jl#L656-L661
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/quad_expr.jl#L386-L391
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ReferenceMap

JuMP.ReferenceMap – Type.

GenericReferenceMap{T}

Mapping between variable and constraint reference of a model and its copy. The reference of the copied
model can be obtained by indexing the map with the reference of the corresponding reference of the
original model.

source

ResultStatusCode

JuMP.ResultStatusCode – Type.

ResultStatusCode

An Enum of possible values for the PrimalStatus and DualStatus attributes.

The values indicate how to interpret the result vector.

Values

NO_SOLUTION

The result vector is empty.

FEASIBLE_POINT

The result vector is a feasible point.

NEARLY_FEASIBLE_POINT

The result vector is feasible if some constraint tolerances are relaxed.

INFEASIBLE_POINT

The result vector is an infeasible point.

INFEASIBILITY_CERTIFICATE

The result vector is an infeasibility certificate.

If the PrimalStatus is INFEASIBILITY_CERTIFICATE, then the primal result vector is a certificate of dual
infeasibility.

If the DualStatus is INFEASIBILITY_CERTIFICATE, then the dual result vector is a proof of primal infeasi-
bility.

NEARLY_INFEASIBILITY_CERTIFICATE

The result satisfies a relaxed criterion for a certificate of infeasibility.

If the PrimalStatus is NEARLY_INFEASIBILITY_CERTIFICATE, then the primal result vector is a certificate
of dual infeasibility.

If the DualStatus is NEARLY_INFEASIBILITY_CERTIFICATE, then the dual result vector is a proof of primal
infeasibility.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/copy.jl#L34-L40
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REDUCTION_CERTIFICATE

The result vector is an ill-posed certificate; see this article for details.

If the PrimalStatus is REDUCTION_CERTIFICATE, then the primal result vector is a proof that the dual
problem is ill-posed.

If the DualStatus is REDUCTION_CERTIFICATE, then the dual result vector is a proof that the primal is
ill-posed.

NEARLY_REDUCTION_CERTIFICATE

The result satisfies a relaxed criterion for an ill-posed certificate.

UNKNOWN_RESULT_STATUS

The result vector contains a solution with an unknown interpretation. Check the solver log for more details.

OTHER_RESULT_STATUS

The result vector contains a solution with an interpretation not covered by one of the statuses defined
above. Check the solver log for more details.

source

RotatedSecondOrderCone

JuMP.RotatedSecondOrderCone – Type.

RotatedSecondOrderCone

Rotated second order cone object that can be used to constrain the square of the euclidean norm of a
vector x to be less than or equal to 2tu where t and u are nonnegative scalars.

This is a shortcut for the MOI.RotatedSecondOrderCone set.

Example

The following constrains ‖(x− 1, x− 2)‖22 ≤ 2tx and t, x ≥ 0:

julia> model = Model();

julia> @variable(model, x)
x

julia> @variable(model, t)
t

julia> @constraint(model, [t, x, x-1, x-2] in RotatedSecondOrderCone())
[t, x, x - 1, x - 2] ∈ MathOptInterface.RotatedSecondOrderCone(4)

source

SOS1

JuMP.SOS1 – Type.

https://arxiv.org/abs/1408.4685
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L3034-L3101
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/sets.jl#L125-L149


CHAPTER 22. DOCSTRINGS 883

SOS1(weights = Real[])

The SOS1 (Special Ordered Set of Type 1) set constrains a vector x to the set where at most one variable
can take a non-zero value, and all other elements are zero.

The weights vector, if specified, induces an ordering of the variables; as such, it should contain unique
values. The weights vector must have the same number of elements as the vector x, and the element
weights[i] corresponds to element x[i]. If not provided, the weights vector defaults to weights[i] =
i.

This is a shortcut for the MOI.SOS1 set.

Example

julia> model = Model();

julia> @variable(model, x[1:3] in SOS1([4.1, 3.2, 5.0]))
3-element Vector{VariableRef}:
x[1]
x[2]
x[3]

julia> print(model)
Feasibility
Subject to
[x[1], x[2], x[3]] ∈ MathOptInterface.SOS1{Float64}([4.1, 3.2, 5.0])

source

SOS2

JuMP.SOS2 – Type.

SOS2(weights = Real[])

The SOS2 (Special Ordered Set of Type 2) set constrains a vector x to the set where at most two variables
can take a non-zero value, and all other elements are zero. In addition, the two non-zero values must be
consecutive given the ordering of the x vector induced by weights.

The weights vector, if specified, induces an ordering of the variables; as such, it must contain unique
values. The weights vector must have the same number of elements as the vector x, and the element
weights[i] corresponds to element x[i]. If not provided, the weights vector defaults to weights[i] =
i.

This is a shortcut for the MOI.SOS2 set.

Example

julia> model = Model();

julia> @variable(model, x[1:3] in SOS2([4.1, 3.2, 5.0]))
3-element Vector{VariableRef}:

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/sets.jl#L153-L184
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x[1]
x[2]
x[3]

julia> print(model)
Feasibility
Subject to
[x[1], x[2], x[3]] ∈ MathOptInterface.SOS2{Float64}([4.1, 3.2, 5.0])

source

ScalarConstraint

JuMP.ScalarConstraint – Type.

struct ScalarConstraint

The data for a scalar constraint.

See also the documentation on JuMP's representation of constraints for more background.

Fields

• .func: field contains a JuMP object representing the function

• .set: field contains the MOI set

Example

A scalar constraint:

julia> model = Model();

julia> @variable(model, x);

julia> @constraint(model, c, 2x <= 1)
c : 2 x ≤ 1

julia> object = constraint_object(c)
ScalarConstraint{AffExpr, MathOptInterface.LessThan{Float64}}(2 x,

MathOptInterface.LessThan{Float64}(1.0))↪→

julia> typeof(object)
ScalarConstraint{AffExpr, MathOptInterface.LessThan{Float64}}

julia> object.func
2 x

julia> object.set
MathOptInterface.LessThan{Float64}(1.0)

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/sets.jl#L204-L236
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L835-L871
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ScalarShape

JuMP.ScalarShape – Type.

ScalarShape()

An AbstractShape that represents scalar constraints.

Example

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> c = @constraint(model, x[2] <= 1);

julia> shape(constraint_object(c))
ScalarShape()

source

ScalarVariable

JuMP.ScalarVariable – Type.

ScalarVariable{S,T,U,V} <: AbstractVariable

A struct used when adding variables.

See also: add_variable.

source

SecondOrderCone

JuMP.SecondOrderCone – Type.

SecondOrderCone

Second order cone object that can be used to constrain the euclidean norm of a vector x to be less than
or equal to a nonnegative scalar t.

This is a shortcut for the MOI.SecondOrderCone set.

Example

The following constrains ‖(x− 1, x− 2)‖2 ≤ t and t ≥ 0:

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/shapes.jl#L128-L145
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L205-L211
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julia> model = Model();

julia> @variable(model, x)
x

julia> @variable(model, t)
t

julia> @constraint(model, [t, x-1, x-2] in SecondOrderCone())
[t, x - 1, x - 2] ∈ MathOptInterface.SecondOrderCone(3)

source

Semicontinuous

JuMP.Semicontinuous – Type.

Semicontinuous(lower, upper)

A short-cut for the MOI.Semicontinuous set.

This short-cut is useful because it automatically promotes lower and upper to the same type, and converts
them into the element type supported by the JuMP model.

Example

julia> model = Model();

julia> @variable(model, x in Semicontinuous(1, 2))
x

julia> print(model)
Feasibility
Subject to
x ∈ MathOptInterface.Semicontinuous{Int64}(1, 2)

source

Semiinteger

JuMP.Semiinteger – Type.

Semiinteger(lower, upper)

A short-cut for the MOI.Semiinteger set.

This short-cut is useful because it automatically promotes lower and upper to the same type, and converts
them into the element type supported by the JuMP model.

Example

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/sets.jl#L97-L121
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/sets.jl#L301-L323
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julia> model = Model();

julia> @variable(model, x in Semiinteger(3, 5))
x

julia> print(model)
Feasibility
Subject to
x ∈ MathOptInterface.Semiinteger{Int64}(3, 5)

source

SensitivityReport

JuMP.SensitivityReport – Type.

SensitivityReport

See lp_sensitivity_report.

source

SkewSymmetricMatrixShape

JuMP.SkewSymmetricMatrixShape – Type.

SkewSymmetricMatrixShape

Shape object for a skew symmetric square matrix of side_dimension rows and columns. The vectorized
form contains the entries of the upper-right triangular part of the matrix (without the diagonal) given
column by column (or equivalently, the entries of the lower-left triangular part given row by row). The
diagonal is zero.

source

SkewSymmetricMatrixSpace

JuMP.SkewSymmetricMatrixSpace – Type.

SkewSymmetricMatrixSpace()

Use in the @variable macro to constrain a matrix of variables to be skew-symmetric.

Example

julia> model = Model();

julia> @variable(model, Q[1:2, 1:2] in SkewSymmetricMatrixSpace())
2×2 Matrix{AffExpr}:
0 Q[1,2]
-Q[1,2] 0

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/sets.jl#L337-L359
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/lp_sensitivity2.jl#L6-L10
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/sd.jl#L272-L280
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source

SkipModelConvertScalarSetWrapper

JuMP.SkipModelConvertScalarSetWrapper – Type.

SkipModelConvertScalarSetWrapper(set::MOI.AbstractScalarSet)

JuMP uses model_convert to automatically promote MOI.AbstractScalarSet sets to the same value_type
as the model.

In cases there this is undesirable, wrap the set in SkipModelConvertScalarSetWrapper to pass the set
un-changed to the solver.

Warning

This struct is intended for use internally by JuMP extensions. You should not need to use it in regular
JuMP code.

Example

julia> model = Model();

julia> @variable(model, x);

julia> @constraint(model, x in MOI.EqualTo(1 // 2))
x = 0.5

julia> @constraint(model, x in SkipModelConvertScalarSetWrapper(MOI.EqualTo(1 // 2)))
x = 1//2

source

SquareMatrixShape

JuMP.SquareMatrixShape – Type.

SquareMatrixShape

Shape object for a square matrix of side_dimension rows and columns. The vectorized form contains the
entries of the matrix given column by column (or equivalently, the entries of the lower-left triangular part
given row by row).

source

SymmetricMatrixAdjointShape

JuMP.SymmetricMatrixAdjointShape – Type.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/sd.jl#L37-L53
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L1897-L1923
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/sd.jl#L312-L319


CHAPTER 22. DOCSTRINGS 889

SymmetricMatrixAdjointShape(side_dimension)

The dual_shape of SymmetricMatrixShape.

This shape is not intended for regular use.

source

SymmetricMatrixShape

JuMP.SymmetricMatrixShape – Type.

SymmetricMatrixShape(
side_dimension::Int;
needs_adjoint_dual::Bool = false,

)

The shape object for a symmetric square matrix of side_dimension rows and columns.

The vectorized form contains the entries of the upper-right triangular part of the matrix given column by
column (or equivalently, the entries of the lower-left triangular part given row by row).

needs_adjoint_dual

By default, the dual_shape of SymmetricMatrixShape is also SymmetricMatrixShape. This is true for
cases such as a LinearAlgebra.Symmetric matrix in PSDCone.

However, JuMP also supports LinearAlgebra.Symmetricmatrix in Zeros, which is interpreted as an element-
wise equality constraint. By exploiting symmetry, we pass only the upper triangle of the equality con-
straints. This works for the primal, but it leads to a factor of 2 difference in the off-diagonal dual elements.
(The dual value of the (i, j) element in the triangle formulation should be divided by 2 when spread
across the (i, j) and (j, i) elements in the square matrix formulation.) If the constraint has this dual
inconsistency, set needs_adjoint_dual = true.

source

SymmetricMatrixSpace

JuMP.SymmetricMatrixSpace – Type.

SymmetricMatrixSpace()

Use in the @variable macro to constrain a matrix of variables to be symmetric.

Example

julia> model = Model();

julia> @variable(model, Q[1:2, 1:2] in SymmetricMatrixSpace())
2×2 LinearAlgebra.Symmetric{VariableRef, Matrix{VariableRef}}:
Q[1,1] Q[1,2]
Q[1,2] Q[2,2]

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/sd.jl#L212-L218
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/sd.jl#L143-L170
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/sd.jl#L18-L34
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TerminationStatusCode

JuMP.TerminationStatusCode – Type.

TerminationStatusCode

An Enum of possible values for the TerminationStatus attribute.

This attribute explains why the optimizer stopped executing in the most recent call to optimize!.

Values

OPTIMIZE_NOT_CALLED

The algorithm has not started.

OPTIMAL

The algorithm found a globally optimal solution.

INFEASIBLE

The algorithm proved that no primal feasible solution exists.

DUAL_INFEASIBLE

The algorithm proved that no dual feasible solution exists.

To check if the primal problem is feasible, set the objective sense to FEASIBILITY_SENSE and re-solve the
problem.

If a primal feasible point does not exist, the original problem is both primal and dual infeasible.

If a primal feasible solution exists, this status typically implies that the problem is unbounded, with some
technical exceptions (for example, if the problem is a conic optimization problem in which strong duality
does not hold).

The technical exceptions do not apply to linear programs. The combination of DUAL_INFEASIBLE and a
primal feasible point means that the primal linear program is unbounded.

LOCALLY_SOLVED

The algorithm converged to a stationary point, local optimal solution, could not find directions for improve-
ment, or otherwise completed its search without global guarantees.

LOCALLY_INFEASIBLE

The algorithm converged to an infeasible point or otherwise completed its search without finding a feasible
solution, without guarantees that no feasible solution exists.

If you know a primal feasible solution exists, use VariablePrimalStart to provide a feasible starting point
to the solver.

INFEASIBLE_OR_UNBOUNDED

The algorithm stopped because it proved that the problem is infeasible or unbounded, without distinguish-
ing between the two cases.

To distinguish between the two cases, set the objective sense to FEASIBILITY_SENSE and re-solve the
problem. If a primal feasible point exists, the original problem is unbounded. If a primal feasible point
does not exist, the original problem is infeasible.

ALMOST_OPTIMAL
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The algorithm found a globally optimal solution to relaxed tolerances.

ALMOST_INFEASIBLE

The algorithm concluded that no feasible solution exists within relaxed tolerances.

ALMOST_DUAL_INFEASIBLE

The algorithm concluded that no dual bound exists for the problem within relaxed tolerances.

ALMOST_LOCALLY_SOLVED

The algorithm converged to a stationary point, local optimal solution, or could not find directions for im-
provement within relaxed tolerances.

ITERATION_LIMIT

An iterative algorithm stopped after conducting the maximum number of iterations.

TIME_LIMIT

The algorithm stopped after a user-specified computation time.

This status may be returned in relation to the TimeLimitSec attribute, or some other solver-specific at-
tribute.

NODE_LIMIT

A branch-and-bound algorithm stopped because it explored a maximum number of nodes in the branch-
and-bound tree.

This status may be returned in relation to the NodeLimit attribute, or some other solver-specific attribute.

SOLUTION_LIMIT

The algorithm stopped because it found the required number of solutions. This is often used in MIPs to get
the solver to return the first feasible solution it encounters.

This status may be returned in relation to the SolutionLimit attribute, or some other solver-specific
attribute.

MEMORY_LIMIT

The algorithm stopped because it ran out of memory.

OBJECTIVE_LIMIT

The algorithm stopped because it found a solution better than a minimum limit set by the user.

This status may be returned in relation to the ObjectiveLimit attribute, or some other solver-specific
attribute.

NORM_LIMIT

The algorithm stopped because the norm of an iterate became too large.

This typically means that the primal problem is unbounded, but that the solver could not prove so.

OTHER_LIMIT

The algorithm stopped due to a limit not covered by one of the _LIMIT_ statuses above.

SLOW_PROGRESS

The algorithm stopped because it was unable to continue making progress towards the solution.

NUMERICAL_ERROR
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The algorithm stopped because it encountered unrecoverable numerical error.

INVALID_MODEL

The algorithm stopped because the model is invalid.

The reason for this return code is solver-specific, but common causes are that the problem has zero vari-
ables or constraints, or that the problem data contains an invalid number such as NaN.

INVALID_OPTION

The algorithm stopped because it was provided an invalid option.

INTERRUPTED

The algorithm stopped because of an interrupt signal.

This typically means that the solver was interrupted by the user with CTRL+C.

OTHER_ERROR

The algorithm stopped because of an error not covered by one of the statuses defined above. Check the
solver log for further details.

source

UnorderedPair

JuMP.UnorderedPair – Type.

UnorderedPair(a::T, b::T)

A wrapper type used by GenericQuadExpr with fields .a and .b.

Example

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> expr = 2.0 * x[1] * x[2]
2 x[1]*x[2]

julia> expr.terms
OrderedCollections.OrderedDict{UnorderedPair{VariableRef}, Float64} with 1 entry:
UnorderedPair{VariableRef}(x[1], x[2]) => 2.0

source

UpperBoundRef

JuMP.UpperBoundRef – Function.

UpperBoundRef(v::GenericVariableRef)

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2965
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/quad_expr.jl#L18-L37
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Return a constraint reference to the upper bound constraint of v.

Errors if one does not exist.

See also has_upper_bound, upper_bound, set_upper_bound, delete_upper_bound.

Example

julia> model = Model();

julia> @variable(model, x <= 1.0);

julia> UpperBoundRef(x)
x ≤ 1

source

VariableConstrainedOnCreation

JuMP.VariableConstrainedOnCreation – Type.

VariableConstrainedOnCreation <: AbstractVariable

Variable scalar_variables constrained to belong to set.

Adding this variable can be understood as doing:

function JuMP.add_variable(
model::GenericModel,
variable::VariableConstrainedOnCreation,
names,

)
var_ref = add_variable(model, variable.scalar_variable, name)
add_constraint(model, VectorConstraint(var_ref, variable.set))
return var_ref

end

but adds the variables with MOI.add_constrained_variable(model, variable.set) instead.

source

VariableInSetRef

JuMP.VariableInSetRef – Function.

VariableInSetRef(
model::GenericModel,
x::Union{AbstractJuMPScalar,AbstractArray{<:AbstractJuMPScalar}},

)

Return the constraint reference associated with x when it is constrained on creation.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L1053-L1073
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L2287-L2306
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A variable is constrained on creation if it uses the x in S or x, set = S syntax in the @variable macro.

This function errors if x was not constrained on creation. To check if the variable was constrained on
creation, use is_variable_in_set.

Exceptions

This function does not apply for variable bounds or integrality restrictions of a scalar variable. For example:

julia> model = Model();

julia> @variable(model, x >= 0, Int)
x

julia> is_variable_in_set(x)
false

Use instead IntegerRef, BinaryRef, LowerBoundRef, UpperBoundRef, and FixRef.

julia> model = Model();

julia> @variable(model, x >= 0, Int)
x

julia> IntegerRef(x)
x integer

julia> LowerBoundRef(x)
x ≥ 0

Example

julia> model = Model();

julia> @variable(model, x[1:2, 1:2], PSD)
2×2 LinearAlgebra.Symmetric{VariableRef, Matrix{VariableRef}}:
x[1,1] x[1,2]
x[1,2] x[2,2]

julia> is_variable_in_set(x)
true

julia> c = VariableInSetRef(x)
[x[1,1] x[1,2]
⋯ x[2,2]] ∈ PSDCone()

julia> @variable(model, y)
y

julia> is_variable_in_set(y)
false

julia> @variable(model, z in Semicontinuous(1, 2))
z
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julia> is_variable_in_set(z)
true

julia> c_z = VariableInSetRef(z)
z ∈ MathOptInterface.Semicontinuous{Int64}(1, 2)

source

VariableInfo

JuMP.VariableInfo – Type.

VariableInfo{S,T,U,V}

A struct by JuMP internally when creating variables. This may also be used by JuMP extensions to create
new types of variables.

See also: ScalarVariable.

source

VariableNotOwned

JuMP.VariableNotOwned – Type.

struct VariableNotOwned{V<:AbstractVariableRef} <: Exception
variable::V

end

The variable variable was used in a model different to owner_model(variable).

source

VariableRef

JuMP.VariableRef – Type.

GenericVariableRef{T} <: AbstractVariableRef

Holds a reference to the model and the corresponding MOI.VariableIndex.

source

VariablesConstrainedOnCreation

JuMP.VariablesConstrainedOnCreation – Type.

VariablesConstrainedOnCreation <: AbstractVariable

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L1845-L1923
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L133-L140
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L292-L299
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L255-L259


CHAPTER 22. DOCSTRINGS 896

Vector of variables scalar_variables constrained to belong to set. Adding this variable can be thought
as doing:

function JuMP.add_variable(
model::GenericModel,
variable::VariablesConstrainedOnCreation,
names,

)
v_names = vectorize(names, variable.shape)
var_refs = add_variable.(model, variable.scalar_variables, v_names)
add_constraint(model, VectorConstraint(var_refs, variable.set))
return reshape_vector(var_refs, variable.shape)

end

but adds the variables with MOI.add_constrained_variables(model, variable.set) instead. See the
MOI documentation for the difference between adding the variables with MOI.add_constrained_variables
and adding them with MOI.add_variables and adding the constraint separately.

source

VectorConstraint

JuMP.VectorConstraint – Type.

struct VectorConstraint

The data for a vector constraint.

See also the documentation on JuMP's representation of constraints.

Fields

• func: field contains a JuMP object representing the function

• set: field contains the MOI set.

• shape: field contains an AbstractShape matching the form in which the constraint was constructed
(for example, by using matrices or flat vectors).

Example

julia> model = Model();

julia> @variable(model, x[1:3]);

julia> @constraint(model, c, x in SecondOrderCone())
c : [x[1], x[2], x[3]] ∈ MathOptInterface.SecondOrderCone(3)

julia> object = constraint_object(c)
VectorConstraint{VariableRef, MathOptInterface.SecondOrderCone, VectorShape}(VariableRef[x[1],

x[2], x[3]], MathOptInterface.SecondOrderCone(3), VectorShape())↪→

julia> typeof(object)
VectorConstraint{VariableRef, MathOptInterface.SecondOrderCone, VectorShape}

https://jump.dev/MathOptInterface.jl/v0.9.3/apireference/#Variables-1
https://jump.dev/MathOptInterface.jl/v0.9.3/apireference/#Variables-1
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L2356-L2377
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julia> object.func
3-element Vector{VariableRef}:
x[1]
x[2]
x[3]

julia> object.set
MathOptInterface.SecondOrderCone(3)

julia> object.shape
VectorShape()

source

VectorShape

JuMP.VectorShape – Type.

VectorShape()

An AbstractShape that represents vector-valued constraints.

Example

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> c = @constraint(model, x in SOS1());

julia> shape(constraint_object(c))
VectorShape()

source

Zeros

JuMP.Zeros – Type.

Zeros()

The JuMP equivalent of the MOI.Zeros set, in which the dimension is inferred from the corresponding
function.

Example

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/constraints.jl#L900-L944
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/shapes.jl#L152-L169
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julia> model = Model();

julia> @variable(model, x[1:2])
2-element Vector{VariableRef}:
x[1]
x[2]

julia> @constraint(model, x in Zeros())
[x[1], x[2]] ∈ Zeros()

julia> A = [1 2; 3 4];

julia> b = [5, 6];

julia> @constraint(model, A * x == b)
[x[1] + 2 x[2] - 5, 3 x[1] + 4 x[2] - 6] ∈ Zeros()

source

ALMOST_DUAL_INFEASIBLE

JuMP.ALMOST_DUAL_INFEASIBLE – Constant.

ALMOST_DUAL_INFEASIBLE::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm concluded that no dual bound exists for the problem within relaxed tolerances.

source

ALMOST_INFEASIBLE

JuMP.ALMOST_INFEASIBLE – Constant.

ALMOST_INFEASIBLE::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm concluded that no feasible solution exists within relaxed tolerances.

source

ALMOST_LOCALLY_SOLVED

JuMP.ALMOST_LOCALLY_SOLVED – Constant.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros/@constraint.jl#L681-L707
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2806
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2806
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ALMOST_LOCALLY_SOLVED::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm converged to a stationary point, local optimal solution, or could not find directions for im-
provement within relaxed tolerances.

source

ALMOST_OPTIMAL

JuMP.ALMOST_OPTIMAL – Constant.

ALMOST_OPTIMAL::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm found a globally optimal solution to relaxed tolerances.

source

AUTOMATIC

JuMP.AUTOMATIC – Constant.

moi_backend field holds a CachingOptimizer in AUTOMATIC mode.

source

DIRECT

JuMP.DIRECT – Constant.

moi_backend field holds an AbstractOptimizer. No extra copy of the model is stored. The moi_backend
must support add_constraint etc.

source

DUAL_INFEASIBLE

JuMP.DUAL_INFEASIBLE – Constant.

DUAL_INFEASIBLE::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm proved that no dual feasible solution exists.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2806
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2804
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/JuMP.jl#L62
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/JuMP.jl#L69
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To check if the primal problem is feasible, set the objective sense to FEASIBILITY_SENSE and re-solve the
problem.

If a primal feasible point does not exist, the original problem is both primal and dual infeasible.

If a primal feasible solution exists, this status typically implies that the problem is unbounded, with some
technical exceptions (for example, if the problem is a conic optimization problem in which strong duality
does not hold).

The technical exceptions do not apply to linear programs. The combination of DUAL_INFEASIBLE and a
primal feasible point means that the primal linear program is unbounded.

source

FEASIBILITY_SENSE

JuMP.FEASIBILITY_SENSE – Constant.

FEASIBILITY_SENSE::OptimizationSense

An instance of the OptimizationSense enum.

About

The model does not have an objective function.

source

FEASIBLE_POINT

JuMP.FEASIBLE_POINT – Constant.

FEASIBLE_POINT::ResultStatusCode

An instance of the ResultStatusCode enum.

About

The result vector is a feasible point.

source

INFEASIBILITY_CERTIFICATE

JuMP.INFEASIBILITY_CERTIFICATE – Constant.

INFEASIBILITY_CERTIFICATE::ResultStatusCode

An instance of the ResultStatusCode enum.

About

The result vector is an infeasibility certificate.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2820
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1338-L1346
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L3034-L3042
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If the PrimalStatus is INFEASIBILITY_CERTIFICATE, then the primal result vector is a certificate of dual
infeasibility.

If the DualStatus is INFEASIBILITY_CERTIFICATE, then the dual result vector is a proof of primal infeasi-
bility.

source

INFEASIBLE

JuMP.INFEASIBLE – Constant.

INFEASIBLE::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm proved that no primal feasible solution exists.

source

INFEASIBLE_OR_UNBOUNDED

JuMP.INFEASIBLE_OR_UNBOUNDED – Constant.

INFEASIBLE_OR_UNBOUNDED::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm stopped because it proved that the problem is infeasible or unbounded, without distinguish-
ing between the two cases.

To distinguish between the two cases, set the objective sense to FEASIBILITY_SENSE and re-solve the
problem. If a primal feasible point exists, the original problem is unbounded. If a primal feasible point
does not exist, the original problem is infeasible.

source

INFEASIBLE_POINT

JuMP.INFEASIBLE_POINT – Constant.

INFEASIBLE_POINT::ResultStatusCode

An instance of the ResultStatusCode enum.

About

The result vector is an infeasible point.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L3034-L3049
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2805
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2811
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L3034-L3042
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INTERRUPTED

JuMP.INTERRUPTED – Constant.

INTERRUPTED::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm stopped because of an interrupt signal.

This typically means that the solver was interrupted by the user with CTRL+C.

source

INVALID_MODEL

JuMP.INVALID_MODEL – Constant.

INVALID_MODEL::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm stopped because the model is invalid.

The reason for this return code is solver-specific, but common causes are that the problem has zero vari-
ables or constraints, or that the problem data contains an invalid number such as NaN.

source

INVALID_OPTION

JuMP.INVALID_OPTION – Constant.

INVALID_OPTION::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm stopped because it was provided an invalid option.

source

ITERATION_LIMIT

JuMP.ITERATION_LIMIT – Constant.

ITERATION_LIMIT::TerminationStatusCode

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2808
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2809
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2805


CHAPTER 22. DOCSTRINGS 903

An instance of the TerminationStatusCode enum.

About

An iterative algorithm stopped after conducting the maximum number of iterations.

source

LOCALLY_INFEASIBLE

JuMP.LOCALLY_INFEASIBLE – Constant.

LOCALLY_INFEASIBLE::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm converged to an infeasible point or otherwise completed its search without finding a feasible
solution, without guarantees that no feasible solution exists.

If you know a primal feasible solution exists, use VariablePrimalStart to provide a feasible starting point
to the solver.

source

LOCALLY_SOLVED

JuMP.LOCALLY_SOLVED – Constant.

LOCALLY_SOLVED::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm converged to a stationary point, local optimal solution, could not find directions for improve-
ment, or otherwise completed its search without global guarantees.

source

MANUAL

JuMP.MANUAL – Constant.

moi_backend field holds a CachingOptimizer in MANUAL mode.

source

MAX_SENSE

JuMP.MAX_SENSE – Constant.

MAX_SENSE::OptimizationSense

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2806
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2811
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2807
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/JuMP.jl#L67
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An instance of the OptimizationSense enum.

About

The goal is to maximize the objective function.

source

MEMORY_LIMIT

JuMP.MEMORY_LIMIT – Constant.

MEMORY_LIMIT::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm stopped because it ran out of memory.

source

MIN_SENSE

JuMP.MIN_SENSE – Constant.

MIN_SENSE::OptimizationSense

An instance of the OptimizationSense enum.

About

The goal is to minimize the objective function.

source

NEARLY_FEASIBLE_POINT

JuMP.NEARLY_FEASIBLE_POINT – Constant.

NEARLY_FEASIBLE_POINT::ResultStatusCode

An instance of the ResultStatusCode enum.

About

The result vector is feasible if some constraint tolerances are relaxed.

source

NEARLY_INFEASIBILITY_CERTIFICATE

JuMP.NEARLY_INFEASIBILITY_CERTIFICATE – Constant.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1338-L1346
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2804
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1338-L1346
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L3034-L3042
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NEARLY_INFEASIBILITY_CERTIFICATE::ResultStatusCode

An instance of the ResultStatusCode enum.

About

The result satisfies a relaxed criterion for a certificate of infeasibility.

If the PrimalStatus is NEARLY_INFEASIBILITY_CERTIFICATE, then the primal result vector is a certificate
of dual infeasibility.

If the DualStatus is NEARLY_INFEASIBILITY_CERTIFICATE, then the dual result vector is a proof of primal
infeasibility.

source

NEARLY_REDUCTION_CERTIFICATE

JuMP.NEARLY_REDUCTION_CERTIFICATE – Constant.

NEARLY_REDUCTION_CERTIFICATE::ResultStatusCode

An instance of the ResultStatusCode enum.

About

The result satisfies a relaxed criterion for an ill-posed certificate.

source

NODE_LIMIT

JuMP.NODE_LIMIT – Constant.

NODE_LIMIT::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

A branch-and-bound algorithm stopped because it explored a maximum number of nodes in the branch-
and-bound tree.

This status may be returned in relation to the NodeLimit attribute, or some other solver-specific attribute.

source

NORM_LIMIT

JuMP.NORM_LIMIT – Constant.

NORM_LIMIT::TerminationStatusCode

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L3034-L3049
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L3034-L3043
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2809


CHAPTER 22. DOCSTRINGS 906

An instance of the TerminationStatusCode enum.

About

The algorithm stopped because the norm of an iterate became too large.

This typically means that the primal problem is unbounded, but that the solver could not prove so.

source

NO_SOLUTION

JuMP.NO_SOLUTION – Constant.

NO_SOLUTION::ResultStatusCode

An instance of the ResultStatusCode enum.

About

The result vector is empty.

source

NUMERICAL_ERROR

JuMP.NUMERICAL_ERROR – Constant.

NUMERICAL_ERROR::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm stopped because it encountered unrecoverable numerical error.

source

OBJECTIVE_LIMIT

JuMP.OBJECTIVE_LIMIT – Constant.

OBJECTIVE_LIMIT::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm stopped because it found a solution better than a minimum limit set by the user.

This status may be returned in relation to the ObjectiveLimit attribute, or some other solver-specific
attribute.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2808
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L3034-L3042
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2805
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2809
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OPTIMAL

JuMP.OPTIMAL – Constant.

OPTIMAL::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm found a globally optimal solution.

source

OPTIMIZE_NOT_CALLED

JuMP.OPTIMIZE_NOT_CALLED – Constant.

OPTIMIZE_NOT_CALLED::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm has not started.

source

OTHER_ERROR

JuMP.OTHER_ERROR – Constant.

OTHER_ERROR::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm stopped because of an error not covered by one of the statuses defined above. Check the
solver log for further details.

source

OTHER_LIMIT

JuMP.OTHER_LIMIT – Constant.

OTHER_LIMIT::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm stopped due to a limit not covered by one of the _LIMIT_ statuses above.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2805
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2804
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2806
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2806
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OTHER_RESULT_STATUS

JuMP.OTHER_RESULT_STATUS – Constant.

OTHER_RESULT_STATUS::ResultStatusCode

An instance of the ResultStatusCode enum.

About

The result vector contains a solution with an interpretation not covered by one of the statuses defined
above. Check the solver log for more details.

source

REDUCTION_CERTIFICATE

JuMP.REDUCTION_CERTIFICATE – Constant.

REDUCTION_CERTIFICATE::ResultStatusCode

An instance of the ResultStatusCode enum.

About

The result vector is an ill-posed certificate; see this article for details.

If the PrimalStatus is REDUCTION_CERTIFICATE, then the primal result vector is a proof that the dual
problem is ill-posed.

If the DualStatus is REDUCTION_CERTIFICATE, then the dual result vector is a proof that the primal is
ill-posed.

source

SLOW_PROGRESS

JuMP.SLOW_PROGRESS – Constant.

SLOW_PROGRESS::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm stopped because it was unable to continue making progress towards the solution.

source

SOLUTION_LIMIT

JuMP.SOLUTION_LIMIT – Constant.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L3034-L3044
https://arxiv.org/abs/1408.4685
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L3034-L3050
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2806
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SOLUTION_LIMIT::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm stopped because it found the required number of solutions. This is often used in MIPs to get
the solver to return the first feasible solution it encounters.

This status may be returned in relation to the SolutionLimit attribute, or some other solver-specific
attribute.

source

TIME_LIMIT

JuMP.TIME_LIMIT – Constant.

TIME_LIMIT::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm stopped after a user-specified computation time.

This status may be returned in relation to the TimeLimitSec attribute, or some other solver-specific at-
tribute.

source

UNKNOWN_RESULT_STATUS

JuMP.UNKNOWN_RESULT_STATUS – Constant.

UNKNOWN_RESULT_STATUS::ResultStatusCode

An instance of the ResultStatusCode enum.

About

The result vector contains a solution with an unknown interpretation. Check the solver log for more details.

source

op_and

JuMP.op_and – Constant.

op_and(x, y)

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2810
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2808
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L3034-L3044
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A function that falls back to x & y, but when called with JuMP variables or expressions, returns a GenericNonlinearExpr.

Example

julia> model = Model();

julia> @variable(model, x);

julia> op_and(true, false)
false

julia> op_and(true, x)
true && x

source

op_equal_to

JuMP.op_equal_to – Constant.

op_equal_to(x, y)

A function that falls back to x == y, but when called with JuMP variables or expressions, returns a GenericNonlinearExpr.

Example

julia> model = Model();

julia> @variable(model, x);

julia> op_equal_to(2, 2)
true

julia> op_equal_to(x, 2)
x == 2

source

op_greater_than_or_equal_to

JuMP.op_greater_than_or_equal_to – Constant.

op_greater_than_or_equal_to(x, y)

A function that falls back to x >= y, but when called with JuMP variables or expressions, returns a GenericNonlinearExpr.

Example

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros.jl#L37-L56
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros.jl#L173-L192
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julia> model = Model();

julia> @variable(model, x);

julia> op_greater_than_or_equal_to(2, 2)
true

julia> op_greater_than_or_equal_to(x, 2)
x >= 2

source

op_less_than_or_equal_to

JuMP.op_less_than_or_equal_to – Constant.

op_less_than_or_equal_to(x, y)

A function that falls back to x <= y, but when called with JuMP variables or expressions, returns a GenericNonlinearExpr.

Example

julia> model = Model();

julia> @variable(model, x);

julia> op_less_than_or_equal_to(2, 2)
true

julia> op_less_than_or_equal_to(x, 2)
x <= 2

source

op_or

JuMP.op_or – Constant.

op_or(x, y)

A function that falls back to x | y, but when called with JuMP variables or expressions, returns a GenericNonlinearExpr.

Example

julia> model = Model();

julia> @variable(model, x);

julia> op_or(true, false)

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros.jl#L151-L170
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros.jl#L129-L148
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true

julia> op_or(true, x)
true || x

source

op_strictly_greater_than

JuMP.op_strictly_greater_than – Constant.

op_strictly_greater_than(x, y)

A function that falls back to x > y, but when called with JuMP variables or expressions, returns a GenericNonlinearExpr.

Example

julia> model = Model();

julia> @variable(model, x);

julia> op_strictly_greater_than(1, 2)
false

julia> op_strictly_greater_than(x, 2)
x > 2

source

op_strictly_less_than

JuMP.op_strictly_less_than – Constant.

op_strictly_less_than(x, y)

A function that falls back to x < y, but when called with JuMP variables or expressions, returns a GenericNonlinearExpr.

Example

julia> model = Model();

julia> @variable(model, x);

julia> op_strictly_less_than(1, 2)
true

julia> op_strictly_less_than(x, 2)
x < 2

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros.jl#L61-L80
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros.jl#L107-L126
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros.jl#L85-L104
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Base.empty!(::GenericModel)

Base.empty! – Method.

empty!(model::GenericModel)::GenericModel

Empty the model, that is, remove all variables, constraints and model attributes but not optimizer at-
tributes. Always return the argument.

Note: removes extensions data.

Example

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> isempty(model)
false

julia> empty!(model)
A JuMP Model
├ solver: none
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none

julia> print(model)
Feasibility
Subject to

julia> isempty(model)
true

source

Base.isempty(::GenericModel)

Base.isempty – Method.

isempty(model::GenericModel)

Verifies whether the model is empty, that is, whether the MOI backend is empty and whether the model is
in the same state as at its creation, apart from optimizer attributes.

Example

julia> model = Model();

julia> isempty(model)
true

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/JuMP.jl#L905-L938
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julia> @variable(model, x[1:2]);

julia> isempty(model)
false

source

Base.copy(::AbstractModel)

Base.copy – Method.

copy(model::AbstractModel)

Return a copy of the model model. It is similar to copy_model except that it does not return the mapping
between the references of model and its copy.

Note

Model copy is not supported in DIRECTmode, that is, when a model is constructed using the direct_model
constructor instead of the Model constructor. Moreover, independently on whether an optimizer was pro-
vided at model construction, the new model will have no optimizer, that is, an optimizer will have to be
provided to the new model in the optimize! call.

Example

In the following example, a model model is constructed with a variable x and a constraint cref. It is then
copied into a model new_model with the new references assigned to x_new and cref_new.

julia> model = Model();

julia> @variable(model, x)
x

julia> @constraint(model, cref, x == 2)
cref : x = 2

julia> new_model = copy(model);

julia> x_new = model[:x]
x

julia> cref_new = model[:cref]
cref : x = 2

source

Base.write(::IO, ::GenericModel; ::MOI.FileFormats.FileFormat)

Base.write – Method.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/JuMP.jl#L959-L979
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/copy.jl#L212-L250
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Base.write(
io::IO,
model::GenericModel;
format::MOI.FileFormats.FileFormat = MOI.FileFormats.FORMAT_MOF,
kwargs...,

)

Write the JuMP model model to io in the format format.

See MOI.FileFormats.FileFormat for a list of supported formats.

Other kwargs are passed to the Model constructor of the chosen format.

Keyword arguments

Other kwargs are passed to the Model constructor of the chosen format.

For details, see the docstring each file format's Model constructor. For example, MOI.FileFormats.MPS.Model.

Example

julia> model = Model();

julia> @variable(model, x >= 0);

julia> @objective(model, Min, 2 * x + 1);

julia> io = IOBuffer();

julia> write(io, model; format = MOI.FileFormats.FORMAT_MPS);

julia> seekstart(io);

julia> print(read(io, String))
NAME
ROWS
N OBJ
COLUMNS

x OBJ 2
RHS

rhs OBJ -1
RANGES
BOUNDS
LO bounds x 0
PL bounds x
ENDATA

source

MOI.Utilities.reset_optimizer(::GenericModel)

MathOptInterface.Utilities.reset_optimizer – Method.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/file_formats.jl#L142-L192
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MOIU.reset_optimizer(model::GenericModel)

Call MOIU.reset_optimizer on the backend of model.

Cannot be called in direct mode.

source

MOI.Utilities.drop_optimizer(::GenericModel)

MathOptInterface.Utilities.drop_optimizer – Method.

MOIU.drop_optimizer(model::GenericModel)

Call MOIU.drop_optimizer on the backend of model.

Cannot be called in direct mode.

source

MOI.Utilities.attach_optimizer(::GenericModel)

MathOptInterface.Utilities.attach_optimizer – Method.

MOIU.attach_optimizer(model::GenericModel)

Call MOIU.attach_optimizer on the backend of model.

Cannot be called in direct mode.

source

@NLconstraint

JuMP.@NLconstraint – Macro.

@NLconstraint(model::GenericModel, expr)

Add a constraint described by the nonlinear expression expr. See also @constraint.

Compat

Thismacro is part of the legacy nonlinear interface. Consider using the new nonlinear interface doc-
umented in Nonlinear Modeling. In most cases, you can replace @NLconstraintwith @constraint.

Example

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L417-L423
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L432-L438
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L445-L451
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julia> model = Model();

julia> @variable(model, x)
x

julia> @NLconstraint(model, sin(x) <= 1)
sin(x) - 1.0 ≤ 0

julia> @NLconstraint(model, [i = 1:3], sin(i * x) <= 1 / i)
3-element Vector{NonlinearConstraintRef{ScalarShape}}:
(sin(1.0 * x) - 1.0 / 1.0) - 0.0 ≤ 0
(sin(2.0 * x) - 1.0 / 2.0) - 0.0 ≤ 0
(sin(3.0 * x) - 1.0 / 3.0) - 0.0 ≤ 0

source

@NLconstraints

JuMP.@NLconstraints – Macro.

@NLconstraints(model, args...)

Adds multiple nonlinear constraints to model at once, in the same fashion as the @NLconstraint macro.

The model must be the first argument, and multiple constraints can be added on multiple lines wrapped
in a begin ... end block.

The macro returns a tuple containing the constraints that were defined.

Compat

This macro is part of the legacy nonlinear interface. Consider using the new nonlinear inter-
face documented in Nonlinear Modeling. In most cases, you can replace @NLconstraints with
@constraints.

Example

julia> model = Model();

julia> @variable(model, x);

julia> @variable(model, y);

julia> @variable(model, t);

julia> @variable(model, z[1:2]);

julia> a = [4, 5];

julia> @NLconstraints(model, begin
t >= sqrt(x^2 + y^2)
[i = 1:2], z[i] <= log(a[i])

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros/@NL.jl#L270-L298
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end)
((t - sqrt(x ^ 2.0 + y ^ 2.0)) - 0.0 ≥ 0, NonlinearConstraintRef{ScalarShape}[(z[1] - log(4.0))

- 0.0 ≤ 0, (z[2] - log(5.0)) - 0.0 ≤ 0])↪→

source

@NLexpression

JuMP.@NLexpression – Macro.

@NLexpression(args...)

Efficiently build a nonlinear expression which can then be inserted in other nonlinear constraints and the
objective. See also [@expression].

Compat

Thismacro is part of the legacy nonlinear interface. Consider using the new nonlinear interface doc-
umented in Nonlinear Modeling. In most cases, you can replace @NLexpressionwith @expression.

Example

julia> model = Model();

julia> @variable(model, x)
x

julia> @variable(model, y)
y

julia> @NLexpression(model, my_expr, sin(x)^2 + cos(x^2))
subexpression[1]: sin(x) ^ 2.0 + cos(x ^ 2.0)

julia> @NLconstraint(model, my_expr + y >= 5)
(subexpression[1] + y) - 5.0 ≥ 0

julia> @NLobjective(model, Min, my_expr)

Indexing over sets and anonymous expressions are also supported:

julia> @NLexpression(model, my_expr_1[i=1:3], sin(i * x))
3-element Vector{NonlinearExpression}:
subexpression[2]: sin(1.0 * x)
subexpression[3]: sin(2.0 * x)
subexpression[4]: sin(3.0 * x)

julia> my_expr_2 = @NLexpression(model, log(1 + sum(exp(my_expr_1[i]) for i in 1:2)))
subexpression[5]: log(1.0 + (exp(subexpression[2]) + exp(subexpression[3])))

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros/@NL.jl#L336-L373
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros/@NL.jl#L382-L424
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@NLexpressions

JuMP.@NLexpressions – Macro.

@NLexpressions(model, args...)

Adds multiple nonlinear expressions to model at once, in the same fashion as the @NLexpression macro.

The model must be the first argument, and multiple expressions can be added on multiple lines wrapped
in a begin ... end block.

The macro returns a tuple containing the expressions that were defined.

Compat

This macro is part of the legacy nonlinear interface. Consider using the new nonlinear inter-
face documented in Nonlinear Modeling. In most cases, you can replace @NLexpressions with
@expressions.

Example

julia> model = Model();

julia> @variable(model, x);

julia> @variable(model, y);

julia> @variable(model, z[1:2]);

julia> a = [4, 5];

julia> @NLexpressions(model, begin
my_expr, sqrt(x^2 + y^2)
my_expr_1[i = 1:2], log(a[i]) - z[i]

end)
(subexpression[1]: sqrt(x ^ 2.0 + y ^ 2.0), NonlinearExpression[subexpression[2]: log(4.0) -

z[1], subexpression[3]: log(5.0) - z[2]])↪→

source

@NLobjective

JuMP.@NLobjective – Macro.

@NLobjective(model, sense, expression)

Add a nonlinear objective to model with optimization sense sense. sense must be Max or Min.

Compat

Thismacro is part of the legacy nonlinear interface. Consider using the new nonlinear interface doc-
umented in Nonlinear Modeling. In most cases, you can replace @NLobjective with @objective.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros/@NL.jl#L463-L498
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Example

julia> model = Model();

julia> @variable(model, x)
x

julia> @NLobjective(model, Max, 2x + 1 + sin(x))

julia> print(model)
Max 2.0 * x + 1.0 + sin(x)
Subject to

source

@NLparameter

JuMP.@NLparameter – Macro.

@NLparameter(model, param == value)

Create and return a nonlinear parameter param attached to the model model with initial value set to value.
Nonlinear parameters may be used only in nonlinear expressions.

Example

julia> model = Model();

julia> @NLparameter(model, x == 10)
x == 10.0

julia> value(x)
10.0

@NLparameter(model, value = param_value)

Create and return an anonymous nonlinear parameter param attached to the model model with initial value
set to param_value. Nonlinear parameters may be used only in nonlinear expressions.

Example

julia> model = Model();

julia> x = @NLparameter(model, value = 10)
parameter[1] == 10.0

julia> value(x)
10.0

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros/@NL.jl#L230-L255


CHAPTER 22. DOCSTRINGS 921

@NLparameter(model, param_collection[...] == value_expr)

Create and return a collection of nonlinear parameters param_collection attached to the model model
with initial value set to value_expr (may depend on index sets). Uses the same syntax for specifying index
sets as @variable.

Example

julia> model = Model();

julia> @NLparameter(model, y[i = 1:3] == 2 * i)
3-element Vector{NonlinearParameter}:
parameter[1] == 2.0
parameter[2] == 4.0
parameter[3] == 6.0

julia> value(y[2])
4.0

@NLparameter(model, [...] == value_expr)

Create and return an anonymous collection of nonlinear parameters attached to the model model with
initial value set to value_expr (may depend on index sets). Uses the same syntax for specifying index
sets as @variable.

Compat

Thismacro is part of the legacy nonlinear interface. Consider using the new nonlinear interface doc-
umented in Nonlinear Modeling. In most cases, you can replace a call like @NLparameter(model,
p == value) with @variable(model, p in Parameter(value)).

Example

julia> model = Model();

julia> y = @NLparameter(model, [i = 1:3] == 2 * i)
3-element Vector{NonlinearParameter}:
parameter[1] == 2.0
parameter[2] == 4.0
parameter[3] == 6.0

julia> value(y[2])
4.0

source

@NLparameters

JuMP.@NLparameters – Macro.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros/@NL.jl#L507-L592
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@NLparameters(model, args...)

Create and returnmultiple nonlinear parameters attached tomodel model, in the same fashion as @NLparameter
macro.

The model must be the first argument, and multiple parameters can be added on multiple lines wrapped
in a begin ... end block. Distinct parameters need to be placed on separate lines as in the following
example.

The macro returns a tuple containing the parameters that were defined.

Compat

This macro is part of the legacy nonlinear interface. Consider using the new nonlinear interface
documented in Nonlinear Modeling. In most cases, you can replace a call like

@NLparameters(model, begin
p == value

end)

with

@variables(model, begin
p in Parameter(value)

end)

Example

julia> model = Model();

julia> @NLparameters(model, begin
x == 10
b == 156

end);

julia> value(x)
10.0

source

add_nonlinear_constraint

JuMP.add_nonlinear_constraint – Function.

add_nonlinear_constraint(model::Model, expr::Expr)

Add a nonlinear constraint described by the Julia expression ex to model.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/macros/@NL.jl#L655-L696
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This function is most useful if the expression ex is generated programmatically, and you cannot use
@NLconstraint.

Compat

This function is part of the legacy nonlinear interface. Consider using the new nonlinear interface
documented in Nonlinear Modeling.

Notes

• You must interpolate the variables directly into the expression expr.

Example

julia> model = Model();

julia> @variable(model, x);

julia> add_nonlinear_constraint(model, :($(x) + $(x)^2 <= 1))
(x + x ^ 2.0) - 1.0 ≤ 0

source

add_nonlinear_expression

JuMP.add_nonlinear_expression – Function.

add_nonlinear_expression(model::Model, expr::Expr)

Add a nonlinear expression expr to model.

This function is most useful if the expression expr is generated programmatically, and you cannot use
@NLexpression.

Compat

This function is part of the legacy nonlinear interface. Consider using the new nonlinear interface
documented in Nonlinear Modeling.

Notes

• You must interpolate the variables directly into the expression expr.

Example

julia> model = Model();

julia> @variable(model, x);

julia> add_nonlinear_expression(model, :($(x) + $(x)^2))
subexpression[1]: x + x ^ 2.0

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/nlp.jl#L512-L538
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/nlp.jl#L372-L398
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add_nonlinear_parameter

JuMP.add_nonlinear_parameter – Function.

add_nonlinear_parameter(model::Model, value::Real)

Add an anonymous parameter to the model.

Compat

This function is part of the legacy nonlinear interface. Consider using the new nonlinear interface
documented in Nonlinear Modeling.

source

all_nonlinear_constraints

JuMP.all_nonlinear_constraints – Function.

all_nonlinear_constraints(model::GenericModel)

Return a vector of all nonlinear constraint references in the model in the order they were added to the
model.

Compat

This function is part of the legacy nonlinear interface. Consider using the new nonlinear interface
documented in Nonlinear Modeling.

This function returns only the constraints added with @NLconstraint and add_nonlinear_constraint. It
does not return GenericNonlinearExpr constraints.

source

get_optimizer_attribute

JuMP.get_optimizer_attribute – Function.

get_optimizer_attribute(
model::Union{GenericModel,MOI.OptimizerWithAttributes},
attr::Union{AbstractString,MOI.AbstractOptimizerAttribute},

)

Return the value associated with the solver-specific attribute attr.

If attr is an AbstractString, this is equivalent to get_optimizer_attribute(model, MOI.RawOptimizerAttribute(name)).

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/nlp.jl#L251-L259
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/nlp.jl#L583-L596
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Compat

This method will remain in all v1.X releases of JuMP, but it may be removed in a future v2.0 release.
We recommend using get_attribute instead.

See also: set_optimizer_attribute, set_optimizer_attributes.

Example

julia> import Ipopt

julia> model = Model(Ipopt.Optimizer);

julia> get_optimizer_attribute(model, MOI.Silent())
false

source

nonlinear_constraint_string

JuMP.nonlinear_constraint_string – Function.

nonlinear_constraint_string(
model::GenericModel,
mode::MIME,
c::_NonlinearConstraint,

)

Return a string representation of the nonlinear constraint c belonging to model, given the mode.

Compat

This function is part of the legacy nonlinear interface. Consider using the new nonlinear interface
documented in Nonlinear Modeling.

source

nonlinear_dual_start_value

JuMP.nonlinear_dual_start_value – Function.

nonlinear_dual_start_value(model::Model)

Return the current value of the MOI attribute MOI.NLPBlockDualStart.

Compat

This function is part of the legacy nonlinear interface. Consider using the new nonlinear interface
documented in Nonlinear Modeling.

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L124-L151
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/print.jl#L600-L613
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/nlp.jl#L655-L663
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nonlinear_expr_string

JuMP.nonlinear_expr_string – Function.

nonlinear_expr_string(
model::GenericModel,
mode::MIME,
c::MOI.Nonlinear.Expression,

)

Return a string representation of the nonlinear expression c belonging to model, given the mode.

Compat

This function is part of the legacy nonlinear interface. Consider using the new nonlinear interface
documented in Nonlinear Modeling.

source

nonlinear_model

JuMP.nonlinear_model – Function.

nonlinear_model(
model::GenericModel;
force::Bool = false,

)::Union{MOI.Nonlinear.Model,Nothing}

If model has nonlinear components, return a MOI.Nonlinear.Model, otherwise return nothing.

If force, always return a MOI.Nonlinear.Model, and if one does not exist for the model, create an empty
one.

Compat

This function is part of the legacy nonlinear interface. Consider using the new nonlinear interface
documented in Nonlinear Modeling.

source

num_nonlinear_constraints

JuMP.num_nonlinear_constraints – Function.

num_nonlinear_constraints(model::GenericModel)

Returns the number of nonlinear constraints associated with the model.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/print.jl#L663-L676
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/nlp.jl#L8-L23
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Compat

This function is part of the legacy nonlinear interface. Consider using the new nonlinear interface
documented in Nonlinear Modeling.

This function counts only the constraints added with @NLconstraint and add_nonlinear_constraint. It
does not count GenericNonlinearExpr constraints.

source

register

JuMP.register – Function.

register(
model::Model,
op::Symbol,
dimension::Integer,
f::Function;
autodiff:Bool = false,

)

Register the user-defined function f that takes dimension arguments in model as the symbol op.

The function fmust support all subtypes of Real as arguments. Do not assume that the inputs are Float64.

Compat

This function is part of the legacy nonlinear interface. Consider using the new nonlinear interface
documented in Nonlinear Modeling.

Notes

• For this method, you must explicitly set autodiff = true, because no user-provided gradient func-
tion ∇f is given.

• Second-derivative information is only computed if dimension == 1.

• op does not have to be the same symbol as f, but it is generally more readable if it is.

Example

julia> model = Model();

julia> @variable(model, x)
x

julia> f(x::T) where {T<:Real} = x^2
f (generic function with 1 method)

julia> register(model, :foo, 1, f; autodiff = true)

julia> @NLobjective(model, Min, foo(x))

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/nlp.jl#L562-L574
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julia> model = Model();

julia> @variable(model, x[1:2])
2-element Vector{VariableRef}:
x[1]
x[2]

julia> g(x::T, y::T) where {T<:Real} = x * y
g (generic function with 1 method)

julia> register(model, :g, 2, g; autodiff = true)

julia> @NLobjective(model, Min, g(x[1], x[2]))

source

register(
model::Model,
s::Symbol,
dimension::Integer,
f::Function,
∇f::Function;
autodiff:Bool = false,

)

Register the user-defined function f that takes dimension arguments in model as the symbol s. In addition,
provide a gradient function ∇f.

The functions fand ∇fmust support all subtypes of Real as arguments. Do not assume that the inputs are
Float64.

Compat

This function is part of the legacy nonlinear interface. Consider using the new nonlinear interface
documented in Nonlinear Modeling.

Notes

• If the function f is univariate (that is, dimension == 1), ∇f must return a number which represents
the first-order derivative of the function f.

• If the function f is multi-variate, ∇f must have a signature matching ∇f(g::AbstractVector{T},
args::T...) where {T<:Real}, where the first argument is a vector g that is modified in-place with
the gradient.

• If autodiff = true and dimension == 1, use automatic differentiation to compute the second-order
derivative information. If autodiff = false, only first-order derivative information will be used.

• s does not have to be the same symbol as f, but it is generally more readable if it is.

Example

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/nlp.jl#L736-L794
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julia> model = Model();

julia> @variable(model, x)
x

julia> f(x::T) where {T<:Real} = x^2
f (generic function with 1 method)

julia> ∇f(x::T) where {T<:Real} = 2 * x
∇f (generic function with 1 method)

julia> register(model, :foo, 1, f, ∇f; autodiff = true)

julia> @NLobjective(model, Min, foo(x))

julia> model = Model();

julia> @variable(model, x[1:2])
2-element Vector{VariableRef}:
x[1]
x[2]

julia> g(x::T, y::T) where {T<:Real} = x * y
g (generic function with 1 method)

julia> function ∇g(g::AbstractVector{T}, x::T, y::T) where {T<:Real}
g[1] = y
g[2] = x
return

end
∇g (generic function with 1 method)

julia> register(model, :g, 2, g, ∇g)

julia> @NLobjective(model, Min, g(x[1], x[2]))

source

register(
model::Model,
s::Symbol,
dimension::Integer,
f::Function,
∇f::Function,
∇²f::Function,

)

Register the user-defined function f that takes dimension arguments in model as the symbol s. In addition,
provide a gradient function ∇f and a hessian function ∇²f.

∇f and ∇²f must return numbers corresponding to the first- and second-order derivatives of the function
f respectively.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/nlp.jl#L810-L884
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Compat

This function is part of the legacy nonlinear interface. Consider using the new nonlinear interface
documented in Nonlinear Modeling.

Notes

• Because automatic differentiation is not used, you can assume the inputs are all Float64.

• This method will throw an error if dimension > 1.

• s does not have to be the same symbol as f, but it is generally more readable if it is.

Example

julia> model = Model();

julia> @variable(model, x)
x

julia> f(x::Float64) = x^2
f (generic function with 1 method)

julia> ∇f(x::Float64) = 2 * x
∇f (generic function with 1 method)

julia> ∇²f(x::Float64) = 2.0
∇²f (generic function with 1 method)

julia> register(model, :foo, 1, f, ∇f, ∇²f)

julia> @NLobjective(model, Min, foo(x))

source

set_nonlinear_dual_start_value

JuMP.set_nonlinear_dual_start_value – Function.

set_nonlinear_dual_start_value(
model::Model,
start::Union{Nothing,Vector{Float64}},

)

Set the value of the MOI attribute MOI.NLPBlockDualStart.

Compat

This function is part of the legacy nonlinear interface. Consider using the new nonlinear interface
documented in Nonlinear Modeling.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/nlp.jl#L910-L961
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The start vector corresponds to the Lagrangian duals of the nonlinear constraints, in the order given by
all_nonlinear_constraints. That is, you must pass a single start vector corresponding to all of the
nonlinear constraints in a single function call; you cannot set the dual start value of nonlinear constraints
one-by-one. The example below demonstrates how to use all_nonlinear_constraints to create a map-
ping between the nonlinear constraint references and the start vector.

Pass nothing to unset a previous start.

Example

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> nl1 = @NLconstraint(model, x[1] <= sqrt(x[2]));

julia> nl2 = @NLconstraint(model, x[1] >= exp(x[2]));

julia> start = Dict(nl1 => -1.0, nl2 => 1.0);

julia> start_vector = [start[con] for con in all_nonlinear_constraints(model)]
2-element Vector{Float64}:
-1.0
1.0

julia> set_nonlinear_dual_start_value(model, start_vector)

julia> nonlinear_dual_start_value(model)
2-element Vector{Float64}:
-1.0
1.0

source

set_nonlinear_objective

JuMP.set_nonlinear_objective – Function.

set_nonlinear_objective(
model::Model,
sense::MOI.OptimizationSense,
expr::Expr,

)

Set the nonlinear objective of model to the expression expr, with the optimization sense sense.

This function is most useful if the expression expr is generated programmatically, and you cannot use
@NLobjective.

Compat

This function is part of the legacy nonlinear interface. Consider using the new nonlinear interface
documented in Nonlinear Modeling.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/nlp.jl#L668-L715
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Notes

• You must interpolate the variables directly into the expression expr.

• You must use MIN_SENSE or MAX_SENSE instead of Min and Max.

Example

julia> model = Model();

julia> @variable(model, x);

julia> set_nonlinear_objective(model, MIN_SENSE, :($(x) + $(x)^2))

source

set_normalized_coefficients

JuMP.set_normalized_coefficients – Function.

set_normalized_coefficients(
constraint::ConstraintRef{<:AbstractModel,<:MOI.ConstraintIndex{F}},
variable::AbstractVariableRef,
new_coefficients::Vector{Tuple{Int64,T}},

) where {T,F<:Union{MOI.VectorAffineFunction{T},MOI.VectorQuadraticFunction{T}}}

A deprecated method that now redirects to set_normalized_coefficient.

source

set_optimizer_attribute

JuMP.set_optimizer_attribute – Function.

set_optimizer_attribute(
model::Union{GenericModel,MOI.OptimizerWithAttributes},
attr::Union{AbstractString,MOI.AbstractOptimizerAttribute},
value,

)

Set the solver-specific attribute attr in model to value.

If attr is an AbstractString, this is equivalent to set_optimizer_attribute(model, MOI.RawOptimizerAttribute(name),
value).

Compat

This method will remain in all v1.X releases of JuMP, but it may be removed in a future v2.0 release.
We recommend using set_attribute instead.

See also: set_optimizer_attributes, get_optimizer_attribute.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/nlp.jl#L142-L173
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/variables.jl#L3098-L3106
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Example

julia> model = Model();

julia> set_optimizer_attribute(model, MOI.Silent(), true)

source

set_optimizer_attributes

JuMP.set_optimizer_attributes – Function.

set_optimizer_attributes(
model::Union{GenericModel,MOI.OptimizerWithAttributes},
pairs::Pair...,

)

Given a list of attribute => value pairs, calls set_optimizer_attribute(model, attribute, value)
for each pair.

Compat

This method will remain in all v1.X releases of JuMP, but it may be removed in a future v2.0 release.
We recommend using set_attributes instead.

See also: set_optimizer_attribute, get_optimizer_attribute.

Example

julia> import Ipopt

julia> model = Model(Ipopt.Optimizer);

julia> set_optimizer_attributes(model, "tol" => 1e-4, "max_iter" => 100)

is equivalent to:

julia> import Ipopt

julia> model = Model(Ipopt.Optimizer);

julia> set_optimizer_attribute(model, "tol", 1e-4)

julia> set_optimizer_attribute(model, "max_iter", 100)

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L51-L76
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L79-L113
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set_value

JuMP.set_value – Function.

set_value(p::NonlinearParameter, v::Number)

Store the value v in the nonlinear parameter p.

Compat

This function is part of the legacy nonlinear interface. Consider using the new nonlinear interface
documented in Nonlinear Modeling.

Example

julia> model = Model();

julia> @NLparameter(model, p == 0)
p == 0.0

julia> set_value(p, 5)
5

julia> value(p)
5.0

source

NonlinearConstraintIndex

JuMP.NonlinearConstraintIndex – Type.

ConstraintIndex

An index to a nonlinear constraint that is returned by add_constraint.

Given data::Model and c::ConstraintIndex, use data[c] to retrieve the corresponding Constraint.

source

NonlinearConstraintRef

JuMP.NonlinearConstraintRef – Type.

NonlinearConstraintRef

Compat

This type is part of the legacy nonlinear interface. Consider using the new nonlinear interface
documented in Nonlinear Modeling.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/nlp.jl#L290-L313
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/types.jl#L133-L140
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source

NonlinearExpression

JuMP.NonlinearExpression – Type.

NonlinearExpression <: AbstractJuMPScalar

A struct to represent a nonlinear expression.

Create an expression using @NLexpression.

Compat

This type is part of the legacy nonlinear interface. Consider using the new nonlinear interface
documented in Nonlinear Modeling.

source

NonlinearParameter

JuMP.NonlinearParameter – Type.

NonlinearParameter <: AbstractJuMPScalar

A struct to represent a nonlinear parameter.

Create a parameter using @NLparameter.

Compat

This type is part of the legacy nonlinear interface. Consider using the new nonlinear interface
documented in Nonlinear Modeling.

source

22.2 JuMP.Containers

JuMP.Containers

This page lists the public API of JuMP.Containers.

Info

This page is an unstructured list of the JuMP.Containers API. For a more structured overview, read the
Manual or Tutorial parts of this documentation.

Load all of the public the API into the current scope with:

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/nlp.jl#L467-L473
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/nlp.jl#L324-L334
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/nlp.jl#L198-L208
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using JuMP.Containers

Alternatively, load only the module with:

import JuMP.Containers

and then prefix all calls with JuMP.Containers. to create JuMP.Containers.<NAME>.

DenseAxisArray

JuMP.Containers.DenseAxisArray – Type.

DenseAxisArray(data::Array{T, N}, axes...) where {T, N}

Construct a JuMP array with the underlying data specified by the data array and the given axes. Exactly N
axes must be provided, and their lengths must match size(data) in the corresponding dimensions.

Example

julia> array = Containers.DenseAxisArray([1 2; 3 4], [:a, :b], 2:3)
2-dimensional DenseAxisArray{Int64,2,...} with index sets:

Dimension 1, [:a, :b]
Dimension 2, 2:3

And data, a 2×2 Matrix{Int64}:
1 2
3 4

julia> array[:b, 3]
4

source

DenseAxisArray{T}(undef, axes...) where T

Construct an uninitialized DenseAxisArray with element-type T indexed over the given axes.

Example

julia> array = Containers.DenseAxisArray{Float64}(undef, [:a, :b], 1:2);

julia> fill!(array, 1.0)
2-dimensional DenseAxisArray{Float64,2,...} with index sets:

Dimension 1, [:a, :b]
Dimension 2, 1:2

And data, a 2×2 Matrix{Float64}:
1.0 1.0
1.0 1.0

julia> array[:a, 2] = 5.0

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/Containers/DenseAxisArray.jl#L193-L214
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5.0

julia> array[:a, 2]
5.0

julia> array
2-dimensional DenseAxisArray{Float64,2,...} with index sets:

Dimension 1, [:a, :b]
Dimension 2, 1:2

And data, a 2×2 Matrix{Float64}:
1.0 5.0
1.0 1.0

source

SparseAxisArray

JuMP.Containers.SparseAxisArray – Type.

struct SparseAxisArray{T,N,K<:NTuple{N, Any}} <: AbstractArray{T,N}
data::OrderedCollections.OrderedDict{K,T}

end

N-dimensional array with elements of type T where only a subset of the entries are defined. The entries
with indices idx = (i1, i2, ..., iN) in keys(data) has value data[idx].

Note that, as opposed to SparseArrays.AbstractSparseArray, the missing entries are not assumed to be
zero(T), they are simply not part of the array. Thismeans that the result of map(f, sa::SparseAxisArray)
or f.(sa::SparseAxisArray) has the same sparsity structure as sa, even if f(zero(T)) is not zero.

Example

julia> using OrderedCollections: OrderedDict

julia> dict = OrderedDict((:a, 2) => 1.0, (:a, 3) => 2.0, (:b, 3) => 3.0)
OrderedDict{Tuple{Symbol, Int64}, Float64} with 3 entries:
(:a, 2) => 1.0
(:a, 3) => 2.0
(:b, 3) => 3.0

julia> array = Containers.SparseAxisArray(dict)
SparseAxisArray{Float64, 2, Tuple{Symbol, Int64}} with 3 entries:
[a, 2] = 1.0
[a, 3] = 2.0
[b, 3] = 3.0

julia> array[:b, 3]
3.0

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/Containers/DenseAxisArray.jl#L231-L264
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/Containers/SparseAxisArray.jl#L6-L41
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Containers.@container

JuMP.Containers.@container – Macro.

@container([i=..., j=..., ...], expr[, container = :Auto])

Create a container with indices i, j, ... and values given by expr that may depend on the value of the
indices.

@container(ref[i=..., j=..., ...], expr[, container = :Auto])

Same as above but the container is assigned to the variable of name ref.

The type of container can be controlled by the container keyword.

Note

When the index set is explicitly given as 1:n for any expression n, it is transformed to
Base.OneTo(n) before being given to container.

Example

julia> Containers.@container([i = 1:3, j = 1:3], i + j)
3×3 Matrix{Int64}:
2 3 4
3 4 5
4 5 6

julia> I = 1:3
1:3

julia> Containers.@container(x[i = I, j = I], i + j);

julia> x
2-dimensional DenseAxisArray{Int64,2,...} with index sets:

Dimension 1, 1:3
Dimension 2, 1:3

And data, a 3×3 Matrix{Int64}:
2 3 4
3 4 5
4 5 6

julia> Containers.@container([i = 2:3, j = 1:3], i + j)
2-dimensional DenseAxisArray{Int64,2,...} with index sets:

Dimension 1, 2:3
Dimension 2, Base.OneTo(3)

And data, a 2×3 Matrix{Int64}:
3 4 5
4 5 6

julia> Containers.@container([i = 1:3, j = 1:3; i <= j], i + j)
SparseAxisArray{Int64, 2, Tuple{Int64, Int64}} with 6 entries:
[1, 1] = 2



CHAPTER 22. DOCSTRINGS 939

[1, 2] = 3
[1, 3] = 4
[2, 2] = 4
[2, 3] = 5
[3, 3] = 6

source

Containers.container

JuMP.Containers.container – Function.

container(f::Function, indices[[, ::Type{C} = AutoContainerType], names])

Create a container of type C with index names names, indices indices and values at given indices given
by f.

If the method with names is not specialized on Type{C}, it falls back to calling container(f, indices, c)
for backwards compatibility with containers not supporting index names.

Example

julia> Containers.container((i, j) -> i + j, Containers.vectorized_product(Base.OneTo(3),
Base.OneTo(3)))↪→

3×3 Matrix{Int64}:
2 3 4
3 4 5
4 5 6

julia> Containers.container((i, j) -> i + j, Containers.vectorized_product(1:3, 1:3))
2-dimensional DenseAxisArray{Int64,2,...} with index sets:

Dimension 1, 1:3
Dimension 2, 1:3

And data, a 3×3 Matrix{Int64}:
2 3 4
3 4 5
4 5 6

julia> Containers.container((i, j) -> i + j, Containers.vectorized_product(2:3, Base.OneTo(3)))
2-dimensional DenseAxisArray{Int64,2,...} with index sets:

Dimension 1, 2:3
Dimension 2, Base.OneTo(3)

And data, a 2×3 Matrix{Int64}:
3 4 5
4 5 6

julia> Containers.container((i, j) -> i + j, Containers.nested(() -> 1:3, i -> i:3, condition =
(i, j) -> isodd(i) || isodd(j)))↪→

SparseAxisArray{Int64, 2, Tuple{Int64, Int64}} with 5 entries:
[1, 1] = 2
[1, 2] = 3
[1, 3] = 4
[2, 3] = 5
[3, 3] = 6

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/Containers/macro.jl#L588-L644
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source

Containers.rowtable

JuMP.Containers.rowtable – Function.

rowtable([f::Function=identity,] x; [header::Vector{Symbol} = Symbol[]])

Applies the function f to all elements of the variable container x, returning the result as a Vector of
NamedTuples, where header is a vector containing the corresponding axis names.

If x is an N-dimensional array, there must be N+1 names, so that the last name corresponds to the result
of f(x[i]).

If header is left empty, then the default header is [:x1, :x2, ..., :xN, :y].

Info

A Vector of NamedTuples implements the Tables.jl interface, and so the result can be used as input
for any function that consumes a 'Tables.jl' compatible source.

Example

julia> model = Model();

julia> @variable(model, x[i=1:2, j=i:2] >= 0, start = i+j);

julia> Containers.rowtable(start_value, x; header = [:i, :j, :start])
3-element Vector{@NamedTuple{i::Int64, j::Int64, start::Float64}}:
(i = 1, j = 1, start = 2.0)
(i = 1, j = 2, start = 3.0)
(i = 2, j = 2, start = 4.0)

julia> Containers.rowtable(x)
3-element Vector{@NamedTuple{x1::Int64, x2::Int64, y::VariableRef}}:
(x1 = 1, x2 = 1, y = x[1,1])
(x1 = 1, x2 = 2, y = x[1,2])
(x1 = 2, x2 = 2, y = x[2,2])

source

Containers.default_container

JuMP.Containers.default_container – Function.

default_container(indices)

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/Containers/container.jl#L25-L69
https://github.com/JuliaData/Tables.jl
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/Containers/tables.jl#L12-L48
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If indices is a NestedIterator, return a SparseAxisArray. Otherwise, indices should be a VectorizedProductIterator
and the function returns Array if all iterators of the product are Base.OneTo and returns DenseAxisArray
otherwise.

source

Containers.nested

JuMP.Containers.nested – Function.

nested(iterators...; condition = (args...) -> true)

Create a NestedIterator.

Example

julia> iterator = Containers.nested(
() -> 1:2,
(i,) -> ["A", "B"];
condition = (i, j) -> isodd(i) || j == "B",

);

julia> collect(iterator)
3-element Vector{Tuple{Int64, String}}:
(1, "A")
(1, "B")
(2, "B")

source

Containers.vectorized_product

JuMP.Containers.vectorized_product – Function.

vectorized_product(iterators...)

Created a VectorizedProductIterator.

Example

julia> iterator = Containers.vectorized_product(1:2, ["A", "B"]);

julia> collect(iterator)
2×2 Matrix{Tuple{Int64, String}}:
(1, "A") (1, "B")
(2, "A") (2, "B")

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/Containers/container.jl#L6-L14
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/Containers/nested_iterator.jl#L51-L71
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/Containers/vectorized_product_iterator.jl#L56-L71
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Containers.build_error_fn

JuMP.Containers.build_error_fn – Function.

build_error_fn(macro_name, args, source)

Return a function that can be used in place of Base.error, but which additionally prints the macro from
which it was called.

source

Containers.parse_macro_arguments

JuMP.Containers.parse_macro_arguments – Function.

parse_macro_arguments(
error_fn::Function,
args;
valid_kwargs::Union{Nothing,Vector{Symbol}} = nothing,
num_positional_args::Union{Nothing,Int,UnitRange{Int}} = nothing,

)

Returns a Tuple{Vector{Any},Dict{Symbol,Any}} containing the ordered positional arguments and a
dictionary mapping the keyword arguments.

This specially handles the distinction of @foo(key = value) and @foo(; key = value) in macros.

An error is thrown if multiple keyword arguments are passed with the same key.

If valid_kwargs is a Vector{Symbol}, an error is thrown if a keyword is not in valid_kwargs.

If num_positional_args is not nothing, an error is thrown if the number of positional arguments is not in
num_positional_args.

source

Containers.parse_ref_sets

JuMP.Containers.parse_ref_sets – Function.

parse_ref_sets(
error_fn::Function,
expr;
invalid_index_variables::Vector{Symbol} = Symbol[],

)

Helper function for macros to construct container objects.

Warning

This function is for advanced users implementing JuMP extensions. See container_code for more
details.

Arguments

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/Containers/macro.jl#L337-L342
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/Containers/macro.jl#L19-L40
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• error_fn: a function that takes a String and throws an error, potentially annotating the input string
with extra information such as from which macro it was thrown from. Use error if you do not want
a modified error message.

• expr: an Expr that specifies the container, for example, :(x[i = 1:3, [:red, :blue], k = S; i
+ k <= 6])

Returns

1. name: the name of the container, if given, otherwise nothing

2. index_vars: a Vector{Any} of names for the index variables, for example, [:i, gensym(), :k].
These may also be expressions, like :((i, j)) from a call like :(x[(i, j) in S]).

3. indices: an iterator over the indices, for example, Containers.NestedIterator

Example

See container_code for a worked example.

source

Containers.build_name_expr

JuMP.Containers.build_name_expr – Function.

build_name_expr(
name::Union{Symbol,Nothing},
index_vars::Vector,
kwargs::Dict{Symbol,Any},

)

Returns an expression for the name of a container element, where name and index_vars are the values
returned by parse_ref_sets and kwargs is the dictionary returned by parse_macro_arguments.

This assumes that the key in kwargs used to over-ride the name choice is :base_name.

Example

julia> Containers.build_name_expr(:x, [:i, :j], Dict{Symbol,Any}())
:(string("x", "[", string($(Expr(:escape, :i))), ",", string($(Expr(:escape, :j))), "]"))

julia> Containers.build_name_expr(nothing, [:i, :j], Dict{Symbol,Any}())
""

julia> Containers.build_name_expr(:y, [:i, :j], Dict{Symbol,Any}(:base_name => "y"))
:(string("y", "[", string($(Expr(:escape, :i))), ",", string($(Expr(:escape, :j))), "]"))

source

Containers.add_additional_args

JuMP.Containers.add_additional_args – Function.

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/Containers/macro.jl#L264-L297
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/Containers/macro.jl#L445-L471
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add_additional_args(
call::Expr,
args::Vector,
kwargs::Dict{Symbol,Any};
kwarg_exclude::Vector{Symbol} = Symbol[],

)

Add the positional arguments args to the function call expression call, escaping each argument expres-
sion.

This function is able to incorporate additional positional arguments to calls that already have keyword
arguments.

source

Containers.container_code

JuMP.Containers.container_code – Function.

container_code(
index_vars::Vector{Any},
indices::Expr,
code,
requested_container::Union{Symbol,Expr,Dict{Symbol,Any}},

)

Used in macros to construct a call to container. This should be used in conjunction with parse_ref_sets.

Arguments

• index_vars::Vector{Any}: a vector of names for the indices of the container. These may also be
expressions, like :((i, j)) from a call like :(x[(i, j) in S]).

• indices::Expr: an expression that evaluates to an iterator of the indices.

• code: an expression or literal constant for the value to be stored in the container as a function of the
named index_vars.

• requested_container: passed to the third argument of container. For built-in JuMP types, choose
one of :Array, :DenseAxisArray, :SparseAxisArray, or :Auto. For a user-defined container, this ex-
pressionmust evaluate to the correct type. Youmay also pass the kwargs dictionary from parse_macro_arguments.

Warning

In most cases, you should esc(code) before passing it to container_code.

Example

julia> macro foo(ref_sets, code)
name, index_vars, indices =

Containers.parse_ref_sets(error, ref_sets)
@assert name !== nothing # Anonymous container not supported

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/Containers/macro.jl#L404-L417
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container =
Containers.container_code(index_vars, indices, esc(code), :Auto)

return quote
$(esc(name)) = $container

end
end

@foo (macro with 1 method)

julia> @foo(x[i=1:2, j=["A", "B"]], j^i);

julia> x
2-dimensional DenseAxisArray{String,2,...} with index sets:

Dimension 1, Base.OneTo(2)
Dimension 2, ["A", "B"]

And data, a 2×2 Matrix{String}:
"A" "B"
"AA" "BB"

source

Containers.AutoContainerType

JuMP.Containers.AutoContainerType – Type.

AutoContainerType

Pass AutoContainerType to container to let the container type be chosen based on the type of the indices
using default_container.

source

Containers.NestedIterator

JuMP.Containers.NestedIterator – Type.

struct NestedIterator{T}
iterators::T # Tuple of functions
condition::Function

end

Iterators over the tuples that are produced by a nested for loop.

Construct a NestedIterator using nested.

Example

julia> iterators = (() -> 1:2, (i,) -> ["A", "B"]);

julia> condition = (i, j) -> isodd(i) || j == "B";

julia> x = Containers.NestedIterator(iterators, condition);

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/Containers/macro.jl#L495-L548
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/Containers/container.jl#L17-L22
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julia> for (i, j) in x
println((i, j))

end
(1, "A")
(1, "B")
(2, "B")

is the same as

julia> for i in iterators[1]()
for j in iterators[2](i)

if condition(i, j)
println((i, j))

end
end

end
(1, "A")
(1, "B")
(2, "B")

source

Containers.VectorizedProductIterator

JuMP.Containers.VectorizedProductIterator – Type.

struct VectorizedProductIterator{T}
prod::Iterators.ProductIterator{T}

end

A wrapper type for Iterators.ProuctIterator that discards shape information and returns a Vector.

Construct a VectorizedProductIterator using vectorized_product.

source

https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/Containers/nested_iterator.jl#L6-L45
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/Containers/vectorized_product_iterator.jl#L31-L40


Part V

Background Information

947



Chapter 23

Algebraic modeling languages

JuMP is an algebraic modeling language for mathematical optimization written in the Julia language. In this
page, we explain what an algebraic modeling language actually is.

23.1 What is an algebraic modeling language?

If you have taken a class in mixed-integer linear programming, you will have seen a formulation like:

min c⊤x
s.t.Ax = b

x ≥ 0

xi ∈ Z, ∀i ∈ I

where c, A, and b are appropriately sized vectors and matrices of data, and I denotes the set of variables that
are integer.

Solvers expect problems in a standard form like this because it limits the types of constraints that they need
to consider. This makes writing a solver much easier.

What is a solver?

A solver is a software package that computes solutions to one or more classes of problems.

For example, HiGHS is a solver for linear programming (LP) and mixed integer programming (MIP)
problems. It incorporates algorithms such as the simplex method and the interior-point method.

JuMP currently supports a number of open-source and commercial solvers, which can be viewed in the
Supported-solvers table.

Despite the textbook view of a linear program, you probably formulated problems algebraically like so:
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max
n∑

i=1

cixi

s.t.
n∑

i=1

wixi ≤ b

xi ≥ 0 ∀i = 1, . . . , n

xi ∈ Z ∀i = 1, . . . , n.

Info

Do you recognize this formulation? It's the knapsack problem.

Users prefer to write problems in algebraic form because it is more convenient. For example, we used ≤ b,
even though the standard form only supported constraints of the form Ax = b.

We could convert our knapsack problem into the standard form by adding a new slack variable x0:

max
n∑

i=1

cixi

s.t.x0 +
n∑

i=1

wixi = b

xi ≥ 0 ∀i = 0, . . . , n

xi ∈ Z ∀i = 1, . . . , n.

However, as models get more complicated, this manual conversion becomes more and more error-prone.

An algebraic modeling language is a tool that simplifies the translation between the algebraic form of the
modeler, and the standard form of the solver.

Each algebraic modeling language has two main parts:

1. A domain specific language for the user to write down problems in algebraic form.

2. A converter from the algebraic form into a standard form supported by the solver (and back again).

Part 2 is less trivial than it might seem, because each solver has a unique application programming interface
(API) and data structure for representing optimization models and obtaining results.

JuMP uses the MathOptInterface.jl package to abstract these differences between solvers.

What is MathOptInterface?

MathOptInterface (MOI) is an abstraction layer designed to provide an interface to mathematical optimization
solvers so that users do not need to understand multiple solver-specific APIs. MOI can be used directly, or
through a higher-level modeling interface like JuMP.

There are three main parts to MathOptInterface:

https://github.com/jump-dev/MathOptInterface.jl
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1. A solver-independent API that abstracts concepts such as adding and deleting variables and constraints,
setting and getting parameters, and querying results. For more information on the MathOptInterface
API, read the documentation.

2. An automatic rewriting system based on equivalent formulations of a constraint. For more information
on this rewriting system, read the LazyBridgeOptimizer section of the manual, and our paper on arXiv.

3. Utilities for managing how and when models are copied to solvers. For more information on this, read
the CachingOptimizer section of the manual.

23.2 From user to solver

This section provides a brief summary of the steps that happen in order to translate the model that the user
writes into a model that the solver understands.

Step I: writing in algebraic form

JuMP provides the first part of an algebraicmodeling language using the @variable, @objective, and @constraint
macros.

For example, here's how we write the knapsack problem in JuMP:

julia> using JuMP, HiGHS

julia> function algebraic_knapsack(c, w, b)
n = length(c)
model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, x[1:n] >= 0, Int)
@objective(model, Max, sum(c[i] * x[i] for i = 1:n))
@constraint(model, sum(w[i] * x[i] for i = 1:n) <= b)
optimize!(model)
if termination_status(model) != OPTIMAL

error("Not solved correctly")
end
return value.(x)

end
algebraic_knapsack (generic function with 1 method)

julia> algebraic_knapsack([1, 2], [0.5, 0.5], 1.25)
2-element Vector{Float64}:
0.0
2.0

This formulation is compact, and it closely matches the algebraic formulation of the model we wrote out above.

Step II: algebraic to functional

For the next step, JuMP's macros re-write the variables and constraints into a functional form. Here's what the
JuMP code looks like after this step:

julia> using JuMP, HiGHS

julia> function nonalgebraic_knapsack(c, w, b)

https://arxiv.org/abs/2002.03447
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n = length(c)
model = Model(HiGHS.Optimizer)
set_silent(model)
x = [VariableRef(model) for i = 1:n]
for i = 1:n

set_lower_bound(x[i], 0)
set_integer(x[i])
set_name(x[i], "x[$i]")

end
obj = AffExpr(0.0)
for i = 1:n

add_to_expression!(obj, c[i], x[i])
end
set_objective(model, MAX_SENSE, obj)
lhs = AffExpr(0.0)
for i = 1:n

add_to_expression!(lhs, w[i], x[i])
end
con = build_constraint(error, lhs, MOI.LessThan(b))
add_constraint(model, con)
optimize!(model)
if termination_status(model) != OPTIMAL

error("Not solved correctly")
end
return value.(x)

end
nonalgebraic_knapsack (generic function with 1 method)

julia> nonalgebraic_knapsack([1, 2], [0.5, 0.5], 1.25)
2-element Vector{Float64}:
0.0
2.0

Hopefully you agree that the macro version is much easier to read.

Part III: JuMP to MathOptInterface

In the third step, JuMP converts the functional form of the problem, that is, nonalgebraic_knapsack, into the
MathOptInterface API:

julia> import MathOptInterface as MOI

julia> import HiGHS

julia> function mathoptinterface_knapsack(optimizer, c, w, b)
n = length(c)
model = MOI.instantiate(optimizer)
MOI.set(model, MOI.Silent(), true)
x = MOI.add_variables(model, n)
for i in 1:n

MOI.add_constraint(model, x[i], MOI.GreaterThan(0.0))
MOI.add_constraint(model, x[i], MOI.Integer())
MOI.set(model, MOI.VariableName(), x[i], "x[$i]")

end
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MOI.set(model, MOI.ObjectiveSense(), MOI.MAX_SENSE)
obj = MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(c, x), 0.0)
MOI.set(model, MOI.ObjectiveFunction{typeof(obj)}(), obj)
MOI.add_constraint(

model,
MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(w, x), 0.0),
MOI.LessThan(b),

)
MOI.optimize!(model)
if MOI.get(model, MOI.TerminationStatus()) != MOI.OPTIMAL

error("Not solved correctly")
end
return MOI.get.(model, MOI.VariablePrimal(), x)

end
mathoptinterface_knapsack (generic function with 1 method)

julia> mathoptinterface_knapsack(HiGHS.Optimizer, [1.0, 2.0], [0.5, 0.5], 1.25)
2-element Vector{Float64}:
0.0
2.0

The code is becoming more verbose and looking less like the mathematical formulation that we started with.

Step IV: MathOptInterface to HiGHS

As a final step, the HiGHS.jl package converts theMathOptInterface form, that is, mathoptinterface_knapsack,
into a HiGHS-specific API:

julia> using HiGHS

julia> function highs_knapsack(c, w, b)
n = length(c)
model = Highs_create()
Highs_setBoolOptionValue(model, "output_flag", false)
for i in 1:n

Highs_addCol(model, c[i], 0.0, Inf, 0, C_NULL, C_NULL)
Highs_changeColIntegrality(model, i-1, 1)

end
Highs_changeObjectiveSense(model, -1)
Highs_addRow(

model,
-Inf,
b,
Cint(length(w)),
collect(Cint(0):Cint(n-1)),
w,

)
Highs_run(model)
if Highs_getModelStatus(model) != kHighsModelStatusOptimal

error("Not solved correctly")
end
x = fill(NaN, 2)
Highs_getSolution(model, x, C_NULL, C_NULL, C_NULL)
Highs_destroy(model)

https://github.com/jump-dev/HiGHS.jl
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return x
end

highs_knapsack (generic function with 1 method)

julia> highs_knapsack([1.0, 2.0], [0.5, 0.5], 1.25)
2-element Vector{Float64}:
0.0
2.0

We've now gone from a algebraic model that looked identical to the mathematical model we started with, to a
verbose function that uses HiGHS-specific functionality.

The difference between algebraic_knapsack and highs_knapsack highlights the benefit that algebraic mod-
eling languages provide to users. Moreover, if we used a different solver, the solver-specific function would be
entirely different. A key benefit of an algebraic modeling language is that you can change the solver without
needing to rewrite the model.
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Chapter 25

Contributing

25.1 How to contribute to JuMP

Welcome, this document explains some ways you can contribute to JuMP.

Code of Conduct

This project and everyone participating in it is governed by the JuMP Code of Conduct. By participating, you
are expected to uphold this code.

Join the community forum

First up, join the community forum.

The forum is a good place to ask questions about how to use JuMP. You can also use the forum to discuss
possible feature requests and bugs before raising a GitHub issue (more on this below).

Aside from asking questions, the easiest way you can contribute to JuMP is to help answer questions on the
forum.

Join the developer chatroom

If you're interested in contributing code to JuMP, the next place to join is the developer chatroom. Let us know
what you have in mind, and we can point you in the right direction.

Improve the documentation

Chances are, if you asked (or answered) a question on the community forum, then it is a sign that the docu-
mentation could be improved. Moreover, since it is your question, you are probably the best-placed person to
improve it.

The docs are written in Markdown and are built using Documenter.jl. You can find the source of all the docs
here.

If your change is small (like fixing typos, or one or two sentence corrections), the easiest way to do this is via
GitHub's online editor. (GitHub has help on how to do this.)

If your change is larger, or touches multiple files, you will need to make the change locally and then use Git to
submit a pull request. (See Contribute code to JuMP below for more on this.)
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https://jump.dev/forum
https://jump.dev/chatroom
https://jump.dev/JuMP.jl/dev/
https://jump.dev/JuMP.jl/dev/
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Tip

If you need any help, come join the developer chatroom and we will walk you through the process.

File a bug report

Another way to contribute to JuMP is to file bug reports.

Make sure you read the info in the box where you write the body of the issue before posting. You can also find
a copy of that info here.

Tip

If you're unsure whether you have a real bug, post on the community forum first. Someone will either
help you fix the problem, or let you know the most appropriate place to open a bug report.

Contribute code to JuMP

Finally, you can also contribute code to JuMP.

Warning

If you do not have experience with Git, GitHub, and Julia development, the first steps can be a little
daunting. However, there are lots of tutorials available online, including these for:

• GitHub

• Git and GitHub

• Git

• Julia package development

If you need any help, come join the developer chatroom and we will walk you through the process.

Once you are familiar with Git and GitHub, the workflow for contributing code to JuMP is similar to the following:

Step 1: decide what to work on

The first step is to find an open issue (or open a new one) for the problem you want to solve. Then, before
spending too much time on it, discuss what you are planning to do in the issue to see if other contributors
are fine with your proposed changes. Getting feedback early can improve code quality, and avoid time spent
writing code that does not get merged into JuMP.

Tip

At this point, remember to be patient and polite; you may get a lot of comments on your issue. How-
ever, do not be afraid. Comments mean that people are willing to help you improve the code that you
are contributing to JuMP.

Step 2: fork JuMP

https://jump.dev/chatroom
https://github.com/jump-dev/JuMP.jl/issues/new?template=bug_report.md
https://github.com/jump-dev/JuMP.jl/blob/master/.github/ISSUE_TEMPLATE/bug_report.md
https://jump.dev/forum
https://guides.github.com/activities/hello-world/
https://try.github.io/
https://git-scm.com/book/en/v2
https://docs.julialang.org/en/v1/stdlib/Pkg/#Developing-packages-1
https://jump.dev/chatroom
https://github.com/jump-dev/JuMP.jl/issues
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Go to https://github.com/jump-dev/JuMP.jl and click the "Fork" button in the top-right corner. This will create a
copy of JuMP under your GitHub account.

Step 3: install JuMP locally

Open Julia and run:

] dev JuMP

This will download the JuMPGit repository to ~/.julia/dev/JuMP. If you're onWindows, this will be C:\\Users\\<my_name>\\.julia\\dev\\JuMP.

Warning

] command means "first type ] to enter the Julia pkg mode, then type the rest. Don't copy-paste the
code directly.

Step 4: checkout a new branch

Note

In the following, replace any instance of GITHUB_ACCOUNT with your GitHub user name.

The next step is to checkout a development branch. In a terminal (or command prompt on Windows), run:

$ cd ~/.julia/dev/JuMP

$ git remote add GITHUB_ACCOUNT https://github.com/GITHUB_ACCOUNT/JuMP.jl.git

$ git checkout master

$ git pull

$ git checkout -b my_new_branch

Tip

Lines starting with $ mean "run these in a terminal (command prompt on Windows)."

Step 5: make changes

Now make any changes to the source code inside the ~/.julia/dev/JuMP directory.

Make sure you:

• Follow the Style guide and run JuliaFormatter

• Add tests and documentation for any changes or new features

Tip

When you change the source code, you'll need to restart Julia for the changes to take effect. This is a
pain, so install Revise.jl.

https://github.com/jump-dev/JuMP.jl
https://github.com/timholy/Revise.jl
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Step 6a: test your code changes

To test that your changes work, run the JuMP test-suite by opening Julia and running:

cd("~/.julia/dev/JuMP")
] activate .
] test

Warning

Running the tests might take a long time (~10–15 minutes).

Tip

If you're using Revise.jl, you can also run the tests by calling include:

include("test/runtests.jl")

This can be faster if you want to re-run the tests multiple times.

Step 6b: test your documentation changes

Open Julia, then run:

cd("~/.julia/dev/JuMP/docs")
] activate .
include("src/make.jl")

Warning

Building the documentation might take a long time (~10 minutes).

Tip

If there's a problem with the tests that you don't know how to fix, don't worry. Continue to step 5, and
one of the JuMP contributors will comment on your pull request telling you how to fix things.

Step 7: make a pull request

Once you've made changes, you're ready to push the changes to GitHub. Run:

$ cd ~/.julia/dev/JuMP

$ git add .

$ git commit -m "A descriptive message of the changes"

$ git push -u GITHUB_ACCOUNT my_new_branch
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Then go to https://github.com/jump-dev/JuMP.jl and follow the instructions that pop up to open a pull request.

Step 8: respond to comments

At this point, remember to be patient and polite; you may get a lot of comments on your pull request. However,
do not be afraid. A lot of comments means that people are willing to help you improve the code that you are
contributing to JuMP.

To respond to the comments, go back to step 5, make any changes, test the changes in step 6, and then make
a new commit in step 7. Your PR will automatically update.

Step 9: cleaning up

Once the PR is merged, clean-up your Git repository ready for the next contribution.

$ cd ~/.julia/dev/JuMP

$ git checkout master

$ git pull

Note

If you have suggestions to improve this guide, please make a pull request. It's particularly helpful if
you do this after your first pull request because you'll know all the parts that could be explained better.

https://github.com/jump-dev/JuMP.jl
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Extensions

26.1 Extensions

JuMP provides a variety of ways to extend the basic modeling functionality.

Tip

This documentation in this section is still a work-in-progress. The best place to look for ideas and help
when writing a new JuMP extension are existing JuMP extensions. Examples include:

• BilevelJuMP.jl

• Coluna.jl

• InfiniteOpt.jl

• Plasmo.jl

• PolyJuMP.jl

• SDDP.jl

• StochasticPrograms.jl

• SumOfSquares.jl

• vOptGeneric.jl

Compatibility

When writing JuMP extensions, you should carefully consider the compatibility guarantees that JuMP makes. In
particular:

• All functions, structs, and constants which do not begin with an underscore (_) are public. These are
always safe to use, and they should all have corresponding documentation.

• All identifiers beginning with an underscore (_) are private. These are not safe to use, because they may
break in any JuMP release, including patch releases.
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https://github.com/joaquimg/BilevelJuMP.jl
https://github.com/atoptima/Coluna.jl
https://github.com/infiniteopt/InfiniteOpt.jl
https://github.com/zavalab/Plasmo.jl
https://github.com/jump-dev/PolyJuMP.jl
https://github.com/odow/SDDP.jl
https://github.com/martinbiel/StochasticPrograms.jl
https://github.com/jump-dev/SumOfSquares.jl
https://github.com/vOptSolver/vOptGeneric.jl
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• Unless explicitly mentioned in the documentation, all fields of a struct are private. These are not safe to
use, because they may break in any JuMP release, including patch releases. An example of a field which
is safe to use is the model.ext extension dictionary, which is documented in The extension dictionary.

In general, we strongly encourage you to use only the public API of JuMP. If you are missing a feature, please
open a GitHub issue.

However, if you do use the private API (for example, because your feature request has not been imple-
mented yet), then you must carefully restrict the versions of JuMP that your package is compatible with in
the Project.toml file. The easiest way to do this is via the hyphen specifiers. For example, if your package
supports all JuMP versions between v1.0.0 and v1.1.1, do:

JuMP = "1.0.0 - 1.1.1"

Then, whenever JuMP releases a new version, you should check if your package is still compatible and update
the bound accordingly.

Define a new set

To define a new set for JuMP, subtype MOI.AbstractScalarSet or MOI.AbstractVectorSet and implement
Base.copy for the set.

julia> struct NewMOIVectorSet <: MOI.AbstractVectorSet
dimension::Int

end

julia> Base.copy(x::NewMOIVectorSet) = x

julia> model = Model();

julia> @variable(model, x[1:2]);

julia> @constraint(model, x in NewMOIVectorSet(2))
[x[1], x[2]] ∈ NewMOIVectorSet(2)

However, for vector-sets, this requires the user to specify the dimension argument to their set, even though
we could infer it from the length of x!

You can make a more user-friendly set by subtyping AbstractVectorSet and implementing moi_set.

julia> struct NewVectorSet <: JuMP.AbstractVectorSet end

julia> JuMP.moi_set(::NewVectorSet, dim::Int) = NewMOIVectorSet(dim)

julia> @constraint(model, x in NewVectorSet())
[x[1], x[2]] ∈ NewMOIVectorSet(2)

Extend @variable

Just as Bin and Int create binary and integer variables, you can extend the @variable macro to create new
types of variables. Here is an explanation by example, where we create a AddTwice type, that creates a tuple
of two JuMP variables instead of a single variable.

https://pkgdocs.julialang.org/v1/compatibility/
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First, create a new struct. This can be anything. Our struct holds a VariableInfo object that stores bound
information, and whether the variable is binary or integer.

julia> struct AddTwice
info::JuMP.VariableInfo

end

Second, implement build_variable, which takes ::Type{AddTwice} as an argument, and returns an instance
of AddTwice. Note that you can also receive keyword arguments.

julia> function JuMP.build_variable(
_err::Function,
info::JuMP.VariableInfo,
::Type{AddTwice};
kwargs...

)
println("Can also use $kwargs here.")
return AddTwice(info)

end

Third, implement add_variable, which takes the instance of AddTwice from the previous step, and returns
something. Typically, you will want to call add_variable here. For example, our AddTwice call is going to add
two JuMP variables.

julia> function JuMP.add_variable(
model::JuMP.Model,
duplicate::AddTwice,
name::String,

)
a = JuMP.add_variable(

model,
JuMP.ScalarVariable(duplicate.info),
"$(name)_a",

)
b = JuMP.add_variable(

model,
JuMP.ScalarVariable(duplicate.info),
"$(name)_b",

)
return (a, b)

end

Now AddTwice can be passed to @variable similar to Bin or Int, or through the variable_type keyword.
However, now it adds two variables instead of one.

julia> model = Model();

julia> @variable(model, x[i=1:2], variable_type = AddTwice, kw = i)
Can also use Base.Pairs(:kw => 1) here.
Can also use Base.Pairs(:kw => 2) here.
2-element Vector{Tuple{VariableRef, VariableRef}}:
(x[1]_a, x[1]_b)
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(x[2]_a, x[2]_b)

julia> num_variables(model)
4

julia> first(x[1])
x[1]_a

julia> last(x[2])
x[2]_b

Extend @constraint

The @constraint macro has three steps that can be intercepted and extended: parse time, build time, and
add time.

Parse

To extend the @constraint macro at parse time, implement one of the following methods:

• parse_constraint_head

• parse_constraint_call

Warning

Extending the constraint macro at parse time is an advanced operation and has the potential to in-
terfere with existing JuMP syntax. Please discuss with the developer chatroom before publishing any
code that implements these methods.

parse_constraint_head should be implemented to intercept an expression based on the .head field of Base.Expr.
For example:

julia> using JuMP

julia> const MutableArithmetics = JuMP._MA;

julia> model = Model(); @variable(model, x);

julia> function JuMP.parse_constraint_head(
error_fn::Function,
::Val{:≔},
lhs,
rhs,

)
println("Rewriting ≔ as ==")
new_lhs, parse_code = MutableArithmetics.rewrite(lhs)
build_code = :(

build_constraint($(error_fn), $(new_lhs), MOI.EqualTo($(rhs)))
)
return false, parse_code, build_code

https://gitter.im/JuliaOpt/jump-dev
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end

julia> @constraint(model, x + x ≔ 1.0)
Rewriting ≔ as ==
2 x = 1

parse_constraint_call should be implemented to intercept an expression of the form Expr(:call, op,
args...). For example:

julia> using JuMP

julia> const MutableArithmetics = JuMP._MA;

julia> model = Model(); @variable(model, x);

julia> function JuMP.parse_constraint_call(
error_fn::Function,
is_vectorized::Bool,
::Val{:my_equal_to},
lhs,
rhs,

)
println("Rewriting my_equal_to to ==")
new_lhs, parse_code = MutableArithmetics.rewrite(lhs)
build_code = if is_vectorized

:(build_constraint($(error_fn), $(new_lhs), MOI.EqualTo($(rhs)))
)
else

:(build_constraint.($(error_fn), $(new_lhs), MOI.EqualTo($(rhs))))
end
return parse_code, build_code

end

julia> @constraint(model, my_equal_to(x + x, 1.0))
Rewriting my_equal_to to ==
2 x = 1

Tip

When parsing a constraint you can recurse into sub-constraint (for example, the {expr} in z --> {x
<= 1}) by calling parse_constraint.

To prevent JuMP from promoting the set to the same value type as themodel, use SkipModelConvertScalarSetWrapper.

Build

To extend the @constraint macro at build time, implement a new build_constraint method.

This may mean implementing a method for a specific function or set created at parse time, or it may mean
implementing a method which handles additional positional arguments.

build_constraintmust return an AbstractConstraint, which can either be an AbstractConstraint already
supported by JuMP, for example, ScalarConstraint or VectorConstraint, or a custom AbstractConstraint
with a corresponding add_constraint method (see Add).



CHAPTER 26. EXTENSIONS 967

Tip

The easiest way to extend @constraint is via an additional positional argument to build_constraint.

Here is an example of adding extra arguments to build_constraint:

julia> model = Model(); @variable(model, x);

julia> struct MyConstrType end

julia> function JuMP.build_constraint(
error_fn::Function,
f::JuMP.GenericAffExpr,
set::MOI.EqualTo,
extra::Type{MyConstrType};
d = 0,

)
new_set = MOI.LessThan(set.value + d)
return JuMP.build_constraint(error_fn, f, new_set)

end

julia> @constraint(model, my_con, x == 0, MyConstrType, d = 2)
my_con : x ≤ 2

Note

Only a single positional argument can be given to a particular constraint. Extensions that seek to
pass multiple arguments (for example, Foo and Bar) should combine them into one argument type (for
example, FooBar).

Add

build_constraint returns an AbstractConstraint object. To extend @constraint at add time, define a
subtype of AbstractConstraint, implement build_constraint to return an instance of the new type, and
then implement add_constraint.

Here is an example:

julia> model = Model(); @variable(model, x);

julia> struct MyTag
name::String

end

julia> struct MyConstraint{S} <: AbstractConstraint
name::String
f::AffExpr
s::S

end

julia> function JuMP.build_constraint(
error_fn::Function,



CHAPTER 26. EXTENSIONS 968

f::AffExpr,
set::MOI.AbstractScalarSet,
extra::MyTag,

)
return MyConstraint(extra.name, f, set)

end

julia> function JuMP.add_constraint(
model::Model,
con::MyConstraint,
name::String,

)
return add_constraint(

model,
ScalarConstraint(con.f, con.s),
"$(con.name)[$(name)]",

)
end

julia> @constraint(model, my_con, 2x <= 1, MyTag("my_prefix"))
my_prefix[my_con] : 2 x - 1 ≤ 0

The extension dictionary

Every JuMP model has a field .ext::Dict{Symbol,Any} that can be used by extensions. This is useful if your
extensions to @variable and @constraint need to store information between calls.

The most common way to initialize a model with information in the .ext dictionary is to provide a new con-
structor:

julia> function MyModel()
model = Model()
model.ext[:MyModel] = 1
return model

end
MyModel (generic function with 1 method)

julia> model = MyModel()
A JuMP Model
├ solver: none
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none

julia> model.ext
Dict{Symbol, Any} with 1 entry:
:MyModel => 1

If you define extension data, implement copy_extension_data to support copy_model.
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Defining new JuMP models

If extending individual calls to @variable and @constraint is not sufficient, it is possible to implement a new
model via a subtype of AbstractModel. You can also define new AbstractVariableRefs to create different
types of JuMP variables.

Warning

Extending JuMP in this manner is an advanced operation. We strongly encourage you to consider how
you can use the methods mentioned in the previous sections to achieve your aims instead of defining
new model and variable types. Consult the developer chatroom before starting work on this.

If you define new types, you will need to implement a considerable number of methods, and doing so will
require a detailed understanding of the JuMP internals. Therefore, the list of methods to implement is currently
undocumented.

The easiest way to extend JuMP by defining a new model type is to follow an existing example. A simple
example to follow is the JuMPExtension module in the JuMP test suite. The best example of an external JuMP
extension that implements an AbstractModel is InfiniteOpt.jl.

Testing JuMP extensions

The JuMP test suite contains a large number of tests for JuMP extensions. You can run these tests by copying
the MIT-licensed Kokako.jl file in the JuMP tests into your /test folder, and then adding this snippet to your
/test/runtests.jl file:

using MyJuMPExtension
import JuMP
include("Kokako.jl")
const MODULES_TO_TEST = Kokako.include_modules_to_test(JuMP)
Kokako.run_tests(

MODULES_TO_TEST,
MyJuMPExtension.MyModel,
MyJuMPExtension.MyVariableRef;
test_prefix = "test_extension_",

)

Set an optimize! hook

Some extensions require modification to the problem after the user has finished constructing the problem, but
before optimize! is called. For these situations, JuMP provides set_optimize_hook, which lets you intercept
the optimize! call.

Here's a simple example of adding an optimize hook that extends optimize! to take a keyword argument
silent:

julia> using JuMP, HiGHS

julia> model = Model(HiGHS.Optimizer);

julia> @variable(model, x >= 1.5, Int);

julia> @objective(model, Min, x);

https://gitter.im/JuliaOpt/jump-dev
https://github.com/jump-dev/JuMP.jl/blob/master/test/JuMPExtension.jl
https://github.com/infiniteopt/InfiniteOpt.jl
https://github.com/jump-dev/JuMP.jl/blob/master/test/Kokako.jl
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julia> function silent_hook(model; silent::Bool)
if silent

set_silent(model)
else

unset_silent(model)
end
## Make sure you set ignore_optimize_hook = true, or we'll
## recursively enter the optimize hook!
return optimize!(model; ignore_optimize_hook = true)

end
silent_hook (generic function with 1 method)

julia> set_optimize_hook(model, silent_hook)
silent_hook (generic function with 1 method)

julia> optimize!(model; silent = true)

julia> optimize!(model; silent = false)
MIP has 0 rows; 1 cols; 0 nonzeros; 1 integer variables (0 binary)
Coefficient ranges:
Cost [1e+00, 1e+00]
Bound [2e+00, 2e+00]

Assessing feasibility of MIP using primal feasibility and integrality tolerance of 1e-06
Solution has num max sum
Col infeasibilities 0 0 0
Integer infeasibilities 0 0 0
Row infeasibilities 0 0 0
Row residuals 0 0 0
Presolving model
0 rows, 0 cols, 0 nonzeros 0s
0 rows, 0 cols, 0 nonzeros 0s
Presolve: Optimal

Src: B => Branching; C => Central rounding; F => Feasibility pump; H => Heuristic; L => Sub-MIP;
P => Empty MIP; R => Randomized rounding; S => Solve LP; T => Evaluate node; U => Unbounded;
z => Trivial zero; l => Trivial lower; u => Trivial upper; p => Trivial point; X => User
solution↪→

Nodes | B&B Tree | Objective Bounds | Dynamic
Constraints | Work↪→

Src Proc. InQueue | Leaves Expl. | BestBound BestSol Gap | Cuts InLp
Confl. | LpIters Time↪→

0 0 0 0.00% 2 2 0.00% 0 0
0 0 0.0s↪→

Solving report
Status Optimal
Primal bound 2
Dual bound 2
Gap 0% (tolerance: 0.01%)
P-D integral 0
Solution status feasible

2 (objective)



CHAPTER 26. EXTENSIONS 971

0 (bound viol.)
0 (int. viol.)
0 (row viol.)

Timing 0.00 (total)
0.00 (presolve)
0.00 (solve)
0.00 (postsolve)

Max sub-MIP depth 0
Nodes 0
Repair LPs 0 (0 feasible; 0 iterations)
LP iterations 0 (total)

0 (strong br.)
0 (separation)
0 (heuristics)

Creating new container types

JuMP macros (for example, @variable) accept a container keyword argument to force the type of container
that is chosen. By default, JuMP supports container = Array, container = DenseAxisArray, container =
SparseAxisArray and container = Auto. You can extend support to user-defined types by implementing
Containers.container.

For example, here is a container that reverses the order of the indices:

julia> struct Foo end

julia> function Containers.container(f::Function, indices, ::Type{Foo})
return reverse([f(i...) for i in indices])

end

julia> model = Model();

julia> @variable(model, x[1:3], container = Foo)
3-element Vector{VariableRef}:
x[3]
x[2]
x[1]

julia> x[1]
x[3]

julia> @variable(model, y[1:3, 1:2], container = Foo)
3×2 Matrix{VariableRef}:
y[3,2] y[3,1]
y[2,2] y[2,1]
y[1,2] y[1,1]

julia> y[1, 1]
y[3,2]

julia> @variable(model, z[i=1:3; isodd(i)], container = Foo)
2-element Vector{VariableRef}:
z[3]
z[1]
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julia> z[2]
z[1]

Warning

If you are a general user, you should not need to create a new container type. Instead, consider
following User-defined containers and create a new container using standard Julia syntax. For example:

julia> model = Model();

julia> @variable(model, x[1:3])
3-element Vector{VariableRef}:
x[1]
x[2]
x[3]

julia> y = reverse(x)
3-element Vector{VariableRef}:
x[3]
x[2]
x[1]

Performance tips for extensions

The function-in-set design of MathOptInterface causes type stability issues in Julia if you try to iterate over all
of the constraints in a model. The easiest way to fix this is to use a function barrier.

For example, instead of:

function all_names_slow(model)
names = Set{String}()
for ci in all_constraints(model)

push!(names, name(ci))
end
return names

end

use:

function _function_barrier(names, model, ::Type{F}, ::Type{S}) where {F,S}
for ci in all_constraints(model, F, S)

push!(names, name(ci))
end
return

end

function all_names_fast(model)
names = Set{String}()
for (F, S) in list_of_constraint_types(model)
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_function_barrier(names, model, F, S)
end
return names

end

Note

It is important to explicitly type the F and S arguments. If you leave them untyped, for example,
function _function_barrier(names, model, F, S), Julia will not specialize the function calls and
performance will not be improved.
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Custom binaries

27.1 How to use a custom binary

Many solvers are not written in Julia, but instead in languages like C or C++. JuMP interacts with these solvers
through binary dependencies.

Formany open-source solvers, we automatically install the appropriate binary when you run Pkg.add("Solver").
For example, Pkg.add("ECOS") will also install the ECOS binary.

This page explains how this installation works, and how you can use a custom binary.

Compat

These instructions require Julia 1.6 or later.

Background

Each solver that JuMP supports is structured as a Julia package. For example, the interface for the ECOS solver
is provided by the ECOS.jl package.

Tip

This page uses the example of ECOS.jl because it is simple to compile. Other solvers follow similar
conventions. For example, the interface to the Clp solver is provided by Clp.jl.

The ECOS.jl package provides an interface between the C API of ECOS and MathOptInterface. However, it does
not handle the installation of the solver binary; that is the job for a JLL package.

A JLL is a Julia package that wraps a pre-compiled binary. Binaries are built using Yggdrasil (for example, ECOS)
and hosted in the JuliaBinaryWrappers GitHub repository (for example, ECOS_jll.jl).

JLL packages contain little code. Their only job is to dlopen a dynamic library, along with any dependencies.

JLL packagesmanage their binary dependencies using Julia's artifact system. Each JLL package has an Artifacts.toml
file which describes where to find each binary artifact for each different platform that it might be installed on.
Here is the Artifacts.toml file for ECOS_jll.jl.

The binaries installed by the JLL package should be sufficient for most users. In rare cases, however, you may
require a custom binary. The two main reasons to use a custom binary are:

• You want a binary with custom compilation settings (for example, debugging)
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https://github.com/embotech/ecos
https://github.com/jump-dev/ECOS.jl
https://github.com/JuliaPackaging/Yggdrasil
https://github.com/JuliaPackaging/Yggdrasil/blob/master/E/ECOS/build_tarballs.jl
https://github.com/JuliaBinaryWrappers
https://github.com/JuliaBinaryWrappers/ECOS_jll.jl
https://pkgdocs.julialang.org/v1/artifacts/
https://github.com/JuliaBinaryWrappers/ECOS_jll.jl/blob/main/Artifacts.toml
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• You want a binary with a set of dependencies that are not available on Yggdrasil (for example, a com-
mercial solver like Gurobi or CPLEX).

The following sections explain how to replace the binaries provided by a JLL package with the custom ones you
have compiled. As a reminder, we use ECOS as an example for simplicity, but the steps are the same for other
solvers.

Explore the JLL you want to override

The first step is to explore the structure and filenames of the JLL package we want to override.

Find the location of the files using .artifact_dir:

julia> using ECOS_jll

julia> ECOS_jll.artifact_dir
"/Users/oscar/.julia/artifacts/2addb75332eff5a1657b46bb6bf30d2410bc7ecf"

Tip

This path may be different on other machines.

Here is what it contains:

julia> readdir(ECOS_jll.artifact_dir)
4-element Vector{String}:
"include"
"lib"
"logs"
"share"

julia> readdir(joinpath(ECOS_jll.artifact_dir, "lib"))
1-element Vector{String}:
"libecos.dylib"

Other solvers may have a bin directory containing executables. To use a custom binary of ECOS, we need to
replace /lib/libecos.dylib with our custom binary.

Compile a custom binary

The next step is to compile a custom binary. Because ECOS is written in C with no dependencies, this is easy
to do if you have a C compiler:

oscar@Oscars-MBP jll_example % git clone https://github.com/embotech/ecos.git
[... lines omitted ...]
oscar@Oscars-MBP jll_example % cd ecos
oscar@Oscars-MBP ecos % make shared
[... many lines omitted...]
oscar@Oscars-MBP ecos % mkdir lib
oscar@Oscars-MBP ecos % cp libecos.dylib lib
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Warning

Compiling custom solver binaries is an advanced operation. Due to the complexities of compiling
various solvers, the JuMP community is unable to help you diagnose and fix compilation issues.

After this compilation step, we now have a folder /tmp/jll_example/ecos that contains lib and include
directories with the same files as ECOS_jll:

julia> readdir(joinpath("ecos", "lib"))
1-element Vector{String}:
"libecos.dylib"

Overriding a single library

To override the libecos library, we need to know what ECOS_jll calls it. (In most cases, it will also be libecos,
but not always.)

There are two ways you can check.

1. Check the bottom of the JLL's GitHub README. For example, ECOS_jll has a single LibraryProduct called
libecos.

2. Type ECOS_jll. and the press the [TAB] key twice to auto-complete available options:

julia> ECOS_jll.
LIBPATH PATH_list best_wrapper get_libecos_path libecos_handle
LIBPATH_list __init__ dev_jll is_available libecos_path
PATH artifact_dir find_artifact_dir libecos

Here you can see there is libecos, and more usefully for us, libecos_path.

Once you know the name of the variable to override (the one that ends in _path), use Preferences.jl to specify
a new path:

using Preferences
set_preferences!(

"LocalPreferences.toml",
"ECOS_jll",
"libecos_path" => "/tmp/jll_example/ecos/lib/libecos"

)

This will create a file in your current directory called LocalPreferences.toml with the contents:

[ECOS_jll]
libecos_path = "/tmp/jll_example/ecos/lib/libecos"

Now if you restart Julia, you will see:

https://github.com/JuliaBinaryWrappers/ECOS_jll.jl#products
https://github.com/JuliaPackaging/Preferences.jl
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julia> using ECOS_jll

julia> ECOS_jll.libecos
"/tmp/jll_example/ecos/lib/libecos"

To go back to using the default library, just delete the LocalPreferences.toml file.

Overriding an entire artifact

Sometimes a solver may provide a number of libraries and executables, and specifying the path for each of
the becomes tedious. In this case, we can use Julia's Override.toml to replace an entire artifact.

Overriding an entire artifact requires you to replicate the structure and contents of the JLL package that we
explored above.

In most cases you need only reproduce the include, lib, and bin directories (if they exist). You can safely
ignore any logs or share directories. Take careful note of what files each directory contains and what they are
called.

For our ECOS example, we already reproduced the structure when we compiled ECOS.

So, now we need to tell Julia to use our custom installation instead of the default. We can do this by making
an override file at ~/.julia/artifacts/Overrides.toml.

Overrides.toml has the following content:

# Override for ECOS_jll
2addb75332eff5a1657b46bb6bf30d2410bc7ecf = "/tmp/jll_example/ecos"

where 2addb75332eff5a1657b46bb6bf30d2410bc7ecf is the folder from the original ECOS_jll.artifact_dir
and "/tmp/jll_example/ecos" is the location of our new installation. Replace these as appropriate for your
system.

If you restart Julia after creating the override file, you will see:

julia> using ECOS_jll

julia> ECOS_jll.artifact_dir
"/tmp/jll_example/ecos"

Now when we use ECOS it will use our custom binary.

Using Cbc with a custom binary

As a second example, we demonstrate how to use Cbc.jl with a custom binary.

Explore the JLL you want to override

First, let's check where Cbc_jll is installed:

julia> using Cbc_jll

julia> Cbc_jll.artifact_dir

https://github.com/jump-dev/Cbc.jl
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"/Users/oscar/.julia/artifacts/e481bc81db5e229ba1f52b2b4bd57484204b1b06"

julia> readdir(Cbc_jll.artifact_dir)
5-element Vector{String}:
"bin"
"include"
"lib"
"logs"
"share"

julia> readdir(joinpath(Cbc_jll.artifact_dir, "bin"))
1-element Vector{String}:
"cbc"

julia> readdir(joinpath(Cbc_jll.artifact_dir, "lib"))
10-element Vector{String}:
"libCbc.3.10.5.dylib"
"libCbc.3.dylib"
"libCbc.dylib"
"libCbcSolver.3.10.5.dylib"
"libCbcSolver.3.dylib"
"libCbcSolver.dylib"
"libOsiCbc.3.10.5.dylib"
"libOsiCbc.3.dylib"
"libOsiCbc.dylib"
"pkgconfig"

Compile a custom binary

Next, we need to compile Cbc. Cbc can be difficult to compile (it has a lot of dependencies), but for macOS
users there is a homebrew recipe:

(base) oscar@Oscars-MBP jll_example % brew install cbc
[ ... lines omitted ... ]
(base) oscar@Oscars-MBP jll_example % brew list cbc
/usr/local/Cellar/cbc/2.10.5/bin/cbc
/usr/local/Cellar/cbc/2.10.5/include/cbc/ (76 files)
/usr/local/Cellar/cbc/2.10.5/lib/libCbc.3.10.5.dylib
/usr/local/Cellar/cbc/2.10.5/lib/libCbcSolver.3.10.5.dylib
/usr/local/Cellar/cbc/2.10.5/lib/libOsiCbc.3.10.5.dylib
/usr/local/Cellar/cbc/2.10.5/lib/pkgconfig/ (2 files)
/usr/local/Cellar/cbc/2.10.5/lib/ (6 other files)
/usr/local/Cellar/cbc/2.10.5/share/cbc/ (59 files)
/usr/local/Cellar/cbc/2.10.5/share/coin/ (4 files)

Override single libraries

To use Preferences.jl to override specific libraries we first check the names of each library in Cbc_jll:

julia> Cbc_jll.
LIBPATH cbc get_libcbcsolver_path libOsiCbc_path
LIBPATH_list cbc_path is_available libcbcsolver
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PATH dev_jll libCbc libcbcsolver_handle
PATH_list find_artifact_dir libCbc_handle libcbcsolver_path
__init__ get_cbc_path libCbc_path
artifact_dir get_libCbc_path libOsiCbc
best_wrapper get_libOsiCbc_path libOsiCbc_handle

Then we add the following to LocalPreferences.toml:

[Cbc_jll]
cbc_path = "/usr/local/Cellar/cbc/2.10.5/bin/cbc"
libCbc_path = "/usr/local/Cellar/cbc/2.10.5/lib/libCbc.3.10.5"
libOsiCbc_path = "/usr/local/Cellar/cbc/2.10.5/lib/libOsiCbc.3.10.5"
libcbcsolver_path = "/usr/local/Cellar/cbc/2.10.5/lib/libCbcSolver.3.10.5"

Info

Note that capitalization matters, so libcbcsolver_path corresponds to libCbcSolver.3.10.5.

Override entire artifact

To use the homebrew install as our custom binary we add the following to ~/.julia/artifacts/Overrides.toml:

# Override for Cbc_jll
e481bc81db5e229ba1f52b2b4bd57484204b1b06 = "/usr/local/Cellar/cbc/2.10.5"
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Style Guide

28.1 Style guide and design principles

Style guide

This section describes the coding style rules that apply to JuMP code and that we recommend for JuMP models
and surrounding Julia code. The motivations for a style guide include:

• conveying best practices for writing readable and maintainable code

• reducing the amount of time spent on bike-shedding by establishing basic naming and formatting con-
ventions

• lowering the barrier for new contributors by codifying the existing practices (for example, you can be
more confident your code will pass review if you follow the style guide)

In some cases, the JuMP style guide diverges from the Julia style guide. All such cases will be explicitly noted
and justified.

The JuMP style guide adopts many recommendations from the Google style guides.

Info

The style guide is always a work in progress, and not all JuMP code follows the rules. When modifying
JuMP, please fix the style violations of the surrounding code (that is, leave the code tidier than when
you started). If large changes are needed, consider separating them into another PR.

JuliaFormatter

JuMP uses JuliaFormatter.jl as an auto-formatting tool.

We use the options contained in .JuliaFormatter.toml.

To format code, cd to the JuMP directory, then run:

] add JuliaFormatter@1
using JuliaFormatter
format("docs")
format("src")
format("test")
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https://en.wikipedia.org/wiki/Law_of_triviality
https://docs.julialang.org/en/v1.0.0/manual/style-guide/
https://github.com/google/styleguide
https://github.com/domluna/JuliaFormatter.jl
https://github.com/jump-dev/JuMP.jl/blob/master/.JuliaFormatter.toml
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Info

A continuous integration check verifies that all PRs made to JuMP have passed the formatter.

The following sections outline extra style guide points that are not fixed automatically by JuliaFormatter.

Abstract types and composition

Specifying types for method arguments is mostly optional in Julia. The benefit of abstract method arguments
is that it enables functions and types from one package to be used with functions and types from another
package via multiple dispatch.

However, abstractly typed methods have two main drawbacks:

1. It's possible to find out that you are working with unexpected types deep in the call chain, potentially
leading to hard-to-diagnose MethodErrors.

2. Untyped function arguments can lead to correctness problems if the user's choice of input type does not
satisfy the assumptions made by the author of the function.

As a motivating example, consider the following function:

julia> function my_sum(x)
y = 0.0
for i in 1:length(x)

y += x[i]
end
return y

end
my_sum (generic function with 1 method)

This function contains a number of implicit assumptions about the type of x:

• x supports 1-based getindex and implements length

• The element type of x supports addition with 0.0, and then with the result of x + 0.0.

Info

As a motivating example for the second point, VariableRef plus Float64 produces an AffExpr. Do
not assume that +(::A, ::B) produces an instance of the type A or B.

my_sum works as expected if the user passes in Vector{Float64}:

julia> my_sum([1.0, 2.0, 3.0])
6.0

but it doesn't respect input types, for example returning a Float64 if the user passes Vector{Int}:

https://docs.julialang.org/en/v1/manual/methods/#Defining-Methods
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julia> my_sum([1, 2, 3])
6.0

but it throws a MethodError if the user passes String:

julia> my_sum("abc")
ERROR: MethodError: no method matching +(::Float64, ::Char)
[...]

This particular MethodError is hard to debug, particularly for new users, because it mentions +, Float64, and
Char, none of which were called or passed by the user.

Dealing with MethodErrors

This section diverges from the Julia style guide, as well as other common guides like SciML. The following
suggestions are intended to provide a friendlier experience for novice Julia programmers, at the cost of limiting
the power and flexibility of advanced Julia programmers.

Code should follow the MethodError principle:

The MethodError principle

A user should see a MethodError only for methods that they called directly.

Bad:

_internal_function(x::Integer) = x + 1
# The user sees a MethodError for _internal_function when calling
# public_function("a string"). This is not very helpful.
public_function(x) = _internal_function(x)

Good:

_internal_function(x::Integer) = x + 1
# The user sees a MethodError for public_function when calling
# public_function("a string"). This is easy to understand.
public_function(x::Integer) = _internal_function(x)

If it is hard to provide an error message at the top of the call chain, then the following pattern is also ok:

_internal_function(x::Integer) = x + 1
function _internal_function(x)

error(
"Internal error. This probably means that you called " *
"`public_function()`s with the wrong type.",

)
end
public_function(x) = _internal_function(x)

https://docs.julialang.org/en/v1.6/manual/style-guide/#Avoid-writing-overly-specific-types
https://github.com/SciML/SciMLStyle#generic-code-is-preferred-unless-code-is-known-to-be-specific
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Dealing with correctness

Dealing with correctness is harder, because Julia has no way of formally specifying interfaces that abstract
types must implement. Instead, here are two options that you can use when writing and interacting with
generic code:

Option 1: use concrete types and let users extend new methods.

In this option, explicitly restrict input arguments to concrete types that are tested and have been validated for
correctness. For example:

julia> function my_sum_option_1(x::Vector{Float64})
y = 0.0
for i in 1:length(x)

y += x[i]
end
return y

end
my_sum_option_1 (generic function with 1 method)

julia> my_sum_option_1([1.0, 2.0, 3.0])
6.0

Using concrete types satisfies the MethodError principle:

julia> my_sum_option_1("abc")
ERROR: MethodError: no method matching my_sum_option_1(::String)

and it allows other types to be supported in future by defining new methods:

julia> function my_sum_option_1(x::Array{T,N}) where {T<:Number,N}
y = zero(T)
for i in eachindex(x)

y += x[i]
end
return y

end
my_sum_option_1 (generic function with 2 methods)

Importantly, these methods do not have to be defined in the original package.

Info

Some usage of abstract types is okay. For example, in my_sum_option_1, we allowed the element type,
T, to be a subtype of Number. This is fairly safe, but it still has an implicit assumption that T supports
zero(T) and +(::T, ::T).

Option 2: program defensively, and validate all assumptions.

An alternative is to program defensively, and to rigorously document and validate all assumptions that the
code makes. In particular:

1. All assumptions on abstract types that aren't guaranteed by the definition of the abstract type (for
example, optional methods without a fallback) should be documented.
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2. If practical, the assumptions should be checked in code, and informative error messages should be
provided to the user if the assumptions are not met. In general, these checks may be expensive, so you
should prefer to do this once, at the highest level of the call-chain.

3. Tests should cover for a range of corner cases and argument types.

For example:

"""
test_my_sum_defensive_assumptions(x::AbstractArray{T}) where {T}

Test the assumptions made by `my_sum_defensive`.
"""
function test_my_sum_defensive_assumptions(x::AbstractArray{T}) where {T}

try
# Some types may not define zero.
@assert zero(T) isa T
# Check iteration supported
@assert iterate(x) isa Union{Nothing,Tuple{T,Int}}
# Check that + is defined
@assert +(zero(T), zero(T)) isa Any

catch err
error(

"Unable to call my_sum_defensive(::$(typeof(x))) because " *
"it failed an internal assumption",

)
end
return

end

"""
my_sum_defensive(x::AbstractArray{T}) where {T}

Return the sum of the elements in the abstract array `x`.

## Assumptions

This function makes the following assumptions:

* That `zero(T)` is defined
* That `x` supports the iteration interface
* That `+(::T, ::T)` is defined
"""
function my_sum_defensive(x::AbstractArray{T}) where {T}

test_my_sum_defensive_assumptions(x)
y = zero(T)
for xi in x

y += xi
end
return y

end

# output

my_sum_defensive
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This function works on Vector{Float64}:

julia> my_sum_defensive([1.0, 2.0, 3.0])
6.0

as well as Matrix{Rational{Int}}:

julia> my_sum_defensive([(1//2) + (4//3)im; (6//5) + (7//11)im])
17//10 + 65//33*im

and it throws an error when the assumptions aren't met:

julia> my_sum_defensive(['a', 'b', 'c'])
ERROR: Unable to call my_sum_defensive(::Vector{Char}) because it failed an internal assumption
[...]

As an alternative, youmay choose not to call test_my_sum_defensive_assumptionswithin my_sum_defensive,
and instead ask users of my_sum_defensive to call it in their tests.

Juxtaposed multiplication

Only use juxtaposed multiplication when the right-hand side is a symbol.

Good:

2x # Acceptable if there are space constraints.
2 * x # This is preferred if space is not an issue.
2 * (x + 1)

Bad:

2(x + 1)

Empty vectors

For a type T, T[] and Vector{T}() are equivalent ways to create an empty vector with element type T. Prefer
T[] because it is more concise.

Comments

For non-native speakers and for general clarity, comments in code must be proper English sentences with
appropriate punctuation.

Good:

# This is a comment demonstrating a good comment.

Bad:
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# a bad comment

JuMP macro syntax

For consistency, always use parentheses.

Good:

@variable(model, x >= 0)

Bad:

@variable model x >= 0

For consistency, always use constant * variable as opposed to variable * constant. This makes it easier
to read models in ambiguous cases like a * x.

Good:

a = 4
@constraint(model, 3 * x <= 1)
@constraint(model, a * x <= 1)

Bad:

a = 4
@constraint(model, x * 3 <= 1)
@constraint(model, x * a <= 1)

In order to reduce boilerplate code, prefer the plural form of macros over lots of repeated calls to singular
forms.

Good:

@variables(model, begin
x >= 0
y >= 1
z <= 2

end)

Bad:

@variable(model, x >= 0)
@variable(model, y >= 1)
@variable(model, z <= 2)

An exception is made for calls with many keyword arguments, since these need to be enclosed in parentheses
in order to parse properly.
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Acceptable:

@variable(model, x >= 0, start = 0.0, base_name = "my_x")
@variable(model, y >= 1, start = 2.0)
@variable(model, z <= 2, start = -1.0)

Also acceptable:

@variables(model, begin
x >= 0, (start = 0.0, base_name = "my_x")
y >= 1, (start = 2.0)
z <= 2, (start = -1.0)

end)

While we always use in for for-loops, it is acceptable to use = in the container declarations of JuMP macros.

Okay:

@variable(model, x[i=1:3])

Also okay:

@variable(model, x[i in 1:3])

Naming

module SomeModule end
function some_function end
const SOME_CONSTANT = ...
struct SomeStruct
some_field::SomeType

end
@enum SomeEnum ENUM_VALUE_A ENUM_VALUE_B
some_local_variable = ...
some_file.jl # Except for ModuleName.jl.

Exported and non-exported names

Begin private module level functions and constants with an underscore. All other objects in the scope of a
module should be exported. (See JuMP.jl for an example of how to do this.)

Names beginning with an underscore should only be used for distinguishing between exported (public) and
non-exported (private) objects. Therefore, never begin the name of a local variable with an underscore.

module MyModule

export public_function, PUBLIC_CONSTANT
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function _private_function()
local_variable = 1
return

end

function public_function end

const _PRIVATE_CONSTANT = 3.14159
const PUBLIC_CONSTANT = 1.41421

end

Use of underscores within names

The Julia style guide recommends avoiding underscores "when readable," for example, haskey, isequal,
remotecall, and remotecall_fetch. This convention creates the potential for unnecessary bikeshedding
and also forces the user to recall the presence/absence of an underscore, for example, "was that argument
named basename or base_name?". For consistency, always use underscores in variable names and function
names to separate words.

Use of !

Julia has a convention of appending ! to a function name if the functionmodifies its arguments. We recommend
to:

• Omit ! when the name itself makes it clear thatmodification is taking place, for example, add_constraint
and set_name. We depart from the Julia style guide because ! does not provide a reader with any addi-
tional information in this case, and adherence to this convention is not uniform even in base Julia itself
(consider Base.println and Base.finalize).

• Use ! in all other cases. In particular it can be used to distinguish between modifying and non-modifying
variants of the same function like scale and scale!.

Note that ! is not a self-documenting feature because it is still ambiguous which arguments are modified
when multiple arguments are present. Be sure to document which arguments are modified in the method's
docstring.

See also the Julia style guide recommendations for ordering of function arguments.

Abbreviations

Abbreviate names to make the code more readable, not to save typing. Don't arbitrarily delete letters from a
word to abbreviate it (for example, indx). Use abbreviations consistently within a body of code (for example,
do not mix con and constr, idx and indx).

Common abbreviations:

• num for number

• con for constraint

https://docs.julialang.org/en/v1/manual/style-guide/#Write-functions-with-argument-ordering-similar-to-Julia-Base
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No one-letter variable names

Where possible, avoid one-letter variable names.

Use model = Model() instead of m = Model()

Exceptions are made for indices in loops.

@enum vs. Symbol

The @enummacro lets you define types with a finite number of values that are explicitly enumerated (like enum
in C/C++). Symbols are lightweight strings that are used to represent identifiers in Julia (for example, :x).

@enum provides type safety and can have docstrings attached to explain the possible values. Use @enums when
applicable, for example, for reporting statuses. Use strings to provide long-form additional information like
error messages.

Use of Symbol should typically be reserved for identifiers, for example, for lookup in the JuMPmodel (model[:my_variable]).

using vs. import

using ModuleName brings all symbols exported by themodule ModuleName into scope, while import ModuleName
brings only the module itself into scope. (See the Julia manual) for examples and more details.

For the same reason that from <module> import * is not recommended in python (PEP 8), avoid using
ModuleName except in throw-away scripts or at the REPL. The using statement makes it harder to track where
symbols come from and exposes the code to ambiguities when two modules export the same symbol.

Prefer using ModuleName: x, p to import ModuleName.x, ModuleName.p and import MyModule: x, p be-
cause the import versions allow method extension without qualifying with the module name.

Similarly, using ModuleName: ModuleName is an acceptable substitute for import ModuleName, because it
does not bring all symbols exported by ModuleName into scope. However, we prefer import ModuleName for
consistency.

Documentation

This section describes the writing style that should be used when writing documentation for JuMP (and sup-
porting packages).

We can recommend the documentation style guides by Divio, Google, and Write the Docs as general reading
for those writing documentation. This guide delegates a thorough handling of the topic to those guides and
instead elaborates on the points more specific to Julia and documentation that use Documenter.

• Be concise

• Use lists instead of long sentences

• Use numbered lists when describing a sequence, for example, (1) do X, (2) then Y

• Use bullet points when the items are not ordered

• Example code should be covered by doctests

• When a word is a Julia symbol and not an English word, enclose it with backticks. In addition, if it has
a docstring in this doc add a link using @ref. If it is a plural, add the "s" after the closing backtick. For
example,

https://docs.julialang.org/en/v1/manual/modules/#modules-1
https://www.python.org/dev/peps/pep-0008/#imports
https://www.divio.com/blog/documentation/
https://developers.google.com/style/
https://www.writethedocs.org/guide/
https://github.com/JuliaDocs/Documenter.jl
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[`VariableRef`](@ref)s

• Use @meta blocks for TODOs and other comments that shouldn't be visible to readers. For example,

```@meta
# TODO: Mention also X, Y, and Z.
```

Docstrings

• Every exported object needs a docstring

• All examples in docstrings should be jldoctests

• Always use complete English sentences with proper punctuation

• Do not terminate lists with punctuation (for example, as in this doc)

Here is an example:

"""
signature(args; kwargs...)

Short sentence describing the function.

Optional: add a slightly longer paragraph describing the function.

## Notes

- List any notes that the user should be aware of

## Example

```jldoctest
julia> 1 + 1
2
```
"""

Testing

Use a module to encapsulate tests, and structure all tests as functions. This avoids leaking local variables
between tests.

Here is a basic skeleton:

module TestPkg

using Test

function runtests()

https://juliadocs.github.io/Documenter.jl/v0.21/man/syntax/#@meta-block-1
https://juliadocs.github.io/Documenter.jl/stable/man/doctests/
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for name in names(@__MODULE__; all = true)
if startswith("$(name)", "test_")

@testset "$(name)" begin
getfield(@__MODULE__, name)()

end
end

end
return

end

_helper_function() = 2

function test_addition()
@test 1 + 1 == _helper_function()
return

end

end # module TestPkg

TestPkg.runtests()

Break the tests into multiple files, with one module per file, so that subsets of the codebase can be tested by
calling include with the relevant file.
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Conventions

29.1 Conventions for interfacing between JuMP and MathOptInterface

The purpose of this guide is to document the conventions that we have developed for interfacing between
JuMP and MathOptInterface.

Attributes

JuMP provides get_attribute and set_attribute as thin shims for MOI.get and MOI.set. However, there
are two common cases where the thin shims are not sufficient:

• when the value of the attribute is an AbstractJuMPScalar that needs to be mapped to and from
MOI.AbstractFunction

• when the value of the attribute depends on the shape of the constraint, for example, when getting
MOI.ConstraintDualStart of matrix-valued constraints.

In these two cases, the convention is to keep get_attribute as a thin shim that does not modify the attribute
value, and to develop new functions that modify or reshape the value as appropriate.

As an example, JuMP provides dual_start_value and set_dual_start_value to get and set the MOI.ConstraintDualStart
in the original matrix shape, while get_attribute and set_attribute can be used to get and set the value
in the vectorized shape:

julia> using JuMP

julia> model = Model();

julia> @variable(model, x[1:2, 1:2], PSD);

julia> c = VariableInSetRef(x);

julia> set_dual_start_value(c, [1 0; 0 1])

julia> dual_start_value(c)
2×2 LinearAlgebra.Symmetric{Float64, Matrix{Float64}}:
1.0 0.0
0.0 1.0

julia> get_attribute(c, MOI.ConstraintDualStart())

992
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3-element Vector{Float64}:
1.0
0.0
1.0

julia> set_attribute(c, MOI.ConstraintDualStart(), [2.0, -1.0, 1.0])

julia> dual_start_value(c)
2×2 LinearAlgebra.Symmetric{Float64, Matrix{Float64}}:
2.0 -1.0
-1.0 1.0

unset_ methods

There are a variety of attributes in JuMP and MOI that can be "set" and "unset." For example, there is
MOI.Silent, and the corresponding set_silent and unset_silent.

Note how set_silent and unset_silent take a single argument (the model), where set_silent(model) cor-
responds to MOI.set(model, MOI.Silent(), true) and unset_silent(model) corresponds to MOI.set(model,
MOI.Silent(), false). We could have instead implemented a singlemethod set_silent(model, flag::Bool)
that corresponded to MOI.set(model, MOI.Silent(), flag). Another example is unset_time_limit_sec,
which is equivalent to set_time_limit_sec(model, nothing).

We have come to regard the unset_ design as a mistake, because it leads to a proliferation of unique function
names instead of leveraging Julia's strength for multiple dispatch.

The existing unset_ names are retained for backwards compatibility, but, going forward, provide a single set_
method and document what value type should be provided to restore the model to the default setting. Thus,
we have set_string_names_on_creation, but no corresponding unset_string_names_on_creation.
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Roadmap

30.1 Development roadmap

The JuMP developers have compiled this roadmap document to share their plans and goals with the JuMP
community. Contributions to roadmap issues are especially invited.

Most of these issues will require changes to both JuMP and MathOptInterface, and are non-trivial in their im-
plementation. They are in no particular order, but represent broad themes that we see as areas in which JuMP
could be improved.

• Support nonlinear expressions with vector-valued inputs and outputs. There are a few related compo-
nents:

– Representing terms like log(det(X)) as necessary for Convex.jl

– Automatic differentiation of terms with vector inputs and outputs

– User-defined functions with vector–as opposed to scalar–inputs, which is particularly useful for
optimal control problems

– User-defined functions with vector outputs, avoiding the need for User-defined operators with vec-
tor outputs

• Add support for modeling with SI units. The UnitJuMP.jl extension is a good proof of concept for what this
would look like. We want to make units a first-class concept in JuMP. See #1350 for more details.

Completed

• Done #3106 Make nonlinear programming a first-class citizen. There have been many issues and
discussions about this: currently nonlinear constraints are handled through a MOI.NLPBlock and have
various limitations and restrictions.

– https://github.com/jump-dev/JuMP.jl/issues/1185

– https://github.com/jump-dev/JuMP.jl/issues/1198

– https://github.com/jump-dev/JuMP.jl/issues/2788

– https://github.com/jump-dev/MathOptInterface.jl/issues/846

– https://github.com/jump-dev/MathOptInterface.jl/issues/1397

• Done #3385 Add support for coefficient types other than Float64: https://github.com/jump-dev/JuMP.jl/issues/2025
Since the very beginning, JuMP has hard-coded the coefficient type as Float64. This has made it impos-
sible to support solvers which can use other types such as BigFloat or Rational{BigInt}.
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https://github.com/trulsf/UnitJuMP.jl
https://github.com/jump-dev/JuMP.jl/issues/1350
https://github.com/jump-dev/JuMP.jl/pull/3106
https://github.com/jump-dev/JuMP.jl/issues/1185
https://github.com/jump-dev/JuMP.jl/issues/1198
https://github.com/jump-dev/JuMP.jl/issues/2788
https://github.com/jump-dev/MathOptInterface.jl/issues/846
https://github.com/jump-dev/MathOptInterface.jl/issues/1397
https://github.com/jump-dev/JuMP.jl/pull/3385
https://github.com/jump-dev/JuMP.jl/issues/2025
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• Done #3385 Add support for constraint programming: https://github.com/jump-dev/JuMP.jl/issues/2227
JuMP has a strong focus on linear, conic and nonlinear optimization problems. We want to add better
support for constraint programming.

• Done #3176 Add support for multiobjective problems: https://github.com/jump-dev/JuMP.jl/issues/2099
JuMP is restricted to problems with scalar-valued objectives. We want to extend this to vector-valued
problems.

• Done #3629 Refactor the internal code of JuMP's macros. The code in src/macros.jl is some of the
oldest part of JuMP and is difficult to read, modify, and extend. We should overhaul the internals of JuMP's
macros–-without making user-visible breaking changes–-to improve their long-term maintainability.

https://github.com/jump-dev/JuMP.jl/pull/3635
https://github.com/jump-dev/JuMP.jl/issues/2227
https://github.com/jump-dev/JuMP.jl/pull/3176
https://github.com/jump-dev/JuMP.jl/issues/2099
https://github.com/jump-dev/JuMP.jl/pull/3629
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Checklists

31.1 Checklists

The purpose of this page is to collate a series of checklists for commonly performed changes to the source
code of JuMP.

In each case, copy the checklist into the description of the pull request.

Making a release

In preparation for a release, use the following checklist. These steps can be done in the same commit, or
separately. The last commit should have the message "Prep for vX.Y.Z."

## Pre-release

- [ ] Check that the pinned packages in `docs/Project.toml` are updated. We pin
the versions so that changes in the solvers (changes in printing, small
numeric changes) do not break the printing of the JuMP docs in arbitrary
commits.

- [ ] Check that the `rev` fields in `docs/packages.toml` are updated. We pin
the versions of solvers and extensions to ensure that changes to their
READMEs do not break the JuMP docs in arbitrary commits, and to ensure
that the versions are compatible with the latest JuMP and
MathOptInterface releases.

- [ ] Check compat of `DimensionalData` in `Project.toml`
- [ ] Check compat of `MacroTools` in `Project.toml`
- [ ] Update `docs/src/changelog.md`
- [ ] Run https://github.com/jump-dev/JuMP.jl/actions/workflows/extension-tests.yml

using a `workflow_dispatch` trigger to check for any changes in JuMP that
broke extensions.

- [ ] Change the version number in `Project.toml`
- [ ] The commit messages in this PR do not contain `[ci skip]`

## The release

- [ ] After merging this pull request, comment `[at]JuliaRegistrator register` in
the GitHub commit. This should automatically publish a new version to the
Julia registry, as well as create a tag, and rebuild the documentation
for this tag.

These steps can take quite a bit of time (1 hour or more), so don't be
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surprised if the new documentation takes a while to appear. In addition,
the links in the README will be broken until JuliaHub fetches the new
version on their servers.

## Post-release

- [ ] Once the tag is created, update the relevant `release-` branch. The latest
release branch at the time of writing is `release-1.0` (we haven't
back-ported any patches that needed to create a `release-1.Y` branch). To
to update the release branch with the v1.10.0 tag, do:
```
git checkout release-1.0
git pull
git merge v1.10.0
git push
```

Adding a new solver to the documentation

Use the following checklist when adding a new solver to the JuMP documentation.

## Basic

- [ ] Check that the solver is a registered Julia package
- [ ] Check that the solver supports the long-term support release of Julia
- [ ] Check that the solver has a MathOptInterface wrapper
- [ ] Check that the tests call `MOI.Test.runtests`. Some test excludes are

permissible, but the reason for skipping a particular test should be
documented.

- [ ] Check that the README and/or documentation provides an example of how to
use the solver with JuMP

## Documentation

- [ ] Add a new row to the table in `docs/src/installation.md`

## Optional

- [ ] Add package metadata to `docs/packages.toml`

Adding a new shape

Use the following checklist when adding a new AbstractShape

## Basic

- [ ] Add a new subtype of `AbstractShape`
- [ ] Implement `vectorize(data, ::NewShape)::Vector`
- [ ] Implement `reshape_vector(vector, ::NewShape)`
- [ ] Implement `dual_shape`, or verify that the shape is self-dual
- [ ] Add the tests from https://github.com/jump-dev/JuMP.jl/pull/3816
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Chapter 32

Introduction

32.1 Introduction

Warning

This documentation in this section is a copy of the official MathOptInterface documentation available
at https://jump.dev/MathOptInterface.jl/v1.40.1. It is included here to make it easier to link concepts
between JuMP and MathOptInterface.

What is MathOptInterface?

MathOptInterface.jl (MOI) is an abstraction layer designed to provide a unified interface to mathematical opti-
mization solvers so that users do not need to understand multiple solver-specific APIs.

Tip

This documentation is aimed at developers writing software interfaces to solvers and modeling lan-
guages using the MathOptInterface API. If you are a user interested in solving optimization problems,
we encourage you instead to use MOI through a higher-level modeling interface like JuMP or Convex.jl.

How the documentation is structured

Having a high-level overview of how this documentation is structured will help you know where to look for
certain things.

• The Tutorials section contains articles on how to use and implement the MathOptInteraface API. Look
here if you want to write a model in MOI, or write an interface to a new solver.

• TheManual contains short code-snippets that explain how to use the MOI API. Look here for more details
on particular areas of MOI.

• The Background section contains articles on the theory behind MathOptInterface. Look here if you
want to understand why, rather than how.

• The API Reference contains a complete list of functions and types that comprise the MOI API. Look here
if you want to know how to use (or implement) a particular function.

• The Submodules section contains stand-alone documentation for each of the submodules within MOI.
These submodules are not required to interface a solver with MOI, but they make the job much easier.
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https://jump.dev/MathOptInterface.jl/v1.40.1
https://github.com/jump-dev/MathOptInterface.jl
https://github.com/jump-dev/JuMP.jl
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Citing MathOptInterface

If you find MathOptInterface useful in your work, we kindly request that you cite the following paper:

@article{legat2021mathoptinterface,
title={{MathOptInterface}: a data structure for mathematical optimization problems},
author={Legat, Beno{\^\i}t and Dowson, Oscar and Garcia, Joaquim Dias and Lubin, Miles},
journal={INFORMS Journal on Computing},
year={2021},
doi={10.1287/ijoc.2021.1067},
publisher={INFORMS}

}

A preprint of this paper is freely available.

32.2 Motivation

MathOptInterface (MOI) is a replacement for MathProgBase, the first-generation abstraction layer for mathe-
matical optimization previously used by JuMP and Convex.jl.

To address a number of limitations of MathProgBase, MOI is designed to:

• Be simple and extensible

– unifying linear, quadratic, and conic optimization,

– seamlessly facilitating extensions to essentially arbitrary constraints and functions (for example,
indicator constraints, complementarity constraints, and piecewise-linear functions)

• Be fast

– by allowing access to a solver's in-memory representation of a problem without writing intermedi-
ate files (when possible)

– by using multiple dispatch and avoiding requiring containers of non-concrete types

• Allow a solver to return multiple results (for example, a pool of solutions)

• Allow a solver to return extra arbitrary information via attributes (for example, variable- and constraint-
wise membership in an irreducible inconsistent subset for infeasibility analysis)

• Provide a greatly expanded set of status codes explaining what happened during the optimization pro-
cedure

• Enable a solver to more precisely specify which problem classes it supports

• Enable both primal and dual warm starts

• Enable adding and removing both variables and constraints by indices that are not required to be con-
secutive

• Enable any modification that the solver supports to an existing model

• Avoid requiring the solver wrapper to store an additional copy of the problem data

https://arxiv.org/abs/2002.03447
https://github.com/JuliaOpt/MathProgBase.jl
https://github.com/jump-dev/JuMP.jl
https://github.com/jump-dev/Convex.jl
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Tutorials

33.1 Solving a problem using MathOptInterface

In this tutorial we demonstrate how to use MathOptInterface to solve the binary-constrained knapsack problem:

max c⊤x
s.t. w⊤x ≤ C

xi ∈ {0, 1}, ∀i = 1, . . . , n

Required packages

Load the MathOptInterface module and define the shorthand MOI:

import MathOptInterface as MOI

As an optimizer, we choose GLPK:

using GLPK
optimizer = GLPK.Optimizer()

Define the data

We first define the constants of the problem:

julia> c = [1.0, 2.0, 3.0]
3-element Vector{Float64}:
1.0
2.0
3.0

julia> w = [0.3, 0.5, 1.0]
3-element Vector{Float64}:
0.3
0.5
1.0
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julia> C = 3.2
3.2

Add the variables

julia> x = MOI.add_variables(optimizer, length(c));

Set the objective

julia> MOI.set(
optimizer,
MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(),
MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(c, x), 0.0),

);

julia> MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MAX_SENSE)

Tip

MOI.ScalarAffineTerm.(c, x) is a shortcut for [MOI.ScalarAffineTerm(c[i], x[i]) for i =
1:3]. This is Julia's broadcast syntax in action, and is used quite often throughout MOI.

Add the constraints

We add the knapsack constraint and integrality constraints:

julia> MOI.add_constraint(
optimizer,
MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(w, x), 0.0),
MOI.LessThan(C),

);

Add integrality constraints:

julia> for x_i in x
MOI.add_constraint(optimizer, x_i, MOI.ZeroOne())

end

Optimize the model

julia> MOI.optimize!(optimizer)
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Understand why the solver stopped

The first thing to check after optimization is why the solver stopped, for example, did it stop because of a time
limit or did it stop because it found the optimal solution?

julia> MOI.get(optimizer, MOI.TerminationStatus())
OPTIMAL::TerminationStatusCode = 1

Looks like we found an optimal solution.

Understand what solution was returned

julia> MOI.get(optimizer, MOI.ResultCount())
1

julia> MOI.get(optimizer, MOI.PrimalStatus())
FEASIBLE_POINT::ResultStatusCode = 1

julia> MOI.get(optimizer, MOI.DualStatus())
NO_SOLUTION::ResultStatusCode = 0

Query the objective

What is its objective value?

julia> MOI.get(optimizer, MOI.ObjectiveValue())
6.0

Query the primal solution

And what is the value of the variables x?

julia> MOI.get(optimizer, MOI.VariablePrimal(), x)
3-element Vector{Float64}:
1.0
1.0
1.0

33.2 Implementing a solver interface

This guide outlines the basic steps to implement an interface to MathOptInterface for a new solver.

Danger

Implementing an interface to MathOptInterface for a new solver is a lot of work. Before starting,
we recommend that you join the Developer chatroom and explain a little bit about the solver you are
wrapping. If you have questions that are not answered by this guide, please ask them in the Developer
chatroom so we can improve this guide.

https://jump.dev/chatroom/
https://jump.dev/chatroom/
https://jump.dev/chatroom/


CHAPTER 33. TUTORIALS 1004

A note on the API

The API of MathOptInterface is large and varied. In order to support the diversity of solvers and use-cases, we
make heavy use of duck-typing. That is, solvers are not expected to implement the full API, nor is there a well-
defined minimal subset of what must be implemented. Instead, you should implement the API as necessary to
make the solver function as you require.

The main reason for using duck-typing is that solvers work in different ways and target different use-cases.

For example:

• Some solvers support incremental problem construction, support modification after a solve, and have
native support for things like variable names.

• Other solvers are "one-shot" solvers that require all of the problem data to construct and solve the
problem in a single function call. They do not support modification or things like variable names.

• Other "solvers" are not solvers at all, but things like file readers. These may only support functions like
read_from_file, and may not even support the ability to add variables or constraints directly.

• Finally, some "solvers" are layers which take a problem as input, transform it according to some rules,
and pass the transformed problem to an inner solver.

Preliminaries

Before starting on your wrapper, you should do some background research and make the solver accessible via
Julia.

Decide if MathOptInterface is right for you

The first step in writing a wrapper is to decide whether implementing an interface is the right thing to do.

MathOptInterface is an abstraction layer for unifying constrained mathematical optimization solvers. If your
solver doesn't fit in the category, for example, it implements a derivative-free algorithm for unconstrained
objective functions, MathOptInterface may not be the right tool for the job.

Tip

If you're not sure whether you should write an interface, ask in the Developer chatroom.

Find a similar solver already wrapped

The next step is to find (if possible) a similar solver that is already wrapped. Although not strictly necessary,
this will be a good place to look for inspiration when implementing your wrapper.

The JuMP documentation has a good list of solvers, along with the problem classes they support.

Tip

If you're not sure which solver is most similar, ask in the Developer chatroom.

Create a low-level interface

Before writing a MathOptInterface wrapper, you first need to be able to call the solver from Julia.

https://en.wikipedia.org/wiki/Duck_typing
https://jump.dev/chatroom/
https://jump.dev/JuMP.jl/stable/installation/#Supported-solvers
https://jump.dev/chatroom/
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Wrapping solvers written in Julia

If your solver is written in Julia, there's nothing to do here. Go to the next section.

Wrapping solvers written in C

Julia is well suited to wrapping solvers written in C.

Info

This is not true for C++. If you have a solver written in C++, first write a C interface, then wrap the C
interface.

Before writing a MathOptInterface wrapper, there are a few extra steps.

Create a JLL

If the C code is publicly available under an open source license, create a JLL package via Yggdrasil. The easiest
way to do this is to copy an existing solver. Good examples to follow are the COIN-OR solvers.

Warning

Building the solver via Yggdrasil is non-trivial. Please ask the Developer chatroom for help.

If the code is commercial or not publicly available, the user will need to manually install the solver. See Gurobi.jl
or CPLEX.jl for examples of how to structure this.

Use Clang.jl to wrap the C API

The next step is to use Clang.jl to automatically wrap the C API. The easiest way to do this is to follow an
example. Good examples to follow are Cbc.jl and HiGHS.jl.

Sometimes, you will need to make manual modifications to the resulting files.

Solvers written in other languages

Ask the Developer chatroom for advice. You may be able to use one of the JuliaInterop packages to call out to
the solver.

For example, SeDuMi.jl uses MATLAB.jl to call the SeDuMi solver written in MATLAB.

Structuring the package

Structure your wrapper as a Julia package. Consult the Julia documentation if you haven't done this before.

MOI solver interfaces may be in the same package as the solver itself (either the C wrapper if the solver is
accessible through C, or the Julia code if the solver is written in Julia, for example), or in a separate package
which depends on the solver package.

Note

The JuMP core contributors request that you do not use "JuMP" in the name of your package without
prior consent.

Your package should have the following structure:

https://github.com/JuliaPackaging/Yggdrasil
https://github.com/JuliaPackaging/Yggdrasil/tree/master/C/Coin-OR
https://jump.dev/chatroom/
https://github.com/jump-dev/Gurobi.jl
https://github.com/jump-dev/CPLEX.jl
https://github.com/JuliaInterop/Clang.jl
https://github.com/jump-dev/Cbc.jl/blob/master/scripts/clang.jl
https://github.com/jump-dev/HiGHS.jl/blob/master/gen/gen.jl
https://jump.dev/chatroom/
https://github.com/JuliaInterop
https://github.com/jump-dev/SeDuMi.jl
https://github.com/JuliaInterop/MATLAB.jl
https://pkgdocs.julialang.org/v1/creating-packages/
https://jump.dev/pages/governance/#core-contributors
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/.github
/workflows

ci.yml
format_check.yml
TagBot.yml

/gen
gen.jl # Code to wrap the C API

/src
NewSolver.jl
/gen

libnewsolver_api.jl
libnewsolver_common.jl

/MOI_wrapper
MOI_wrapper.jl
other_files.jl

/test
runtests.jl
/MOI_wrapper

MOI_wrapper.jl
.gitignore
.JuliaFormatter.toml
README.md
LICENSE.md
Project.toml

• The /.github folder contains the scripts for GitHub actions. The easiest way to write these is to copy
the ones from an existing solver.

• The /gen and /src/gen folders are only needed if you are wrapping a solver written in C.

• The /src/MOI_wrapper folder contains the Julia code for the MOI wrapper.

• The /test folder contains code for testing your package. See Setup tests for more information.

• The .JuliaFormatter.toml and .github/workflows/format_check.yml enforce code formatting us-
ing JuliaFormatter.jl. Check existing solvers or JuMP.jl for details.

Documentation

Your package must include documentation explaining how to use the package. The easiest approach is to
include documentation in your README.md. A more involved option is to use Documenter.jl.

Examples of packages with README-based documentation include:

• Cbc.jl

• HiGHS.jl

• SCS.jl

Examples of packages with Documenter-based documentation include:

• Alpine.jl

• COSMO.jl

• Juniper.jl

https://github.com/domluna/JuliaFormatter.jl
https://github.com/JuliaDocs/Documenter.jl
https://github.com/jump-dev/Cbc.jl
https://github.com/jump-dev/HiGHS.jl
https://github.com/jump-dev/SCS.jl
https://github.com/lanl-ansi/Alpine.jl
https://github.com/oxfordcontrol/COSMO.jl
https://github.com/lanl-ansi/Juniper.jl
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Setup tests

The best way to implement an interface to MathOptInterface is via test-driven development.

The MOI.Test submodule contains a large test suite to help check that you have implemented things correctly.

Follow the guide How to test a solver to set up the tests for your package.

Tip

Run the tests frequently when developing. However, at the start there is going to be a lot of errors.
Start by excluding large classes of tests (for example, exclude = ["test_basic_", "test_model_"],
implement any missing methods until the tests pass, then remove an exclusion and repeat.

Initial code

By this point, you should have a package setup with tests, formatting, and access to the underlying solver.
Now it's time to start writing the wrapper.

The Optimizer object

The first object to create is a subtype of AbstractOptimizer. This type is going to store everything related to
the problem.

By convention, these optimizers should not be exported and should be named PackageName.Optimizer.

import MathOptInterface as MOI

struct Optimizer <: MOI.AbstractOptimizer
# Fields go here

end

Optimizer objects for C solvers

Warning

This section is important if you wrap a solver written in C.

Wrapping a solver written in C will require the use of pointers, and for you to manually free the solver's memory
when the Optimizer is garbage collected by Julia.

Never pass a pointer directly to a Julia ccall function.

Instead, store the pointer as a field in your Optimizer, and implement Base.cconvert and Base.unsafe_convert.
Then you can pass Optimizer to any ccall function that expects the pointer.

In addition, make sure you implement a finalizer for each model you create.

If newsolver_createProblem() is the low-level function that creates the problem pointer in C, and newsolver_freeProblem(::Ptr{Cvoid})
is the low-level function that frees memory associated with the pointer, your Optimizer() function should look
like this:

https://en.wikipedia.org/wiki/Test-driven_development
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struct Optimizer <: MOI.AbstractOptimizer
ptr::Ptr{Cvoid}

function Optimizer()
ptr = newsolver_createProblem()
model = Optimizer(ptr)
finalizer(model) do m

newsolver_freeProblem(m)
return

end
return model

end
end

Base.cconvert(::Type{Ptr{Cvoid}}, model::Optimizer) = model
Base.unsafe_convert(::Type{Ptr{Cvoid}}, model::Optimizer) = model.ptr

Implement methods for Optimizer

All Optimizers must implement the following methods:

• empty!

• is_empty

Other methods, detailed below, are optional or depend on how you implement the interface.

Tip

For this and all future methods, read the docstrings to understand what each method does, what it
expects as input, and what it produces as output. If it isn't clear, let us know and we will improve the
docstrings. It is also very helpful to look at an existing wrapper for a similar solver.

You should also implement Base.summary(::IO, ::Optimizer) to print a nice string when someone shows
your model. For example

function Base.summary(io::IO, model::Optimizer)
return print(io, "NewSolver with the pointer $(model.ptr)")

end

Implement attributes

MathOptInterface uses attributes to manage different aspects of the problem.

For each attribute

• get gets the current value of the attribute

• set sets a new value of the attribute. Not all attributes can be set. For example, the user can't modify
the SolverName.
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• supports returns a Bool indicating whether the solver supports the attribute.

Info

Use attribute_value_type to check the value expected by a given attribute. You should make sure
that your get function correctly infers to this type (or a subtype of it).

Each column in the table indicates whether you need to implement the particular method for each attribute.

Attribute get set supports

SolverName Yes No No
SolverVersion Yes No No

RawSolver Yes No No
Name Yes Yes Yes

Silent Yes Yes Yes
TimeLimitSec Yes Yes Yes

ObjectiveLimit Yes Yes Yes
SolutionLimit Yes Yes Yes

NodeLimit Yes Yes Yes
RawOptimizerAttribute Yes Yes Yes

NumberOfThreads Yes Yes Yes
AbsoluteGapTolerance Yes Yes Yes
RelativeGapTolerance Yes Yes Yes

For example:

function MOI.get(model::Optimizer, ::MOI.Silent)
return # true if MOI.Silent is set

end

function MOI.set(model::Optimizer, ::MOI.Silent, v::Bool)
if v

# Set a parameter to turn off printing
else

# Restore the default printing
end
return

end

MOI.supports(::Optimizer, ::MOI.Silent) = true

Define supports_constraint

The next step is to define which constraints and objective functions you plan to support.

For each function-set constraint pair, define supports_constraint:

function MOI.supports_constraint(
::Optimizer,
::Type{MOI.VariableIndex},
::Type{MOI.ZeroOne},
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)
return true

end

To make this easier, you may want to use Unions:

function MOI.supports_constraint(
::Optimizer,
::Type{MOI.VariableIndex},
::Type{<:Union{MOI.LessThan,MOI.GreaterThan,MOI.EqualTo}},

)
return true

end

Tip

Only support a constraint if your solver has native support for it.

The big decision: incremental modification?

Now you need to decide whether to support incremental modification or not.

Incremental modification means that the user can add variables and constraints one-by-one without needing
to rebuild the entire problem, and they can modify the problem data after an optimize! call. Supporting
incremental modification means implementing functions like add_variable and add_constraint.

The alternative is to accept the problem data in a single optimize! or copy_to function call. Because these
functions see all of the data at once, it can typically call a more efficient function to load data into the underlying
solver.

Good examples of solvers supporting incremental modification are MILP solvers like GLPK.jl and Gurobi.jl. Ex-
amples of non-incremental solvers are AmplNLWriter.jl and SCS.jl

It is possible for a solver to implement both approaches, but you should probably start with one for simplicity.

Tip

Only support incremental modification if your solver has native support for it.

In general, supporting incremental modification is more work, and it usually requires some extra book-keeping.
However, it provides a more efficient interface to the solver if the problem is going to be resolvedmultiple times
with small modifications. Moreover, once you've implemented incremental modification, it's usually not much
extra work to add a copy_to interface. The converse is not true.

Tip

If this is your first time writing an interface, start with the one-shot optimize!.

The non-incremental interface

There are two ways to implement the non-incremental interface. The first uses a two-argument version of
optimize!, the second implements copy_to followed by the one-argument version of optimize!.

https://github.com/jump-dev/GLPK.jl
https://github.com/jump-dev/Gurobi.jl
https://github.com/jump-dev/AmplNLWriter.jl
https://github.com/jump-dev/SCS.jl
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If your solver does not support modification, and requires all data to solve the problem in a single function call,
you should implement the "one-shot" optimize!.

• optimize!(::ModelLike, ::ModelLike)

If your solver separates data loading and the actual optimization into separate steps, implement the copy_to
interface.

• copy_to(::ModelLike, ::ModelLike)

• optimize!(::ModelLike)

The incremental interface

Warning

Writing this interface is a lot of work. The easiest way is to consult the source code of a similar solver.

To implement the incremental interface, implement the following functions:

• add_variable

• add_variables

• add_constraint

• add_constraints

• is_valid

• delete

• optimize!(::ModelLike)

Info

Solvers do not have to support AbstractScalarFunction in GreaterThan, LessThan, EqualTo, or
Interval with a nonzero constant in the function. Throw ScalarFunctionConstantNotZero if the
function constant is not zero.

In addition, you should implement the following model attributes:

Attribute get set supports

ListOfModelAttributesSet Yes No No
ObjectiveFunctionType Yes No No

ObjectiveFunction Yes Yes Yes
ObjectiveSense Yes Yes Yes

Name Yes Yes Yes

Variable-related attributes:

Constraint-related attributes:
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Attribute get set supports

ListOfVariableAttributesSet Yes No No
ListOfVariablesWithAttributeSet Yes No No

NumberOfVariables Yes No No
ListOfVariableIndices Yes No No

Attribute get set supports

ListOfConstraintAttributesSet Yes No No
ListOfConstraintsWithAttributeSet Yes No No

NumberOfConstraints Yes No No
ListOfConstraintTypesPresent Yes No No

ConstraintFunction Yes Yes No
ConstraintSet Yes Yes No

Modifications

If your solver supports modifying data in-place, implement modify for the following AbstractModifications:

• ScalarConstantChange

• ScalarCoefficientChange

• ScalarQuadraticCoefficientChange

• VectorConstantChange

• MultirowChange

Variables constrained on creation

Some solvers require variables be associated with a set when they are created. This conflicts with the incre-
mental modification approach, since you cannot first add a free variable and then constrain it to the set.

If this is the case, implement:

• add_constrained_variable

• add_constrained_variables

• supports_add_constrained_variables

By default, MathOptInterface assumes solvers support free variables. If your solver does not support free
variables, define:

MOI.supports_add_constrained_variables(::Optimizer, ::Type{Reals}) = false
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Incremental and copy_to

If you implement the incremental interface, you have the option of also implementing copy_to.

If you don't want to implement copy_to, for example, because the solver has no API for building the problem
in a single function call, define the following fallback:

MOI.supports_incremental_interface(::Optimizer) = true

function MOI.copy_to(dest::Optimizer, src::MOI.ModelLike)
return MOI.Utilities.default_copy_to(dest, src)

end

Names

Regardless of which interface you implement, you have the option of implementing the Name attribute for
variables and constraints:

Attribute get set supports

VariableName Yes Yes Yes
ConstraintName Yes Yes Yes

If you implement names, you must also implement the following three methods:

function MOI.get(model::Optimizer, ::Type{MOI.VariableIndex}, name::String)
return # The variable named `name`.

end

function MOI.get(model::Optimizer, ::Type{MOI.ConstraintIndex}, name::String)
return # The constraint any type named `name`.

end

function MOI.get(
model::Optimizer,
::Type{MOI.ConstraintIndex{F,S}},
name::String,

) where {F,S}
return # The constraint of type F-in-S named `name`.

end

These methods have the following rules:

• If there is no variable or constraint with the name, return nothing

• If there is a single variable or constraint with that name, return the variable or constraint

• If there are multiple variables or constraints with the name, throw an error.
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Warning

You should not implement ConstraintName for VariableIndex constraints. If you implement
ConstraintName for other constraints, you can add the following two methods to disable
ConstraintName for VariableIndex constraints.

function MOI.supports(
::Optimizer,
::MOI.ConstraintName,
::Type{<:MOI.ConstraintIndex{MOI.VariableIndex,<:MOI.AbstractScalarSet}},

)
return throw(MOI.VariableIndexConstraintNameError())

end
function MOI.set(

::Optimizer,
::MOI.ConstraintName,
::MOI.ConstraintIndex{MOI.VariableIndex,<:MOI.AbstractScalarSet},
::String,

)
return throw(MOI.VariableIndexConstraintNameError())

end

Solutions

Implement optimize! to solve the model:

• optimize!

All Optimizers must implement the following attributes:

• DualStatus

• PrimalStatus

• RawStatusString

• ResultCount

• TerminationStatus

Info

You only need to implement get for solution attributes. Don't implement set or supports.

Note

Solver wrappers should document how the low-level statuses map to the MOI statuses. Statuses like
NEARLY_FEASIBLE_POINT and INFEASIBLE_POINT, are designed to be used when the solver explicitly
indicates that relaxed tolerances are satisfied or the returned point is infeasible, respectively.

You should also implement the following attributes:
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• ObjectiveValue

• SolveTimeSec

• VariablePrimal

Tip

Attributes like VariablePrimal and ObjectiveValue are indexed by the result count. Use
MOI.check_result_index_bounds(model, attr) to throw an error if the attribute is not available.

If your solver returns dual solutions, implement:

• ConstraintDual

• DualObjectiveValue

For integer solvers, implement:

• ObjectiveBound

• RelativeGap

If applicable, implement:

• SimplexIterations

• BarrierIterations

• NodeCount

If your solver uses the Simplex method, implement:

• ConstraintBasisStatus

If your solver accepts primal or dual warm-starts, implement:

• VariablePrimalStart

• ConstraintDualStart

Other tips

Here are some other points to be aware of when writing your wrapper.

Unsupported constraints at runtime

In some cases, your solver may support a particular type of constraint (for example, quadratic constraints),
but only if the data meets some condition (for example, it is convex).

In this case, declare that you support the constraint, and throw AddConstraintNotAllowed.
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Dealing with multiple variable bounds

MathOptInterface uses VariableIndex constraints to represent variable bounds. Defining multiple variable
bounds on a single variable is not allowed.

Throw LowerBoundAlreadySet or UpperBoundAlreadySet if the user adds a constraint that results in multiple
bounds.

Only throw if the constraints conflict. It is okay to add VariableIndex-in-GreaterThan and then VariableIndex-
in-LessThan, but not VariableIndex-in-Interval and then VariableIndex-in-LessThan,

Expect duplicate coefficients

Solvers must expect that functions such as ScalarAffineFunction and VectorQuadraticFunctionmay con-
tain duplicate coefficients.

For example, ScalarAffineFunction([ScalarAffineTerm(x, 1), ScalarAffineTerm(x, 1)], 0.0).

Use Utilities.canonical to return a new function with the duplicate coefficients aggregated together.

Don't modify user-data

All data passed to the solver must be copied immediately to internal data structures. Solvers may not modify
any input vectors and must assume that input vectors will not be modified by users in the future.

This applies, for example, to the terms vector in ScalarAffineFunction. Vectors returned to the user, for
example, via ObjectiveFunction or ConstraintFunction attributes, must not be modified by the solver af-
terwards. The in-place version of get! can be used by users to avoid extra copies in this case.

Column Generation

There is no special interface for column generation. If the solver has a special API for setting coefficients in
existing constraints when adding a new variable, it is possible to queue modifications and new variables and
then call the solver's API once all of the new coefficients are known.

Solver-specific attributes

You don't need to restrict yourself to the attributes defined in the MathOptInterface.jl package.

Solver-specific attributes should be specified by creating an appropriate subtype of AbstractModelAttribute,
AbstractOptimizerAttribute, AbstractVariableAttribute, or AbstractConstraintAttribute.

For example, Gurobi.jl adds attributes for multiobjective optimization by defining:

struct NumberOfObjectives <: MOI.AbstractModelAttribute end

function MOI.set(model::Optimizer, ::NumberOfObjectives, n::Integer)
# Code to set NumberOfObjectives
return

end

function MOI.get(model::Optimizer, ::NumberOfObjectives)
n = # Code to get NumberOfObjectives
return n

end

Then, the user can write:

https://github.com/jump-dev/Gurobi.jl/blob/d9cebe4ec05a102df8917ff2602e6c38abdac090/src/MOI_multi_objective.jl#L1-L15
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model = Gurobi.Optimizer()
MOI.set(model, Gurobi.NumberofObjectives(), 3)

33.3 Transitioning from MathProgBase

MathOptInterface is a replacement for MathProgBase.jl. However, it is not a direct replacement.

Transitioning a solver interface

MathOptInterface is more extensive than MathProgBase which may make its implementation seem daunting
at first. There are however numerous utilities in MathOptInterface that the simplify implementation process.

For more information, read Implementing a solver interface.

Transitioning the high-level functions

MathOptInterface doesn't provide replacements for the high-level interfaces in MathProgBase. We recommend
you use JuMP as a modeling interface instead.

Tip

If you haven't used JuMP before, start with the tutorial Getting started with JuMP

linprog

Here is one way of transitioning from linprog:

using JuMP

function linprog(c, A, sense, b, l, u, solver)
N = length(c)
model = Model(solver)
@variable(model, l[i] <= x[i=1:N] <= u[i])
@objective(model, Min, c' * x)
eq_rows, ge_rows, le_rows = sense .== '=', sense .== '>', sense .== '<'
@constraint(model, A[eq_rows, :] * x .== b[eq_rows])
@constraint(model, A[ge_rows, :] * x .>= b[ge_rows])
@constraint(model, A[le_rows, :] * x .<= b[le_rows])
optimize!(model)
return (

status = termination_status(model),
objval = objective_value(model),
sol = value.(x)

)
end

mixintprog

Here is one way of transitioning from mixintprog:

https://github.com/JuliaOpt/MathProgBase.jl
https://github.com/jump-dev/JuMP.jl
https://jump.dev/JuMP.jl/stable/tutorials/getting_started/getting_started_with_JuMP/
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using JuMP

function mixintprog(c, A, rowlb, rowub, vartypes, lb, ub, solver)
N = length(c)
model = Model(solver)
@variable(model, lb[i] <= x[i=1:N] <= ub[i])
for i in 1:N

if vartypes[i] == :Bin
set_binary(x[i])

elseif vartypes[i] == :Int
set_integer(x[i])

end
end
@objective(model, Min, c' * x)
@constraint(model, rowlb .<= A * x .<= rowub)
optimize!(model)
return (

status = termination_status(model),
objval = objective_value(model),
sol = value.(x)

)
end

quadprog

Here is one way of transitioning from quadprog:

using JuMP

function quadprog(c, Q, A, rowlb, rowub, lb, ub, solver)
N = length(c)
model = Model(solver)
@variable(model, lb[i] <= x[i=1:N] <= ub[i])
@objective(model, Min, c' * x + 0.5 * x' * Q * x)
@constraint(model, rowlb .<= A * x .<= rowub)
optimize!(model)
return (

status = termination_status(model),
objval = objective_value(model),
sol = value.(x)

)
end

33.4 Implementing a constraint bridge

This guide outlines the basic steps to create a new bridge from a constraint expressed in the formalism
Function-in-Set.

Preliminaries

First, decide on the set you want to bridge. Then, study its properties: the most important one is whether the
set is scalar or vector, which impacts the dimensionality of the functions that can be used with the set.
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• A scalar function only has one dimension. MOI defines three types of scalar functions: a variable
(VariableIndex), an affine function (ScalarAffineFunction), or a quadratic function (ScalarQuadraticFunction).

• A vector function has several dimensions (at least one). MOI defines three types of vector functions: sev-
eral variables (VectorOfVariables), an affine function (VectorAffineFunction), or a quadratic function
(VectorQuadraticFunction). The main difference with scalar functions is that the order of dimensions
can be very important: for instance, in an indicator constraint (Indicator), the first dimension indicates
whether the constraint about the second dimension is active.

To explain how to implement a bridge, we present the example of Bridges.Constraint.FlipSignBridge.
This bridge maps <= (LessThan) constraints to >= (GreaterThan) constraints. This corresponds to reversing
the sign of the inequality. We focus on scalar affine functions (we disregard the cases of a single variable or of
quadratic functions). This example is a simplified version of the code included in MOI.

Four mandatory parts in a constraint bridge

The first part of a constraint bridge is a new concrete subtype of Bridges.Constraint.AbstractBridge. This
type must have fields to store all the new variables and constraints that the bridge will add. Typically, these
types are parametrized by the type of the coefficients in the model.

Then, three sets of functions must be defined:

1. Bridges.Constraint.bridge_constraint: this function implements the bridge and creates the re-
quired variables and constraints.

2. supports_constraint: these functions must return true when the combination of function and set is
supported by the bridge. By default, the base implementation always returns false and the bridge does
not have to provide this implementation.

3. Bridges.added_constrained_variable_types and Bridges.added_constraint_types: these func-
tions return the types of variables and constraints that this bridge adds. They are used to compute the
set of other bridges that are required to use the one you are defining, if need be.

More functions can be implemented, for instance to retrieve properties from the bridge or deleting a bridged
constraint.

1. Structure for the bridge

A typical struct behind a bridge depends on the type of the coefficients that are used for the model (typically
Float64, but coefficients might also be integers or complex numbers).

This structure must hold a reference to all the variables and the constraints that are created as part of the
bridge.

The type of this structure is used throughout MOI as an identifier for the bridge. It is passed as argument to
most functions related to bridges.

The best practice is to have the name of this type end with Bridge.

In our example, the bridgemaps any ScalarAffineFunction{T}-in-LessThan{T} constraint to a single ScalarAffineFunction{T}-
in-GreaterThan{T} constraint. The affine function has coefficients of type T. The bridge is parametrized with
T, so that the constraint that the bridge creates also has coefficients of type T.



CHAPTER 33. TUTORIALS 1020

struct SignBridge{T<:Number} <: Bridges.Constraint.AbstractBridge
constraint::ConstraintIndex{ScalarAffineFunction{T}, GreaterThan{T}}

end

2. Bridge creation

The function Bridges.Constraint.bridge_constraint is called whenever the bridge is instantiated for a spe-
cificmodel, with the given function and set. The arguments to bridge_constraint are similar to add_constraint,
with the exception of the first argument: it is the Type of the struct defined in the first step (for our example,
Type{SignBridge{T}}).

bridge_constraint returns an instance of the struct defined in the first step. the first step.

In our example, the bridge constraint could be defined as:

function Bridges.Constraint.bridge_constraint(
::Type{SignBridge{T}}, # Bridge to use.
model::ModelLike, # Model to which the constraint is being added.
f::ScalarAffineFunction{T}, # Function to rewrite.
s::LessThan{T}, # Set to rewrite.

) where {T}
# Create the variables and constraints required for the bridge.
con = add_constraint(model, -f, GreaterThan(-s.upper))

# Return an instance of the bridge type with a reference to all the
# variables and constraints that were created in this function.
return SignBridge(con)

end

3. Supported constraint types

The function supports_constraint determines whether the bridge type supports a given combination of func-
tion and set.

This function must closely match bridge_constraint, because it will not be called if supports_constraint
returns false.

function supports_constraint(
::Type{SignBridge{T}}, # Bridge to use.
::Type{ScalarAffineFunction{T}}, # Function to rewrite.
::Type{LessThan{T}}, # Set to rewrite.

) where {T}
# Do some computation to ensure that the constraint is supported.
# Typically, you can directly return true.
return true

end

4. Metadata about the bridge

To determine whether a bridge can be used, MOI uses a shortest-path algorithm that uses the variable types
and the constraints that the bridge can create. This information is communicated from the bridge to MOI using
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the functions Bridges.added_constrained_variable_types and Bridges.added_constraint_types. Both
return lists of tuples: either a list of 1-tuples containing the variable types (typically, ZeroOne or Integer) or
a list of 2-tuples contained the functions and sets (like ScalarAffineFunction{T}-GreaterThan).

For our example, the bridge does not create any constrained variables, and only ScalarAffineFunction{T}-
in-GreaterThan{T} constraints:

function Bridges.added_constrained_variable_types(::Type{SignBridge{T}}) where {T}
# The bridge does not create variables, return an empty list of tuples:
return Tuple{Type}[]

end

function Bridges.added_constraint_types(::Type{SignBridge{T}}) where {T}
return Tuple{Type,Type}[

# One element per F-in-S the bridge creates.
(ScalarAffineFunction{T}, GreaterThan{T}),

]
end

A bridge that creates binary variables would rather have this definition of added_constrained_variable_types:

function Bridges.added_constrained_variable_types(::Type{SomeBridge{T}}) where {T}
# The bridge only creates binary variables:
return Tuple{Type}[(ZeroOne,)]

end

Warning

If you declare the creation of constrained variables in added_constrained_variable_types, the cor-
responding constraint type VariableIndex must not be indicated in added_constraint_types. This
would restrict the use of the bridge to solvers that can add such a constraint after the variable is
created.

More concretely, if you declare in added_constrained_variable_types that your bridge creates
binary variables (ZeroOne), and if you never add such a constraint afterward (you do not call
add_constraint(model, var, ZeroOne())), then you must not list (VariableIndex, ZeroOne) in
added_constraint_types.

Typically, the function Bridges.Constraint.concrete_bridge_type does not have to be defined for most
bridges.

Bridge registration

For a bridge to be used by MOI, it must be known by MOI.

SingleBridgeOptimizer

The first way to do so is to create a single-bridge optimizer. This type of optimizer wraps another optimizer
and adds the possibility to use only one bridge. It is especially useful when unit testing bridges.

It is common practice to use the same name as the type defined for the bridge (SignBridge, in our example)
without the suffix Bridge.
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const Sign{T,OT<: ModelLike} =
SingleBridgeOptimizer{SignBridge{T}, OT}

In the context of unit tests, this bridge is used in conjunction with a Utilities.MockOptimizer:

mock = Utilities.MockOptimizer(
Utilities.UniversalFallback(Utilities.Model{Float64}()),

)
bridged_mock = Sign{Float64}(mock)

New bridge for a LazyBridgeOptimizer

Typical user-facing models for MOI are based on Bridges.LazyBridgeOptimizer. For instance, this type of
model is returned by Bridges.full_bridge_optimizer. These models can be added more bridges by using
Bridges.add_bridge:

inner_optimizer = Utilities.Model{Float64}()
optimizer = Bridges.full_bridge_optimizer(inner_optimizer, Float64)
Bridges.add_bridge(optimizer, SignBridge{Float64})

Bridge improvements

Attribute retrieval

Like models, bridges have attributes that can be retrieved using get and set. The most important ones are
the number of variables and constraints, but also the lists of variables and constraints.

In our example, we only have one constraint and only have to implement the NumberOfConstraints and
ListOfConstraintIndices attributes:

function get(
::SignBridge{T},
::NumberOfConstraints{

ScalarAffineFunction{T},
GreaterThan{T},

},
) where {T}

return 1
end

function get(
bridge::SignBridge{T},
::ListOfConstraintIndices{

ScalarAffineFunction{T},
GreaterThan{T},

},
) where {T}

return [bridge.constraint]
end

You must implement one such pair of functions for each type of constraint the bridge adds to the model.
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Warning

Avoid returning a list from the bridge object without copying it. Users must be able to change the
contents of the returned list without altering the bridge object.

For variables, the situation is simpler. If your bridge creates new variables, youmust implement the NumberOfVariables
and ListOfVariableIndices attributes. However, these attributes do not have parameters, unlike their con-
straint counterparts. Only two functions suffice:

function get(
::SignBridge{T},
::NumberOfVariables,

) where {T}
return 0

end

function get(
::SignBridge{T},
::ListOfVariableIndices,

) where {T}
return VariableIndex[]

end

In order for the user to be able to access the function and set of the original constraint, the bridge needs to
implement getters for the ConstraintFunction and ConstraintSet attributes:

function get(
model::MOI.ModelLike,
attr::MOI.ConstraintFunction,
bridge::SignBridge,

)
return -MOI.get(model, attr, bridge.constraint)

end

function get(
model::MOI.ModelLike,
attr::MOI.ConstraintSet,
bridge::SignBridge,

)
set = MOI.get(model, attr, bridge.constraint)
return MOI.LessThan(-set.lower)

end

Warning

Alternatively, one could store the original function and set in SignBridge during
Bridges.Constraint.bridge_constraint to make these getters simpler and more efficient. On the
other hand, this will increase the memory footprint of the bridges as the garbage collector won't be
able to delete that object. The convention is to not store the function in the bridge and not care too
much about the efficiency of these getters. If the user needs efficient getters for ConstraintFunction
then they should use a Utilities.CachingOptimizer.
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Model modifications

To avoid copying the model when the user request to change a constraint, MOI provides modify. Bridges can
also implement this API to allow certain changes, such as coefficient changes.

In our case, a modification of a coefficient in the original constraint (for example, replacing the value of the
coefficient of a variable in the affine function) must be transmitted to the constraint created by the bridge, but
with a sign change.

function modify(
model::ModelLike,
bridge::SignBridge,
change::ScalarCoefficientChange,

)
modify(

model,
bridge.constraint,
ScalarCoefficientChange(change.variable, -change.new_coefficient),

)
return

end

Bridge deletion

When a bridge is deleted, the constraints it added must be deleted too.

function delete(model::ModelLike, bridge::SignBridge)
delete(model, bridge.constraint)
return

end

33.5 Manipulating expressions

This guide highlights a syntactically appealing way to build expressions at the MOI level, but also to look at
their contents. It may be especially useful when writing models or bridge code.

Creating functions

This section details the ways to create functions with MathOptInterface.

Creating scalar affine functions

The simplest scalar function is simply a variable:

julia> x = MOI.add_variable(model) # Create the variable x
MOI.VariableIndex(1)

This type of function is extremely simple; to express more complex functions, other types must be used. For
instance, a ScalarAffineFunction is a sum of linear terms (a factor times a variable) and a constant. Such
an object can be built using the standard constructor:
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julia> f = MOI.ScalarAffineFunction([MOI.ScalarAffineTerm(1, x)], 2) # x + 2
(2) + (1) MOI.VariableIndex(1)

However, you can also use operators to build the same scalar function:

julia> f = x + 2
(2) + (1) MOI.VariableIndex(1)

Creating scalar quadratic functions

Scalar quadratic functions are stored in ScalarQuadraticFunction objects, in a way that is highly similar to
scalar affine functions. You can obtain a quadratic function as a product of affine functions:

julia> 1 * x * x
(0) + 1.0 MOI.VariableIndex(1)²

julia> f * f # (x + 2)²
(4) + (2) MOI.VariableIndex(1) + (2) MOI.VariableIndex(1) + 1.0 MOI.VariableIndex(1)²

julia> f^2 # (x + 2)² too
(4) + (2) MOI.VariableIndex(1) + (2) MOI.VariableIndex(1) + 1.0 MOI.VariableIndex(1)²

Creating vector functions

A vector function is a function with several values, irrespective of the number of input variables. Similarly to
scalar functions, there are three main types of vector functions: VectorOfVariables, VectorAffineFunction,
and VectorQuadraticFunction.

The easiest way to create a vector function is to stack several scalar functions using Utilities.vectorize. It
takes a vector as input, and the generated vector function (of the most appropriate type) has each dimension
corresponding to a dimension of the vector.

julia> g = MOI.Utilities.vectorize([f, 2 * f])
┌ ┐
│(2) + (1) MOI.VariableIndex(1)│
│(4) + (2) MOI.VariableIndex(1)│
└ ┘

Warning

Utilities.vectorize only takes a vector of similar scalar functions: you cannot mix VariableIndex
and ScalarAffineFunction, for instance. In practice, it means that Utilities.vectorize([x,
f]) does not work; you should rather use Utilities.vectorize([1 * x, f]) instead to only have
ScalarAffineFunction objects.
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Canonicalizing functions

In more advanced use cases, you might need to ensure that a function is "canonical." Functions are stored
as an array of terms, but there is no check that these terms are redundant: a ScalarAffineFunction object
might have two terms with the same variable, like x + x + 1. These terms could be merged without changing
the semantics of the function: 2x + 1.

Working with these objects might be cumbersome. Canonicalization helps maintain redundancy to zero.

Utilities.is_canonical checks whether a function is already in its canonical form:

julia> MOI.Utilities.is_canonical(f + f) # (x + 2) + (x + 2) is stored as x + x + 4
false

Utilities.canonical returns the equivalent canonical version of the function:

julia> MOI.Utilities.canonical(f + f) # Returns 2x + 4
(4) + (2) MOI.VariableIndex(1)

Exploring functions

At some point, you might need to dig into a function, for instance to map it into solver constructs.

Vector functions

Utilities.scalarize returns a vector of scalar functions from a vector function:

julia> MOI.Utilities.scalarize(g) # Returns a vector [f, 2 * f].
2-element Vector{MathOptInterface.ScalarAffineFunction{Int64}}:
(2) + (1) MOI.VariableIndex(1)
(4) + (2) MOI.VariableIndex(1)

Note

Utilities.eachscalar returns an iterator on the dimensions, which serves the same purpose as
Utilities.scalarize.

output_dimension returns the number of dimensions of the output of a function:

julia> MOI.output_dimension(g)
2

33.6 Latency

MathOptInterface suffers the "time-to-first-solve" problem of start-up latency.

This hurts both the user- and developer-experience of MathOptInterface. In the first case, because simple
models have a multi-second delay before solving, and in the latter, because our tests take so long to run.

This page contains some advice on profiling and fixing latency-related problems in the MathOptInterface.jl
repository.
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Background

Before reading this part of the documentation, you should familiarize yourself with the reasons for latency in
Julia and how to fix them.

• Read the blogposts on julialang.org on precompilation and SnoopCompile

• Read the SnoopCompile documentation.

• Watch Tim Holy's talk at JuliaCon 2021

• Watch the package development workshop at JuliaCon 2021

Causes

There are three main causes of latency in MathOptInterface:

1. A large number of types

2. Lack of method ownership

3. Type-instability in the bridge layer

A large number of types

Julia is very good at specializing method calls based on the input type. Each specialization has a compilation
cost, but the benefit of faster run-time performance.

The best-case scenario is for a method to be called a large number of times with a single set of argument
types. The worst-case scenario is for a method to be called a single time for a large set of argument types.

Because of MathOptInterface's function-in-set formulation, we fall into the worst-case situation.

This is a fundamental limitation of Julia, so there isn't much we can do about it. However, if we can precompile
MathOptInterface, much of the cost can be shifted from start-up latency to the time it takes to precompile a
package on installation.

However, there are two things which make MathOptInterface hard to precompile.

Lack of method ownership

Lack of method ownership happens when a call is made using a mix of structs and methods from different
modules. Because of this, no single module "owns" the method that is being dispatched, and so it cannot be
precompiled.

Tip

This is a slightly simplified explanation. Read the precompilation tutorial for a more in-depth discussion
on back-edges.

Unfortunately, the design of MOI means that this is a frequent occurrence: we have a bunch of types in
MOI.Utilities that wrap types defined in external packages (for example, the Optimizers), which implement
methods of functions defined in MOI (for example, add_variable, add_constraint).

Here's a simple example of method-ownership in practice:

https://julialang.org/blog/2021/01/precompile_tutorial/
https://julialang.org/blog/2021/01/snoopi_deep/
https://timholy.github.io/SnoopCompile.jl/stable/
https://www.youtube.com/watch?v=rVBgrWYKLHY
https://www.youtube.com/watch?v=wXRMwJdEjX4
https://julialang.org/blog/2021/01/precompile_tutorial/
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module MyMOI
struct Wrapper{T}

inner::T
end
optimize!(x::Wrapper) = optimize!(x.inner)
end # MyMOI

module MyOptimizer
using ..MyMOI
struct Optimizer end
MyMOI.optimize!(x::Optimizer) = 1
end # MyOptimizer

using SnoopCompile
model = MyMOI.Wrapper(MyOptimizer.Optimizer())

julia> tinf = @snoopi_deep MyMOI.optimize!(model)
InferenceTimingNode: 0.008256/0.008543 on InferenceFrameInfo for Core.Compiler.Timings.ROOT() with

1 direct children↪→

The result is that there was one method that required type inference. If we visualize tinf:

using ProfileView
ProfileView.view(flamegraph(tinf))

we see a flamegraphwith a large red-bar indicating that themethod MyMOI.optimize(MyMOI.Wrapper{MyOptimizer.Optimizer})
cannot be precompiled.

To fix this, we need to designate a module to "own" that method (that is, create a back-edge). The easiest
way to do this is for MyOptimizer to call MyMOI.optimize(MyMOI.Wrapper{MyOptimizer.Optimizer}) during
using MyOptimizer. Let's see that in practice:

module MyMOI
struct Wrapper{T}

inner::T
end
optimize(x::Wrapper) = optimize(x.inner)
end # MyMOI

module MyOptimizer
using ..MyMOI
struct Optimizer end
MyMOI.optimize(x::Optimizer) = 1
# The syntax of this let-while loop is very particular:
# * `let ... end` keeps everything local to avoid polluting the MyOptimizer
# namespace
# * `while true ... break end` runs the code once, and forces Julia to compile
# the inner loop, rather than interpret it.
let

while true
model = MyMOI.Wrapper(Optimizer())
MyMOI.optimize(model)
break
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end
end
end # MyOptimizer

using SnoopCompile
model = MyMOI.Wrapper(MyOptimizer.Optimizer())

julia> tinf = @snoopi_deep MyMOI.optimize(model)
InferenceTimingNode: 0.006822/0.006822 on InferenceFrameInfo for Core.Compiler.Timings.ROOT() with

0 direct children↪→

There are now 0 direct children that required type inference because themethodwas already stored in MyOptimizer!

Unfortunately, this trick only works if the call-chain is fully inferrable. If there are breaks (due to type instability),
then the benefit of doing this is reduced. And unfortunately for us, the design of MathOptInterface has a lot of
type instabilities.

Type instability in the bridge layer

Most of MathOptInterface is pretty good at ensuring type-stability. However, a key component is not type
stable, and that is the bridging layer.

In particular, the bridging layer defines Bridges.LazyBridgeOptimizer, which has fields like:

struct LazyBridgeOptimizer
constraint_bridge_types::Vector{Any}
constraint_node::Dict{Tuple{Type,Type},ConstraintNode}
constraint_types::Vector{Tuple{Type,Type}}

end

This is because the LazyBridgeOptimizer needs to be able to deal with any function-in-set type passed to it,
and we also allow users to pass additional bridges that they defined in external packages.

So to recap, MathOptInterface suffers package latency because:

1. there are a large number of types and functions

2. and these are split between multiple modules, including external packages

3. and there are type-instabilities like those in the bridging layer.

Resolutions

There are no magic solutions to reduce latency. Issue #1313 tracks progress on reducing latency in MathOpt-
Interface.

A useful script is the following (replace GLPK as needed):

import GLPK
import MathOptInterface as MOI

function example_diet(optimizer, bridge)
category_data = [

1800.0 2200.0;

https://github.com/jump-dev/MathOptInterface.jl/issues/1313
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91.0 Inf;
0.0 65.0;
0.0 1779.0

]
cost = [2.49, 2.89, 1.50, 1.89, 2.09, 1.99, 2.49, 0.89, 1.59]
food_data = [

410 24 26 730;
420 32 10 1190;
560 20 32 1800;
380 4 19 270;
320 12 10 930;
320 15 12 820;
320 31 12 1230;
100 8 2.5 125;
330 8 10 180

]
bridge_model = if bridge

MOI.instantiate(optimizer; with_bridge_type=Float64)
else

MOI.instantiate(optimizer)
end
model = MOI.Utilities.CachingOptimizer(

MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()),
MOI.Utilities.AUTOMATIC,

)
MOI.Utilities.reset_optimizer(model, bridge_model)
MOI.set(model, MOI.Silent(), true)
nutrition = MOI.add_variables(model, size(category_data, 1))
for (i, v) in enumerate(nutrition)

MOI.add_constraint(model, v, MOI.GreaterThan(category_data[i, 1]))
MOI.add_constraint(model, v, MOI.LessThan(category_data[i, 2]))

end
buy = MOI.add_variables(model, size(food_data, 1))
MOI.add_constraint.(model, buy, MOI.GreaterThan(0.0))
MOI.set(model, MOI.ObjectiveSense(), MOI.MIN_SENSE)
f = MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.(cost, buy), 0.0)
MOI.set(model, MOI.ObjectiveFunction{typeof(f)}(), f)
for (j, n) in enumerate(nutrition)

f = MOI.ScalarAffineFunction(
MOI.ScalarAffineTerm.(food_data[:, j], buy),
0.0,

)
push!(f.terms, MOI.ScalarAffineTerm(-1.0, n))
MOI.add_constraint(model, f, MOI.EqualTo(0.0))

end
MOI.optimize!(model)
term_status = MOI.get(model, MOI.TerminationStatus())
@assert term_status == MOI.OPTIMAL
MOI.add_constraint(

model,
MOI.ScalarAffineFunction(

MOI.ScalarAffineTerm.(1.0, [buy[end-1], buy[end]]),
0.0,

),
MOI.LessThan(6.0),



CHAPTER 33. TUTORIALS 1031

Figure 33.1: flamegraph

)
MOI.optimize!(model)
@assert MOI.get(model, MOI.TerminationStatus()) == MOI.INFEASIBLE
return

end

if length(ARGS) > 0
bridge = get(ARGS, 2, "") != "--no-bridge"
println("Running: $(ARGS[1]) $(get(ARGS, 2, ""))")
@time example_diet(GLPK.Optimizer, bridge)
@time example_diet(GLPK.Optimizer, bridge)
exit(0)

end

You can create a flame-graph via

using SnoopCompile
tinf = @snoopi_deep example_diet(GLPK.Optimizer, true)
using ProfileView
ProfileView.view(flamegraph(tinf))

Here's how things looked in mid-August 2021:
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There are a few opportunities for improvement (non-red flames, particularly on the right). But themain problem
is a large red (non-precompilable due to method ownership) flame.



Chapter 34

Manual

34.1 Standard form problem

MathOptInterface represents optimization problems in the standard form:

min
x∈Rn

f0(x) (34.1)

s.t. fi(x) ∈ Si i = 1 . . .m (34.2)

where:

• the functions f0, f1, . . . , fm are specified by AbstractFunction objects

• the sets S1, . . . ,Sm are specified by AbstractSet objects

Tip

For more information on this standard form, read our paper.

MOI defines some commonly used functions and sets, but the interface is extensible to other sets recognized
by the solver.

Functions

The function types implemented in MathOptInterface.jl are:

Extensions for nonlinear programming are present but not yet well documented.

One-dimensional sets

The one-dimensional set types implemented in MathOptInterface.jl are:

Vector cones

The vector-valued set types implemented in MathOptInterface.jl are:

1033

https://arxiv.org/abs/2002.03447
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Function Description

VariableIndex xj , the projection onto a single coordinate defined by a variable index j.
VectorOfVariables The projection onto multiple coordinates (that is, extracting a sub-vector).
ScalarAffineFunction aTx+ b, where a is a vector and b scalar.
ScalarNonlinearFunction f(x), where f is a nonlinear function.
VectorAffineFunction Ax+ b, where A is a matrix and b is a vector.
ScalarQuadraticFunction 1

2x
TQx+ aTx+ b, where Q is a symmetric matrix, a is a vector, and b is a

constant.
VectorQuadraticFunction A vector of scalar-valued quadratic functions.
VectorNonlinearFunction f(x), where f is a vector-valued nonlinear function.

Set Description

LessThan(u) (−∞, u]
GreaterThan(l) [l,∞)
EqualTo(v) {v}
Interval(l, u) [l, u]
Integer() Z
ZeroOne() {0, 1}
Semicontinuous(l, u) {0} ∪ [l, u]
Semiinteger(l, u) {0} ∪ {l, l + 1, . . . , u− 1, u}

Set Description

Reals(d) Rd

Zeros(d) 0d

Nonnegatives(d) {x ∈ Rd : x ≥ 0}
Nonpositives(d) {x ∈ Rd : x ≤ 0}
SecondOrderCone(d) {(t, x) ∈ Rd : t ≥ ‖x‖2}
RotatedSecondOrderCone(d) {(t, u, x) ∈ Rd : 2tu ≥ ‖x‖22, t ≥ 0, u ≥ 0}
ExponentialCone() {(x, y, z) ∈ R3 : y exp(x/y) ≤ z, y > 0}
DualExponentialCone() {(u, v, w) ∈ R3 : −u exp(v/u) ≤ exp(1)w, u < 0}
GeometricMeanCone(d) {(t, x) ∈ R1+n : x ≥ 0, t ≤ n

√
x1x2 · · ·xn} where n is d− 1

PowerCone(α) {(x, y, z) ∈ R3 : xαy1−α ≥ |z|, x ≥ 0, y ≥ 0}

DualPowerCone(α) {(u, v, w) ∈ R3 :
(
u
α

)α ( v
1−α

)1−α

≥ |w|, u, v ≥ 0}
NormOneCone(d) {(t, x) ∈ Rd : t ≥

∑
i|xi|}

NormInfinityCone(d) {(t, x) ∈ Rd : t ≥ maxi|xi|}
RelativeEntropyCone(d) {(u, v, w) ∈ Rd : u ≥

∑
i wi log(wi

vi
), vi ≥ 0, wi ≥ 0}

HyperRectangle(l, u) {x ∈ R̄d : xi ∈ [li, ui]∀i = 1, . . . , d}

NormCone(p, d) {(t, x) ∈ Rd : t ≥
(∑

i

|xi|p
) 1

p

}

Matrix cones

The matrix-valued set types implemented in MathOptInterface.jl are:

Some of these cones can take two forms: XXXConeTriangle and XXXConeSquare.

In XXXConeTriangle sets, the matrix is assumed to be symmetric, and the elements are provided by a vector,
in which the entries of the upper-right triangular part of thematrix are given column by column (or equivalently,
the entries of the lower-left triangular part are given row by row).



CHAPTER 34. MANUAL 1035

Set Description

RootDetConeTriangle(d) {(t,X) ∈ R1+d(1+d)/2 : t ≤
det(X)1/d, X is the upper triangle of a PSD matrix}

RootDetConeSquare(d) {(t,X) ∈ R1+d2

: t ≤ det(X)1/d, X is a PSD matrix}
PositiveSemidefiniteConeTriangle(d){X ∈ Rd(d+1)/2 : X is the upper triangle of a PSD matrix}
PositiveSemidefiniteConeSquare(d){X ∈ Rd2

: X is a PSD matrix}
LogDetConeTriangle(d) {(t, u,X) ∈ R2+d(1+d)/2 : t ≤

u log(det(X/u)), X is the upper triangle of a PSD matrix, u > 0}
LogDetConeSquare(d) {(t, u,X) ∈ R2+d2

: t ≤
u log(det(X/u)), X is a PSD matrix, u > 0}

NormSpectralCone(r, c) {(t,X) ∈ R1+r×c : t ≥ σ1(X), X is a r × c matrix}
NormNuclearCone(r, c) {(t,X) ∈ R1+r×c : t ≥

∑
i σi(X), X is a r × c matrix}

HermitianPositiveSemidefiniteConeTriangle(d)The cone of Hermitian positive semidefinite matrices, with
side_dimension rows and columns.
Scaled(S) The set S scaled so that Utilities.set_dot corresponds to

LinearAlgebra.dot

In XXXConeSquare sets, the entries of the matrix are given column by column (or equivalently, row by row),
and the matrix is constrained to be symmetric. As an example, given a 2-by-2 matrix of variables X and a one-
dimensional variable t, we can specify a root-det constraint as [t, X11, X12, X22] ∈ RootDetConeTriangle
or [t, X11, X12, X21, X22] ∈ RootDetConeSquare.

We provide both forms to enable flexibility for solvers who may natively support one or the other. Transfor-
mations between XXXConeTriangle and XXXConeSquare are handled by bridges, which removes the chance
of conversion mistakes by users or solver developers.

Multi-dimensional sets with combinatorial structure

Other sets are vector-valued, with a particular combinatorial structure. Read their docstrings for more infor-
mation on how to interpret them.

Set Description

SOS1 A Special Ordered Set (SOS) of Type I
SOS2 A Special Ordered Set (SOS) of Type II
Indicator A set to specify an indicator constraint
Complements A set to specify a mixed complementarity constraint
AllDifferent The all_different global constraint
BinPacking The bin_packing global constraint
Circuit The circuit global constraint
CountAtLeast The at_least global constraint
CountBelongs The nvalue global constraint
CountDistinct The distinct global constraint
CountGreaterThan The count_gt global constraint
Cumulative The cumulative global constraint
Path The path global constraint
Table The table global constraint
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34.2 Models

The most significant part of MOI is the definition of the model API that is used to specify an instance of an
optimization problem (for example, by adding variables and constraints). Objects that implement the model
API must inherit from the ModelLike abstract type.

Notably missing from the model API is the method to solve an optimization problem. ModelLike objects may
store an instance (for example, in memory or backed by a file format) without being linked to a particular solver.
In addition to the model API, MOI defines AbstractOptimizer and provides methods to solve the model and
interact with solutions. See the Solutions section for more details.

Info

Throughout the rest of the manual, model is used as a generic ModelLike, and optimizer is used as a
generic AbstractOptimizer.

Tip

MOI does not export functions, but for brevity we often omit qualifying names with the MOI module.
Best practice is to have

import MathOptInterface as MOI

and prefix all MOI methods with MOI. in user code. If a name is also available in base Julia, we always
explicitly use the module prefix, for example, with MOI.get.

Attributes

Attributes are properties of the model that can be queried and modified. These include constants such as the
number of variables in a model NumberOfVariables), and properties of variables and constraints such as the
name of a variable (VariableName).

There are four types of attributes:

• Model attributes (subtypes of AbstractModelAttribute) refer to properties of a model.

• Optimizer attributes (subtypes of AbstractOptimizerAttribute) refer to properties of an optimizer.

• Constraint attributes (subtypes of AbstractConstraintAttribute) refer to properties of an individual
constraint.

• Variable attributes (subtypes of AbstractVariableAttribute) refer to properties of an individual vari-
able.

Some attributes are values that can be queried by the user but not modified, while other attributes can be
modified by the user.

All interactions with attributes occur through the get and set functions.

Consult the docstrings of each attribute for information on what it represents.
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ModelLike API

The following attributes are available:

• ListOfConstraintAttributesSet

• ListOfConstraintIndices

• ListOfConstraintTypesPresent

• ListOfConstraintsWithAttributeSet

• ListOfModelAttributesSet

• ListOfVariableAttributesSet

• ListOfVariableIndices

• ListOfVariablesWithAttributeSet

• NumberOfConstraints

• NumberOfVariables

• Name

• ObjectiveFunction

• ObjectiveFunctionType

• ObjectiveSense

AbstractOptimizer API

The following attributes are available:

• DualStatus

• PrimalStatus

• RawStatusString

• ResultCount

• TerminationStatus

• BarrierIterations

• DualObjectiveValue

• NodeCount

• NumberOfThreads

• ObjectiveBound

• ObjectiveValue

• RelativeGap

• RawOptimizerAttribute
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• RawSolver

• Silent

• SimplexIterations

• SolverName

• SolverVersion

• SolveTimeSec

• TimeLimitSec

• ObjectiveLimit

• SolutionLimit

• NodeLimit

• AutomaticDifferentiationBackend

34.3 Variables

Add a variable

Use add_variable to add a single variable.

julia> x = MOI.add_variable(model)
MOI.VariableIndex(1)

add_variable returns a VariableIndex type, which is used to refer to the added variable in other calls.

Check if a VariableIndex is valid using is_valid.

julia> MOI.is_valid(model, x)
true

Use add_variables to add a number of variables.

julia> y = MOI.add_variables(model, 2)
2-element Vector{MathOptInterface.VariableIndex}:
MOI.VariableIndex(2)
MOI.VariableIndex(3)

Warning

The integer does not necessarily correspond to the column inside an optimizer.

Delete a variable

Delete a variable using delete.
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julia> MOI.delete(model, x)

julia> MOI.is_valid(model, x)
false

Warning

Not all ModelLikemodels support deleting variables. A DeleteNotAllowed error is thrown if this is not
supported.

Variable attributes

The following attributes are available for variables:

• VariableName

• VariablePrimalStart

• VariablePrimal

Get and set these attributes using get and set.

julia> MOI.set(model, MOI.VariableName(), x, "var_x")

julia> MOI.get(model, MOI.VariableName(), x)
"var_x"

34.4 Constraints

Add a constraint

Use add_constraint to add a single constraint.

julia> c = MOI.add_constraint(model, MOI.VectorOfVariables(x), MOI.Nonnegatives(2))
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.Nonnegatives}(1)↪→

add_constraint returns a ConstraintIndex type, which is used to refer to the added constraint in other calls.

Check if a ConstraintIndex is valid using is_valid.

julia> MOI.is_valid(model, c)
true

Use add_constraints to add a number of constraints of the same type.
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julia> c = MOI.add_constraints(
model,
[x[1], x[2]],
[MOI.GreaterThan(0.0), MOI.GreaterThan(1.0)]

)
2-element Vector{MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,

MathOptInterface.GreaterThan{Float64}}}:↪→

MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,
MathOptInterface.GreaterThan{Float64}}(1)↪→

MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,
MathOptInterface.GreaterThan{Float64}}(2)↪→

This time, a vector of ConstraintIndex are returned.

Use supports_constraint to check if the model supports adding a constraint type.

julia> MOI.supports_constraint(
model,
MOI.VariableIndex,
MOI.GreaterThan{Float64},

)
true

Delete a constraint

Use delete to delete a constraint.

julia> MOI.delete(model, c)

julia> MOI.is_valid(model, c)
false

Constraint attributes

The following attributes are available for constraints:

• ConstraintName

• ConstraintPrimalStart

• ConstraintDualStart

• ConstraintPrimal

• ConstraintDual

• ConstraintBasisStatus

• ConstraintFunction

• CanonicalConstraintFunction

• ConstraintSet
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Get and set these attributes using get and set.

julia> MOI.set(model, MOI.ConstraintName(), c, "con_c")

julia> MOI.get(model, MOI.ConstraintName(), c)
"con_c"

Constraints by function-set pairs

Below is a list of common constraint types and how they are represented as function-set pairs in MOI. In the
notation below, x is a vector of decision variables, xi is a scalar decision variable, α, β are scalar constants, a, b
are constant vectors, A is a constant matrix and R+ (resp. R−) is the set of non-negative (resp. non-positive)
real numbers.

Linear constraints

Mathematical Constraint MOI Function MOI Set

aTx ≤ β ScalarAffineFunction LessThan
aTx ≥ α ScalarAffineFunction GreaterThan
aTx = β ScalarAffineFunction EqualTo

α ≤ aTx ≤ β ScalarAffineFunction Interval
xi ≤ β VariableIndex LessThan
xi ≥ α VariableIndex GreaterThan
xi = β VariableIndex EqualTo

α ≤ xi ≤ β VariableIndex Interval
Ax+ b ∈ Rn

+ VectorAffineFunction Nonnegatives
Ax+ b ∈ Rn

− VectorAffineFunction Nonpositives
Ax+ b = 0 VectorAffineFunction Zeros

By convention, solvers are not expected to support nonzero constant terms in the ScalarAffineFunctions
the first four rows of the preceding table because they are redundant with the parameters of the sets. For
example, encode 2x+ 1 ≤ 2 as 2x ≤ 1.

Constraints with VariableIndex in LessThan, GreaterThan, EqualTo, or Interval sets have a natural interpre-
tation as variable bounds. As such, it is typically not natural to impose multiple lower- or upper-bounds on the
same variable, and the solver interfaces will throw respectively LowerBoundAlreadySet or UpperBoundAlreadySet.

Moreover, adding two VariableIndex constraints on the same variable with the same set is impossible because
they share the same index as it is the index of the variable, see ConstraintIndex.

It is natural, however, to impose upper- and lower-bounds separately as two different constraints on a single
variable. The difference between imposing bounds by using a single Interval constraint and by using separate
LessThan and GreaterThan constraints is that the latter will allow the solver to return separate dual multipliers
for the two bounds, while the former will allow the solver to return only a single dual for the interval constraint.

Conic constraints

where E is the exponential cone (see ExponentialCone), S+ is the set of positive semidefinite symmetric
matrices, A is an affine map that outputs symmetric matrices and B is an affine map that outputs square
matrices.
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Mathematical Constraint MOI Function MOI Set

‖Ax+ b‖2 ≤ cTx+ d VectorAffineFunction SecondOrderCone
y ≥ ‖x‖2 VectorOfVariables SecondOrderCone

2yz ≥ ‖x‖22, y, z ≥ 0 VectorOfVariables RotatedSecondOrderCone
(aT1 x+ b1, a

T
2 x+ b2, a

T
3 x+ b3) ∈ E VectorAffineFunction ExponentialCone
A(x) ∈ S+ VectorAffineFunction PositiveSemidefiniteConeTriangle
B(x) ∈ S+ VectorAffineFunction PositiveSemidefiniteConeSquare

x ∈ S+ VectorOfVariables PositiveSemidefiniteConeTriangle
x ∈ S+ VectorOfVariables PositiveSemidefiniteConeSquare

Mathematical Constraint MOI Function MOI Set
1
2x

TQx+ aTx+ b ≥ 0 ScalarQuadraticFunction GreaterThan
1
2x

TQx+ aTx+ b ≤ 0 ScalarQuadraticFunction LessThan
1
2x

TQx+ aTx+ b = 0 ScalarQuadraticFunction EqualTo
Bilinear matrix inequality VectorQuadraticFunction PositiveSemidefiniteCone...

Quadratic constraints

Note

For more details on the internal format of the quadratic functions see ScalarQuadraticFunction or
VectorQuadraticFunction.

Discrete and logical constraints

Mathematical Constraint MOI Function MOI Set

xi ∈ Z VariableIndex Integer
xi ∈ {0, 1} VariableIndex ZeroOne

xi ∈ {0} ∪ [l, u] VariableIndex Semicontinuous
xi ∈ {0} ∪ {l, l + 1, . . . , u− 1, u} VariableIndex Semiinteger

At most one component of x can be nonzero VectorOfVariables SOS1
At most two components of x can be nonzero, and if so they must be

adjacent components
VectorOfVariables SOS2

y = 1 =⇒ aTx ∈ S VectorAffineFunctionIndicator

JuMP mapping

The following bullet points show examples of how JuMP constraints are translated into MOI function-set pairs:

• @constraint(m, 2x + y <= 10) becomes ScalarAffineFunction-in-LessThan

• @constraint(m, 2x + y >= 10) becomes ScalarAffineFunction-in-GreaterThan

• @constraint(m, 2x + y == 10) becomes ScalarAffineFunction-in-EqualTo

• @constraint(m, 0 <= 2x + y <= 10) becomes ScalarAffineFunction-in-Interval

• @constraint(m, 2x + y in ArbitrarySet()) becomes ScalarAffineFunction-in-ArbitrarySet.
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Variable bounds are handled in a similar fashion:

• @variable(m, x <= 1) becomes VariableIndex-in-LessThan

• @variable(m, x >= 1) becomes VariableIndex-in-GreaterThan

One notable difference is that a variable with an upper and lower bound is translated into two constraints,
rather than an interval, that is:

• @variable(m, 0 <= x <= 1) becomes VariableIndex-in-LessThan and VariableIndex-in-GreaterThan.

34.5 Solutions

Solving and retrieving the results

Once an optimizer is loaded with the objective function and all of the constraints, we can ask the solver to
solve the model by calling optimize!.

MOI.optimize!(optimizer)

Why did the solver stop?

The optimization procedure may stop for a number of reasons. The TerminationStatus attribute of the opti-
mizer returns a TerminationStatusCode object which explains why the solver stopped.

The termination statuses distinguish between proofs of optimality, infeasibility, local convergence, limits, and
termination because of something unexpected like invalid problem data or failure to converge.

A typical usage of the TerminationStatus attribute is as follows:

status = MOI.get(optimizer, TerminationStatus())
if status == MOI.OPTIMAL

# Ok, we solved the problem!
else

# Handle other cases.
end

After checking the TerminationStatus, check ResultCount. This attribute returns the number of results that
the solver has available to return. A result is defined as a primal-dual pair, but either the primal or the dual
may be missing from the result. While the OPTIMAL termination status normally implies that at least one result
is available, other statuses do not. For example, in the case of infeasibility, a solver may return no result or a
proof of infeasibility. The ResultCount attribute distinguishes between these two cases.

Primal solutions

Use the PrimalStatus optimizer attribute to return a ResultStatusCode describing the status of the primal
solution.

Common returns are described below in the Common status situations section.

Query the primal solution using the VariablePrimal and ConstraintPrimal attributes.

Query the objective function value using the ObjectiveValue attribute.
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Dual solutions

Warning

See Duality for a discussion of the MOI conventions for primal-dual pairs and certificates.

Use the DualStatus optimizer attribute to return a ResultStatusCode describing the status of the dual solu-
tion.

Query the dual solution using the ConstraintDual attribute.

Query the dual objective function value using the DualObjectiveValue attribute.

Common status situations

The sections below describe how to interpret typical or interesting status cases for three common classes
of solvers. The example cases are illustrative, not comprehensive. Solver wrappers may provide additional
information on how the solver's statuses map to MOI statuses.

Info

* in the tables indicate that multiple different values are possible.

Primal-dual convex solver

Linear programming and conic optimization solvers fall into this category.

What happened? TerminationStatusResultCount PrimalStatus DualStatus

Proved optimality OPTIMAL 1 FEASIBLE_POINT FEASIBLE_POINT
Proved infeasible INFEASIBLE 1 NO_SOLUTION INFEASIBILITY_CERTIFICATE

Optimal within relaxed
tolerances

ALMOST_OPTIMAL 1 FEASIBLE_POINT FEASIBLE_POINT

Optimal within relaxed
tolerances

ALMOST_OPTIMAL 1 ALMOST_FEASIBLE_POINTALMOST_FEASIBLE_POINT

Detected an unbounded ray
of the primal

DUAL_INFEASIBLE 1 INFEASIBILITY_CERTIFICATE NO_SOLUTION

Stall SLOW_PROGRESS 1 * *

Global branch-and-bound solvers

Mixed-integer programming solvers fall into this category.

What happened? TerminationStatus ResultCount PrimalStatus DualStatus

Proved optimality OPTIMAL 1 FEASIBLE_POINT NO_SOLUTION
Presolve detected infeasibility or

unboundedness
INFEASIBLE_OR_UNBOUNDED 0 NO_SOLUTION NO_SOLUTION

Proved infeasibility INFEASIBLE 0 NO_SOLUTION NO_SOLUTION
Timed out (no solution) TIME_LIMIT 0 NO_SOLUTION NO_SOLUTION

Timed out (with a solution) TIME_LIMIT 1 FEASIBLE_POINT NO_SOLUTION
CPXMIP_OPTIMAL_INFEAS ALMOST_OPTIMAL 1 INFEASIBLE_POINTNO_SOLUTION
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Info

CPXMIP_OPTIMAL_INFEAS is a CPLEX status that indicates that a preprocessed problem was solved to
optimality, but the solver was unable to recover a feasible solution to the original problem. Handling
this status was one of the motivating drivers behind the design of MOI.

Local search solvers

Nonlinear programming solvers fall into this category. It also includes non-global tree search solvers like Juniper.

What happened? TerminationStatus ResultCountPrimalStatus DualStatus

Converged to a stationary point LOCALLY_SOLVED 1 FEASIBLE_POINTFEASIBLE_POINT
Completed a non-global tree search

(with a solution)
LOCALLY_SOLVED 1 FEASIBLE_POINTFEASIBLE_POINT

Converged to an infeasible point LOCALLY_INFEASIBLE 1 INFEASIBLE_POINT *
Completed a non-global tree search

(no solution found)
LOCALLY_INFEASIBLE 0 NO_SOLUTION NO_SOLUTION

Iteration limit ITERATION_LIMIT 1 * *
Diverging iterates NORM_LIMIT or

OBJECTIVE_LIMIT
1 * *

Querying solution attributes

Some solvers will not implement every solution attribute. Therefore, a call like MOI.get(model, MOI.SolveTimeSec())
may throw an UnsupportedAttribute error.

If you need to write code that is agnostic to the solver (for example, you are writing a library that an end-user
passes their choice of solver to), you can work-around this problem using a try-catch:

function get_solve_time(model)
try

return MOI.get(model, MOI.SolveTimeSec())
catch err

if err isa MOI.UnsupportedAttribute
return NaN # Solver doesn't support. Return a placeholder value.

end
rethrow(err) # Something else went wrong. Rethrow the error

end
end

If, after careful profiling, you find that the try-catch is taking a significant portion of your runtime, you can
improve performance by caching the result of the try-catch:

mutable struct CachedSolveTime{M}
model::M
supports_solve_time::Bool
CachedSolveTime(model::M) where {M} = new(model, true)

end

function get_solve_time(model::CachedSolveTime)
if !model.supports_solve_time

https://www.ibm.com/docs/en/icos/22.1.1?topic=api-cpxmip-optimal-infeas
https://github.com/lanl-ansi/Juniper.jl
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return NaN
end
try

return MOI.get(model, MOI.SolveTimeSec())
catch err

if err isa MOI.UnsupportedAttribute
model.supports_solve_time = false
return NaN

end
rethrow(err) # Something else went wrong. Rethrow the error

end
end

34.6 Problem modification

In addition to adding and deleting constraints and variables, MathOptInterface supports modifying, in-place,
coefficients in the constraints and the objective function of a model.

These modifications can be grouped into two categories:

• modifications which replace the set of function of a constraint with a new set or function

• modifications which change, in-place, a component of a function

Warning

Some ModelLike objects do not support problem modification.

Modify the set of a constraint

Use set and ConstraintSet to modify the set of a constraint by replacing it with a new instance of the same
type.

julia> c = MOI.add_constraint(
model,
MOI.ScalarAffineFunction([MOI.ScalarAffineTerm(1.0, x)], 0.0),
MOI.EqualTo(1.0),

)
MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},

MathOptInterface.EqualTo{Float64}}(1)↪→

julia> MOI.set(model, MOI.ConstraintSet(), c, MOI.EqualTo(2.0));

julia> MOI.get(model, MOI.ConstraintSet(), c) == MOI.EqualTo(2.0)
true

However, the following will fail as the new set is of a different type to the original set:
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julia> MOI.set(model, MOI.ConstraintSet(), c, MOI.GreaterThan(2.0))
ERROR: [...]

Special cases: set transforms

If our constraint is an affine inequality, then this corresponds to modifying the right-hand side of a constraint
in linear programming.

In some special cases, solvers may support efficiently changing the set of a constraint (for example, from
LessThan to GreaterThan). For these cases, MathOptInterface provides the transform method.

The transform function returns a new constraint index, and the old constraint index (that is, c) is no longer
valid.

julia> c = MOI.add_constraint(
model,
MOI.ScalarAffineFunction([MOI.ScalarAffineTerm(1.0, x)], 0.0),
MOI.LessThan(1.0),

)
MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},

MathOptInterface.LessThan{Float64}}(1)↪→

julia> new_c = MOI.transform(model, c, MOI.GreaterThan(2.0));

julia> MOI.is_valid(model, c)
false

julia> MOI.is_valid(model, new_c)
true

Note

transform cannot be called with a set of the same type. Use set instead.

Modify the function of a constraint

Use set and ConstraintFunction to modify the function of a constraint by replacing it with a new instance of
the same type.

julia> c = MOI.add_constraint(
model,
MOI.ScalarAffineFunction([MOI.ScalarAffineTerm(1.0, x)], 0.0),
MOI.EqualTo(1.0),

)
MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},

MathOptInterface.EqualTo{Float64}}(1)↪→

julia> new_f = MOI.ScalarAffineFunction([MOI.ScalarAffineTerm(2.0, x)], 1.0);

julia> MOI.set(model, MOI.ConstraintFunction(), c, new_f);
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julia> MOI.get(model, MOI.ConstraintFunction(), c) ≈ new_f
true

However, the following will fail as the new function is of a different type to the original function:

julia> MOI.set(model, MOI.ConstraintFunction(), c, x)
ERROR: [...]

Modify constant term in a scalar function

Use modify and ScalarConstantChange tomodify the constant term in a ScalarAffineFunction or ScalarQuadraticFunction.

julia> c = MOI.add_constraint(
model,
MOI.ScalarAffineFunction([MOI.ScalarAffineTerm(1.0, x)], 0.0),
MOI.EqualTo(1.0),

)
MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},

MathOptInterface.EqualTo{Float64}}(1)↪→

julia> MOI.modify(model, c, MOI.ScalarConstantChange(1.0));

julia> new_f = MOI.ScalarAffineFunction([MOI.ScalarAffineTerm(1.0, x)], 1.0);

julia> MOI.get(model, MOI.ConstraintFunction(), c) ≈ new_f
true

ScalarConstantChange can also be used tomodify the objective function by passing an instance of ObjectiveFunction:

julia> MOI.set(
model,
MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(),
new_f,

);

julia> MOI.modify(
model,
MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(),
MOI.ScalarConstantChange(-1.0)

);

julia> MOI.get(
model,
MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(),

) ≈ MOI.ScalarAffineFunction([MOI.ScalarAffineTerm(1.0, x)], -1.0)
true

Modify constant terms in a vector function

Use modify and VectorConstantChange tomodify the constant vector in a VectorAffineFunction or VectorQuadraticFunction.
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julia> c = MOI.add_constraint(
model,
MOI.VectorAffineFunction([

MOI.VectorAffineTerm(1, MOI.ScalarAffineTerm(1.0, x)),
MOI.VectorAffineTerm(2, MOI.ScalarAffineTerm(2.0, x)),

],
[0.0, 0.0],

),
MOI.Nonnegatives(2),

)
MathOptInterface.ConstraintIndex{MathOptInterface.VectorAffineFunction{Float64},

MathOptInterface.Nonnegatives}(1)↪→

julia> MOI.modify(model, c, MOI.VectorConstantChange([3.0, 4.0]));

julia> new_f = MOI.VectorAffineFunction(
[

MOI.VectorAffineTerm(1, MOI.ScalarAffineTerm(1.0, x)),
MOI.VectorAffineTerm(2, MOI.ScalarAffineTerm(2.0, x)),

],
[3.0, 4.0],

);

julia> MOI.get(model, MOI.ConstraintFunction(), c) ≈ new_f
true

Modify affine coefficients in a scalar function

Use modify and ScalarCoefficientChange to modify the affine coefficient of a ScalarAffineFunction or
ScalarQuadraticFunction.

julia> c = MOI.add_constraint(
model,
MOI.ScalarAffineFunction([MOI.ScalarAffineTerm(1.0, x)], 0.0),
MOI.EqualTo(1.0),

)
MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},

MathOptInterface.EqualTo{Float64}}(1)↪→

julia> MOI.modify(model, c, MOI.ScalarCoefficientChange(x, 2.0));

julia> new_f = MOI.ScalarAffineFunction([MOI.ScalarAffineTerm(2.0, x)], 0.0);

julia> MOI.get(model, MOI.ConstraintFunction(), c) ≈ new_f
true

ScalarCoefficientChange can also be used tomodify the objective function by passing an instance of ObjectiveFunction.

Modify quadratic coefficients in a scalar function

Use modify and ScalarQuadraticCoefficientChange tomodify the quadratic coefficient of a ScalarQuadraticFunction.
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julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variables(model, 2);

julia> c = MOI.add_constraint(
model,
1.0 * x[1] * x[1] + 2.0 * x[1] * x[2],
MOI.EqualTo(1.0),

)
MathOptInterface.ConstraintIndex{MathOptInterface.ScalarQuadraticFunction{Float64},

MathOptInterface.EqualTo{Float64}}(1)↪→

julia> MOI.modify(
model,
c,
MOI.ScalarQuadraticCoefficientChange(x[1], x[1], 3.0),

);

julia> MOI.modify(
model,
c,
MOI.ScalarQuadraticCoefficientChange(x[1], x[2], 4.0),

);

julia> new_f = 1.5 * x[1] * x[1] + 4.0 * x[1] * x[2];

julia> MOI.get(model, MOI.ConstraintFunction(), c) ≈ new_f
true

ScalarQuadraticCoefficientChange can also be used tomodify the objective function by passing an instance
of ObjectiveFunction.

Modify affine coefficients in a vector function

Use modify and MultirowChange to modify a vector of affine coefficients in a VectorAffineFunction or a
VectorQuadraticFunction.

julia> c = MOI.add_constraint(
model,
MOI.VectorAffineFunction([

MOI.VectorAffineTerm(1, MOI.ScalarAffineTerm(1.0, x)),
MOI.VectorAffineTerm(2, MOI.ScalarAffineTerm(2.0, x)),

],
[0.0, 0.0],

),
MOI.Nonnegatives(2),

)
MathOptInterface.ConstraintIndex{MathOptInterface.VectorAffineFunction{Float64},

MathOptInterface.Nonnegatives}(1)↪→

julia> MOI.modify(model, c, MOI.MultirowChange(x, [(1, 3.0), (2, 4.0)]));

julia> new_f = MOI.VectorAffineFunction(
[
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MOI.VectorAffineTerm(1, MOI.ScalarAffineTerm(3.0, x)),
MOI.VectorAffineTerm(2, MOI.ScalarAffineTerm(4.0, x)),

],
[0.0, 0.0],

);

julia> MOI.get(model, MOI.ConstraintFunction(), c) ≈ new_f
true



Chapter 35

Background

35.1 Duality

Conic duality is the starting point for MOI's duality conventions. When all functions are affine (or coordinate
projections), and all constraint sets are closed convex cones, the model may be called a conic optimization
problem.

For a minimization problem in geometric conic form, the primal is:

min
x∈Rn

aT0 x+ b0 (35.1)

s.t. Aix+ bi ∈ Ci i = 1 . . .m (35.2)

and the dual is a maximization problem in standard conic form:

max
y1,...,ym

−
m∑
i=1

bTi yi + b0 (35.3)

s.t. a0 −
m∑
i=1

AT
i yi = 0 (35.4)

yi ∈ C∗
i i = 1 . . .m (35.5)

where each Ci is a closed convex cone and C∗
i is its dual cone.

For a maximization problem in geometric conic form, the primal is:

max
x∈Rn

aT0 x+ b0 (35.6)

s.t. Aix+ bi ∈ Ci i = 1 . . .m (35.7)

and the dual is a minimization problem in standard conic form:

1052
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min
y1,...,ym

m∑
i=1

bTi yi + b0 (35.8)

s.t. a0 +

m∑
i=1

AT
i yi = 0 (35.9)

yi ∈ C∗
i i = 1 . . .m (35.10)

A linear inequality constraint aTx+ b ≥ c is equivalent to aTx+ b− c ∈ R+, and aTx+ b ≤ c is equivalent
to aTx+ b− c ∈ R−. Variable-wise constraints are affine constraints with the appropriate identity mapping
in place of Ai.

For the special case of minimization LPs, the MOI primal form can be stated as:

min
x∈Rn

aT0 x+ b0 (35.11)

s.t. A1x ≥ b1 (35.12)

A2x ≤ b2 (35.13)

A3x = b3 (35.14)

By applying the stated transformations to conic form, taking the dual, and transforming back into linear in-
equality form, one obtains the following dual:

max
y1,y2,y3

bT1 y1 + bT2 y2 + bT3 y3 + b0 (35.15)

s.t. AT
1 y1 +AT

2 y2 +AT
3 y3 = a0 (35.16)

y1 ≥ 0 (35.17)

y2 ≤ 0 (35.18)

For maximization LPs, the MOI primal form can be stated as:

max
x∈Rn

aT0 x+ b0 (35.19)

s.t. A1x ≥ b1 (35.20)

A2x ≤ b2 (35.21)

A3x = b3 (35.22)

and similarly, the dual is:

min
y1,y2,y3

−bT1 y1 − bT2 y2 − bT3 y3 + b0 (35.23)

s.t. AT
1 y1 +AT

2 y2 +AT
3 y3 = −a0 (35.24)

y1 ≥ 0 (35.25)

y2 ≤ 0 (35.26)
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Warning

For the LP case, the signs of the feasible dual variables depend only on the sense of the corresponding
primal inequality and not on the objective sense.

Duality and scalar product

The scalar product is different from the canonical one for the sets PositiveSemidefiniteConeTriangle,
LogDetConeTriangle, RootDetConeTriangle.

If the set Ci of the section Duality is one of these three cones, then the rows of the matrix Ai corresponding
to off-diagonal entries are twice the value of the coefficients field in the VectorAffineFunction for the
corresponding rows. See PositiveSemidefiniteConeTriangle for details.

Dual for problems with quadratic functions

Quadratic Programs (QPs)

For quadratic programs with only affine conic constraints,

min
x∈Rn

1

2
xTQ0x+ aT0 x+ b0

s.t. Aix+ bi ∈ Ci i = 1 . . .m.

with cones Ci ⊆ Rmi for i = 1, . . . ,m, consider the Lagrangian function

L(x, y) =
1

2
xTQ0x+ aT0 x+ b0 −

m∑
i=1

yTi (Aix+ bi).

Let z(y) denote
∑m

i=1A
T
i yi − a0, the Lagrangian can be rewritten as

L(x, y) =
1

2
xTQ0x− z(y)Tx+ b0 −

m∑
i=1

yTi bi.

The condition ∇xL(x, y) = 0 gives

0 = ∇xL(x, y) = Q0x+ a0 −
m∑
i=1

yTi bi

which gives Q0x = z(y). This allows to obtain that

min
x∈Rn

L(x, y) = −1

2
xTQ0x+ b0 −

m∑
i=1

yTi bi
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so the dual problem is

max
yi∈C∗

i

min
x∈Rn

−1

2
xTQ0x+ b0 −

m∑
i=1

yTi bi.

If Q0 is invertible, we have x = Q−1
0 z(y) hence

min
x∈Rn

L(x, y) = −1

2
z(y)TQ−1

0 z(y) + b0 −
m∑
i=1

yTi bi

so the dual problem is

max
yi∈C∗

i

−1

2
z(y)TQ−1

0 z(y) + b0 −
m∑
i=1

yTi bi.

Quadratically Constrained Quadratic Programs (QCQPs)

Given a problem with both quadratic function and quadratic objectives:

min
x∈Rn

1

2
xTQ0x+ aT0 x+ b0

s.t.
1

2
xTQix+ aTi x+ bi ∈ Ci i = 1 . . .m.

with cones Ci ⊆ R for i = 1 . . .m, consider the Lagrangian function

L(x, y) =
1

2
xTQ0x+ aT0 x+ b0 −

m∑
i=1

yi(
1

2
xTQix+ aTi x+ bi)

A pair of primal-dual variables (x⋆, y⋆) is optimal if

• x⋆ is a minimizer of

min
x∈Rn

L(x, y⋆).

That is,

0 = ∇xL(x, y
⋆) = Q0x+ a0 −

m∑
i=1

y⋆i (Qix+ ai).
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• and y⋆ is a maximizer of

max
yi∈C∗

i

L(x⋆, y).

That is, for all i = 1, . . . ,m, 1
2x

TQix + aTi x + bi is either zero or in the normal cone of C∗
i at y

⋆. For
instance, if Ci is {z ∈ R : z ≤ 0}, this means that if 1

2x
TQix+ aTi x+ bi is nonzero at x⋆ then y⋆i = 0.

This is the classical complementary slackness condition.

If Ci is a vector set, the discussion remains valid with yi( 12x
TQix+a

T
i x+bi) replaced with the scalar product

between yi and the vector of scalar-valued quadratic functions.

Dual for square semidefinite matrices

The set PositiveSemidefiniteConeTriangle is a self-dual. That is, querying ConstraintDual of a PositiveSemidefiniteConeTriangle
constraint returns a vector that is itself a member of PositiveSemidefiniteConeTriangle.

However, the dual of PositiveSemidefiniteConeSquare is not so straight forward. This section explains the
duality convention we use, and how it is derived.

Info

If you have a PositiveSemidefiniteConeSquare constraint, the result matrixA from ConstraintDual
is not positive semidefinite. However, A+A⊤ is positive semidefinite.

Let S+ be the cone of symmetric semidefinite matrices in the n(n+1)
2 dimensional space of symmetric Rn×n

matrices. That is, S+ is the set PositiveSemidefiniteConeTriangle. It is well known that S+ is a self-dual
proper cone.

Let P+ be the cone of symmetric semidefinite matrices in the n2 dimensional space of Rn×n matrices. That
is P+ is the set PositiveSemidefiniteConeSquare.

In addition, let D+ be the cone of matrices A such that A+A⊤ ∈ P+.

P+ is not proper because it is not solid (it is not n2 dimensional), so it is not necessarily true that P∗∗
+ = P+.

However, this is the case, because we will show that P∗
+ = D+ and D∗

+ = P+.

First, let us see why P∗
+ = D+.

If B is symmetric, then

〈A,B〉 = 〈A⊤, B⊤〉 = 〈A⊤, B〉

so

2〈A,B〉 = 〈A,B〉+ 〈A⊤, B〉 = 〈A+A⊤, B〉.

Therefore, 〈A,B〉 ≥ 0 for all B ∈ P+ if and only if 〈A + A⊤, B〉 ≥ 0 for all B ∈ P+. Since A + A⊤

is symmetric, and we know that S+ is self-dual, we have shown that P∗
+ is the set of matrices A such that

A+A⊤ ∈ P+.

https://en.wikipedia.org/wiki/Normal_cone
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Second, let us see why D∗
+ = P+.

Since A ∈ D+ implies that A⊤ ∈ D+, B ∈ D∗
+ means that 〈A + A⊤, B〉 ≥ 0 for all A ∈ D+, and hence

B ∈
mathcalP+.

To see why it should be symmetric, simply notice that ifBi,j < Bj,i, then 〈A,B〉 can be made arbitrarily small
by setting Ai,j = Ai,j + s and Aj,i = Aj,i − s, with s arbitrarily large, and A stays in D+ because A+A⊤

does not change.

Typically, the primal/dual pair for semidefinite programs is presented as:

min〈C,X〉 (35.27)

s.t. 〈Ak, X〉 = bk∀k (35.28)

X ∈ S+ (35.29)

with the dual

max
∑
k

bkyk (35.30)

s.t. C −
∑

Akyk ∈ S+ (35.31)

If we allow Ak to be non-symmetric, we should instead use:

min〈C,X〉 (35.32)

s.t. 〈Ak, X〉 = bk∀k (35.33)

X ∈ D+ (35.34)

with the dual

max
∑

bkyk (35.35)

s.t. C −
∑

Akyk ∈ P+ (35.36)

This is implemented as:

min〈C,Z〉+ 〈C − C⊤, S〉 (35.37)

s.t. 〈Ak, Z〉+ 〈Ak −A⊤
k , S〉 = bk∀k (35.38)

Z ∈ S+ (35.39)

with the dual

max
∑

bkyk (35.40)

s.t. C + C⊤ −
∑

(Ak +A⊤
k )yk ∈ S+ (35.41)

C − C⊤ −
∑

(Ak −A⊤
k )yk = 0 (35.42)
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and we recover Z = X +X⊤.

35.2 Infeasibility certificates

When given a conic problem that is infeasible or unbounded, some solvers can produce a certificate of infeasi-
bility. This page explains what a certificate of infeasibility is, and the related conventions that MathOptInterface
adopts.

Conic duality

MathOptInterface uses conic duality to define infeasibility certificates. A full explanation is given in the section
Duality, but here is a brief overview.

Minimization problems

For a minimization problem in geometric conic form, the primal is:

min
x∈Rn

a⊤0 x+ b0 (35.43)

s.t. Aix+ bi ∈ Ci i = 1 . . .m, (35.44)

and the dual is a maximization problem in standard conic form:

max
y1,...,ym

−
m∑
i=1

b⊤i yi + b0 (35.45)

s.t. a0 −
m∑
i=1

A⊤
i yi = 0 (35.46)

yi ∈ C∗
i i = 1 . . .m, (35.47)

where each Ci is a closed convex cone and C∗
i is its dual cone.

Maximization problems

For a maximization problem in geometric conic form, the primal is:

max
x∈Rn

a⊤0 x+ b0 (35.48)

s.t. Aix+ bi ∈ Ci i = 1 . . .m, (35.49)

and the dual is a minimization problem in standard conic form:

min
y1,...,ym

m∑
i=1

b⊤i yi + b0 (35.50)

s.t. a0 +

m∑
i=1

A⊤
i yi = 0 (35.51)

yi ∈ C∗
i i = 1 . . .m. (35.52)
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Unbounded problems

A problem is unbounded if and only if:

1. there exists a feasible primal solution

2. the dual is infeasible.

A feasible primal solution—if one exists—can be obtained by setting ObjectiveSense to FEASIBILITY_SENSE
before optimizing. Therefore, most solvers stop after they prove the dual is infeasible via a certificate of dual
infeasibility, but before they have found a feasible primal solution. This is also the reason that MathOptInterface
defines the DUAL_INFEASIBLE status instead of UNBOUNDED.

A certificate of dual infeasibility is an improving ray of the primal problem. That is, there exists some vector d
such that for all η > 0:

Ai(x+ ηd) + bi ∈ Ci, i = 1 . . .m,

and (for minimization problems):

a⊤0 (x+ ηd) + b0 < a⊤0 x+ b0,

for any feasible point x. The latter simplifies to a⊤0 d < 0. For maximization problems, the inequality is
reversed, so that a⊤0 d > 0.

If the solver has found a certificate of dual infeasibility:

• TerminationStatus must be DUAL_INFEASIBLE

• PrimalStatus must be INFEASIBILITY_CERTIFICATE

• VariablePrimal must be the corresponding value of d

• ConstraintPrimal must be the corresponding value of Aid

• ObjectiveValue must be the value a⊤0 d. Note that this is the value of the objective function at d,
ignoring the constant b_0.

Note

The choice of whether to scale the ray d to have magnitude 1 is left to the solver.

Infeasible problems

A certificate of primal infeasibility is an improving ray of the dual problem. However, because infeasibility is
independent of the objective function, we first homogenize the primal problem by removing its objective.

For a minimization problem, a dual improving ray is some vector d such that for all η > 0:
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−
m∑
i=1

A⊤
i (yi + ηdi) = 0 (35.53)

(yi + ηdi) ∈ C∗
i i = 1 . . .m, (35.54)

and:

−
m∑
i=1

b⊤i (yi + ηdi) > −
m∑
i=1

b⊤i yi,

for any feasible dual solution y. The latter simplifies to −
∑m

i=1 b
⊤
i di > 0. For a maximization problem, the

inequality is
∑m

i=1 b
⊤
i di < 0. (Note that these are the same inequality, modulo a - sign.)

If the solver has found a certificate of primal infeasibility:

• TerminationStatus must be INFEASIBLE

• DualStatus must be INFEASIBILITY_CERTIFICATE

• ConstraintDual must be the corresponding value of d

• DualObjectiveValue must be the value −
∑m

i=1 b
⊤
i di for minimization problems and

∑m
i=1 b

⊤
i di for

maximization problems.

Note

The choice of whether to scale the ray d to have magnitude 1 is left to the solver.

Infeasibility certificates of variable bounds

Many linear solvers (for example, Gurobi) do not provide explicit access to the primal infeasibility certificate of
a variable bound. However, given a set of linear constraints:

lA ≤ Ax ≤ uA (35.55)

lx ≤ x ≤ ux, (35.56)

the primal certificate of the variable bounds can be computed using the primal certificate associated with the
affine constraints, d. (Note that dwill have one element for each row of theAmatrix, and that some or all of the
elements in the vectors lA and uA may be ±∞. If both lA and uA are finite for some row, the corresponding
element in ‘d must be 0.)

Given d, compute d̄ = d⊤A. If the bound is finite, a certificate for the lower variable bound of xi ismax{d̄i, 0},
and a certificate for the upper variable bound is min{d̄i, 0}.

35.3 Naming conventions

MOI follows several conventions for naming functions and structures. These should also be followed by pack-
ages extending MOI.
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Sets

Sets encode the structure of constraints. Their names should follow the following conventions:

• Abstract types in the set hierarchy should begin with Abstract and end in Set, for example, AbstractScalarSet,
AbstractVectorSet.

• Vector-valued conic sets should end with Cone, for example, NormInfinityCone, SecondOrderCone.

• Vector-valued Cartesian products should be plural and not end in Cone, for example, Nonnegatives, not
NonnegativeCone.

• Matrix-valued conic sets should provide two representations: ConeSquare and ConeTriangle, for exam-
ple, RootDetConeTriangle and RootDetConeSquare. See Matrix cones for more details.

• Scalar sets should be singular, not plural, for example, Integer, not Integers.

• As much as possible, the names should follow established conventions in the domain where this set is
used: for instance, convex sets should have names close to those of CVX, and constraint-programming
sets should follow MiniZinc's constraints.

https://web.cvxr.com/cvx/doc/
https://www.minizinc.org/doc-latest/en/
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API Reference

36.1 Standard form

Functions

MathOptInterface.AbstractFunction – Type.

AbstractFunction

Abstract supertype for function objects.

Required methods

All functions must implement:

• Base.copy

• Base.isapprox

• constant

Abstract subtypes of AbstractFunction may require additional methods to be implemented.

source

MathOptInterface.output_dimension – Function.

output_dimension(f::AbstractFunction)

Return 1 if f is an AbstractScalarFunction, or the number of output components if f is an AbstractVectorFunction.

source

MathOptInterface.constant – Function.

constant(f::AbstractFunction[, ::Type{T}]) where {T}

1062

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/indextypes.jl#L7-L22
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/functions.jl#L7-L12
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Returns the constant term of a scalar-valued function, or the constant vector of a vector-valued function.

If f is untyped and T is provided, returns zero(T).

source

constant(set::Union{EqualTo,GreaterThan,LessThan,Parameter})

Returns the constant term of the set set.

Example

julia> MOI.constant(MOI.GreaterThan(1.0))
1.0

julia> MOI.constant(MOI.LessThan(2.5))
2.5

julia> MOI.constant(MOI.EqualTo(3))
3

julia> MOI.constant(MOI.Parameter(4.5))
4.5

source

Scalar functions

MathOptInterface.AbstractScalarFunction – Type.

abstract type AbstractScalarFunction <: AbstractFunction

Abstract supertype for scalar-valued AbstractFunctions.

source

MathOptInterface.VariableIndex – Type.

VariableIndex

A type-safe wrapper for Int64 for use in referencing variables in a model. To allow for deletion, indices
need not be consecutive.

source

MathOptInterface.ScalarAffineTerm – Type.

ScalarAffineTerm{T}(coefficient::T, variable::VariableIndex) where {T}

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/functions.jl#L17-L24
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L2719-L2739
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/indextypes.jl#L25-L29
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/indextypes.jl#L38-L43
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Represents the scalar-valued term coefficient * variable.

Example

julia> x = MOI.VariableIndex(1)
MOI.VariableIndex(1)

julia> MOI.ScalarAffineTerm(2.0, x)
MathOptInterface.ScalarAffineTerm{Float64}(2.0, MOI.VariableIndex(1))

source

MathOptInterface.ScalarAffineFunction – Type.

ScalarAffineFunction{T}(
terms::Vector{ScalarAffineTerm{T}},
constant::T,

) where {T}

Represents the scalar-valued affine function a⊤x+ b, where:

• a⊤x is represented by the vector of ScalarAffineTerms

• b is a scalar constant::T

Duplicates

Duplicate variable indices in terms are accepted, and the corresponding coefficients are summed together.

Example

julia> x = MOI.VariableIndex(1)
MOI.VariableIndex(1)

julia> terms = [MOI.ScalarAffineTerm(2.0, x), MOI.ScalarAffineTerm(3.0, x)]
2-element Vector{MathOptInterface.ScalarAffineTerm{Float64}}:
MathOptInterface.ScalarAffineTerm{Float64}(2.0, MOI.VariableIndex(1))
MathOptInterface.ScalarAffineTerm{Float64}(3.0, MOI.VariableIndex(1))

julia> f = MOI.ScalarAffineFunction(terms, 4.0)
4.0 + 2.0 MOI.VariableIndex(1) + 3.0 MOI.VariableIndex(1)

source

MathOptInterface.ScalarQuadraticTerm – Type.

ScalarQuadraticTerm{T}(
coefficient::T,
variable_1::VariableIndex,
variable_2::VariableIndex,

) where {T}

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/functions.jl#L73-L87
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/functions.jl#L108-L138
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Represents the scalar-valued term cxixj where c is coefficient, xi is variable_1 and xj is variable_2.

Example

julia> x = MOI.VariableIndex(1)
MOI.VariableIndex(1)

julia> MOI.ScalarQuadraticTerm(2.0, x, x)
MathOptInterface.ScalarQuadraticTerm{Float64}(2.0, MOI.VariableIndex(1), MOI.VariableIndex(1))

source

MathOptInterface.ScalarQuadraticFunction – Type.

ScalarQuadraticFunction{T}(
quadratic_terms::Vector{ScalarQuadraticTerm{T}},
affine_terms::Vector{ScalarAffineTerm{T}},
constant::T,

) wher {T}

The scalar-valued quadratic function 1
2x

⊤Qx+ a⊤x+ b, where:

• Q is the symmetric matrix given by the vector of ScalarQuadraticTerms

• a⊤x is a sparse vector given by the vector of ScalarAffineTerms

• b is the scalar constant::T.

Duplicates

Duplicate indices in quadratic_terms or affine_terms are accepted, and the corresponding coefficients
are summed together.

In quadratic_terms, "mirrored" indices, (q, r) and (r, q) where r and q are VariableIndexes, are
considered duplicates; only one needs to be specified.

The 0.5 factor

Coupled with the interpretation of mirrored indices, the 0.5 factor in front of the Q matrix is a common
source of bugs.

As a rule, to represent a ∗ x2 + b ∗ x ∗ y:

• The coefficient a in front of squared variables (diagonal elements in Q) must be doubled when cre-
ating a ScalarQuadraticTerm

• The coefficient b in front of off-diagonal elements in Q should be left as b, be cause the mirrored
index b ∗ y ∗ x will be implicitly added.

Example

To represent the function f(x, y) = 2 ∗ x2 + 3 ∗ x ∗ y + 4 ∗ x+ 5, do:

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/functions.jl#L154-L173


CHAPTER 36. API REFERENCE 1066

julia> x = MOI.VariableIndex(1);

julia> y = MOI.VariableIndex(2);

julia> constant = 5.0;

julia> affine_terms = [MOI.ScalarAffineTerm(4.0, x)];

julia> quadratic_terms = [
MOI.ScalarQuadraticTerm(4.0, x, x), # Note the changed coefficient
MOI.ScalarQuadraticTerm(3.0, x, y),

]
2-element Vector{MathOptInterface.ScalarQuadraticTerm{Float64}}:
MathOptInterface.ScalarQuadraticTerm{Float64}(4.0, MOI.VariableIndex(1), MOI.VariableIndex(1))
MathOptInterface.ScalarQuadraticTerm{Float64}(3.0, MOI.VariableIndex(1), MOI.VariableIndex(2))

julia> f = MOI.ScalarQuadraticFunction(quadratic_terms, affine_terms, constant)
5.0 + 4.0 MOI.VariableIndex(1) + 2.0 MOI.VariableIndex(1)² + 3.0

MOI.VariableIndex(1)*MOI.VariableIndex(2)↪→

source

MathOptInterface.ScalarNonlinearFunction – Type.

ScalarNonlinearFunction(head::Symbol, args::Vector{Any})

The scalar-valued nonlinear function head(args...), represented as a symbolic expression tree, with the
call operator head and ordered arguments in args.

head

The head::Symbol must be an operator supported by the model.

The default list of supported univariate operators is given by:

• Nonlinear.DEFAULT_UNIVARIATE_OPERATORS

and the default list of supported multivariate operators is given by:

• Nonlinear.DEFAULT_MULTIVARIATE_OPERATORS

Additional operators can be registered by setting a UserDefinedFunction attribute.

See the full list of operators supported by a ModelLike by querying ListOfSupportedNonlinearOperators.

args

The vector args contains the arguments to the nonlinear function. If the operator is univariate, it must
contain one element. Otherwise, it may contain multiple elements.

Each element must be one of the following:

• A constant value of type T<:Real

• A VariableIndex

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/functions.jl#L198-L259
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• A ScalarAffineFunction

• A ScalarQuadraticFunction

• A ScalarNonlinearFunction

Unsupported operators

If the optimizer does not support head, an UnsupportedNonlinearOperator error will be thrown.

There is no guarantee about when this error will be thrown; it may be thrown when the function is first
added to the model, or it may be thrown when optimize! is called.

Example

To represent the function f(x) = sin(x)2, do:

julia> x = MOI.VariableIndex(1)
MOI.VariableIndex(1)

julia> MOI.ScalarNonlinearFunction(
:^,
Any[MOI.ScalarNonlinearFunction(:sin, Any[x]), 2],

)
^(sin(MOI.VariableIndex(1)), (2))

source

Vector functions

MathOptInterface.AbstractVectorFunction – Type.

abstract type AbstractVectorFunction <: AbstractFunction

Abstract supertype for vector-valued AbstractFunctions.

Required methods

All subtypes of AbstractVectorFunction must implement:

• output_dimension

source

MathOptInterface.VectorOfVariables – Type.

VectorOfVariables(variables::Vector{VariableIndex}) <: AbstractVectorFunction

The vector-valued function f(x) = variables, where variables is a subset of VariableIndexes in the
model.

The list of variables may contain duplicates.

Example

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/functions.jl#L276-L337
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/functions.jl#L409-L419
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julia> x = MOI.VariableIndex.(1:2)
2-element Vector{MathOptInterface.VariableIndex}:
MOI.VariableIndex(1)
MOI.VariableIndex(2)

julia> f = MOI.VectorOfVariables([x[1], x[2], x[1]])
┌ ┐
│MOI.VariableIndex(1)│
│MOI.VariableIndex(2)│
│MOI.VariableIndex(1)│
└ ┘

julia> MOI.output_dimension(f)
3

source

MathOptInterface.VectorAffineTerm – Type.

VectorAffineTerm{T}(
output_index::Int64,
scalar_term::ScalarAffineTerm{T},

) where {T}

A VectorAffineTerm is a scalar_term that appears in the output_index row of the vector-valued VectorAffineFunction
or VectorQuadraticFunction.

Example

julia> x = MOI.VariableIndex(1);

julia> MOI.VectorAffineTerm(Int64(2), MOI.ScalarAffineTerm(3.0, x))
MathOptInterface.VectorAffineTerm{Float64}(2, MathOptInterface.ScalarAffineTerm{Float64}(3.0,

MOI.VariableIndex(1)))↪→

source

MathOptInterface.VectorAffineFunction – Type.

VectorAffineFunction{T}(
terms::Vector{VectorAffineTerm{T}},
constants::Vector{T},

) where {T}

The vector-valued affine function Ax+ b, where:

• Ax is the sparse matrix given by the vector of VectorAffineTerms

• b is the vector constants

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/functions.jl#L422-L448
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/functions.jl#L467-L485
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Duplicates

Duplicate indices in the A are accepted, and the corresponding coefficients are summed together.

Example

julia> x = MOI.VariableIndex(1);

julia> terms = [
MOI.VectorAffineTerm(Int64(1), MOI.ScalarAffineTerm(2.0, x)),
MOI.VectorAffineTerm(Int64(2), MOI.ScalarAffineTerm(3.0, x)),

];

julia> f = MOI.VectorAffineFunction(terms, [4.0, 5.0])
┌ ┐
│4.0 + 2.0 MOI.VariableIndex(1)│
│5.0 + 3.0 MOI.VariableIndex(1)│
└ ┘

julia> MOI.output_dimension(f)
2

source

MathOptInterface.VectorQuadraticTerm – Type.

VectorQuadraticTerm{T}(
output_index::Int64,
scalar_term::ScalarQuadraticTerm{T},

) where {T}

A VectorQuadraticTerm is a ScalarQuadraticTerm scalar_term that appears in the output_index row
of the vector-valued VectorQuadraticFunction.

Example

julia> x = MOI.VariableIndex(1);

julia> MOI.VectorQuadraticTerm(Int64(2), MOI.ScalarQuadraticTerm(3.0, x, x))
MathOptInterface.VectorQuadraticTerm{Float64}(2,

MathOptInterface.ScalarQuadraticTerm{Float64}(3.0, MOI.VariableIndex(1),
MOI.VariableIndex(1)))

↪→

↪→

source

MathOptInterface.VectorQuadraticFunction – Type.

VectorQuadraticFunction{T}(
quadratic_terms::Vector{VectorQuadraticTerm{T}},
affine_terms::Vector{VectorAffineTerm{T}},
constants::Vector{T},

) where {T}

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/functions.jl#L506-L541
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/functions.jl#L563-L581
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The vector-valued quadratic function with ith component ("output index") defined as 1
2x

⊤Qix+a
⊤
i x+bi,

where:

• 1
2x

⊤Qix is the symmetric matrix given by the VectorQuadraticTerm elements in quadratic_terms
with output_index == i

• a⊤i x is the sparse vector given by the VectorAffineTerm elements in affine_termswith output_index
== i

• bi is a scalar given by constants[i]

Duplicates

Duplicate indices in quadratic_terms and affine_terms with the same output_index are handled in the
same manner as duplicates in ScalarQuadraticFunction.

Example

julia> x = MOI.VariableIndex(1);

julia> y = MOI.VariableIndex(2);

julia> constants = [4.0, 5.0];

julia> affine_terms = [
MOI.VectorAffineTerm(Int64(1), MOI.ScalarAffineTerm(2.0, x)),
MOI.VectorAffineTerm(Int64(2), MOI.ScalarAffineTerm(3.0, x)),

];

julia> quad_terms = [
MOI.VectorQuadraticTerm(Int64(1), MOI.ScalarQuadraticTerm(2.0, x, x)),
MOI.VectorQuadraticTerm(Int64(2), MOI.ScalarQuadraticTerm(3.0, x, y)),

];

julia> f = MOI.VectorQuadraticFunction(quad_terms, affine_terms, constants)
┌ ┐
│4.0 + 2.0 MOI.VariableIndex(1) + 1.0 MOI.VariableIndex(1)² │
│5.0 + 3.0 MOI.VariableIndex(1) + 3.0 MOI.VariableIndex(1)*MOI.VariableIndex(2)│
└ ┘

julia> MOI.output_dimension(f)
2

source

MathOptInterface.VectorNonlinearFunction – Type.

VectorNonlinearFunction(args::Vector{ScalarNonlinearFunction})

The vector-valued nonlinear function composed of a vector of ScalarNonlinearFunction.

args

The vector args contains the scalar elements of the nonlinear function. Each elementmust be a ScalarNonlinearFunction,
but if you pass a Vector{Any}, the elements can be automatically converted from one of the following:

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/functions.jl#L602-L653
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• A constant value of type T<:Real

• A VariableIndex

• A ScalarAffineFunction

• A ScalarQuadraticFunction

• A ScalarNonlinearFunction

Example

To represent the function f(x) = [sin(x)2, x], do:

julia> x = MOI.VariableIndex(1)
MOI.VariableIndex(1)

julia> g = MOI.ScalarNonlinearFunction(
:^,
Any[MOI.ScalarNonlinearFunction(:sin, Any[x]), 2.0],

)
^(sin(MOI.VariableIndex(1)), 2.0)

julia> MOI.VectorNonlinearFunction([g, x])
┌ ┐
│^(sin(MOI.VariableIndex(1)), 2.0)│
│+(MOI.VariableIndex(1)) │
└ ┘

Note the automatic conversion from x to +(x).

source

Sets

MathOptInterface.AbstractSet – Type.

AbstractSet

Abstract supertype for set objects used to encode constraints.

Required methods

For sets of type S with isbitstype(S) == false, you must implement:

• Base.copy(set::S)

• Base.:(==)(x::S, y::S)

Subtypes of AbstractSet such as AbstractScalarSet and AbstractVectorSet may prescribe additional
required methods.

Optional methods

You may optionally implement:

• dual_set

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/functions.jl#L672-L713
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• dual_set_type

Note for developers

When creating a new set, the set struct must not contain any VariableIndex or ConstraintIndex objects.

source

MathOptInterface.AbstractScalarSet – Type.

AbstractScalarSet

Abstract supertype for subsets of R.

source

MathOptInterface.AbstractVectorSet – Type.

AbstractVectorSet

Abstract supertype for subsets of Rn for some n.

Required methods

All AbstractVectorSets of type S must implement:

• dimension, unless the dimension is stored in the set.dimension field

• Utilities.set_dot, unless the dot product between two vectors in the set is equivalent to LinearAlgebra.dot.

source

Utilities

MathOptInterface.dimension – Function.

dimension(set::AbstractSet)

Return the output_dimension that an AbstractFunction should have to be used with the set set.

Example

julia> MOI.dimension(MOI.Reals(4))
4

julia> MOI.dimension(MOI.LessThan(3.0))
1

julia> MOI.dimension(MOI.PositiveSemidefiniteConeTriangle(2))
3

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L9-L35
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L115-L119
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L126-L139
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L45-L63


CHAPTER 36. API REFERENCE 1073

MathOptInterface.dual_set – Function.

dual_set(set::AbstractSet)

Return the dual set of set, that is the dual cone of the set. This follows the definition of duality discussed
in Duality.

See Dual cone for more information.

If the dual cone is not defined it returns an error.

Example

julia> MOI.dual_set(MOI.Reals(4))
MathOptInterface.Zeros(4)

julia> MOI.dual_set(MOI.SecondOrderCone(5))
MathOptInterface.SecondOrderCone(5)

julia> MOI.dual_set(MOI.ExponentialCone())
MathOptInterface.DualExponentialCone()

source

MathOptInterface.dual_set_type – Function.

dual_set_type(S::Type{<:AbstractSet})

Return the type of dual set of sets of type S, as returned by dual_set. If the dual cone is not defined it
returns an error.

Example

julia> MOI.dual_set_type(MOI.Reals)
MathOptInterface.Zeros

julia> MOI.dual_set_type(MOI.SecondOrderCone)
MathOptInterface.SecondOrderCone

julia> MOI.dual_set_type(MOI.ExponentialCone)
MathOptInterface.DualExponentialCone

source

MathOptInterface.constant – Method.

constant(set::Union{EqualTo,GreaterThan,LessThan,Parameter})

Returns the constant term of the set set.

Example

https://en.wikipedia.org/wiki/Dual_cone_and_polar_cone
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L66-L89
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L92-L110
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julia> MOI.constant(MOI.GreaterThan(1.0))
1.0

julia> MOI.constant(MOI.LessThan(2.5))
2.5

julia> MOI.constant(MOI.EqualTo(3))
3

julia> MOI.constant(MOI.Parameter(4.5))
4.5

source

MathOptInterface.supports_dimension_update – Function.

supports_dimension_update(S::Type{<:MOI.AbstractVectorSet})

Return a Bool indicating whether the elimination of any dimension of n-dimensional sets of type S give an
n-1-dimensional set S. By default, this function returns false so it should only be implemented for sets
that supports dimension update.

For instance, supports_dimension_update(MOI.Nonnegatives) is true because the elimination of any
dimension of the n-dimensional nonnegative orthant gives the n-1-dimensional nonnegative orthant. How-
ever supports_dimension_update(MOI.ExponentialCone) is false.

source

MathOptInterface.update_dimension – Function.

update_dimension(s::AbstractVectorSet, new_dim::Int)

Returns a set with the dimension modified to new_dim.

source

Scalar sets

List of recognized scalar sets.

MathOptInterface.GreaterThan – Type.

GreaterThan{T<:Real}(lower::T)

The set [lower,∞) ⊆ R.

Example

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L2719-L2739
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L2687-L2699
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L2707-L2711
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julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variable(model)
MOI.VariableIndex(1)

julia> MOI.add_constraint(model, x, MOI.GreaterThan(0.0))
MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,

MathOptInterface.GreaterThan{Float64}}(1)↪→

source

MathOptInterface.LessThan – Type.

LessThan{T<:Real}(upper::T)

The set (−∞, upper] ⊆ R.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variable(model)
MOI.VariableIndex(1)

julia> MOI.add_constraint(model, x, MOI.LessThan(2.0))
MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,

MathOptInterface.LessThan{Float64}}(1)↪→

source

MathOptInterface.EqualTo – Type.

EqualTo{T<:Number}(value::T)

The set containing the single point {value} ⊆ R.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variable(model)
MOI.VariableIndex(1)

julia> MOI.add_constraint(model, x, MOI.EqualTo(2.0))
MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,

MathOptInterface.EqualTo{Float64}}(1)↪→

source

MathOptInterface.Interval – Type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L144-L160
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L167-L183
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L190-L206
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Interval{T<:Real}(lower::T, upper::T)

The interval [lower, upper] ⊆ R ∪ {−∞,+∞}.

If lower or upper is -Inf or Inf, respectively, the set is interpreted as a one-sided interval.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variable(model)
MOI.VariableIndex(1)

julia> MOI.add_constraint(model, x, MOI.Interval(1.0, 2.0))
MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,

MathOptInterface.Interval{Float64}}(1)↪→

source

MathOptInterface.Integer – Type.

Integer()

The set of integers, Z.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variable(model)
MOI.VariableIndex(1)

julia> MOI.add_constraint(model, x, MOI.Integer())
MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex, MathOptInterface.Integer}(1)

source

MathOptInterface.ZeroOne – Type.

ZeroOne()

The set {0, 1}.

Variables belonging to the ZeroOne set are also known as "binary" variables.

Example

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L248-L267
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L311-L327
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julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variable(model)
MOI.VariableIndex(1)

julia> MOI.add_constraint(model, x, MOI.ZeroOne())
MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex, MathOptInterface.ZeroOne}(1)

source

MathOptInterface.Semicontinuous – Type.

Semicontinuous{T<:Real}(lower::T, upper::T)

The set {0} ∪ [lower, upper].

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variable(model)
MOI.VariableIndex(1)

julia> MOI.add_constraint(model, x, MOI.Semicontinuous(2.0, 3.0))
MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,

MathOptInterface.Semicontinuous{Float64}}(1)↪→

source

MathOptInterface.Semiinteger – Type.

Semiinteger{T<:Real}(lower::T, upper::T)

The set {0} ∪ {lower, lower + 1, . . . , upper − 1, upper}.

Note that if lower and upper are not equivalent to an integer, then the solver may throw an error, or it
may round up lower and round down upper to the nearest integers.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variable(model)
MOI.VariableIndex(1)

julia> MOI.add_constraint(model, x, MOI.Semiinteger(2.0, 3.0))
MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,

MathOptInterface.Semiinteger{Float64}}(1)↪→

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L330-L348
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L351-L367
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L381-L401
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MathOptInterface.Parameter – Type.

Parameter{T<:Number}(value::T)

The set containing the single point {value} ⊆ R.

The Parameter set is conceptually similar to the EqualTo set, except that a variable constrained to the
Parameter set cannot have other constraints added to it, and the Parameter set can never be deleted.
Thus, solvers are free to treat the variable as a constant, and they need not add it as a decision variable
to the model.

Because of this behavior, you must add parameters using add_constrained_variable, and solvers should
declare supports_add_constrained_variable and not supports_constraint for the Parameter set.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> p, ci = MOI.add_constrained_variable(model, MOI.Parameter(2.5))
(MOI.VariableIndex(1), MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,

MathOptInterface.Parameter{Float64}}(1))↪→

julia> MOI.set(model, MOI.ConstraintSet(), ci, MOI.Parameter(3.0))

julia> MOI.get(model, MOI.ConstraintSet(), ci)
MathOptInterface.Parameter{Float64}(3.0)

source

Vector sets

List of recognized vector sets.

MathOptInterface.Reals – Type.

Reals(dimension::Int)

The set Rdimension (containing all points) of non-negative dimension dimension.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variables(model, 3);

julia> MOI.add_constraint(model, MOI.VectorOfVariables(x), MOI.Reals(3))
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables, MathOptInterface.Reals}(1)

source

MathOptInterface.Zeros – Type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L213-L241
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L415-L431
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Zeros(dimension::Int)

The set {0}dimension (containing only the origin) of non-negative dimension dimension.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variables(model, 3);

julia> MOI.add_constraint(model, MOI.VectorOfVariables(x), MOI.Zeros(3))
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables, MathOptInterface.Zeros}(1)

source

MathOptInterface.Nonnegatives – Type.

Nonnegatives(dimension::Int)

The nonnegative orthant {x ∈ Rdimension : x ≥ 0} of non-negative dimension dimension.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variables(model, 3);

julia> MOI.add_constraint(model, MOI.VectorOfVariables(x), MOI.Nonnegatives(3))
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.Nonnegatives}(1)↪→

source

MathOptInterface.Nonpositives – Type.

Nonpositives(dimension::Int)

The nonpositive orthant {x ∈ Rdimension : x ≤ 0} of non-negative dimension dimension.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variables(model, 3);

julia> MOI.add_constraint(model, MOI.VectorOfVariables(x), MOI.Nonpositives(3))
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.Nonpositives}(1)↪→

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L449-L465
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L483-L499
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source

MathOptInterface.NormInfinityCone – Type.

NormInfinityCone(dimension::Int)

The ℓ∞-norm cone {(t, x) ∈ Rdimension : t ≥ ‖x‖∞ = maxi|xi|} of dimension dimension.

The dimension must be at least 1.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> t = MOI.add_variable(model)
MOI.VariableIndex(1)

julia> x = MOI.add_variables(model, 3);

julia> MOI.add_constraint(model, MOI.VectorOfVariables([t; x]), MOI.NormInfinityCone(4))
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.NormInfinityCone}(1)↪→

source

MathOptInterface.NormOneCone – Type.

NormOneCone(dimension::Int)

The ℓ1-norm cone {(t, x) ∈ Rdimension : t ≥ ‖x‖1 =
∑

i|xi|} of dimension dimension.

The dimension must be at least 1.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> t = MOI.add_variable(model)
MOI.VariableIndex(1)

julia> x = MOI.add_variables(model, 3);

julia> MOI.add_constraint(model, MOI.VectorOfVariables([t; x]), MOI.NormOneCone(4))
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.NormOneCone}(1)↪→

source

MathOptInterface.NormCone – Type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L517-L533
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L551-L572
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L591-L612
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NormCone(p::Float64, dimension::Int)

The ℓp-norm cone {(t, x) ∈ Rdimension : t ≥
(∑

i

|xi|p
) 1

p

} of dimension dimension.

The dimension must be at least 1.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> t = MOI.add_variable(model)
MOI.VariableIndex(1)

julia> x = MOI.add_variables(model, 3);

julia> MOI.add_constraint(model, MOI.VectorOfVariables([t; x]), MOI.NormCone(3, 4))
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.NormCone}(1)↪→

source

MathOptInterface.SecondOrderCone – Type.

SecondOrderCone(dimension::Int)

The second-order cone (or Lorenz cone or ℓ2-norm cone) {(t, x) ∈ Rdimension : t ≥ ‖x‖2} of dimension
dimension.

The dimension must be at least 1.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> t = MOI.add_variable(model)
MOI.VariableIndex(1)

julia> x = MOI.add_variables(model, 3);

julia> MOI.add_constraint(model, MOI.VectorOfVariables([t; x]), MOI.SecondOrderCone(4))
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.SecondOrderCone}(1)↪→

source

MathOptInterface.RotatedSecondOrderCone – Type.

RotatedSecondOrderCone(dimension::Int)

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L718-L739
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L630-L652
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The rotated second-order cone {(t, u, x) ∈ Rdimension : 2tu ≥ ‖x‖22, t, u ≥ 0} of dimension dimension.

The dimension must be at least 2.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> t = MOI.add_variable(model)
MOI.VariableIndex(1)

julia> u = MOI.add_variable(model)
MOI.VariableIndex(2)

julia> x = MOI.add_variables(model, 3);

julia> MOI.add_constraint(
model,
MOI.VectorOfVariables([t; u; x]),
MOI.RotatedSecondOrderCone(5),

)
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.RotatedSecondOrderCone}(1)↪→

source

MathOptInterface.GeometricMeanCone – Type.

GeometricMeanCone(dimension::Int)

The geometric mean cone {(t, x) ∈ Rn+1 : x ≥ 0, t ≤ n
√
x1x2 · · ·xn}, where dimension = n + 1 >=

2.

Duality note

The dual of the geometric mean cone is {(u, v) ∈ Rn+1 : u ≤ 0, v ≥ 0,−u ≤ n n
√∏

i vi}, where
dimension = n + 1 >= 2.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> t = MOI.add_variable(model)
MOI.VariableIndex(1)

julia> x = MOI.add_variables(model, 3);

julia> MOI.add_constraint(
model,
MOI.VectorOfVariables([t; x]),
MOI.GeometricMeanCone(4),

)
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.GeometricMeanCone}(1)↪→

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L671-L699
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source

MathOptInterface.ExponentialCone – Type.

ExponentialCone()

The 3-dimensional exponential cone {(x, y, z) ∈ R3 : y exp(x/y) ≤ z, y > 0}.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variables(model, 3);

julia> MOI.add_constraint(model, MOI.VectorOfVariables(x), MOI.ExponentialCone())
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.ExponentialCone}(1)↪→

source

MathOptInterface.DualExponentialCone – Type.

DualExponentialCone()

The 3-dimensional dual exponential cone {(u, v, w) ∈ R3 : −u exp(v/u) ≤ exp(1)w, u < 0}.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variables(model, 3);

julia> MOI.add_constraint(model, MOI.VectorOfVariables(x), MOI.DualExponentialCone())
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.DualExponentialCone}(1)↪→

source

MathOptInterface.PowerCone – Type.

PowerCone{T<:Real}(exponent::T)

The 3-dimensional power cone {(x, y, z) ∈ R3 : xexponenty1−exponent ≥ |z|, x ≥ 0, y ≥ 0} with
parameter exponent.

Example

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L763-L793
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L809-L824
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L832-L847
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julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variables(model, 3);

julia> MOI.add_constraint(model, MOI.VectorOfVariables(x), MOI.PowerCone(0.5))
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.PowerCone{Float64}}(1)↪→

source

MathOptInterface.DualPowerCone – Type.

DualPowerCone{T<:Real}(exponent::T)

The 3-dimensional power cone {(u, v, w) ∈ R3 : ( u
exponent )

exponent( v
1−exponent )

1−exponent ≥ |w|, u ≥
0, v ≥ 0} with parameter exponent.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variables(model, 3);

julia> MOI.add_constraint(model, MOI.VectorOfVariables(x), MOI.DualPowerCone(0.5))
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.DualPowerCone{Float64}}(1)↪→

source

MathOptInterface.RelativeEntropyCone – Type.

RelativeEntropyCone(dimension::Int)

The relative entropy cone {(u, v, w) ∈ R1+2n : u ≥
∑n

i=1 wi log(wi

vi
), vi ≥ 0, wi ≥ 0}, where

dimension = 2n + 1 >= 1.

Duality note

The dual of the relative entropy cone is {(u, v, w) ∈ R1+2n : ∀i, wi ≥ u(log( u
vi
)− 1), vi ≥ 0, u > 0} of

dimension dimension = 2n+ 1.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> u = MOI.add_variable(model);

julia> v = MOI.add_variables(model, 3);

julia> w = MOI.add_variables(model, 3);

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L855-L871
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L885-L901
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julia> MOI.add_constraint(
model,
MOI.VectorOfVariables([u; v; w]),
MOI.RelativeEntropyCone(7),

)
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.RelativeEntropyCone}(1)↪→

source

MathOptInterface.NormSpectralCone – Type.

NormSpectralCone(row_dim::Int, column_dim::Int)

The epigraph of thematrix spectral norm (maximum singular value function) {(t,X) ∈ R1+rowdim×columndim :
t ≥ σ1(X)}, where σi is the ith singular value of the matrix X of non-negative row dimension row_dim
and column dimension column_dim.

The matrix X is vectorized by stacking the columns, matching the behavior of Julia's vec function.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> t = MOI.add_variable(model)
MOI.VariableIndex(1)

julia> X = reshape(MOI.add_variables(model, 6), 2, 3)
2×3 Matrix{MathOptInterface.VariableIndex}:
MOI.VariableIndex(2) MOI.VariableIndex(4) MOI.VariableIndex(6)
MOI.VariableIndex(3) MOI.VariableIndex(5) MOI.VariableIndex(7)

julia> MOI.add_constraint(
model,
MOI.VectorOfVariables([t; vec(X)]),
MOI.NormSpectralCone(2, 3),

)
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.NormSpectralCone}(1)↪→

source

MathOptInterface.NormNuclearCone – Type.

NormNuclearCone(row_dim::Int, column_dim::Int)

The epigraph of thematrix nuclear norm (sum of singular values function) {(t,X) ∈ R1+rowdim×columndim :
t ≥

∑
i σi(X)}, where σi is the ith singular value of the matrixX of non-negative row dimension row_dim

and column dimension column_dim.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L915-L946
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L962-L993
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The matrix X is vectorized by stacking the columns, matching the behavior of Julia's vec function.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> t = MOI.add_variable(model)
MOI.VariableIndex(1)

julia> X = reshape(MOI.add_variables(model, 6), 2, 3)
2×3 Matrix{MathOptInterface.VariableIndex}:
MOI.VariableIndex(2) MOI.VariableIndex(4) MOI.VariableIndex(6)
MOI.VariableIndex(3) MOI.VariableIndex(5) MOI.VariableIndex(7)

julia> MOI.add_constraint(
model,
MOI.VectorOfVariables([t; vec(X)]),
MOI.NormNuclearCone(2, 3),

)
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.NormNuclearCone}(1)↪→

source

MathOptInterface.SOS1 – Type.

SOS1{T<:Real}(weights::Vector{T})

The set corresponding to the Special Ordered Set (SOS) constraint of Type I.

Of the variables in the set, at most one can be nonzero.

The weights induce an ordering of the variables such that the kth element in the set corresponds to the
kth weight in weights. Solvers may use these weights to improve the efficiency of the solution process,
but the ordering does not change the set of feasible solutions.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variables(model, 3);

julia> MOI.add_constraint(
model,
MOI.VectorOfVariables(x),
MOI.SOS1([1.0, 3.0, 2.5]),

)
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.SOS1{Float64}}(1)↪→

source

MathOptInterface.SOS2 – Type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L1015-L1046
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L1742-L1768
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SOS2{T<:Real}(weights::Vector{T})

The set corresponding to the Special Ordered Set (SOS) constraint of Type II.

The weights induce an ordering of the variables such that the kth element in the set corresponds to the
kth weight in weights. Therefore, the weights must be unique.

Of the variables in the set, at most two can be nonzero, and if two are nonzero, they must be adjacent in
the ordering of the set.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variables(model, 3);

julia> MOI.add_constraint(
model,
MOI.VectorOfVariables(x),
MOI.SOS2([1.0, 3.0, 2.5]),

)
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.SOS2{Float64}}(1)↪→

source

MathOptInterface.Indicator – Type.

Indicator{ACTIVATE_ON_ZERO}(set::AbstractScalarSet)
Indicator{ACTIVATE_ON_ONE}(set::AbstractScalarSet)

The set corresponding to an indicator constraint.

The type parameter must be an ActivationCondition.

When the type parameter is ACTIVATE_ON_ZERO, this means:

{(y, x) ∈ {0, 1} × R : y = 0 =⇒ x ∈ set}

When the type parameter is ACTIVATE_ON_ONE, this means:

{(y, x) ∈ {0, 1} × R : y = 1 =⇒ x ∈ set}

Notes

Most solvers expect that the first row of the function is interpretable as a VariableIndex (for example,
1.0 * x + 0.0), and that the variable is constrained to the ZeroOne set. An error will be thrown if this is
not the case.

Example

The constraint {(y, x) ∈ {0, 1} × R2 : y = 1 =⇒ x1 + x2 ≤ 9} is defined as

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L1779-L1805
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julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variables(model, 2);

julia> y, _ = MOI.add_constrained_variable(model, MOI.ZeroOne());

julia> f = MOI.Utilities.vectorize([y, 1.0 * x[1] + 1.0 * x[2]])
┌ ┐
│0.0 + 1.0 MOI.VariableIndex(3) │
│0.0 + 1.0 MOI.VariableIndex(1) + 1.0 MOI.VariableIndex(2)│
└ ┘

julia> s = MOI.Indicator{MOI.ACTIVATE_ON_ONE}(MOI.LessThan(9.0))
MathOptInterface.Indicator{MathOptInterface.ACTIVATE_ON_ONE,

MathOptInterface.LessThan{Float64}}(MathOptInterface.LessThan{Float64}(9.0))↪→

julia> MOI.add_constraint(model, f, s)
MathOptInterface.ConstraintIndex{MathOptInterface.VectorAffineFunction{Float64},

MathOptInterface.Indicator{MathOptInterface.ACTIVATE_ON_ONE,
MathOptInterface.LessThan{Float64}}}(1)

↪→

↪→

The constraint {(y, x) ∈ {0, 1} × R : y = 0 =⇒ x = 0} is defined as

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variable(model);

julia> y, _ = MOI.add_constrained_variable(model, MOI.ZeroOne());

julia> f = MOI.VectorOfVariables([y, x]);

julia> s = MOI.Indicator{MOI.ACTIVATE_ON_ZERO}(MOI.EqualTo(0.0))
MathOptInterface.Indicator{MathOptInterface.ACTIVATE_ON_ZERO,

MathOptInterface.EqualTo{Float64}}(MathOptInterface.EqualTo{Float64}(0.0))↪→

julia> MOI.add_constraint(model, f, s)
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.Indicator{MathOptInterface.ACTIVATE_ON_ZERO,
MathOptInterface.EqualTo{Float64}}}(1)

↪→

↪→

source

MathOptInterface.ActivationCondition – Type.

ActivationCondition

Activation condition for an indicator constraint.

The enum value is used as first type parameter of Indicator{A,S}.

Values

ACTIVATE_ON_ZERO

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L1835-L1901
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The indicator constraint holds when the binary variable is zero.

ACTIVATE_ON_ONE

The indicator constraint holds when the binary variable is one.

source

MathOptInterface.ACTIVATE_ON_ZERO – Constant.

ACTIVATE_ON_ZERO::ActivationCondition

An instance of the ActivationCondition enum.

About

The indicator constraint holds when the binary variable is zero.

source

MathOptInterface.ACTIVATE_ON_ONE – Constant.

ACTIVATE_ON_ONE::ActivationCondition

An instance of the ActivationCondition enum.

About

The indicator constraint holds when the binary variable is one.

source

MathOptInterface.Complements – Type.

Complements(dimension::Base.Integer)

The set corresponding to a mixed complementarity constraint.

Complementarity constraints should be specifiedwith an AbstractVectorFunction-in-Complements(dimension)
constraint.

The dimension of the vector-valued function F must be dimension. This defines a complementarity con-
straint between the scalar function F[i] and the variable in F[i + dimension/2]. Thus, F[i + dimension/2]
must be interpretable as a single variable x_i (for example, 1.0 * x + 0.0), and dimensionmust be even.

The mixed complementarity problem consists of finding x_i in the interval [lb, ub] (that is, in the set
Interval(lb, ub)), such that the following holds:

1. F_i(x) == 0 if lb_i < x_i < ub_i

2. F_i(x) >= 0 if lb_i == x_i

3. F_i(x) <= 0 if x_i == ub_i

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L1816-L1833
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L1816-L1825
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L1816-L1825
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Classically, the bounding set for x_i is Interval(0, Inf), which recovers: 0 <= F_i(x) ⟂ x_i >= 0,
where the ⟂ operator implies F_i(x) * x_i = 0.

Example

The problem:

x -in- Interval(-1, 1)
[-4 * x - 3, x] -in- Complements(2)

defines the mixed complementarity problem where the following holds:

1. -4 * x - 3 == 0 if -1 < x < 1

2. -4 * x - 3 >= 0 if x == -1

3. -4 * x - 3 <= 0 if x == 1

There are three solutions:

1. x = -3/4 with F(x) = 0

2. x = -1 with F(x) = 1

3. x = 1 with F(x) = -7

julia> model = MOI.Utilities.Model{Float64}();

julia> x, _ = MOI.add_constrained_variable(model, MOI.Interval(-1.0, 1.0));

julia> MOI.add_constraint(
model,
MOI.Utilities.vectorize([-4.0 * x - 3.0, x]),
MOI.Complements(2),

)
MathOptInterface.ConstraintIndex{MathOptInterface.VectorAffineFunction{Float64},

MathOptInterface.Complements}(1)↪→

The function F can also be defined in terms of single variables. For example, the problem:

[x_3, x_4] -in- Nonnegatives(2)
[x_1, x_2, x_3, x_4] -in- Complements(4)

defines the complementarity problem where 0 <= x_1 ⟂ x_3 >= 0 and 0 <= x_2 ⟂ x_4 >= 0.

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variables(model, 4);

julia> MOI.add_constraint(model, MOI.VectorOfVariables(x[3:4]), MOI.Nonnegatives(2))
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.Nonnegatives}(1)↪→

julia> MOI.add_constraint(
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model,
MOI.VectorOfVariables(x),
MOI.Complements(4),

)
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.Complements}(1)↪→

source

MathOptInterface.HyperRectangle – Type.

HyperRectangle(lower::Vector{T}, upper::Vector{T}) where {T}

The set {x ∈ R̄d : xi ∈ [loweri, upperi]∀i = 1, . . . , d}.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variables(model, 3)
3-element Vector{MathOptInterface.VariableIndex}:
MOI.VariableIndex(1)
MOI.VariableIndex(2)
MOI.VariableIndex(3)

julia> MOI.add_constraint(
model,
MOI.VectorOfVariables(x),
MOI.HyperRectangle(zeros(3), ones(3)),

)
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.HyperRectangle{Float64}}(1)↪→

source

MathOptInterface.Scaled – Type.

struct Scaled{S<:AbstractVectorSet} <: AbstractVectorSet
set::S

end

Given a vector a ∈ Rd and a set representing the set S ∈ Rd such that Utilities.set_dot for x ∈ S
and y ∈ S∗ is

d∑
i=1

aixiyi

the set Scaled(set) is defined as

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L1919-L1999
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L2584-L2607
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{(
√
a1x1,

√
a2x2, . . . ,

√
adxd) : x ∈ S}

Example

This can be used to scale a vector of numbers

julia> set = MOI.PositiveSemidefiniteConeTriangle(2)
MathOptInterface.PositiveSemidefiniteConeTriangle(2)

julia> a = MOI.Utilities.SetDotScalingVector{Float64}(set)
3-element MathOptInterface.Utilities.SetDotScalingVector{Float64,

MathOptInterface.PositiveSemidefiniteConeTriangle}:↪→

1.0
1.4142135623730951
1.0

julia> using LinearAlgebra

julia> MOI.Utilities.operate(*, Float64, Diagonal(a), ones(3))
3-element Vector{Float64}:
1.0
1.4142135623730951
1.0

It can be also used to scale a vector of function

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variables(model, 3);

julia> func = MOI.VectorOfVariables(x)
┌ ┐
│MOI.VariableIndex(1)│
│MOI.VariableIndex(2)│
│MOI.VariableIndex(3)│
└ ┘

julia> set = MOI.PositiveSemidefiniteConeTriangle(2)
MathOptInterface.PositiveSemidefiniteConeTriangle(2)

julia> MOI.Utilities.operate(*, Float64, Diagonal(a), func)
┌ ┐
│0.0 + 1.0 MOI.VariableIndex(1) │
│0.0 + 1.4142135623730951 MOI.VariableIndex(2)│
│0.0 + 1.0 MOI.VariableIndex(3) │
└ ┘

source

Constraint programming sets

MathOptInterface.AllDifferent – Type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L1631-L1692
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AllDifferent(dimension::Int)

The set {x ∈ Zd} such that no two elements in x take the same value and dimension = d.

Also known as

This constraint is called all_different in MiniZinc, and is sometimes also called distinct.

Example

To enforce x[1] != x[2] AND x[1] != x[3] AND x[2] != x[3]:

julia> model = MOI.Utilities.Model{Float64}();

julia> x = [MOI.add_constrained_variable(model, MOI.Integer())[1] for _ in 1:3]
3-element Vector{MathOptInterface.VariableIndex}:
MOI.VariableIndex(1)
MOI.VariableIndex(2)
MOI.VariableIndex(3)

julia> MOI.add_constraint(model, MOI.VectorOfVariables(x), MOI.AllDifferent(3))
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.AllDifferent}(1)↪→

source

MathOptInterface.BinPacking – Type.

BinPacking(c::T, w::Vector{T}) where {T}

The set {x ∈ Zd} where d = length(w), such that each item i in 1:d of weight w[i] is put into bin x[i],
and the total weight of each bin does not exceed c.

There are additional assumptions that the capacity, c, and the weights, w, must all be non-negative.

The bin numbers depend on the bounds of x, so they may be something other than the integers 1:d.

Also known as

This constraint is called bin_packing in MiniZinc.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> bins = MOI.add_variables(model, 5)
5-element Vector{MathOptInterface.VariableIndex}:
MOI.VariableIndex(1)
MOI.VariableIndex(2)
MOI.VariableIndex(3)
MOI.VariableIndex(4)
MOI.VariableIndex(5)

julia> weights = Float64[1, 1, 2, 2, 3]

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L2014-L2041
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5-element Vector{Float64}:
1.0
1.0
2.0
2.0
3.0

julia> MOI.add_constraint.(model, bins, MOI.Integer())
5-element Vector{MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,

MathOptInterface.Integer}}:↪→

MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex, MathOptInterface.Integer}(1)
MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex, MathOptInterface.Integer}(2)
MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex, MathOptInterface.Integer}(3)
MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex, MathOptInterface.Integer}(4)
MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex, MathOptInterface.Integer}(5)

julia> MOI.add_constraint.(model, bins, MOI.Interval(4.0, 6.0))
5-element Vector{MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,

MathOptInterface.Interval{Float64}}}:↪→

MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,
MathOptInterface.Interval{Float64}}(1)↪→

MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,
MathOptInterface.Interval{Float64}}(2)↪→

MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,
MathOptInterface.Interval{Float64}}(3)↪→

MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,
MathOptInterface.Interval{Float64}}(4)↪→

MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,
MathOptInterface.Interval{Float64}}(5)↪→

julia> MOI.add_constraint(model, MOI.VectorOfVariables(bins), MOI.BinPacking(3.0, weights))
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.BinPacking{Float64}}(1)↪→

source

MathOptInterface.Circuit – Type.

Circuit(dimension::Int)

The set {x ∈ {1..d}d} that constraints x to be a circuit, such that xi = j means that j is the successor
of i, and dimension = d.

Graphs with multiple independent circuits, such as [2, 1, 3] and [2, 1, 4, 3], are not valid.

Also known as

This constraint is called circuit in MiniZinc, and it is equivalent to forming a (potentially sub-optimal) tour
in the travelling salesperson problem.

Example

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L2052-L2109
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julia> model = MOI.Utilities.Model{Float64}();

julia> x = [MOI.add_constrained_variable(model, MOI.Integer())[1] for _ in 1:3]
3-element Vector{MathOptInterface.VariableIndex}:
MOI.VariableIndex(1)
MOI.VariableIndex(2)
MOI.VariableIndex(3)

julia> MOI.add_constraint(model, MOI.VectorOfVariables(x), MOI.Circuit(3))
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.Circuit}(1)↪→

source

MathOptInterface.CountAtLeast – Type.

CountAtLeast(n::Int, d::Vector{Int}, set::Set{Int})

The set {x ∈ Zd1+d2+...dN }, where x is partitioned into N subsets ({x1, . . . , xd1}, {xd1+1, . . . , xd1+d2}
and so on), and at least n elements of each subset take one of the values in set.

Also known as

This constraint is called at_least in MiniZinc.

Example

To ensure that 3 appears at least once in each of the subsets {a, b} and {b, c}:

julia> model = MOI.Utilities.Model{Float64}();

julia> a, _ = MOI.add_constrained_variable(model, MOI.Integer())
(MOI.VariableIndex(1), MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,

MathOptInterface.Integer}(1))↪→

julia> b, _ = MOI.add_constrained_variable(model, MOI.Integer())
(MOI.VariableIndex(2), MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,

MathOptInterface.Integer}(2))↪→

julia> c, _ = MOI.add_constrained_variable(model, MOI.Integer())
(MOI.VariableIndex(3), MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,

MathOptInterface.Integer}(3))↪→

julia> x, d, set = [a, b, b, c], [2, 2], [3]
(MathOptInterface.VariableIndex[MOI.VariableIndex(1), MOI.VariableIndex(2),

MOI.VariableIndex(2), MOI.VariableIndex(3)], [2, 2], [3])↪→

julia> MOI.add_constraint(model, MOI.VectorOfVariables(x), MOI.CountAtLeast(1, d, Set(set)))
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.CountAtLeast}(1)↪→

source

MathOptInterface.CountBelongs – Type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L2134-L2163
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L2174-L2209
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CountBelongs(dimenson::Int, set::Set{Int})

The set {(n, x) ∈ Z1+d}, such that n elements of the vector x take on of the values in set and dimension
= 1 + d.

Also known as

This constraint is called among by MiniZinc.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> n, _ = MOI.add_constrained_variable(model, MOI.Integer())
(MOI.VariableIndex(1), MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,

MathOptInterface.Integer}(1))↪→

julia> x = [MOI.add_constrained_variable(model, MOI.Integer())[1] for _ in 1:3]
3-element Vector{MathOptInterface.VariableIndex}:
MOI.VariableIndex(2)
MOI.VariableIndex(3)
MOI.VariableIndex(4)

julia> set = Set([3, 4, 5])
Set{Int64} with 3 elements:
5
4
3

julia> MOI.add_constraint(model, MOI.VectorOfVariables([n; x]), MOI.CountBelongs(4, set))
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.CountBelongs}(1)↪→

source

MathOptInterface.CountDistinct – Type.

CountDistinct(dimension::Int)

The set {(n, x) ∈ Z1+d}, such that the number of distinct values in x is n and dimension = 1 + d.

Also known as

This constraint is called nvalues in MiniZinc.

Example

To model:

• if n == 1, then x[1] == x[2] == x[3]

• if n == 2, then

– x[1] == x[2] != x[3] or

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L2236-L2269
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– x[1] != x[2] == x[3] or
– x[1] == x[3] != x[2]

• if n == 3, then x[1] != x[2], x[2] != x[3] and x[3] != x[1]

julia> model = MOI.Utilities.Model{Float64}();

julia> n, _ = MOI.add_constrained_variable(model, MOI.Integer())
(MOI.VariableIndex(1), MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,

MathOptInterface.Integer}(1))↪→

julia> x = [MOI.add_constrained_variable(model, MOI.Integer())[1] for _ in 1:3]
3-element Vector{MathOptInterface.VariableIndex}:
MOI.VariableIndex(2)
MOI.VariableIndex(3)
MOI.VariableIndex(4)

julia> MOI.add_constraint(model, MOI.VectorOfVariables(vcat(n, x)), MOI.CountDistinct(4))
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.CountDistinct}(1)↪→

Relationship to AllDifferent

When the first element is d, CountDistinct is equivalent to an AllDifferent constraint.

source

MathOptInterface.CountGreaterThan – Type.

CountGreaterThan(dimension::Int)

The set {(c, y, x) ∈ Z1+1+d}, such that c is strictly greater than the number of occurences of y in x and
dimension = 1 + 1 + d.

Also known as

This constraint is called count_gt in MiniZinc.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> c, _ = MOI.add_constrained_variable(model, MOI.Integer())
(MOI.VariableIndex(1), MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,

MathOptInterface.Integer}(1))↪→

julia> y, _ = MOI.add_constrained_variable(model, MOI.Integer())
(MOI.VariableIndex(2), MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,

MathOptInterface.Integer}(2))↪→

julia> x = [MOI.add_constrained_variable(model, MOI.Integer())[1] for _ in 1:3]
3-element Vector{MathOptInterface.VariableIndex}:
MOI.VariableIndex(3)
MOI.VariableIndex(4)

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L2287-L2328
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MOI.VariableIndex(5)

julia> MOI.add_constraint(model, MOI.VectorOfVariables([c; y; x]), MOI.CountGreaterThan(5))
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.CountGreaterThan}(1)↪→

source

MathOptInterface.Cumulative – Type.

Cumulative(dimension::Int)

The set {(s, d, r, b) ∈ Z3n+1}, representing the cumulative global constraint, where n == length(s) ==
length(r) == length(b) and dimension = 3n + 1.

Cumulative requires that a set of tasks given by start times s, durations d, and resource requirements r,
never requires more than the global resource bound b at any one time.

Also known as

This constraint is called cumulative in MiniZinc.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> s = [MOI.add_constrained_variable(model, MOI.Integer())[1] for _ in 1:3]
3-element Vector{MathOptInterface.VariableIndex}:
MOI.VariableIndex(1)
MOI.VariableIndex(2)
MOI.VariableIndex(3)

julia> d = [MOI.add_constrained_variable(model, MOI.Integer())[1] for _ in 1:3]
3-element Vector{MathOptInterface.VariableIndex}:
MOI.VariableIndex(4)
MOI.VariableIndex(5)
MOI.VariableIndex(6)

julia> r = [MOI.add_constrained_variable(model, MOI.Integer())[1] for _ in 1:3]
3-element Vector{MathOptInterface.VariableIndex}:
MOI.VariableIndex(7)
MOI.VariableIndex(8)
MOI.VariableIndex(9)

julia> b, _ = MOI.add_constrained_variable(model, MOI.Integer())
(MOI.VariableIndex(10), MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,

MathOptInterface.Integer}(10))↪→

julia> MOI.add_constraint(model, MOI.VectorOfVariables([s; d; r; b]), MOI.Cumulative(10))
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.Cumulative}(1)↪→

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L2339-L2369
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L2384-L2428
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MathOptInterface.Path – Type.

Path(from::Vector{Int}, to::Vector{Int})

Given a graph comprised of a set of nodes 1..N and a set of arcs 1..E represented by an edge from node
from[i] to node to[i], Path constrains the set (s, t, ns, es) ∈ (1..N)× (1..E)× {0, 1}N × {0, 1}E , to
form subgraph that is a path from node s to node t, where node n is in the path if ns[n] is 1, and edge e
is in the path if es[e] is 1.

The path must be acyclic, and it must traverse all nodes n for which ns[n] is 1, and all edges e for which
es[e] is 1.

Also known as

This constraint is called path in MiniZinc.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> N, E = 4, 5
(4, 5)

julia> from = [1, 1, 2, 2, 3]
5-element Vector{Int64}:
1
1
2
2
3

julia> to = [2, 3, 3, 4, 4]
5-element Vector{Int64}:
2
3
3
4
4

julia> s, _ = MOI.add_constrained_variable(model, MOI.Integer())
(MOI.VariableIndex(1), MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,

MathOptInterface.Integer}(1))↪→

julia> t, _ = MOI.add_constrained_variable(model, MOI.Integer())
(MOI.VariableIndex(2), MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,

MathOptInterface.Integer}(2))↪→

julia> ns = MOI.add_variables(model, N)
4-element Vector{MathOptInterface.VariableIndex}:
MOI.VariableIndex(3)
MOI.VariableIndex(4)
MOI.VariableIndex(5)
MOI.VariableIndex(6)

julia> MOI.add_constraint.(model, ns, MOI.ZeroOne())
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4-element Vector{MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,
MathOptInterface.ZeroOne}}:↪→

MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex, MathOptInterface.ZeroOne}(3)
MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex, MathOptInterface.ZeroOne}(4)
MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex, MathOptInterface.ZeroOne}(5)
MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex, MathOptInterface.ZeroOne}(6)

julia> es = MOI.add_variables(model, E)
5-element Vector{MathOptInterface.VariableIndex}:
MOI.VariableIndex(7)
MOI.VariableIndex(8)
MOI.VariableIndex(9)
MOI.VariableIndex(10)
MOI.VariableIndex(11)

julia> MOI.add_constraint.(model, es, MOI.ZeroOne())
5-element Vector{MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,

MathOptInterface.ZeroOne}}:↪→

MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex, MathOptInterface.ZeroOne}(7)
MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex, MathOptInterface.ZeroOne}(8)
MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex, MathOptInterface.ZeroOne}(9)
MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex, MathOptInterface.ZeroOne}(10)
MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex, MathOptInterface.ZeroOne}(11)

julia> MOI.add_constraint(model, MOI.VectorOfVariables([s; t; ns; es]), MOI.Path(from, to))
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables, MathOptInterface.Path}(1)

source

MathOptInterface.Reified – Type.

Reified(set::AbstractSet)

The constraint [z; f(x)] ∈ Reified(S) ensures that f(x) ∈ S if and only if z == 1, where z ∈ {0, 1}.

julia> model = MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}());

julia> z, _ = MOI.add_constrained_variable(model, MOI.ZeroOne())
(MOI.VariableIndex(1), MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,

MathOptInterface.ZeroOne}(1))↪→

julia> x = MOI.add_variable(model)
MOI.VariableIndex(2)

julia> MOI.add_constraint(
model,
MOI.Utilities.vectorize([z, 2.0 * x]),
MOI.Reified(MOI.GreaterThan(1.0)),

)
MathOptInterface.ConstraintIndex{MathOptInterface.VectorAffineFunction{Float64},

MathOptInterface.Reified{MathOptInterface.GreaterThan{Float64}}}(1)↪→

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L2439-L2519
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L2634-L2656
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MathOptInterface.Table – Type.

Table(table::Matrix{T}) where {T}

The set {x ∈ Rd} where d = size(table, 2), such that x belongs to one row of table. That is, there
exists some j in 1:size(table, 1), such that x[i] = table[j, i] for all i=1:size(table, 2).

Also known as

This constraint is called table in MiniZinc.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variables(model, 3)
3-element Vector{MathOptInterface.VariableIndex}:
MOI.VariableIndex(1)
MOI.VariableIndex(2)
MOI.VariableIndex(3)

julia> table = Float64[1 1 0; 0 1 1; 1 0 1; 1 1 1]
4×3 Matrix{Float64}:
1.0 1.0 0.0
0.0 1.0 1.0
1.0 0.0 1.0
1.0 1.0 1.0

julia> MOI.add_constraint(model, MOI.VectorOfVariables(x), MOI.Table(table))
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.Table{Float64}}(1)↪→

source

Matrix sets

Matrix sets are vectorized to be subtypes of AbstractVectorSet.

For sets of symmetricmatrices, storing both the (i, j) and (j, i) elements is redundant. Use the AbstractSymmetricMatrixSetTriangle
set to represent only the vectorization of the upper triangular part of the matrix.

When the matrix of expressions constrained to be in the set is not symmetric, and hence additional constraints
are needed to force the equality of the (i, j) and (j, i) elements, use the AbstractSymmetricMatrixSetSquare
set.

The Bridges.Constraint.SquareBridge can transform a set from the square form to the triangular_form
by adding appropriate constraints if the (i, j) and (j, i) expressions are different.

MathOptInterface.AbstractSymmetricMatrixSetTriangle – Type.

abstract type AbstractSymmetricMatrixSetTriangle <: AbstractVectorSet end

Abstract supertype for subsets of the (vectorized) cone of symmetric matrices, with side_dimension rows
and columns. The entries of the upper-right triangular part of the matrix are given column by column

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L2541-L2573
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(or equivalently, the entries of the lower-left triangular part are given row by row). A vectorized cone of
dimension n corresponds to a square matrix with side dimension

√
1/4 + 2n − 1/2. (Because a d × d

matrix has d(d+ 1)/2 elements in the upper or lower triangle.)

Example

The matrix

1 2 4
2 3 5
4 5 6


has side_dimension 3 and vectorization (1, 2, 3, 4, 5, 6).

Note

Two packed storage formats exist for symmetric matrices, the respective orders of the entries are:

• upper triangular column by column (or lower triangular row by row);

• lower triangular column by column (or upper triangular row by row).

The advantage of the first format is the mapping between the (i, j) matrix indices and the k index of
the vectorized form. It is simpler and does not depend on the side dimension of the matrix. Indeed,

• the entry of matrix indices (i, j) has vectorized index k = div((j - 1) * j, 2) + i if i ≤ j and
k = div((i - 1) * i, 2) + j if j ≤ i;

• and the entry with vectorized index k has matrix indices i = div(1 + isqrt(8k - 7), 2) and j =
k - div((i - 1) * i, 2) or j = div(1 + isqrt(8k - 7), 2) and i = k - div((j - 1) * j,
2).

Duality note

The scalar product for the symmetric matrix in its vectorized form is the sum of the pairwise product of
the diagonal entries plus twice the sum of the pairwise product of the upper diagonal entries; see [p. 634,
1]. This has important consequence for duality.

Consider for example the following problem (PositiveSemidefiniteConeTriangle is a subtype of AbstractSymmetricMatrixSetTriangle)

max
x∈R

x

s.t. (1,−x, 1) ∈ PositiveSemidefiniteConeTriangle(2).

The dual is the following problem

min
x∈R3

y1 + y3

s.t. 2y2 = 1

y ∈ PositiveSemidefiniteConeTriangle(2).

Why do we use 2y2 in the dual constraint instead of y2 ? The reason is that 2y2 is the scalar product
between y and the symmetric matrix whose vectorized form is (0, 1, 0). Indeed, with our modified scalar
products we have
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〈(0, 1, 0), (y1, y2, y3)〉 = trace
(
0 1
1 0

)(
y1 y2
y2 y3

)
= 2y2.

References

[1] Boyd, S. and Vandenberghe, L.. Convex optimization. Cambridge university press, 2004.

source

MathOptInterface.AbstractSymmetricMatrixSetSquare – Type.

abstract type AbstractSymmetricMatrixSetSquare <: AbstractVectorSet end

Abstract supertype for subsets of the (vectorized) cone of symmetric matrices, with side_dimension rows
and columns. The entries of the matrix are given column by column (or equivalently, row by row). The
matrix is both constrained to be symmetric and to have its triangular_form belong to the corresponding
set. That is, if the functions in entries (i, j) and (j, i) are different, then a constraint will be added to make
sure that the entries are equal.

Example

PositiveSemidefiniteConeSquare is a subtype of AbstractSymmetricMatrixSetSquare and constrain-
ing the matrix

[
1 −y
−z 0

]
to be symmetric positive semidefinite can be achieved by constraining the vector (1,−z,−y, 0) (or (1,−y,−z, 0))
to belong to the PositiveSemidefiniteConeSquare(2). It both constrains y = z and (1,−y, 0) (or
(1,−z, 0)) to be in PositiveSemidefiniteConeTriangle(2), since triangular_form(PositiveSemidefiniteConeSquare)
is PositiveSemidefiniteConeTriangle.

source

MathOptInterface.side_dimension – Function.

side_dimension(
set::Union{

AbstractSymmetricMatrixSetTriangle,
AbstractSymmetricMatrixSetSquare,
HermitianPositiveSemidefiniteConeTriangle,

},
)

Side dimension of the matrices in set.

Convention

By convention, the side dimension should be stored in the side_dimension field. If this is not the case for
a subtype of AbstractSymmetricMatrixSetTriangle, or AbstractSymmetricMatrixSetSquare you must
implement this method.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L1068-L1162
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L1172-L1200
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L1361-L1377
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MathOptInterface.triangular_form – Function.

triangular_form(S::Type{<:AbstractSymmetricMatrixSetSquare})
triangular_form(set::AbstractSymmetricMatrixSetSquare)

Return the AbstractSymmetricMatrixSetTriangle corresponding to the vectorization of the upper trian-
gular part of matrices in the AbstractSymmetricMatrixSetSquare set.

source

List of recognized matrix sets.

MathOptInterface.PositiveSemidefiniteConeTriangle – Type.

PositiveSemidefiniteConeTriangle(side_dimension::Int) <: AbstractSymmetricMatrixSetTriangle

The (vectorized) cone of symmetric positive semidefinite matrices, with non-negative side_dimension
rows and columns.

See AbstractSymmetricMatrixSetTriangle for more details on the vectorized form.

source

MathOptInterface.PositiveSemidefiniteConeSquare – Type.

PositiveSemidefiniteConeSquare(side_dimension::Int) <: AbstractSymmetricMatrixSetSquare

The cone of symmetric positive semidefinite matrices, with non-negative side length side_dimension.

See AbstractSymmetricMatrixSetSquare for more details on the vectorized form.

The entries of the matrix are given column by column (or equivalently, row by row).

The matrix is both constrained to be symmetric and to be positive semidefinite. That is, if the functions
in entries (i, j) and (j, i) are different, then a constraint will be added to make sure that the entries are
equal.

Example

Constraining the matrix

[
1 −y
−z 0

]
to be symmetric positive semidefinite can be achieved by constraining the vector (1,−z,−y, 0) (or (1,−y,−z, 0))
to belong to the PositiveSemidefiniteConeSquare(2).

It both constrains y = z and (1,−y, 0) (or (1,−z, 0)) to be in PositiveSemidefiniteConeTriangle(2).

source

MathOptInterface.HermitianPositiveSemidefiniteConeTriangle – Type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L1205-L1212
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L1219-L1227
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L1248-L1279


CHAPTER 36. API REFERENCE 1105

HermitianPositiveSemidefiniteConeTriangle(side_dimension::Int) <: AbstractVectorSet

The (vectorized) cone of Hermitian positive semidefinite matrices, with non-negative side_dimension rows
and columns.

Becaue the matrix is Hermitian, the diagonal elements are real, and the complex-valued lower triangular
entries are obtained as the conjugate of corresponding upper triangular entries.

Vectorization format

The vectorized form starts with real part of the entries of the upper triangular part of the matrix, given
column by column as explained in AbstractSymmetricMatrixSetSquare.

It is then followed by the imaginary part of the off-diagonal entries of the upper triangular part, also given
column by column.

For example, the matrix

 1 2 + 7im 4 + 8im
2− 7im 3 5 + 9im
4− 8im 5− 9im 6


has side_dimension 3 and is represented as the vector [1, 2, 3, 4, 5, 6, 7, 8, 9].

source

MathOptInterface.LogDetConeTriangle – Type.

LogDetConeTriangle(side_dimension::Int)

The log-determinant cone {(t, u,X) ∈ R2+d(d+1)/2 : t ≤ u log(det(X/u)), u > 0}, where the matrix X
is represented in the same symmetric packed format as in the PositiveSemidefiniteConeTriangle.

The non-negative argument side_dimension is the side dimension of the matrix X, that is, its number of
rows or columns.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> t = MOI.add_variable(model)
MOI.VariableIndex(1)

julia> X = MOI.add_variables(model, 3);

julia> MOI.add_constraint(
model,
MOI.VectorOfVariables([t; X]),
MOI.LogDetConeTriangle(2),

)
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.LogDetConeTriangle}(1)↪→

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L1315-L1344
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L1388-L1416
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MathOptInterface.LogDetConeSquare – Type.

LogDetConeSquare(side_dimension::Int)

The log-determinant cone {(t, u,X) ∈ R2+d2

: t ≤ u log(det(X/u)), X symmetric, u > 0}, where the
matrix X is represented in the same format as in the PositiveSemidefiniteConeSquare.

Similarly to PositiveSemidefiniteConeSquare, constraints are added to ensure that X is symmetric.

The non-negative argument side_dimension is the side dimension of the matrix X, that is, its number of
rows or columns.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> t = MOI.add_variable(model)
MOI.VariableIndex(1)

julia> X = reshape(MOI.add_variables(model, 4), 2, 2)
2×2 Matrix{MathOptInterface.VariableIndex}:
MOI.VariableIndex(2) MOI.VariableIndex(4)
MOI.VariableIndex(3) MOI.VariableIndex(5)

julia> MOI.add_constraint(
model,
MOI.VectorOfVariables([t; vec(X)]),
MOI.LogDetConeSquare(2),

)
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.LogDetConeSquare}(1)↪→

source

MathOptInterface.RootDetConeTriangle – Type.

RootDetConeTriangle(side_dimension::Int)

The root-determinant cone {(t,X) ∈ R1+d(d+1)/2 : t ≤ det(X)1/d}, where the matrix X is represented
in the same symmetric packed format as in the PositiveSemidefiniteConeTriangle.

The non-negative argument side_dimension is the side dimension of the matrix X, that is, its number of
rows or columns.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> t = MOI.add_variable(model)
MOI.VariableIndex(1)

julia> X = MOI.add_variables(model, 3);

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L1436-L1470
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julia> MOI.add_constraint(
model,
MOI.VectorOfVariables([t; X]),
MOI.RootDetConeTriangle(2),

)
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.RootDetConeTriangle}(1)↪→

source

MathOptInterface.RootDetConeSquare – Type.

RootDetConeSquare(side_dimension::Int)

The root-determinant cone {(t,X) ∈ R1+d2

: t ≤ det(X)1/d, X symmetric}, where the matrix X is
represented in the same format as PositiveSemidefiniteConeSquare.

Similarly to PositiveSemidefiniteConeSquare, constraints are added to ensure that X is symmetric.

The non-negative argument side_dimension is the side dimension of the matrix X, that is, its number of
rows or columns.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> t = MOI.add_variable(model)
MOI.VariableIndex(1)

julia> X = reshape(MOI.add_variables(model, 4), 2, 2)
2×2 Matrix{MathOptInterface.VariableIndex}:
MOI.VariableIndex(2) MOI.VariableIndex(4)
MOI.VariableIndex(3) MOI.VariableIndex(5)

julia> MOI.add_constraint(
model,
MOI.VectorOfVariables([t; vec(X)]),
MOI.RootDetConeSquare(2),

)
MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables,

MathOptInterface.RootDetConeSquare}(1)↪→

source

36.2 Models

Attribute interface

MathOptInterface.is_set_by_optimize – Function.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L1494-L1522
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/sets.jl#L1542-L1576
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is_set_by_optimize(::AnyAttribute)

Return a Bool indicating whether the value of the attribute is set during an optimize! call, that is, the
attribute is used to query the result of the optimization.

If an attribute can be set by the user, define is_copyable instead.

An attribute cannot be both is_copyable and is_set_by_optimize.

Default fallback

This function returns false by default so it should be implemented for attributes that are set by optimize!.

Undefined behavior

Querying the value of the attribute that is_set_by_optimize before a call to optimize! is undefined and
depends on solver-specific behavior.

Example

julia> MOI.is_set_by_optimize(MOI.ObjectiveValue())
true

julia> MOI.is_set_by_optimize(MOI.VariableName())
false

source

MathOptInterface.is_copyable – Function.

is_copyable(::AnyAttribute)

Return a Bool indicating whether the value of the attribute may be copied during copy_to using set.

If an attribute is_copyable, then it cannot be modified by the optimizer, and get must always return the
value that was set by the user.

If an attribute is the result of an optimization, define is_set_by_optimize instead.

An attribute cannot be both is_set_by_optimize and is_copyable.

Default fallback

By default is_copyable(attr) returns !is_set_by_optimize(attr), which is most probably true.

If an attribute should not be copied, define is_copyable(::MyAttribute) = false.

source

MathOptInterface.get – Function.

MOI.get(b::AbstractBridge, ::MOI.NumberOfVariables)::Int64

Return the number of variables created by the bridge b in the model.

See also MOI.NumberOfConstraints.

Implementation notes

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L3189-L3220
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L3251-L3271
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• There is a default fallback, so you need only implement this if the bridge adds new variables.

source

MOI.get(b::AbstractBridge, ::MOI.ListOfVariableIndices)

Return the list of variables created by the bridge b.

See also MOI.ListOfVariableIndices.

Implementation notes

• There is a default fallback, so you need only implement this if the bridge adds new variables.

source

MOI.get(b::AbstractBridge, ::MOI.NumberOfConstraints{F,S})::Int64 where {F,S}

Return the number of constraints of the type F-in-S created by the bridge b.

See also MOI.NumberOfConstraints.

Implementation notes

• There is a default fallback, so you need only implement this for the constraint types returned by
added_constraint_types.

source

MOI.get(b::AbstractBridge, ::MOI.ListOfConstraintIndices{F,S}) where {F,S}

Return a Vector{ConstraintIndex{F,S}} with indices of all constraints of type F-in-S created by the bride
b.

See also MOI.ListOfConstraintIndices.

Implementation notes

• There is a default fallback, so you need only implement this for the constraint types returned by
added_constraint_types.

source

function MOI.get(
model::MOI.ModelLike,
attr::MOI.AbstractConstraintAttribute,
bridge::AbstractBridge,

)

Return the value of the attribute attr of the model model for the constraint bridged by bridge.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/bridge.jl#L42-L53
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/bridge.jl#L56-L67
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/bridge.jl#L70-L82
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/bridge.jl#L85-L97
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/bridge.jl#L133-L142
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get(optimizer::AbstractOptimizer, attr::AbstractOptimizerAttribute)

Return an attribute attr of the optimizer optimizer.

get(model::ModelLike, attr::AbstractModelAttribute)

Return an attribute attr of the model model.

get(model::ModelLike, attr::AbstractVariableAttribute, v::VariableIndex)

If the attribute attr is set for the variable v in the model model, return its value, return nothing otherwise.
If the attribute attr is not supported by model then an error should be thrown instead of returning nothing.

get(model::ModelLike, attr::AbstractVariableAttribute, v::Vector{VariableIndex})

Return a vector of attributes corresponding to each variable in the collection v in the model model.

get(model::ModelLike, attr::AbstractConstraintAttribute, c::ConstraintIndex)

If the attribute attr is set for the constraint c in themodel model, return its value, return nothing otherwise.
If the attribute attr is not supported by model then an error should be thrown instead of returning nothing.

get(
model::ModelLike,
attr::AbstractConstraintAttribute,
c::Vector{ConstraintIndex{F,S}},

) where {F,S}

Return a vector of attributes corresponding to each constraint in the collection c in the model model.

get(model::ModelLike, ::Type{VariableIndex}, name::String)

If a variable with name name exists in the model model, return the corresponding index, otherwise return
nothing. Errors if two variables have the same name.

get(
model::ModelLike,
::Type{ConstraintIndex{F,S}},
name::String,

) where {F,S}

If an F-in-S constraint with name name exists in the model model, return the corresponding index, otherwise
return nothing. Errors if two constraints have the same name.
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get(model::ModelLike, ::Type{ConstraintIndex}, name::String)

If any constraint with name name exists in the model model, return the corresponding index, otherwise
return nothing. This version is available for convenience but may incur a performance penalty because it
is not type stable. Errors if two constraints have the same name.

source

get(model::GenericModel, attr::MathOptInterface.AbstractOptimizerAttribute)

Return the value of the attribute attr from the model's MOI backend.

source

get(model::GenericModel, attr::MathOptInterface.AbstractModelAttribute)

Return the value of the attribute attr from the model's MOI backend.

source

MathOptInterface.get! – Function.

get!(output, model::ModelLike, args...)

An in-place version of get.

The signature matches that of get except that the result is placed in the vector output.

source

MathOptInterface.set – Function.

function MOI.set(
model::MOI.ModelLike,
attr::MOI.AbstractConstraintAttribute,
bridge::AbstractBridge,
value,

)

Set the value of the attribute attr of the model model for the constraint bridged by bridge.

source

set(optimizer::AbstractOptimizer, attr::AbstractOptimizerAttribute, value)

Assign value to the attribute attr of the optimizer optimizer.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L314-L388
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L1133-L1137
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L1202-L1206
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L452-L459
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/bridge.jl#L162-L172
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set(model::ModelLike, attr::AbstractModelAttribute, value)

Assign value to the attribute attr of the model model.

set(model::ModelLike, attr::AbstractVariableAttribute, v::VariableIndex, value)

Assign value to the attribute attr of variable v in model model.

set(
model::ModelLike,
attr::AbstractVariableAttribute,
v::Vector{VariableIndex},
vector_of_values,

)

Assign a value respectively to the attribute attr of each variable in the collection v in model model.

set(
model::ModelLike,
attr::AbstractConstraintAttribute,
c::ConstraintIndex,
value,

)

Assign a value to the attribute attr of constraint c in model model.

set(
model::ModelLike,
attr::AbstractConstraintAttribute,
c::Vector{ConstraintIndex{F,S}},
vector_of_values,

) where {F,S}

Assign a value respectively to the attribute attr of each constraint in the collection c in model model.

An UnsupportedAttribute error is thrown if model does not support the attribute attr (see supports)
and a SetAttributeNotAllowed error is thrown if it supports the attribute attr but it cannot be set.

set(
model::ModelLike,
::ConstraintSet,
c::ConstraintIndex{F,S},
set::S,

) where {F,S}

Change the set of constraint c to the new set set which should be of the same type as the original set.
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set(
model::ModelLike,
::ConstraintFunction,
c::ConstraintIndex{F,S},
func::F,

) where {F,S}

Replace the function in constraint c with func. F must match the original function type used to define the
constraint.

Note

Setting the constraint function is not allowed if F is VariableIndex; a
SettingVariableIndexNotAllowed error is thrown instead. This is because, it would re-
quire changing the index c since the index of VariableIndex constraints must be the same as the
index of the variable.

source

MOI.set(
model::Optimizer,
attr::ConstraintAttribute,
ci::MOI.ConstraintIndex{MOI.ScalarAffineFunction{Float64}, <:Any},
value

)

Set a constraint attribute.

source

MOI.set(
model::Optimizer,
attr::VariableAttribute,
vi::MOI.VariableIndex,
value

)

Set a variable attribute.

source

MOI.set(model::Optimizer, attr::ModelAttribute, value)

Set a model attribute.

source

MathOptInterface.supports – Function.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L465-L551
https://github.com/jump-dev/Gurobi.jl/blob/v1.7.4/src/MOI_wrapper/MOI_wrapper.jl#L4347-L4356
https://github.com/jump-dev/Gurobi.jl/blob/v1.7.4/src/MOI_wrapper/MOI_wrapper.jl#L4376-L4385
https://github.com/jump-dev/Gurobi.jl/blob/v1.7.4/src/MOI_wrapper/MOI_wrapper.jl#L4405-L4409
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MOI.supports(
model::MOI.ModelLike,
attr::MOI.AbstractConstraintAttribute,
BT::Type{<:AbstractBridge},

)

Return a Bool indicating whether BT supports setting attr to model.

source

supports(model::ModelLike, sub::AbstractSubmittable)::Bool

Return a Bool indicating whether model supports the submittable sub.

supports(model::ModelLike, attr::AbstractOptimizerAttribute)::Bool

Return a Bool indicating whether model supports the optimizer attribute attr. That is, it returns false
if copy_to(model, src) shows a warning in case attr is in the ListOfOptimizerAttributesSet of src;
see copy_to for more details on how unsupported optimizer attributes are handled in copy.

supports(model::ModelLike, attr::AbstractModelAttribute)::Bool

Return a Bool indicating whether model supports the model attribute attr. That is, it returns false if
copy_to(model, src) cannot be performed in case attr is in the ListOfModelAttributesSet of src.

supports(
model::ModelLike,
attr::AbstractVariableAttribute,
::Type{VariableIndex},

)::Bool

Return a Bool indicating whether model supports the variable attribute attr. That is, it returns false if
copy_to(model, src) cannot be performed in case attr is in the ListOfVariableAttributesSet of src.

supports(
model::ModelLike,
attr::AbstractConstraintAttribute,
::Type{ConstraintIndex{F,S}},

)::Bool where {F,S}

Return a Bool indicating whether model supports the constraint attribute attr applied to an F-in-S con-
straint. That is, it returns false if copy_to(model, src) cannot be performed in case attr is in the
ListOfConstraintAttributesSet of src.

For all five methods, if the attribute is only not supported in specific circumstances, it should still return
true.

Note that supports is only defined for attributes for which is_copyable returns true as other attributes
do not appear in the list of attributes set obtained by ListOfXXXAttributesSet.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/bridge.jl#L105-L113
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L220-L274
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MathOptInterface.attribute_value_type – Function.

attribute_value_type(attr::AnyAttribute)

Given an attribute attr, return the type of value expected by get, or returned by set.

Notes

• Only implement this if it make sense to do so. If un-implemented, the default is Any.

source

Model interface

MathOptInterface.ModelLike – Type.

ModelLike

Abstract supertype for objects that implement the "Model" interface for defining an optimization problem.

source

MathOptInterface.is_empty – Function.

is_empty(model::ModelLike)

Returns false if the model has any model attribute set or has any variables or constraints.

Note that an empty model can have optimizer attributes set.

source

MathOptInterface.empty! – Function.

empty!(model::ModelLike)

Empty the model, that is, remove all variables, constraints and model attributes but not optimizer at-
tributes.

source

MathOptInterface.write_to_file – Function.

write_to_file(model::ModelLike, filename::String)

Write the current model to the file at filename.

Supported file types depend on the model type.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L59-L69
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/MathOptInterface.jl#L11-L16
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/MathOptInterface.jl#L192-L199
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/MathOptInterface.jl#L202-L207
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/MathOptInterface.jl#L153-L159
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MathOptInterface.read_from_file – Function.

read_from_file(model::ModelLike, filename::String)

Read the file filename into the model model. If model is non-empty, this may throw an error.

Supported file types depend on the model type.

Note

Once the contents of the file are loaded into the model, users can query the variables via get(model,
ListOfVariableIndices()). However, some filetypes, such as LP files, do not maintain an explicit order-
ing of the variables. Therefore, the returned list may be in an arbitrary order.

To avoid depending on the order of the indices, look up each variable index by name using get(model,
VariableIndex, "name").

source

MathOptInterface.supports_incremental_interface – Function.

supports_incremental_interface(model::ModelLike)

Return a Bool indicating whether model supports building incrementally via add_variable and add_constraint.

The main purpose of this function is to determine whether a model can be loaded into model incrementally
or whether it should be cached and copied at once instead.

source

MathOptInterface.copy_to – Function.

copy_to(dest::ModelLike, src::ModelLike)::IndexMap

Copy the model from src into dest.

The target dest is emptied, and all previous indices to variables and constraints in dest are invalidated.

Returns an IndexMap object that translates variable and constraint indices from the src model to the
corresponding indices in the dest model.

Notes

• If a constraint that in src is not supported by dest, then an UnsupportedConstraint error is thrown.
• If an AbstractModelAttribute, AbstractVariableAttribute, or AbstractConstraintAttribute
is set in src but not supported by dest, then an UnsupportedAttribute error is thrown.

AbstractOptimizerAttributes are not copied to the dest model.

IndexMap

Implementations of copy_to must return an IndexMap. For technical reasons, this type is defined in the
Utilities submodule as MOI.Utilities.IndexMap. However, since it is an integral part of the MOI API, we
provide MOI.IndexMap as an alias.

Example

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/MathOptInterface.jl#L167-L184
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/MathOptInterface.jl#L210-L219
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# Given empty `ModelLike` objects `src` and `dest`.

x = add_variable(src)

is_valid(src, x) # true
is_valid(dest, x) # false (`dest` has no variables)

index_map = copy_to(dest, src)
is_valid(dest, x) # false (unless index_map[x] == x)
is_valid(dest, index_map[x]) # true

source

MathOptInterface.IndexMap – Type.

IndexMap()

The dictionary-like object returned by copy_to.

IndexMap

Implementations of copy_tomust return an IndexMap. For technical reasons, the IndexMap type is defined
in the Utilities submodule as MOI.Utilities.IndexMap. However, since it is an integral part of the MOI
API, we provide this MOI.IndexMap as an alias.

source

Model attributes

MathOptInterface.AbstractModelAttribute – Type.

AbstractModelAttribute

Abstract supertype for attribute objects that can be used to set or get attributes (properties) of the model.

source

MathOptInterface.Name – Type.

Name()

An AbstractModelAttribute for the string identifying the model.

It has a default value of "" if not set.

Implementation

Optimizers should implement the following methods:

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/MathOptInterface.jl#L222-L264
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/MathOptInterface.jl#L384-L395
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L22-L27
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MOI.get(::Optimizer, ::MOI.Name)::String
MOI.set(::Optimizer, ::MOI.Name, ::String)::Nothing
MOI.supports(::Optimizer, ::MOI.Name)::Bool

source

MathOptInterface.ObjectiveFunction – Type.

ObjectiveFunction{F<:AbstractScalarFunction}()

An AbstractModelAttribute for the objective function which has a type F<:AbstractScalarFunction.

Implementation

Optimizers should implement the following methods:

MOI.get(
::Optimizer,
::MOI.ObjectiveFunction{F},

)::F where {F<:MOI.AbstractFunction}
MOI.set(

::Optimizer,
::MOI.ObjectiveFunction{F},
::F,

)::F where {F<:MOI.AbstractFunction}
MOI.supports(::Optimizer, ::MOI.ObjectiveFunction{<:MOI.AbstractFunction})::Bool

When implementing get, F may to be equivalent but not necessarily identical to the function type set by
the user. If the objective function cannot be converted to F, an InexactError must be thrown.

source

MathOptInterface.ObjectiveFunctionType – Type.

ObjectiveFunctionType()

An AbstractModelAttribute for the type F of the objective function set using the ObjectiveFunction{F}
attribute.

Implementation

Optimizers should implement the following methods:

MOI.get(
::Optimizer,
::MOI.ObjectiveFunctionType,

)::Type{<:MOI.AbstractFunction}

They should not implement set or supports.

Example

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1318-L1333
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1514-L1539
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julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variable(model)
MOI.VariableIndex(1)

julia> MOI.set(model, MOI.ObjectiveFunction{MOI.VariableIndex}(), x)

julia> MOI.get(model, MOI.ObjectiveFunctionType())
MathOptInterface.VariableIndex

source

MathOptInterface.ObjectiveSense – Type.

ObjectiveSense()

An AbstractModelAttribute for the objective sense of the objective function, whichmust be an OptimizationSense.

The default is FEASIBILITY_SENSE.

Interaction with ObjectiveFunction

Setting the sense to FEASIBILITY_SENSE unsets the ObjectiveFunction attribute. That is, if you first set
ObjectiveFunction and then set ObjectiveSense to be FEASIBILITY_SENSE, no objective function will
be passed to the solver.

In addition, some reformulations of ObjectiveFunction via bridges rely on the value of ObjectiveSense.
Therefore, you should set ObjectiveSense before setting ObjectiveFunction.

Implementation

Optimizers should implement the following methods:

MOI.get(::Optimizer, ::MOI.ObjectiveSense)::MOI.OptimizationSense
MOI.set(::Optimizer, ::MOI.ObjectiveSense, ::MOI.OptimizationSense)::Nothing
MOI.supports(::Optimizer, ::MOI.ObjectiveSense)::Bool

source

MathOptInterface.OptimizationSense – Type.

OptimizationSense

An Enum for the value of the ObjectiveSense attribute.

Values

MIN_SENSE

The goal is to minimize the objective function.

MAX_SENSE

The goal is to maximize the objective function.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1544-L1574
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1353-L1380


CHAPTER 36. API REFERENCE 1120

FEASIBILITY_SENSE

The model does not have an objective function.

source

MathOptInterface.MIN_SENSE – Constant.

MIN_SENSE::OptimizationSense

An instance of the OptimizationSense enum.

About

The goal is to minimize the objective function.

source

MathOptInterface.MAX_SENSE – Constant.

MAX_SENSE::OptimizationSense

An instance of the OptimizationSense enum.

About

The goal is to maximize the objective function.

source

MathOptInterface.FEASIBILITY_SENSE – Constant.

FEASIBILITY_SENSE::OptimizationSense

An instance of the OptimizationSense enum.

About

The model does not have an objective function.

source

MathOptInterface.NumberOfVariables – Type.

NumberOfVariables()

An AbstractModelAttribute for the number of variables in the model.

Implementation

Optimizers should implement the following methods:

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1338-L1354
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1338-L1346
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1338-L1346
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1338-L1346
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MOI.get(::Optimizer, ::MOI.NumberOfVariables)::Int64

They should not implement set or supports.

source

MathOptInterface.ListOfVariableIndices – Type.

ListOfVariableIndices()

An AbstractModelAttribute for querying the Vector{MOI.VariableIndex} of all [MOI.VariableIndex]
present in the model.

Order

The variables must be returned in the order in which they were added to the model.

Implementation

Optimizers should implement the following methods:

MOI.get(::Optimizer, ::MOI.ListOfVariableIndices)::Vector{MOI.VariableIndex}

They should not implement set or supports.

source

MathOptInterface.ListOfConstraintTypesPresent – Type.

ListOfConstraintTypesPresent()

An AbstractModelAttribute for the list of tuples of the form (F, S), indicating that the attribute NumberOfConstraints{F,S}
has a value greater than zero.

Implementation

Optimizers should implement the following methods:

MOI.get(
::Optimizer,
::MOI.ListOfConstraintTypesPresent,

)::Vector{Tuple{Type,Type}}

They should not implement set or supports.

source

MathOptInterface.NumberOfConstraints – Type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1385-L1398
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1403-L1421
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1494-L1511
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NumberOfConstraints{F,S}()

An AbstractModelAttribute for querying the number of constraints of the type F-in-S present in the
model.

Implementation

Optimizers should implement the following methods:

MOI.get(
::Optimizer,
::MOI.NumberOfConstraints{F,S},

)::Int64 where {F<:MOI.AbstractFunction,MOI.AbstractSet}

They should not implement set or supports.

source

MathOptInterface.ListOfConstraintIndices – Type.

ListOfConstraintIndices{F,S}()

An AbstractModelAttribute for the Vector{MOI.ConstraintIndex{F,S}} of all constraint indices of type
F-in-S in the model.

Order

The constraints must be returned in the order in which they were added to the model.

Implementation

Optimizers should implement the following methods:

MOI.get(
::Optimizer,
::MOI.ListOfConstraintIndices{F,S},

)::Vector{MOI.ConstraintIndex{F,S}} where {F<:MOI.AbstractFunction,MOI.AbstractSet}

They should not implement set or supports.

source

MathOptInterface.ListOfOptimizerAttributesSet – Type.

ListOfOptimizerAttributesSet()

An AbstractOptimizerAttribute for the Vector{AbstractOptimizerAttribute} of all optimizer attributes
that were set.

Implementation

Optimizers should implement the following methods:

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1462-L1478
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1424-L1445
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MOI.get(
::Optimizer,
::MOI.ListOfOptimizerAttributesSet,

)::Vector{MOI.AbstractOptimizerAttribute}

They should not implement set or supports.

source

MathOptInterface.ListOfModelAttributesSet – Type.

ListOfModelAttributesSet()

An AbstractModelAttribute for the Vector{AbstractModelAttribute} of all model attributes attr such
that:

1. is_copyable(attr) returns true, and

2. the attribute was set to the model

source

MathOptInterface.ListOfVariableAttributesSet – Type.

ListOfVariableAttributesSet()

An AbstractModelAttribute for the Vector{AbstractVariableAttribute} of all variable attributes attr
such that:

1. is_copyable(attr) returns true

2. the attribute was set for at least one variable in the model

Implementation

Optimizers should implement the following methods:

MOI.get(
::Optimizer,
::MOI.ListOfVariableAttributesSet,

)::Vector{MOI.AbstractVariableAttribute}

They should not implement set or supports.

source

MathOptInterface.ListOfVariablesWithAttributeSet – Type.

ListOfVariablesWithAttributeSet(attr::AbstractVariableAttribute)

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L798-L815
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1307-L1315
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1847-L1866
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An AbstractModelAttribute for the Vector{MOI.VariableIndex} of all variables with the attribute attr
set.

The returned list may not be minimal, so some elements may have their default value set.

Note

This is an optional attribute to implement. The default fallback is to get ListOfVariableIndices.

Implementation

Optimizers should implement the following methods:

MOI.get(
::Optimizer,
::MOI.ListOfVariablesWithAttributeSet{<:MOI.AbstractVariableAttribute},

)::Vector{MOI.VarialbeIndex}

They should not implement set or supports.

source

MathOptInterface.ListOfConstraintAttributesSet – Type.

ListOfConstraintAttributesSet{F, S}()

An AbstractModelAttribute for the Vector{AbstractConstraintAttribute} of all constraint attributes
attr such that:

1. is_copyable(attr) returns true and

2. the attribute was set to F-in-S constraints.

Note

The attributes ConstraintFunction and ConstraintSet should not be included in the list even if then
have been set with set.

source

MathOptInterface.ListOfConstraintsWithAttributeSet – Type.

ListOfConstraintsWithAttributeSet{F,S}(attr:AbstractConstraintAttribute)

An AbstractModelAttribute for the Vector{ConstraintIndex{F,S}} of all constraints with the attribute
attr set.

The returned list may not be minimal, so some elements may have their default value set.

Note

This is an optional attribute to implement. The default fallback is to get ListOfConstraintIndices.

source

MathOptInterface.UserDefinedFunction – Type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1869-L1893
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2116-L2129
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2132-L2145
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UserDefinedFunction(name::Symbol, arity::Int) <: AbstractModelAttribute

Set this attribute to register a user-defined function by the name of name with arity arguments.

Once registered, name will appear in ListOfSupportedNonlinearOperators.

You cannot register multiple UserDefinedFunctions with the same name but different arity.

Value type

The value to be set is a tuple containing one, two, or three functions to evaluate the function, the first-order
derivative, and the second-order derivative respectively. Both derivatives are optional, but if you pass the
second-order derivative you must also pass the first-order derivative.

For univariate functions with arity == 1, the functions in the tuple must have the form:

• f(x::T)::T: returns the value of the function at x

• ∇f(x::T)::T: returns the first-order derivative of f with respect to x

• ∇²f(x::T)::T: returns the second-order derivative of f with respect to x.

For multivariate functions with arity > 1, the functions in the tuple must have the form:

• f(x::T...)::T: returns the value of the function at x

• ∇f(g::AbstractVector{T}, x::T...)::Nothing: fills the components of g, with g[i] being the
first-order partial derivative of f with respect to x[i]

• ∇²f(H::AbstractMatrix{T}, x::T...)::Nothing: fills the non-zero components of H, with H[i,
j] being the second-order partial derivative of f with respect to x[i] and then x[j]. H is initialized
to the zero matrix, so you do not need to set any zero elements.

Example

julia> f(x, y) = x^2 + y^2
f (generic function with 1 method)

julia> function ∇f(g, x, y)
g .= 2 * x, 2 * y
return

end
∇f (generic function with 1 method)

julia> function ∇²f(H, x...)
H[1, 1] = H[2, 2] = 2.0
return

end
∇²f (generic function with 1 method)

julia> model = MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}());

julia> MOI.set(model, MOI.UserDefinedFunction(:f, 2), (f,))

julia> MOI.set(model, MOI.UserDefinedFunction(:g, 2), (f, ∇f))

julia> MOI.set(model, MOI.UserDefinedFunction(:h, 2), (f, ∇f, ∇²f))
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julia> x = MOI.add_variables(model, 2)
2-element Vector{MathOptInterface.VariableIndex}:
MOI.VariableIndex(1)
MOI.VariableIndex(2)

julia> MOI.set(model, MOI.ObjectiveSense(), MOI.MIN_SENSE)

julia> obj_f = MOI.ScalarNonlinearFunction(:f, Any[x[1], x[2]])
f(MOI.VariableIndex(1), MOI.VariableIndex(2))

julia> MOI.set(model, MOI.ObjectiveFunction{typeof(obj_f)}(), obj_f)

julia> print(model)
Minimize ScalarNonlinearFunction:
f(v[1], v[2])

Subject to:

source

MathOptInterface.ListOfSupportedNonlinearOperators – Type.

ListOfSupportedNonlinearOperators() <: AbstractModelAttribute

When queried with get, return a Vector{Symbol} listing the operators supported by the model. These
operators may appear in the head field of ScalarNonlinearFunction.

Implementation

Optimizers should implement the following methods:

MOI.get(
::Optimizer,
::MOI.ListOfSupportedNonlinearOperators,

)::Vector{Symbol}

They should not implement set or supports.

source

Optimizer interface

MathOptInterface.AbstractOptimizer – Type.

AbstractOptimizer <: ModelLike

Abstract supertype for objects representing an instance of an optimization problem tied to a particular
solver. This is typically a solver's in-memory representation. In addition to ModelLike, AbstractOptimizer
objects let you solve the model and query the solution.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2687-L2770
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2776-L2793
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source

MathOptInterface.OptimizerWithAttributes – Type.

struct OptimizerWithAttributes
optimizer_constructor
params::Vector{Pair{AbstractOptimizerAttribute,<:Any}}

end

Object grouping an optimizer constructor and a list of optimizer attributes. Instances are created with
instantiate.

source

MathOptInterface.optimize! – Function.

optimize!(optimizer::AbstractOptimizer)

Optimize the problem contained in optimizer.

Before calling optimize!, the problem should first be constructed using the incremental interface (see
supports_incremental_interface) or copy_to.

source

MathOptInterface.optimize! – Method.

optimize!(dest::AbstractOptimizer, src::ModelLike)::Tuple{IndexMap,Bool}

A "one-shot" call that copies the problem from src into dest and then uses dest to optimize the problem.

Returns a tuple of an IndexMap and a Bool copied.

• The IndexMap object translates variable and constraint indices from the srcmodel to the correspond-
ing indices in the dest optimizer. See copy_to for details.

• If copied == true, src was copied to dest and then cached, allowing incremental modification if
supported by the solver.

• If copied == false, a cache of the model was not kept in dest. Therefore, only the solution infor-
mation (attributes for which is_set_by_optimize is true) is available to query.

Note

The main purpose of optimize! method with two arguments is for use in
Utilities.CachingOptimizer.

Relationship to the single-argument optimize!

The default fallback of optimize!(dest::AbstractOptimizer, src::ModelLike) is

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/MathOptInterface.jl#L64-L71
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/instantiate.jl#L7-L15
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/MathOptInterface.jl#L74-L81
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function optimize!(dest::AbstractOptimizer, src::ModelLike)
index_map = copy_to(dest, src)
optimize!(dest)
return index_map, true

end

Therefore, subtypes of AbstractOptimizer should either implement this two-argument method, or imple-
ment both copy_to(::Optimizer, ::ModelLike) and optimize!(::Optimizer).

source

MathOptInterface.instantiate – Function.

instantiate(
optimizer_constructor,
with_cache_type::Union{Nothing,Type} = nothing,
with_bridge_type::Union{Nothing,Type} = nothing,

)

Create an instance of an optimizer by either:

• calling optimizer_constructor.optimizer_constructor() and setting the parameters in optimizer_constructor.params
if optimizer_constructor is a OptimizerWithAttributes

• calling optimizer_constructor() if optimizer_constructor is callable.

withcachetype

If with_cache_type is not nothing, then the optimizer is wrapped in a Utilities.CachingOptimizer to
store a cache of the model. This is most useful if the optimizer you are constructing does not support the
incremental interface (see supports_incremental_interface).

withbridgetype

If with_bridge_type is not nothing, the optimizer is wrapped in a Bridges.full_bridge_optimizer,
enabling all the bridges defined in the MOI.Bridges submodule with coefficient type with_bridge_type.

In addition, if the optimizer created by optimizer_constructor does not support the incremental inter-
face (see supports_incremental_interface), then, irrespective of with_cache_type, the optimizer is
wrapped in a Utilities.CachingOptimizer to store a cache of the bridged model.

If with_cache_type and with_bridge_type are both not nothing, then they must be the same type.

source

MathOptInterface.default_cache – Function.

default_cache(optimizer::ModelLike, ::Type{T}) where {T}

Return a new instance of the default model type to be used as cache for optimizer in a Utilities.CachingOptimizer
for holding constraints of coefficient type T. By default, this returns Utilities.UniversalFallback(Utilities.Model{T}()).
If copying from a instance of a given model type is faster for optimizer then a new method returning an
instance of this model type should be defined.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/MathOptInterface.jl#L84-L118
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/instantiate.jl#L127-L161
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/instantiate.jl#L194-L203
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Optimizer attributes

MathOptInterface.AbstractOptimizerAttribute – Type.

AbstractOptimizerAttribute

Abstract supertype for attribute objects that can be used to set or get attributes (properties) of the opti-
mizer.

Notes

The difference between AbstractOptimizerAttribute and AbstractModelAttribute lies in the behavior
of is_empty, empty! and copy_to. Typically optimizer attributes affect only how the model is solved.

source

MathOptInterface.SolverName – Type.

SolverName()

An AbstractOptimizerAttribute for the string identifying the solver.

Implementation

Optimizers should implement the following methods:

MOI.get(::Optimizer, ::MOI.SolverName)::String

They should not implement set or supports.

source

MathOptInterface.SolverVersion – Type.

SolverVersion()

An AbstractOptimizerAttribute for the string identifying the version of the solver.

Versioning systems

For solvers supporting semantic versioning, the SolverVersion should be a string of the form "vMA-
JOR.MINOR.PATCH", so that it can be converted to a Julia VersionNumber (for example, ‘VersionNum-
ber("v1.2.3")).

We do not require Semantic Versioning because some solvers use alternate versioning systems. For ex-
ample, CPLEX uses Calendar Versioning, so SolverVersion will return a string like "202001".

Implementation

Optimizers should implement the following methods:

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L7-L19
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L818-L830
https://semver.org
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MOI.get(::Optimizer, ::MOI.SolverVersion)::String

They should not implement set or supports.

source

MathOptInterface.Silent – Type.

Silent()

An AbstractOptimizerAttribute for silencing the output of an optimizer.

When set to true, this attribute takes precedence over any other attribute controlling verbosity and re-
quires the optimizer to produce no output.

The default value is false which has no effect. In this case the verbosity is controlled by other optimizer-
specific attributes.

Value and default

The provided value must be a Bool.

The default value is false.

Note

Every optimizer should have verbosity on by default. For instance, if a solver has a solver-specific log level
attribute, the MOI implementation should set it to 1 by default. If the user sets Silent to true, then the
log level should be set to 0, even if the user specifically sets a value of log level. If the value of Silent is
false then the log level set to the solver is the value given by the user for this solver-specific parameter
or 1 if none is given.

Implementation

Optimizers should implement the following methods:

MOI.get(::Optimizer, ::MOI.Silent)::Bool
MOI.set(::Optimizer, ::MOI.Silent, ::Bool)::Nothing
MOI.supports(::Optimizer, ::MOI.Silent)::Bool

source

MathOptInterface.TimeLimitSec – Type.

TimeLimitSec()

An AbstractOptimizerAttribute for setting a time limit (in seconds) for a call to optimize!.

Value and default

The provided limit must be a Union{Nothing,Real}.

When set to nothing, it deactivates the time limit.

The default value is nothing.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L835-L859
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L864-L900
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TerminationStatus

The optimizer may stop when the SolveTimeSec is larger than the TimeLimitSec. If stopped because of
this limit, the TerminationStatus must be TIME_LIMIT.

Note that most optimizers do not strictly respect a time limit. Instead, they terminate at the first convenient
time after the time limit has been exceeded. Thus, you may find that the SolveTimeSec exceeds the
TimeLimitSec by a few seconds.

Implementation

Optimizers should implement the following methods:

MOI.get(::Optimizer, ::MOI.TimeLimitSec)::Union{Nothing,Float64}
MOI.set(::Optimizer, ::MOI.TimeLimitSec, ::Union{Nothing,Real})::Nothing
MOI.supports(::Optimizer, ::MOI.TimeLimitSec)::Bool

source

MathOptInterface.ObjectiveLimit – Type.

ObjectiveLimit()

An AbstractOptimizerAttribute for setting a limit on the objective value.

Value and default

The provided limit must be a Union{Nothing,Real}.

When set to nothing, the limit reverts to the solver's default.

The default value is nothing.

TerminationStatus

The solver may stop when the ObjectiveValue is better (lower for minimization, higher for maximiza-
tion) than the ObjectiveLimit. If stopped, because of this limit, the TerminationStatus should be
OBJECTIVE_LIMIT.

Implementation

Optimizers should implement the following methods:

MOI.get(::Optimizer, ::MOI.ObjectiveLimit)::Union{Nothing,Float64}
MOI.set(::Optimizer, ::MOI.ObjectiveLimit, ::Union{Nothing,Real})::Nothing
MOI.supports(::Optimizer, ::MOI.ObjectiveLimit)::Bool

source

MathOptInterface.SolutionLimit – Type.

SolutionLimit()

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L905-L938
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L943-L972
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An AbstractOptimizerAttribute for setting a limit on the number of available feasible solutions.

Value and default

The provided limit must be a Union{Nothing,Int}.

When set to nothing, the limit reverts to the solver's default.

The default value is nothing.

Termination criteria

The solver may stop when the ResultCount is larger than or equal to the SolutionLimit. If stopped
because of this attribute, the TerminationStatus must be SOLUTION_LIMIT.

Solution quality

The quality of the available solutions is solver-dependent. The set of resulting solutions is not guaranteed
to contain an optimal solution.

Implementation

Optimizers should implement the following methods:

MOI.get(::Optimizer, ::MOI.SolutionLimit)::Union{Nothing,Int}
MOI.set(::Optimizer, ::MOI.SolutionLimit, ::Union{Nothing,Int})::Nothing
MOI.supports(::Optimizer, ::MOI.SolutionLimit)::Bool

source

MathOptInterface.NodeLimit – Type.

NodeLimit()

An AbstractOptimizerAttribute for setting a limit on the number of branch-and-bound nodes explored
by a mixed-integer program (MIP) solver.

Value and default

The provided limit must be a Union{Nothing,Int}.

When set to nothing, the limit reverts to the solver's default.

The default value is nothing.

Termination criteria

The solver may stop when the NodeCount is larger than or equal to the NodeLimit. If stopped because of
this attribute, the TerminationStatus must be NODE_LIMIT.

Implementation

Optimizers should implement the following methods:

MOI.get(::Optimizer, ::MOI.NodeLimit)::Union{Nothing,Int}
MOI.set(::Optimizer, ::MOI.NodeLimit, ::Union{Nothing,Int})::Nothing
MOI.supports(::Optimizer, ::MOI.NodeLimit)::Bool

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L975-L1008
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1013-L1041
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MathOptInterface.RawOptimizerAttribute – Type.

RawOptimizerAttribute(name::String)

An AbstractOptimizerAttribute for the solver-specific parameter identified by name.

Implementation

Optimizers should implement the following methods:

MOI.get(::Optimizer, ::MOI.RawOptimizerAttribute)::Any
MOI.set(::Optimizer, ::MOI.RawOptimizerAttribute, ::Any)::Nothing
MOI.supports(::Optimizer, ::MOI.RawOptimizerAttribute)::Bool

source

MathOptInterface.NumberOfThreads – Type.

NumberOfThreads()

An AbstractOptimizerAttribute for setting the number of threads used for an optimization.

Value and default

The provided value must be nothing or a positive Int.

When set to nothing, the value reverts to the solver's default.

The default value is nothing.

Implementation

Optimizers should implement the following methods:

MOI.get(::Optimizer, ::MOI.NumberOfThreads)::Union{Nothing,Int}
MOI.set(::Optimizer, ::MOI.NumberOfThreads, ::Union{Nothing,Int})::Nothing
MOI.supports(::Optimizer, ::MOI.NumberOfThreads)::Bool

source

MathOptInterface.RawSolver – Type.

RawSolver()

An AbstractModelAttribute for the object that may be used to access a solver-specific API for this opti-
mizer.

Implementation

Optimizers should implement the following methods:

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1046-L1060
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1065-L1087


CHAPTER 36. API REFERENCE 1134

MOI.get(::Optimizer, ::MOI.RawSolver)::Any

They should not implement set or supports.

source

MathOptInterface.AbsoluteGapTolerance – Type.

AbsoluteGapTolerance()

An AbstractOptimizerAttribute for setting the absolute gap tolerance for an optimization.

Definition

The mathematical definition of "absolute gap" and its allowed range are solver-dependent. However, most
solvers that implement this attribute will stop once |f − b|�gabs, where b is the best bound, f is the best
feasible objective value, and gabs is the absolute gap.

Value and default

The provided value must be a Union{Nothing,Float64}.

When set to nothing, the limit reverts to the solver's default.

TerminationStatus

The optimizer may stop when the absolute difference between ObjectiveValue and ObjectiveBound is
smaller than the AbsoluteGapTolerance. If stopped because of this limit, the TerminationStatus may
be OPTIMAL.

Implementation

Optimizers should implement the following methods:

MOI.get(::Optimizer, ::MOI.AbsoluteGapTolerance)::Union{Nothing,Float64}
MOI.set(

::Optimizer,
::MOI.AbsoluteGapTolerance,
::Union{Nothing,Float64},

)::Nothing
MOI.supports(::Optimizer, ::MOI.AbsoluteGapTolerance)::Bool

source

MathOptInterface.RelativeGapTolerance – Type.

RelativeGapTolerance()

An AbstractOptimizerAttribute for setting the relative gap tolerance for an optimization.

Definition

Themathematical definition of "relative gap" and its allowed range are solver-dependent. Typically, solvers
expect a value between 0.0 and 1.0.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1751-L1764
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1132-L1170
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Value and default

The provided value must be a Union{Nothing,Float64}.

When set to nothing, the limit reverts to the solver's default.

TerminationStatus

The optimizer may stop when the RelativeGap is smaller than the RelativeGapTolerance. If stopped
because of this limit, the TerminationStatus may be OPTIMAL.

Implementation

Optimizers should implement the following methods:

MOI.get(::Optimizer, ::MOI.RelativeGapTolerance)::Union{Nothing,Float64}
MOI.set(

::Optimizer,
::MOI.RelativeGapTolerance,
::Union{Nothing,Float64},

)::Nothing
MOI.supports(::Optimizer, ::MOI.RelativeGapTolerance)::Bool

source

MathOptInterface.AutomaticDifferentiationBackend – Type.

AutomaticDifferentiationBackend() <: AbstractOptimizerAttribute

An AbstractOptimizerAttribute for setting the automatic differentiation backend used by the solver.

The value must be a subtype of Nonlinear.AbstractAutomaticDifferentiation.

Implementation

Optimizers should implement the following methods:

MOI.get(
::Optimizer,
::MOI.AutomaticDifferentiationBackend,

)::MOI.Nonlinear.AbstractAutomaticDifferentiation
MOI.set(

::Optimizer,
::MOI.AutomaticDifferentiationBackend,
::MOI.Nonlinear.AbstractAutomaticDifferentiation,

)::Nothing
MOI.supports(::Optimizer, ::MOI.AutomaticDifferentiationBackend)::Bool

source

List of attributes useful for optimizers

MathOptInterface.TerminationStatus – Type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1092-L1127
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2968-L2991
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TerminationStatus()

An AbstractModelAttribute for the TerminationStatusCode explaining why the optimizer stopped.

Implementation

Optimizers should implement the following methods:

MOI.get(::Optimizer, ::MOI.TerminationStatus)::MOI.TerminationStatusCode

They should not implement set or supports.

source

MathOptInterface.TerminationStatusCode – Type.

TerminationStatusCode

An Enum of possible values for the TerminationStatus attribute.

This attribute explains why the optimizer stopped executing in the most recent call to optimize!.

Values

OPTIMIZE_NOT_CALLED

The algorithm has not started.

OPTIMAL

The algorithm found a globally optimal solution.

INFEASIBLE

The algorithm proved that no primal feasible solution exists.

DUAL_INFEASIBLE

The algorithm proved that no dual feasible solution exists.

To check if the primal problem is feasible, set the objective sense to FEASIBILITY_SENSE and re-solve the
problem.

If a primal feasible point does not exist, the original problem is both primal and dual infeasible.

If a primal feasible solution exists, this status typically implies that the problem is unbounded, with some
technical exceptions (for example, if the problem is a conic optimization problem in which strong duality
does not hold).

The technical exceptions do not apply to linear programs. The combination of DUAL_INFEASIBLE and a
primal feasible point means that the primal linear program is unbounded.

LOCALLY_SOLVED

The algorithm converged to a stationary point, local optimal solution, could not find directions for improve-
ment, or otherwise completed its search without global guarantees.

LOCALLY_INFEASIBLE

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2998-L3011
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The algorithm converged to an infeasible point or otherwise completed its search without finding a feasible
solution, without guarantees that no feasible solution exists.

If you know a primal feasible solution exists, use VariablePrimalStart to provide a feasible starting point
to the solver.

INFEASIBLE_OR_UNBOUNDED

The algorithm stopped because it proved that the problem is infeasible or unbounded, without distinguish-
ing between the two cases.

To distinguish between the two cases, set the objective sense to FEASIBILITY_SENSE and re-solve the
problem. If a primal feasible point exists, the original problem is unbounded. If a primal feasible point
does not exist, the original problem is infeasible.

ALMOST_OPTIMAL

The algorithm found a globally optimal solution to relaxed tolerances.

ALMOST_INFEASIBLE

The algorithm concluded that no feasible solution exists within relaxed tolerances.

ALMOST_DUAL_INFEASIBLE

The algorithm concluded that no dual bound exists for the problem within relaxed tolerances.

ALMOST_LOCALLY_SOLVED

The algorithm converged to a stationary point, local optimal solution, or could not find directions for im-
provement within relaxed tolerances.

ITERATION_LIMIT

An iterative algorithm stopped after conducting the maximum number of iterations.

TIME_LIMIT

The algorithm stopped after a user-specified computation time.

This status may be returned in relation to the TimeLimitSec attribute, or some other solver-specific at-
tribute.

NODE_LIMIT

A branch-and-bound algorithm stopped because it explored a maximum number of nodes in the branch-
and-bound tree.

This status may be returned in relation to the NodeLimit attribute, or some other solver-specific attribute.

SOLUTION_LIMIT

The algorithm stopped because it found the required number of solutions. This is often used in MIPs to get
the solver to return the first feasible solution it encounters.

This status may be returned in relation to the SolutionLimit attribute, or some other solver-specific
attribute.

MEMORY_LIMIT

The algorithm stopped because it ran out of memory.

OBJECTIVE_LIMIT

The algorithm stopped because it found a solution better than a minimum limit set by the user.
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This status may be returned in relation to the ObjectiveLimit attribute, or some other solver-specific
attribute.

NORM_LIMIT

The algorithm stopped because the norm of an iterate became too large.

This typically means that the primal problem is unbounded, but that the solver could not prove so.

OTHER_LIMIT

The algorithm stopped due to a limit not covered by one of the _LIMIT_ statuses above.

SLOW_PROGRESS

The algorithm stopped because it was unable to continue making progress towards the solution.

NUMERICAL_ERROR

The algorithm stopped because it encountered unrecoverable numerical error.

INVALID_MODEL

The algorithm stopped because the model is invalid.

The reason for this return code is solver-specific, but common causes are that the problem has zero vari-
ables or constraints, or that the problem data contains an invalid number such as NaN.

INVALID_OPTION

The algorithm stopped because it was provided an invalid option.

INTERRUPTED

The algorithm stopped because of an interrupt signal.

This typically means that the solver was interrupted by the user with CTRL+C.

OTHER_ERROR

The algorithm stopped because of an error not covered by one of the statuses defined above. Check the
solver log for further details.

source

MathOptInterface.OPTIMIZE_NOT_CALLED – Constant.

OPTIMIZE_NOT_CALLED::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm has not started.

source

MathOptInterface.OPTIMAL – Constant.

OPTIMAL::TerminationStatusCode

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2965
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2804
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An instance of the TerminationStatusCode enum.

About

The algorithm found a globally optimal solution.

source

MathOptInterface.INFEASIBLE – Constant.

INFEASIBLE::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm proved that no primal feasible solution exists.

source

MathOptInterface.DUAL_INFEASIBLE – Constant.

DUAL_INFEASIBLE::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm proved that no dual feasible solution exists.

To check if the primal problem is feasible, set the objective sense to FEASIBILITY_SENSE and re-solve the
problem.

If a primal feasible point does not exist, the original problem is both primal and dual infeasible.

If a primal feasible solution exists, this status typically implies that the problem is unbounded, with some
technical exceptions (for example, if the problem is a conic optimization problem in which strong duality
does not hold).

The technical exceptions do not apply to linear programs. The combination of DUAL_INFEASIBLE and a
primal feasible point means that the primal linear program is unbounded.

source

MathOptInterface.LOCALLY_SOLVED – Constant.

LOCALLY_SOLVED::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm converged to a stationary point, local optimal solution, could not find directions for improve-
ment, or otherwise completed its search without global guarantees.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2805
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2805
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2820
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2807
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MathOptInterface.LOCALLY_INFEASIBLE – Constant.

LOCALLY_INFEASIBLE::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm converged to an infeasible point or otherwise completed its search without finding a feasible
solution, without guarantees that no feasible solution exists.

If you know a primal feasible solution exists, use VariablePrimalStart to provide a feasible starting point
to the solver.

source

MathOptInterface.INFEASIBLE_OR_UNBOUNDED – Constant.

INFEASIBLE_OR_UNBOUNDED::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm stopped because it proved that the problem is infeasible or unbounded, without distinguish-
ing between the two cases.

To distinguish between the two cases, set the objective sense to FEASIBILITY_SENSE and re-solve the
problem. If a primal feasible point exists, the original problem is unbounded. If a primal feasible point
does not exist, the original problem is infeasible.

source

MathOptInterface.ALMOST_OPTIMAL – Constant.

ALMOST_OPTIMAL::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm found a globally optimal solution to relaxed tolerances.

source

MathOptInterface.ALMOST_INFEASIBLE – Constant.

ALMOST_INFEASIBLE::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm concluded that no feasible solution exists within relaxed tolerances.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2811
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2811
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2804
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2806
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MathOptInterface.ALMOST_DUAL_INFEASIBLE – Constant.

ALMOST_DUAL_INFEASIBLE::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm concluded that no dual bound exists for the problem within relaxed tolerances.

source

MathOptInterface.ALMOST_LOCALLY_SOLVED – Constant.

ALMOST_LOCALLY_SOLVED::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm converged to a stationary point, local optimal solution, or could not find directions for im-
provement within relaxed tolerances.

source

MathOptInterface.ITERATION_LIMIT – Constant.

ITERATION_LIMIT::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

An iterative algorithm stopped after conducting the maximum number of iterations.

source

MathOptInterface.TIME_LIMIT – Constant.

TIME_LIMIT::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm stopped after a user-specified computation time.

This status may be returned in relation to the TimeLimitSec attribute, or some other solver-specific at-
tribute.

source

MathOptInterface.NODE_LIMIT – Constant.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2806
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2806
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2806
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2808
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NODE_LIMIT::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

A branch-and-bound algorithm stopped because it explored a maximum number of nodes in the branch-
and-bound tree.

This status may be returned in relation to the NodeLimit attribute, or some other solver-specific attribute.

source

MathOptInterface.SOLUTION_LIMIT – Constant.

SOLUTION_LIMIT::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm stopped because it found the required number of solutions. This is often used in MIPs to get
the solver to return the first feasible solution it encounters.

This status may be returned in relation to the SolutionLimit attribute, or some other solver-specific
attribute.

source

MathOptInterface.MEMORY_LIMIT – Constant.

MEMORY_LIMIT::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm stopped because it ran out of memory.

source

MathOptInterface.OBJECTIVE_LIMIT – Constant.

OBJECTIVE_LIMIT::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm stopped because it found a solution better than a minimum limit set by the user.

This status may be returned in relation to the ObjectiveLimit attribute, or some other solver-specific
attribute.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2809
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2810
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2804
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2809
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MathOptInterface.NORM_LIMIT – Constant.

NORM_LIMIT::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm stopped because the norm of an iterate became too large.

This typically means that the primal problem is unbounded, but that the solver could not prove so.

source

MathOptInterface.OTHER_LIMIT – Constant.

OTHER_LIMIT::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm stopped due to a limit not covered by one of the _LIMIT_ statuses above.

source

MathOptInterface.SLOW_PROGRESS – Constant.

SLOW_PROGRESS::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm stopped because it was unable to continue making progress towards the solution.

source

MathOptInterface.NUMERICAL_ERROR – Constant.

NUMERICAL_ERROR::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm stopped because it encountered unrecoverable numerical error.

source

MathOptInterface.INVALID_MODEL – Constant.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2808
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2806
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2806
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2805
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INVALID_MODEL::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm stopped because the model is invalid.

The reason for this return code is solver-specific, but common causes are that the problem has zero vari-
ables or constraints, or that the problem data contains an invalid number such as NaN.

source

MathOptInterface.INVALID_OPTION – Constant.

INVALID_OPTION::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm stopped because it was provided an invalid option.

source

MathOptInterface.INTERRUPTED – Constant.

INTERRUPTED::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm stopped because of an interrupt signal.

This typically means that the solver was interrupted by the user with CTRL+C.

source

MathOptInterface.OTHER_ERROR – Constant.

OTHER_ERROR::TerminationStatusCode

An instance of the TerminationStatusCode enum.

About

The algorithm stopped because of an error not covered by one of the statuses defined above. Check the
solver log for further details.

source

MathOptInterface.PrimalStatus – Type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2809
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2805
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2808
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2796-L2806


CHAPTER 36. API REFERENCE 1145

PrimalStatus(result_index::Int = 1)

An AbstractModelAttribute for the ResultStatusCode of the primal result result_index.

result_index

If result_index is omitted, it defaults to 1.

See ResultCount for information on how the results are ordered.

If result_index is larger than the value of ResultCount then NO_SOLUTION is returned.

Implementation

Optimizers should implement the following methods:

MOI.get(::Optimizer, ::MOI.PrimalStatus)::MOI.ResultStatusCode

They should not implement set or supports.

source

MathOptInterface.DualStatus – Type.

DualStatus(result_index::Int = 1)

An AbstractModelAttribute for the ResultStatusCode of the dual result result_index.

result_index

See ResultCount for information on how the results are ordered.

If result_index is larger than the value of ResultCount then NO_SOLUTION is returned.

Implementation

Optimizers should implement the following methods:

MOI.get(::Optimizer, ::MOI.PrimalStatus)::MOI.ResultStatusCode

They should not implement set or supports.

source

MathOptInterface.RawStatusString – Type.

RawStatusString()

An AbstractModelAttribute for a solver specific string explaining why the optimizer stopped.

Implementation

Optimizers should implement the following methods:

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L3099-L3121
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L3129-L3149
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MOI.get(::Optimizer, ::MOI.RawStatusString)::MOI.String

They should not implement set or supports.

source

MathOptInterface.ResultCount – Type.

ResultCount()

An AbstractModelAttribute for the number of results available.

Order of solutions

A number of attributes contain an index, result_index, which is used to refer to one of the available
results. Thus, result_index must be an integer between 1 and the number of available results.

As a general rule, the first result (result_index = 1) is the most important result (for example, an optimal
solution or an infeasibility certificate). Other results will typically be alternate solutions that the solver
found during the search for the first result.

If a (local) optimal solution is available, that is, TerminationStatus is OPTIMAL or LOCALLY_SOLVED, the
first result must correspond to the (locally) optimal solution. Other results may be alternative optimal
solutions, or they may be other suboptimal solutions; use ObjectiveValue to distinguish between them.

If a primal or dual infeasibility certificate is available, that is, TerminationStatus is INFEASIBLE or DUAL_INFEASIBLE
and the corresponding PrimalStatus or DualStatus is INFEASIBILITY_CERTIFICATE, then the first result
must be a certificate. Other results may be alternate certificates, or infeasible points.

Implementation

Optimizers should implement the following methods:

MOI.get(::Optimizer, ::MOI.ResultCount)::Int

They should not implement set or supports.

source

MathOptInterface.ObjectiveValue – Type.

ObjectiveValue(result_index::Int = 1)

An AbstractModelAttribute for the objective value of the primal solution result_index.

PrimalStatus

Before quering this attribute you should first check PrimalStatus to confirm that a primal solution is
avaiable.

If the PrimalStatus is NO_SOLUTION the result of querying this attribute is undefined.

result_index

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L3016-L3029
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1767-L1802
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The optimizer may return multiple primal solutions. See ResultCount for information on how the results
are ordered.

If the solver does not have a primal value for the objective because the result_index is beyond the
available solutions (whose number is indicated by the ResultCount attribute), getting this attribute must
throw a ResultIndexBoundsError.

Implementation

Optimizers should implement the following methods:

MOI.get(
::Optimizer,
::MOI.ObjectiveValue,

)::Union{T,Vector{T}} where {T<:Real}

They should not implement set or supports.

source

MathOptInterface.DualObjectiveValue – Type.

DualObjectiveValue(result_index::Int = 1)

An AbstractModelAttribute for the value of the objective function of the dual solution result_index.

DualStatus

Before quering this attribute you should first check DualStatus to confirm that a dual solution is avaiable.

If the DualStatus is NO_SOLUTION the result of querying this attribute is undefined.

result_index

The optimizer may return multiple dual solutions. See ResultCount for information on how the results are
ordered.

If the solver does not have a dual value for the objective because the result_index is beyond the available
solutions (whose number is indicated by the ResultCount attribute), getting this attribute must throw a
ResultIndexBoundsError.

Implementation

Optimizers should implement the following methods:

MOI.get(
::Optimizer,
::MOI.DualObjectiveValue,

)::Union{T,Vector{T}} where {T<:Real}

They should not implement set or supports.

source

MathOptInterface.ObjectiveBound – Type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1579-L1613
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1619-L1653
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ObjectiveBound()

An AbstractModelAttribute for the best known bound on the optimal objective value.

source

MathOptInterface.RelativeGap – Type.

RelativeGap()

An AbstractModelAttribute for the final relative optimality gap.

Warning

The definition of this gap is solver-dependent. However, most solvers implementing this attribute
define the relative gap as some variation of |b−f |

|f | , where b is the best bound and f is the best
feasible objective value.

source

MathOptInterface.SolveTimeSec – Type.

SolveTimeSec()

An AbstractModelAttribute for the total elapsed solution time (in seconds) as reported by the optimizer.

source

MathOptInterface.SimplexIterations – Type.

SimplexIterations()

An AbstractModelAttribute for the cumulative number of simplex iterations while solving a problem.

For a mixed-integer program (MIP), the return value is the total simplex iterations for all nodes.

Implementation

Optimizers should implement the following methods:

MOI.get(::Optimizer, ::MOI.SimplexIterations)::Int64

They should not implement set or supports.

source

MathOptInterface.BarrierIterations – Type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1659-L1663
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1666-L1676
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1681-L1686
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1691-L1707
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BarrierIterations()

An AbstractModelAttribute for the cumulative number of barrier iterations while solving a problem.

For a mixed-integer program (MIP), the return value is the total barrier iterations for all nodes.

Implementation

Optimizers should implement the following methods:

MOI.get(::Optimizer, ::MOI.BarrierIterations)::Int64

They should not implement set or supports.

source

MathOptInterface.NodeCount – Type.

NodeCount()

An AbstractModelAttribute for the total number of branch-and-bound nodes explored while solving a
mixed-integer program (MIP).

Implementation

Optimizers should implement the following methods:

MOI.get(::Optimizer, ::MOI.NodeCount)::Int64

They should not implement set or supports.

source

ResultStatusCode

MathOptInterface.ResultStatusCode – Type.

ResultStatusCode

An Enum of possible values for the PrimalStatus and DualStatus attributes.

The values indicate how to interpret the result vector.

Values

NO_SOLUTION

The result vector is empty.

FEASIBLE_POINT

The result vector is a feasible point.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1712-L1728
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1733-L1746
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NEARLY_FEASIBLE_POINT

The result vector is feasible if some constraint tolerances are relaxed.

INFEASIBLE_POINT

The result vector is an infeasible point.

INFEASIBILITY_CERTIFICATE

The result vector is an infeasibility certificate.

If the PrimalStatus is INFEASIBILITY_CERTIFICATE, then the primal result vector is a certificate of dual
infeasibility.

If the DualStatus is INFEASIBILITY_CERTIFICATE, then the dual result vector is a proof of primal infeasi-
bility.

NEARLY_INFEASIBILITY_CERTIFICATE

The result satisfies a relaxed criterion for a certificate of infeasibility.

If the PrimalStatus is NEARLY_INFEASIBILITY_CERTIFICATE, then the primal result vector is a certificate
of dual infeasibility.

If the DualStatus is NEARLY_INFEASIBILITY_CERTIFICATE, then the dual result vector is a proof of primal
infeasibility.

REDUCTION_CERTIFICATE

The result vector is an ill-posed certificate; see this article for details.

If the PrimalStatus is REDUCTION_CERTIFICATE, then the primal result vector is a proof that the dual
problem is ill-posed.

If the DualStatus is REDUCTION_CERTIFICATE, then the dual result vector is a proof that the primal is
ill-posed.

NEARLY_REDUCTION_CERTIFICATE

The result satisfies a relaxed criterion for an ill-posed certificate.

UNKNOWN_RESULT_STATUS

The result vector contains a solution with an unknown interpretation. Check the solver log for more details.

OTHER_RESULT_STATUS

The result vector contains a solution with an interpretation not covered by one of the statuses defined
above. Check the solver log for more details.

source

MathOptInterface.NO_SOLUTION – Constant.

NO_SOLUTION::ResultStatusCode

An instance of the ResultStatusCode enum.

About

The result vector is empty.

source

https://arxiv.org/abs/1408.4685
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L3034-L3101
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L3034-L3042
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MathOptInterface.FEASIBLE_POINT – Constant.

FEASIBLE_POINT::ResultStatusCode

An instance of the ResultStatusCode enum.

About

The result vector is a feasible point.

source

MathOptInterface.NEARLY_FEASIBLE_POINT – Constant.

NEARLY_FEASIBLE_POINT::ResultStatusCode

An instance of the ResultStatusCode enum.

About

The result vector is feasible if some constraint tolerances are relaxed.

source

MathOptInterface.INFEASIBLE_POINT – Constant.

INFEASIBLE_POINT::ResultStatusCode

An instance of the ResultStatusCode enum.

About

The result vector is an infeasible point.

source

MathOptInterface.INFEASIBILITY_CERTIFICATE – Constant.

INFEASIBILITY_CERTIFICATE::ResultStatusCode

An instance of the ResultStatusCode enum.

About

The result vector is an infeasibility certificate.

If the PrimalStatus is INFEASIBILITY_CERTIFICATE, then the primal result vector is a certificate of dual
infeasibility.

If the DualStatus is INFEASIBILITY_CERTIFICATE, then the dual result vector is a proof of primal infeasi-
bility.

source

MathOptInterface.NEARLY_INFEASIBILITY_CERTIFICATE – Constant.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L3034-L3042
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L3034-L3042
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L3034-L3042
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L3034-L3049
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NEARLY_INFEASIBILITY_CERTIFICATE::ResultStatusCode

An instance of the ResultStatusCode enum.

About

The result satisfies a relaxed criterion for a certificate of infeasibility.

If the PrimalStatus is NEARLY_INFEASIBILITY_CERTIFICATE, then the primal result vector is a certificate
of dual infeasibility.

If the DualStatus is NEARLY_INFEASIBILITY_CERTIFICATE, then the dual result vector is a proof of primal
infeasibility.

source

MathOptInterface.REDUCTION_CERTIFICATE – Constant.

REDUCTION_CERTIFICATE::ResultStatusCode

An instance of the ResultStatusCode enum.

About

The result vector is an ill-posed certificate; see this article for details.

If the PrimalStatus is REDUCTION_CERTIFICATE, then the primal result vector is a proof that the dual
problem is ill-posed.

If the DualStatus is REDUCTION_CERTIFICATE, then the dual result vector is a proof that the primal is
ill-posed.

source

MathOptInterface.NEARLY_REDUCTION_CERTIFICATE – Constant.

NEARLY_REDUCTION_CERTIFICATE::ResultStatusCode

An instance of the ResultStatusCode enum.

About

The result satisfies a relaxed criterion for an ill-posed certificate.

source

MathOptInterface.UNKNOWN_RESULT_STATUS – Constant.

UNKNOWN_RESULT_STATUS::ResultStatusCode

An instance of the ResultStatusCode enum.

About

The result vector contains a solution with an unknown interpretation. Check the solver log for more details.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L3034-L3049
https://arxiv.org/abs/1408.4685
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L3034-L3050
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L3034-L3043
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L3034-L3044
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MathOptInterface.OTHER_RESULT_STATUS – Constant.

OTHER_RESULT_STATUS::ResultStatusCode

An instance of the ResultStatusCode enum.

About

The result vector contains a solution with an interpretation not covered by one of the statuses defined
above. Check the solver log for more details.

source

Conflict Status

MathOptInterface.compute_conflict! – Function.

compute_conflict!(optimizer::AbstractOptimizer)

Computes a minimal subset of constraints such that the model with the other constraint removed is still
infeasible.

Some solvers call a set of conflicting constraints an Irreducible Inconsistent Subsystem (IIS).

See also ConflictStatus and ConstraintConflictStatus.

Note

If the model is modified after a call to compute_conflict!, the implementor is not obliged to purge the
conflict. Any calls to the above attributes may return values for the original conflict without a warning.
Similarly, when modifying the model, the conflict can be discarded.

source

MathOptInterface.ConflictStatus – Type.

ConflictStatus()

An AbstractModelAttribute for the ConflictStatusCode explaining why [compute_conflict!] stopped
when computing the conflict.

Implementation

Optimizers should implement the following methods:

MOI.get(::Optimizer, ::MOI.ConflictStatus)::MOI.ConflictStatusCode

They should not implement set or supports.

source

MathOptInterface.ConflictStatusCode – Type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L3034-L3044
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/MathOptInterface.jl#L126-L143
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1829-L1842
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ConflictStatusCode

An Enum of possible values for the ConflictStatus attribute.

This attribute is meant to explain the reason why the conflict finder stopped executing in the most recent
call to compute_conflict!.

Values

COMPUTE_CONFLICT_NOT_CALLED

The function compute_conflict! has not yet been called.

NO_CONFLICT_EXISTS

There is no conflict because the problem is feasible.

NO_CONFLICT_FOUND

The solver could not find a conflict.

CONFLICT_FOUND

The solver found a conflict.

source

MathOptInterface.COMPUTE_CONFLICT_NOT_CALLED – Constant.

COMPUTE_CONFLICT_NOT_CALLED::ConflictStatusCode

An instance of the ConflictStatusCode enum.

About

The function compute_conflict! has not yet been called.

source

MathOptInterface.NO_CONFLICT_EXISTS – Constant.

NO_CONFLICT_EXISTS::ConflictStatusCode

An instance of the ConflictStatusCode enum.

About

There is no conflict because the problem is feasible.

source

MathOptInterface.NO_CONFLICT_FOUND – Constant.

NO_CONFLICT_FOUND::ConflictStatusCode

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1807-L1830
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1807-L1816
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1807-L1815
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An instance of the ConflictStatusCode enum.

About

The solver could not find a conflict.

source

MathOptInterface.CONFLICT_FOUND – Constant.

CONFLICT_FOUND::ConflictStatusCode

An instance of the ConflictStatusCode enum.

About

The solver found a conflict.

source

MathOptInterface.ConstraintConflictStatus – Type.

ConstraintConflictStatus()

A constraint attribute to query the ConflictParticipationStatusCode indicating whether the constraint
participates in the conflict.

source

MathOptInterface.ConflictParticipationStatusCode – Type.

ConflictParticipationStatusCode

An Enum for the value of the ConstraintConflictStatus attribute.

This attribute is meant to indicate whether a given constraint participates or not in the last computed
conflict.

Values

NOT_IN_CONFLICT

The constraint does not participate in the conflict.

IN_CONFLICT

The constraint participates in the conflict.

MAYBE_IN_CONFLICT

The solver was not able to prove whether the constraint is required to participate in the conflict.

source

MathOptInterface.NOT_IN_CONFLICT – Constant.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1807-L1815
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1807-L1815
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2675-L2680
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2654-L2675
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NOT_IN_CONFLICT::ConflictParticipationStatusCode

An instance of the ConflictParticipationStatusCode enum.

About

The constraint does not participate in the conflict.

source

MathOptInterface.IN_CONFLICT – Constant.

IN_CONFLICT::ConflictParticipationStatusCode

An instance of the ConflictParticipationStatusCode enum.

About

The constraint participates in the conflict.

source

MathOptInterface.MAYBE_IN_CONFLICT – Constant.

MAYBE_IN_CONFLICT::ConflictParticipationStatusCode

An instance of the ConflictParticipationStatusCode enum.

About

The solver was not able to prove whether the constraint is required to participate in the conflict.

source

36.3 Variables

Functions

MathOptInterface.add_variable – Function.

add_variable(model::ModelLike)::VariableIndex

Add a scalar variable to the model, returning a variable index.

A AddVariableNotAllowed error is thrown if adding variables cannot be done in the current state of the
model model.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variable(model)
MOI.VariableIndex(1)

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2654-L2662
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2654-L2662
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2654-L2664
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source

MathOptInterface.add_variables – Function.

add_variables(model::ModelLike, n::Int)::Vector{VariableIndex}

Add n scalar variables to the model, returning a vector of variable indices.

An AddVariableNotAllowed error is thrown if adding variables cannot be done in the current state of the
model model.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> MOI.add_variables(model, 2)
2-element Vector{MathOptInterface.VariableIndex}:
MOI.VariableIndex(1)
MOI.VariableIndex(2)

source

MathOptInterface.add_constrained_variable – Function.

add_constrained_variable(
model::ModelLike,
set::AbstractScalarSet

)::Tuple{MOI.VariableIndex,
MOI.ConstraintIndex{MOI.VariableIndex, typeof(set)}}

Add to model a scalar variable constrained to belong to set, returning the index of the variable created
and the index of the constraint constraining the variable to belong to set.

By default, this function falls back to creating a free variable with add_variable and then constraining it
to belong to set with add_constraint.

source

add_constrained_variable(
model::ModelLike,
set::Tuple{<:GreaterThan,<:LessThan},

)

A special-case method to add a scalar variable with a lower and upper bound.

This method should be implemented by optimizers which have native support for adding a variable with
bounds and which cannot performantly modify the variable bounds after creation.

Example

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/variables.jl#L47-L63
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/variables.jl#L24-L42
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/variables.jl#L102-L116
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julia> model = MOI.Utilities.Model{Float64}();

julia> set = (MOI.GreaterThan(1.0), MOI.LessThan(2.0));

julia> x, (c_l, c_u) = MOI.add_constrained_variable(model, set);

julia> c_l
MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,

MathOptInterface.GreaterThan{Float64}}(1)↪→

julia> c_u
MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,

MathOptInterface.LessThan{Float64}}(1)↪→

julia> print(model)
Feasibility

Subject to:

VariableIndex-in-GreaterThan{Float64}
v[1] >= 1.0

VariableIndex-in-LessThan{Float64}
v[1] <= 2.0

source

MathOptInterface.add_constrained_variables – Function.

add_constrained_variables(
model::ModelLike,
sets::AbstractVector{<:AbstractScalarSet}

)::Tuple{
Vector{MOI.VariableIndex},
Vector{MOI.ConstraintIndex{MOI.VariableIndex,eltype(sets)}},

}

Add to model scalar variables constrained to belong to sets, returning the indices of the variables cre-
ated and the indices of the constraints constraining the variables to belong to each set in sets. That
is, if it returns variables and constraints, constraints[i] is the index of the constraint constraining
variable[i] to belong to sets[i].

By default, this function falls back to calling add_constrained_variable on each set.

source

add_constrained_variables(
model::ModelLike,
set::AbstractVectorSet,

)::Tuple{
Vector{MOI.VariableIndex},
MOI.ConstraintIndex{MOI.VectorOfVariables,typeof(set)},

}

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/variables.jl#L123-L161
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/variables.jl#L237-L254
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Add to model a vector of variables constrained to belong to set, returning the indices of the variables
created and the index of the constraint constraining the vector of variables to belong to set.

By default, this function falls back to creating free variables with add_variables and then constraining it
to belong to set with add_constraint.

source

MathOptInterface.supports_add_constrained_variable – Function.

supports_add_constrained_variable(
model::ModelLike,
S::Type{<:AbstractScalarSet}

)::Bool

Return a Bool indicating whether model supports constraining a variable to belong to a set of type S
either on creation of the variable with add_constrained_variable or after the variable is created with
add_constraint.

By default, this function falls back to supports_add_constrained_variables(model, Reals) && supports_constraint(model,
MOI.VariableIndex, S) which is the correct definition for most models.

Example

Suppose that a solver supports only two kind of variables: binary variables and continuous variables
with a lower bound. If the solver decides not to support VariableIndex-in-Binary and VariableIndex-
in-GreaterThan constraints, it only has to implement add_constrained_variable for these two sets
which prevents the user to add both a binary constraint and a lower bound on the same variable. More-
over, if the user adds a VariableIndex-in-GreaterThan constraint, implementing this interface (that is,
supports_add_constrained_variables) enables the constraint to be transparently bridged into a sup-
ported constraint.

source

MathOptInterface.supports_add_constrained_variables – Function.

supports_add_constrained_variables(
model::ModelLike,
S::Type{<:AbstractVectorSet}

)::Bool

Return a Bool indicating whether model supports constraining a vector of variables to belong to a set of
type S either on creation of the vector of variables with add_constrained_variables or after the variable
is created with add_constraint.

By default, if S is Reals then this function returns true and otherwise, it falls back to supports_add_constrained_variables(model,
Reals) && supports_constraint(model, MOI.VectorOfVariables, S) which is the correct definition
for most models.

Example

In the standard conic form (see Duality), the variables are grouped into several cones and the constraints
are affine equality constraints. If Reals is not one of the cones supported by the solvers then it needs to im-
plement supports_add_constrained_variables(::Optimizer, ::Type{Reals}) = false as free vari-
ables are not supported. The solvers should then implement supports_add_constrained_variables(::Optimizer,

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/variables.jl#L268-L284
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/variables.jl#L66-L93
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::Type{<:SupportedCones}) = true where SupportedCones is the union of all cone types that are sup-
ported; it does not have to implement the method supports_constraint(::Type{VectorOfVariables},
Type{<:SupportedCones}) as it should return false and it's the default. This prevents the user to con-
strain the same variable in two different cones. When a VectorOfVariables-in-S is added, the variables
of the vector have already been created so they already belong to given cones. If bridges are enabled, the
constraint will therefore be bridged by adding slack variables in S and equality constraints ensuring that
the slack variables are equal to the corresponding variables of the given constraint function.

Note that there may also be sets for which !supports_add_constrained_variables(model, S) and
supports_constraint(model, MOI.VectorOfVariables, S). For instance, suppose a solver supports
positive semidefinite variable constraints and two types of variables: binary variables and nonnegative
variables. Then the solver should support adding VectorOfVariables-in-PositiveSemidefiniteConeTriangle
constraints, but it should not support creating variables constrained to belong to the PositiveSemidefiniteConeTriangle
because the variables in PositiveSemidefiniteConeTriangle should first be created as either binary or
non-negative.

source

MathOptInterface.is_valid – Method.

is_valid(model::ModelLike, index::Index)::Bool

Return a Bool indicating whether this index refers to a valid object in the model model.

source

MathOptInterface.delete – Method.

delete(model::ModelLike, index::Index)

Delete the referenced object from the model. Throw DeleteNotAllowed if if index cannot be deleted.

The following modifications also take effect if Index is VariableIndex:

• If index used in the objective function, it is removed from the function, that is, it is substituted for
zero.

• For each func-in-set constraint of the model:

– If func isa VariableIndex and func == index then the constraint is deleted.
– If func isa VectorOfVariables and index in func.variables then

∗ if length(func.variables) == 1 is one, the constraint is deleted;
∗ if length(func.variables) > 1 and supports_dimension_update(set) then then the vari-
able is removed from func and set is replaced by update_dimension(set, MOI.dimension(set)
- 1).

∗ Otherwise, a DeleteNotAllowed error is thrown.
– Otherwise, the variable is removed from func, that is, it is substituted for zero.

source

MathOptInterface.delete – Method.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/variables.jl#L180-L227
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/indextypes.jl#L101-L105
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/indextypes.jl#L138-L158
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delete(model::ModelLike, indices::Vector{R<:Index}) where {R}

Delete the referenced objects in the vector indices from the model. It may be assumed that R is a con-
crete type. The default fallback sequentially deletes the individual items in indices, although specialized
implementations may be more efficient.

source

Attributes

MathOptInterface.AbstractVariableAttribute – Type.

AbstractVariableAttribute

Abstract supertype for attribute objects that can be used to set or get attributes (properties) of variables
in the model.

source

MathOptInterface.VariableName – Type.

VariableName()

An AbstractVariableAttribute for a String identifying the variable.

The default name is "" if not set by the user.

Duplicate names

Two variables may have the same name; however, variables with duplicate names cannot be looked up
using get.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variable(model);

julia> MOI.supports(model, MOI.VariableName(), MOI.VariableIndex)
true

julia> MOI.get(model, MOI.VariableName(), x)
""

julia> MOI.set(model, MOI.VariableName(), x, "x")

julia> MOI.get(model, MOI.VariableName(), x)
"x"

Implementation

Optimizers should implement the following methods:

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/indextypes.jl#L161-L168
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L30-L35


CHAPTER 36. API REFERENCE 1162

MOI.get(::Optimizer, ::MOI.VariableName, ::MOI.VariableIndex)::String
MOI.set(::Optimizer, ::MOI.VariableName, ::MOI.VariableIndex, ::String)::Nothing
MOI.supports(::Optimizer, ::MOI.VariableName, ::Type{MOI.VariableIndex})::Bool

source

MathOptInterface.VariablePrimalStart – Type.

VariablePrimalStart()

An AbstractVariableAttribute for the initial assignment to the variable's primal value that the optimizer
may use to warm-start the solve.

May be a number or nothing (unset).

Example

julia> model = MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}());

julia> x = MOI.add_variable(model);

julia> MOI.supports(model, MOI.VariablePrimalStart(), MOI.VariableIndex)
true

julia> MOI.get(model, MOI.VariablePrimalStart(), x)

julia> MOI.set(model, MOI.VariablePrimalStart(), x, 1.0)

julia> MOI.get(model, MOI.VariablePrimalStart(), x)
1.0

Implementation

Optimizers should implement the following methods:

MOI.get(::Optimizer, ::MOI.VariablePrimalStart, ::MOI.VariableIndex)::Union{Nothing,T}
MOI.set(::Optimizer, ::MOI.VariablePrimalStart, ::MOI.VariableIndex,

::Union{Nothing,T})::Nothing↪→

MOI.supports(::Optimizer, ::MOI.VariablePrimalStart, ::Type{MOI.VariableIndex})::Bool

source

MathOptInterface.VariablePrimal – Type.

VariablePrimal(result_index::Int = 1)

An AbstractVariableAttribute for the variable's primal value in result result_index.

PrimalStatus

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1905-L1944
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1949-L1983
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Before quering this attribute you should first check PrimalStatus to confirm that a primal solution is
avaiable.

If the PrimalStatus is NO_SOLUTION the result of querying this attribute is undefined.

result_index

The optimizer may return multiple primal solutions. See ResultCount for information on how the results
are ordered.

If the solver does not have a primal value for the variable because the result_index is beyond the available
solutions (whose number is indicated by the ResultCount attribute), getting this attribute must throw a
ResultIndexBoundsError.

Implementation

Optimizers should implement the following methods:

MOI.get(::Optimizer, ::MOI.VariablePrimal, ::MOI.VariableIndex)::T

They should not implement set or supports.

source

MathOptInterface.VariableBasisStatus – Type.

VariableBasisStatus(result_index::Int = 1)

An AbstractVariableAttribute for the BasisStatusCode of the variable in result result_index, with
respect to a basic solution.

PrimalStatus

Before quering this attribute you should first check PrimalStatus to confirm that a primal solution is
avaiable.

If the PrimalStatus is NO_SOLUTION the result of querying this attribute is undefined.

result_index

The optimizer may return multiple primal solutions. See ResultCount for information on how the results
are ordered.

If the solver does not have a primal value for the variable because the result_index is beyond the available
solutions (whose number is indicated by the ResultCount attribute), getting this attribute must throw a
ResultIndexBoundsError.

Implementation

Optimizers should implement the following methods:

MOI.get(::Optimizer, ::MOI.VariableBasisStatus, ::MOI.VariableIndex)::MOI.BasisStatusCode

They should not implement set or supports.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1986-L2017
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2077-L2108
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36.4 Constraints

Types

MathOptInterface.ConstraintIndex – Type.

ConstraintIndex{F,S}

A type-safe wrapper for Int64 for use in referencing F-in-S constraints in a model.

The parameter F is the type of the function in the constraint, and the parameter S is the type of set in the
constraint.

To allow for deletion, indices need not be consecutive.

Indices within a constraint type (that is, F-in-S) must be unique, but non-unique indices across different
constraint types are allowed.

If F is VariableIndex then the index is equal to the index of the variable. That is for an index::ConstraintIndex{VariableIndex},
we always have

index.value == MOI.get(model, MOI.ConstraintFunction(), index).value

source

Functions

MathOptInterface.is_valid – Method.

is_valid(model::ModelLike, index::Index)::Bool

Return a Bool indicating whether this index refers to a valid object in the model model.

source

MathOptInterface.add_constraint – Function.

MOI.add_constraint(map::Map, vi::MOI.VariableIndex, set::MOI.AbstractScalarSet)

Record that a constraint vi-in-set is added and throws if a lower or upper bound is set by this constraint
and such bound has already been set for vi.

source

add_constraint(model::ModelLike, func::F, set::S)::ConstraintIndex{F,S} where {F,S}

Add the constraint f(x) ∈ S where f is defined by func, and S is defined by set.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/indextypes.jl#L48-L68
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/indextypes.jl#L101-L105
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Variable/map.jl#L276-L281
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add_constraint(model::ModelLike, v::VariableIndex, set::S)::ConstraintIndex{VariableIndex,S}
where {S}↪→

add_constraint(model::ModelLike, vec::Vector{VariableIndex},
set::S)::ConstraintIndex{VectorOfVariables,S} where {S}↪→

Add the constraint v ∈ S where v is the variable (or vector of variables) referenced by v and S is defined
by set.

• An UnsupportedConstraint error is thrown if model does not support F-in-S constraints,

• a AddConstraintNotAllowed error is thrown if it supports F-in-S constraints but it cannot add the
constraint in its current state and

• a ScalarFunctionConstantNotZero error may be thrown if func is an AbstractScalarFunction
with nonzero constant and set is EqualTo, GreaterThan, LessThan or Interval.

• a LowerBoundAlreadySet error is thrown if F is a VariableIndex and a constraint was already added
to this variable that sets a lower bound.

• a UpperBoundAlreadySet error is thrown if F is a VariableIndex and a constraint was already added
to this variable that sets an upper bound.

source

MathOptInterface.add_constraints – Function.

add_constraints(model::ModelLike, funcs::Vector{F},
sets::Vector{S})::Vector{ConstraintIndex{F,S}} where {F,S}↪→

Add the set of constraints specified by each function-set pair in funcs and sets. F and S should be concrete
types. This call is equivalent to add_constraint.(model, funcs, sets) but may be more efficient.

source

MathOptInterface.transform – Function.

transform(
model::ModelLike,
c::ConstraintIndex{F,S1},
newset::S2,

)::ConstraintIndex{F,S2}

Replace the set in constraint c with newset.

The constraint index c will no longer be valid, and the function returns a new constraint index with the
correct type.

Solvers may only support a subset of constraint transforms that they perform efficiently (for example,
changing from a LessThan to GreaterThan set). In addition, set modification (where S1 = S2) should be
performed via the modify function.

Typically, the user should delete the constraint and add a new one.

Example

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/constraints.jl#L151-L175
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/constraints.jl#L260-L265
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julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variable(model);

julia> c = MOI.add_constraint(model, 1.0 * x, MOI.LessThan(2.0));

julia> print(model)
Feasibility

Subject to:

ScalarAffineFunction{Float64}-in-LessThan{Float64}
0.0 + 1.0 v[1] <= 2.0

julia> c2 = MOI.transform(model, c, MOI.GreaterThan(0.0))
MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},

MathOptInterface.GreaterThan{Float64}}(1)↪→

julia> print(model)
Feasibility

Subject to:

ScalarAffineFunction{Float64}-in-GreaterThan{Float64}
0.0 + 1.0 v[1] >= 0.0

julia> MOI.is_valid(model, c)
false

source

MathOptInterface.supports_constraint – Function.

MOI.supports_constraint(
BT::Type{<:AbstractBridge},
F::Type{<:MOI.AbstractFunction},
S::Type{<:MOI.AbstractSet},

)::Bool

Return a Bool indicating whether the bridges of type BT support bridging F-in-S constraints.

Implementation notes

• This method depends only on the type of the inputs, not the runtime values.

• There is a default fallback, so you need only implement this method for constraint types that the
bridge implements.

source

supports_constraint(
model::ModelLike,
::Type{F},

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/constraints.jl#L317-L367
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridge.jl#L22-L37
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::Type{S},
)::Bool where {F<:AbstractFunction,S<:AbstractSet}

Return a Bool indicating whether model supports F-in-S constraints, that is, copy_to(model, src) does
not throw UnsupportedConstraint when src contains F-in-S constraints. If F-in-S constraints are only not
supported in specific circumstances, for example, F-in-S constraints cannot be combined with another type
of constraint, it should still return true.

source

Attributes

MathOptInterface.AbstractConstraintAttribute – Type.

AbstractConstraintAttribute

Abstract supertype for attribute objects that can be used to set or get attributes (properties) of constraints
in the model.

source

MathOptInterface.ConstraintName – Type.

ConstraintName()

An AbstractConstraintAttribute for a String identifying the constraint.

The default name is "" if not set by the user.

Duplicate names

Two constraints may have the same name; however, constraints with duplicate names cannot be looked
up using get, regardless of whether they have the same F-in-S type.

VariableIndex connstraints

You should not implement ConstraintName for VariableIndex constraints.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variable(model);

julia> c = MOI.add_constraint(model, 1.0 * x, MOI.EqualTo(1.0));

julia> MOI.supports(model, MOI.ConstraintName(), typeof(c))
true

julia> MOI.get(model, MOI.ConstraintName(), c)
""

julia> MOI.set(model, MOI.ConstraintName(), c, "c")

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/constraints.jl#L7-L19
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L38-L43
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julia> MOI.get(model, MOI.ConstraintName(), c)
"c"

julia> MOI.get(model, MOI.ConstraintIndex, "c")
MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},

MathOptInterface.EqualTo{Float64}}(1)↪→

julia> F, S = MOI.ScalarAffineFunction{Float64}, MOI.EqualTo{Float64};

julia> MOI.get(model, MOI.ConstraintIndex{F,S}, "c")
MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},

MathOptInterface.EqualTo{Float64}}(1)↪→

Implementation

Optimizers should implement the following methods:

MOI.get(::Optimizer, ::MOI.ConstraintName, ::MOI.ConstraintIndex)::String
MOI.set(::Optimizer, ::MOI.ConstraintName, ::MOI.ConstraintIndex, ::String)::Nothing
MOI.supports(::Optimizer, ::MOI.ConstraintName, ::Type{<:MOI.ConstraintIndex})::Bool
MOI.get(::Optimizer, ::MOI.ConstraintIndex, ::MOI.ConstraintIndex,

::String)::MOI.ConstraintIndex↪→

source

MathOptInterface.ConstraintPrimalStart – Type.

ConstraintPrimalStart()

An AbstractConstraintAttribute for the initial assignment to the constraint's ConstraintPrimal that
the optimizer may use to warm-start the solve.

May be nothing (unset), a number for AbstractScalarFunction, or a vector for AbstractVectorFunction.

source

MathOptInterface.ConstraintDualStart – Type.

ConstraintDualStart()

An AbstractConstraintAttribute for the initial assignment to the constraint's ConstraintDual that the
optimizer may use to warm-start the solve.

May be nothing (unset), a number for AbstractScalarFunction, or a vector for AbstractVectorFunction.

source

MathOptInterface.ConstraintPrimal – Type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2162-L2219
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2245-L2254
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2257-L2266
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ConstraintPrimal(result_index::Int = 1)

An AbstractConstraintAttribute for the constraint's primal value in result result_index.

Definition

If the constraint is f(x) ∈ S, then in most cases the ConstraintPrimal is the value of f , evaluated at
the corresponding VariablePrimal solution.

However, some conic solvers reformulate b−Ax ∈ S to s = b−Ax and s ∈ S. These solvers may return
the value of s for ConstraintPrimal, rather than b - Ax. (Although these are constrained by an equality
constraint, due to numerical tolerances they may not be identical.)

PrimalStatus

Before quering this attribute you should first check PrimalStatus to confirm that a primal solution is
avaiable.

If the PrimalStatus is NO_SOLUTION the result of querying this attribute is undefined.

result_index

The optimizer may return multiple primal solutions. See ResultCount for information on how the results
are ordered.

If the solver does not have a primal value for the constraint because the result_index is beyond the
available solutions (whose number is indicated by the ResultCount attribute), getting this attribute must
throw a ResultIndexBoundsError.

Implementation

Optimizers should implement the following methods:

MOI.get(
::Optimizer,
::MOI.ConstraintPrimal,
::MOI.ConstraintIndex{<:MOI.AbstractScalarFunction}

)::T
MOI.get(

::Optimizer,
::MOI.ConstraintPrimal,
::MOI.ConstraintIndex{<:MOI.AbstractVectorFunction}

)::Vector{T}

They should not implement set or supports.

source

MathOptInterface.ConstraintDual – Type.

ConstraintDual(result_index::Int = 1)

An AbstractConstraintAttribute for the constraint's dual value in result result_index.

DualStatus

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2269-L2320
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Before quering this attribute you should first check DualStatus to confirm that a dual solution is avaiable.

If the DualStatus is NO_SOLUTION the result of querying this attribute is undefined.

result_index

The optimizer may return multiple dual solutions. See ResultCount for information on how the results are
ordered.

If the solver does not have a dual value for the constraint because the result_index is beyond the available
solutions (whose number is indicated by the ResultCount attribute), getting this attribute must throw a
ResultIndexBoundsError.

Implementation

Optimizers should implement the following methods:

MOI.get(
::Optimizer,
::MOI.ConstraintDual,
::MOI.ConstraintIndex{<:MOI.AbstractScalarFunction}

)::T
MOI.get(

::Optimizer,
::MOI.ConstraintDual,
::MOI.ConstraintIndex{<:MOI.AbstractVectorFunction}

)::Vector{T}

They should not implement set or supports.

source

MathOptInterface.ConstraintBasisStatus – Type.

ConstraintBasisStatus(result_index::Int = 1)

An AbstractConstraintAttribute for the BasisStatusCode of the constraint in result result_index,
with respect to a basic solution.

If result_index is omitted, it is 1 by default.

If the solver does not have a basis status for the constraint because the result_index is beyond the
available solutions (whose number is indicated by the ResultCount attribute), getting this attribute must
throw a ResultIndexBoundsError. Otherwise, if the result is unavailable for another reason (for instance,
only a dual solution is available), the result is undefined. Users should first check PrimalStatus before
accessing the ConstraintBasisStatus attribute.

See ResultCount for information on how the results are ordered.

Notes

For the basis status of a variable, query VariableBasisStatus.

ConstraintBasisStatus does not apply to VariableIndex constraints. You can infer the basis status of
a VariableIndex constraint by looking at the result of VariableBasisStatus.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2326-L2366
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2372-L2397
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MathOptInterface.ConstraintFunction – Type.

ConstraintFunction()

An AbstractConstraintAttribute for the AbstractFunction object used to define the constraint.

It is guaranteed to be equivalent but not necessarily identical to the function provided by the user.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variable(model);

julia> c = MOI.add_constraint(model, 1.0 * x, MOI.GreaterThan(0.0));

julia> MOI.get(model, MOI.ConstraintFunction(), c)
0.0 + 1.0 MOI.VariableIndex(1)

julia> MOI.set(model, MOI.ConstraintFunction(), c, 2.0 * x)

julia> MOI.get(model, MOI.ConstraintFunction(), c)
0.0 + 2.0 MOI.VariableIndex(1)

Implementation

Optimizers should implement the following methods:

MOI.get(
::Optimizer,
::MOI.ConstraintFunction,
::MOI.ConstraintIndex{F,S},

)::F where {F,S}

If the optimizer supports modifying an existing function, it should implement:

MOI.set(
::Optimizer,
::MOI.ConstraintFunction,
::MOI.ConstraintIndex{F,S},
::F,

)::Nothing where {F,S}

It should not implement supports.

source

MathOptInterface.CanonicalConstraintFunction – Type.

CanonicalConstraintFunction()

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2488-L2535
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An AbstractConstraintAttribute for a canonical representation of the AbstractFunction object used
to define the constraint.

Getting this attribute is guaranteed to return a function that is equivalent but not necessarily identical to
the function provided by the user.

Fallback

By default, MOI.get(model, MOI.CanonicalConstraintFunction(), ci) falls back to MOI.Utilities.canonical(MOI.get(model,
MOI.ConstraintFunction(), ci)).

However, if model knows that the constraint function is canonical then it can implement a specialized
method that directly return the function without calling Utilities.canonical. Therefore, the value re-
turned cannot be assumed to be a copy of the function stored in model.

Moreover, Utilities.Model checks with Utilities.is_canonical whether the function stored internally
is already canonical and if it's the case, then it returns the function stored internally instead of a copy.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variable(model);

julia> c = MOI.add_constraint(model, 1.0 * x + 1.0 * x, MOI.GreaterThan(0.0));

julia> MOI.get(model, MOI.CanonicalConstraintFunction(), c)
0.0 + 2.0 MOI.VariableIndex(1)

Implementation

Optimizers should implement the following methods:

MOI.get(
::Optimizer,
::MOI.CanonicalConstraintFunction,
::MOI.ConstraintIndex{F,S},

)::F where {F,S}

They should not implement set or supports.

source

MathOptInterface.ConstraintSet – Type.

ConstraintSet()

An AbstractConstraintAttribute for the AbstractSet object used to define the constraint.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variable(model);

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2416-L2463
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julia> c = MOI.add_constraint(model, x, MOI.GreaterThan(0.0));

julia> MOI.get(model, MOI.ConstraintSet(), c)
MathOptInterface.GreaterThan{Float64}(0.0)

julia> MOI.set(model, MOI.ConstraintSet(), c, MOI.GreaterThan(1.0))

julia> MOI.get(model, MOI.ConstraintSet(), c)
MathOptInterface.GreaterThan{Float64}(1.0)

Implementation

Optimizers should implement the following methods:

MOI.get(
::Optimizer,
::MOI.ConstraintSet,
::MOI.ConstraintIndex{F,S},

)::S where {F,S}

If the optimizer supports modifying an existing set, it should implement:

MOI.set(
::Optimizer,
::MOI.ConstraintSet,
::MOI.ConstraintIndex{F,S},
::S,

)::Nothing where {F,S}

It should not implement supports.

source

MathOptInterface.BasisStatusCode – Type.

BasisStatusCode

An Enum for the value of the ConstraintBasisStatus and VariableBasisStatus attributes, explaining
the status of a given element with respect to an optimal solution basis.

Notes

When queried as part of ConstraintBasisStatus, NONBASIC_AT_LOWER and NONBASIC_AT_UPPER should
be returned only for constraints with the Interval set. In this case, they are necessary to distinguish
which side of the constraint is active. One-sided constraints (for example, LessThan and GreaterThan)
should use NONBASIC instead of the NONBASIC_AT_* values.

This restriction does not apply to VariableBasisStatus, which should return NONBASIC_AT_* regardless
of whether the alternative bound exists.

Values

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2572-L2616
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BASIC

The element is in the basis.

NONBASIC

The element is not in the basis.

NONBASIC_AT_LOWER

The element is not in the basis and is at its lower bound.

NONBASIC_AT_UPPER

The element is not in the basis and is at its upper bound.

SUPER_BASIC

The element is not in the basis but is also not at one of its bounds.

In a linear program, this status occurs when a variable with no bounds is not in the basis, for example,
because it takes the value 0.0.

source

MathOptInterface.BASIC – Constant.

BASIC::BasisStatusCode

An instance of the BasisStatusCode enum.

About

The element is in the basis.

source

MathOptInterface.NONBASIC – Constant.

NONBASIC::BasisStatusCode

An instance of the BasisStatusCode enum.

About

The element is not in the basis.

source

MathOptInterface.NONBASIC_AT_LOWER – Constant.

NONBASIC_AT_LOWER::BasisStatusCode

An instance of the BasisStatusCode enum.

About

The element is not in the basis and is at its lower bound.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2034-L2077
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2034-L2042
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2034-L2042
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2034-L2043
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MathOptInterface.NONBASIC_AT_UPPER – Constant.

NONBASIC_AT_UPPER::BasisStatusCode

An instance of the BasisStatusCode enum.

About

The element is not in the basis and is at its upper bound.

source

MathOptInterface.SUPER_BASIC – Constant.

SUPER_BASIC::BasisStatusCode

An instance of the BasisStatusCode enum.

About

The element is not in the basis but is also not at one of its bounds.

In a linear program, this status occurs when a variable with no bounds is not in the basis, for example,
because it takes the value 0.0.

source

36.5 Modifications

MathOptInterface.modify – Function.

modify(
model::ModelLike,
ci::ConstraintIndex,
change::AbstractFunctionModification,

)

Apply the modification specified by change to the function of constraint ci.

An ModifyConstraintNotAllowed error is thrown if modifying constraints is not supported by the model
model.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variable(model);

julia> ci = MOI.add_constraint(model, 1.0 * x, MOI.EqualTo(1.0));

julia> MOI.modify(model, ci, MOI.ScalarConstantChange(10.0))

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2034-L2043
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2034-L2046
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julia> print(model)
Feasibility

Subject to:

ScalarAffineFunction{Float64}-in-EqualTo{Float64}
10.0 + 1.0 v[1] == 1.0

source

modify(
model::ModelLike,
cis::AbstractVector{<:ConstraintIndex},
changes::AbstractVector{<:AbstractFunctionModification},

)

Apply multiple modifications specified by changes to the functions of constraints cis.

A ModifyConstraintNotAllowed error is thrown if modifying constraints is not supported by model.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variables(model, 2);

julia> ci = MOI.add_constraint.(model, 1.0 .* x, MOI.EqualTo(1.0));

julia> MOI.modify(model, ci, MOI.ScalarCoefficientChange.(x, [2.0, 0.5]))

julia> print(model)
Feasibility

Subject to:

ScalarAffineFunction{Float64}-in-EqualTo{Float64}
0.0 + 2.0 v[1] == 1.0
0.0 + 0.5 v[2] == 1.0

source

modify(model::ModelLike, ::ObjectiveFunction, change::AbstractFunctionModification)

Apply the modification specified by change to the objective function of model. To change the function
completely, call set instead.

An ModifyObjectiveNotAllowed error is thrown if modifying objectives is not supported by the model
model.

Example

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/modifications.jl#L71-L102
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/modifications.jl#L111-L143
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julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variable(model);

julia> MOI.set(model, MOI.ObjectiveSense(), MOI.MIN_SENSE)

julia> f = 1.0 * x;

julia> attr = MOI.ObjectiveFunction{typeof(f)}()
MathOptInterface.ObjectiveFunction{MathOptInterface.ScalarAffineFunction{Float64}}()

julia> MOI.set(model, attr, f)

julia> MOI.modify(model, attr, MOI.ScalarConstantChange(10.0))

julia> print(model)
Minimize ScalarAffineFunction{Float64}:
10.0 + 1.0 v[1]

Subject to:

source

modify(
model::ModelLike,
attr::ObjectiveFunction,
changes::AbstractVector{<:AbstractFunctionModification},

)

Apply multiple modifications specified by changes to the functions of constraints cis.

A ModifyObjectiveNotAllowed error is thrown if modifying objective coefficients is not supported by
model.

Example

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variables(model, 2);

julia> MOI.set(model, MOI.ObjectiveSense(), MOI.MIN_SENSE)

julia> f = 1.0 * x[1] + 1.0 * x[2];

julia> attr = MOI.ObjectiveFunction{typeof(f)}()
MathOptInterface.ObjectiveFunction{MathOptInterface.ScalarAffineFunction{Float64}}()

julia> MOI.set(model, attr, f)

julia> MOI.modify(model, attr, MOI.ScalarCoefficientChange.(x, [2.0, 0.5]))

julia> print(model)

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/modifications.jl#L156-L189
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Minimize ScalarAffineFunction{Float64}:
0.0 + 2.0 v[1] + 0.5 v[2]

Subject to:

source

MathOptInterface.AbstractFunctionModification – Type.

AbstractFunctionModification

An abstract supertype for structs which specify partial modifications to functions, to be used for making
small modifications instead of replacing the functions entirely.

source

MathOptInterface.ScalarConstantChange – Type.

ScalarConstantChange{T}(new_constant::T)

A struct used to request a change in the constant term of a scalar-valued function.

Applicable to ScalarAffineFunction and ScalarQuadraticFunction.

source

MathOptInterface.VectorConstantChange – Type.

VectorConstantChange{T}(new_constant::Vector{T})

A struct used to request a change in the constant vector of a vector-valued function.

Applicable to VectorAffineFunction and VectorQuadraticFunction.

source

MathOptInterface.ScalarCoefficientChange – Type.

ScalarCoefficientChange{T}(variable::VariableIndex, new_coefficient::T)

A struct used to request a change in the linear coefficient of a single variable in a scalar-valued function.

Applicable to ScalarAffineFunction and ScalarQuadraticFunction.

source

MathOptInterface.ScalarQuadraticCoefficientChange – Type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/modifications.jl#L198-L236
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/functions.jl#L740-L746
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/functions.jl#L749-L756
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/functions.jl#L761-L768
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/functions.jl#L773-L780
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ScalarQuadraticCoefficientChange{T}(
variable_1::VariableIndex,
variable_2::VariableIndex,
new_coefficient::T,

)

A struct used to request a change in the quadratic coefficient of a ScalarQuadraticFunction.

Scaling factors

A ScalarQuadraticFunction has an implicit 0.5 scaling factor in front of the Q matrix. This modification
applies to terms in the Q matrix.

If variable_1 == variable_2, this modification sets the corresponding diagonal element of the Q matrix
to new_coefficient.

If variable_1 != variable_2, this modification is equivalent to setting both the corresponding upper-
and lower-triangular elements of the Q matrix to new_coefficient.

As a consequence:

• to modify the term x^2 to become 2x^2, new_coefficient must be 4

• to modify the term xy to become 2xy, new_coefficient must be 2

source

MathOptInterface.MultirowChange – Type.

MultirowChange{T}(
variable::VariableIndex,
new_coefficients::Vector{Tuple{Int64,T}},

) where {T}

A struct used to request a change in the linear coefficients of a single variable in a vector-valued function.

New coefficients are specified by (output_index, coefficient) tuples.

Applicable to VectorAffineFunction and VectorQuadraticFunction.

source

36.6 Nonlinear programming

Types

MathOptInterface.AbstractNLPEvaluator – Type.

AbstractNLPEvaluator

Abstract supertype for the callback object that is used to query function values, derivatives, and expression
graphs.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/functions.jl#L786-L812
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/functions.jl#L827-L839
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It is used in NLPBlockData.

Example

This example uses the Test.HS071 evaluator.

julia> evaluator = MOI.Test.HS071(true);

julia> supertype(typeof(evaluator))
MathOptInterface.AbstractNLPEvaluator

source

MathOptInterface.NLPBoundsPair – Type.

NLPBoundsPair(lower::Float64, upper::Float64)

A struct holding a pair of lower and upper bounds.

-Inf and Inf can be used to indicate no lower or upper bound, respectively.

Example

julia> bounds = MOI.NLPBoundsPair.([25.0, 40.0], [Inf, 40.0])
2-element Vector{MathOptInterface.NLPBoundsPair}:
MathOptInterface.NLPBoundsPair(25.0, Inf)
MathOptInterface.NLPBoundsPair(40.0, 40.0)

source

MathOptInterface.NLPBlockData – Type.

struct NLPBlockData
constraint_bounds::Vector{NLPBoundsPair}
evaluator::AbstractNLPEvaluator
has_objective::Bool

end

A struct encoding a set of nonlinear constraints of the form lb ≤ g(x) ≤ ub and, if has_objective ==
true, a nonlinear objective function f(x).

Nonlinear objectives override any objective set by using the ObjectiveFunction attribute.

The evaluator is a callback object that is used to query function values, derivatives, and expression
graphs. If has_objective == false, then it is an error to query properties of the objective function, and
in Hessian-of-the-Lagrangian queries, σ must be set to zero.

Note

Throughout the evaluator, all variables are ordered according to ListOfVariableIndices. Hence,
MOI copies of nonlinear problems must not re-order variables.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/nlp.jl#L15-L33
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/nlp.jl#L113-L128
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Example

This example uses the Test.HS071 evaluator.

julia> model = MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}());

julia> block = MOI.NLPBlockData(
MOI.NLPBoundsPair.([25.0, 40.0], [Inf, 40.0]),
MOI.Test.HS071(true),
true,

);

julia> MOI.set(model, MOI.NLPBlock(), block)

source

Attributes

MathOptInterface.NLPBlock – Type.

NLPBlock()

An AbstractModelAttribute that stores an NLPBlockData, representing a set of nonlinear constraints,
and optionally a nonlinear objective.

Example

This example uses the Test.HS071 evaluator.

julia> model = MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}());

julia> block = MOI.NLPBlockData(
MOI.NLPBoundsPair.([25.0, 40.0], [Inf, 40.0]),
MOI.Test.HS071(true),
true,

);

julia> MOI.set(model, MOI.NLPBlock(), block)

source

MathOptInterface.NLPBlockDual – Type.

NLPBlockDual(result_index::Int = 1)

An AbstractModelAttribute for the Lagrange multipliers on the constraints from the NLPBlock in result
result_index.

If result_index is omitted, it is 1 by default.

Example

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/nlp.jl#L134-L173
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/nlp.jl#L36-L58
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julia> MOI.NLPBlockDual()
MathOptInterface.NLPBlockDual(1)

julia> MOI.NLPBlockDual(2)
MathOptInterface.NLPBlockDual(2)

source

MathOptInterface.NLPBlockDualStart – Type.

NLPBlockDualStart()

An AbstractModelAttribute for the initial assignment of the Lagrange multipliers on the constraints from
the NLPBlock that the solver may use to warm-start the solve.

Example

This example uses the Test.HS071 evaluator.

julia> model = MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}());

julia> block = MOI.NLPBlockData(
MOI.NLPBoundsPair.([25.0, 40.0], [Inf, 40.0]),
MOI.Test.HS071(true),
true,

);

julia> MOI.set(model, MOI.NLPBlock(), block)

julia> MOI.set(model, MOI.NLPBlockDualStart(), [1.0, 2.0])

source

Functions

MathOptInterface.initialize – Function.

initialize(
d::AbstractNLPEvaluator,
requested_features::Vector{Symbol},

)::Nothing

Initialize d with the set of features in requested_features. Check features_available before calling
initialize to see what features are supported by d.

Warning

This method must be called before any other methods.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/nlp.jl#L61-L78
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/nlp.jl#L86-L110
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Features

The following features are defined:

• :Grad: enables eval_objective_gradient

• :Jac: enables eval_constraint_jacobian and eval_constraint_gradient

• :JacVec: enables eval_constraint_jacobian_product and eval_constraint_jacobian_transpose_product

• :Hess: enables eval_hessian_lagrangian

• :HessVec: enables eval_hessian_lagrangian_product

• :ExprGraph: enables objective_expr and constraint_expr.

In all cases, including when requested_features is empty, eval_objective and eval_constraint are
supported.

Example

This example uses the Test.HS071 evaluator.

julia> evaluator = MOI.Test.HS071(true);

julia> MOI.initialize(evaluator, [:Grad, :Jac])

source

MathOptInterface.features_available – Function.

features_available(d::AbstractNLPEvaluator)::Vector{Symbol}

Returns the subset of features available for this problem instance.

See initialize for the list of defined features.

Example

This example uses the Test.HS071 evaluator.

julia> evaluator = MOI.Test.HS071(true, true);

julia> MOI.features_available(evaluator)
6-element Vector{Symbol}:
:Grad
:Jac
:JacVec
:ExprGraph
:Hess
:HessVec

source

MathOptInterface.eval_objective – Function.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/nlp.jl#L180-L218
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/nlp.jl#L221-L244
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eval_objective(d::AbstractNLPEvaluator, x::AbstractVector{T})::T where {T}

Evaluate the objective f(x), returning a scalar value.

Initialize

Before calling this function, you must call initialize, but you do not need to pass a value.

Example

This example uses the Test.HS071 evaluator.

julia> evaluator = MOI.Test.HS071(true);

julia> MOI.initialize(evaluator, Symbol[])

julia> MOI.eval_objective(evaluator, [1.0, 2.0, 3.0, 4.0])
27.0

source

MathOptInterface.eval_constraint – Function.

eval_constraint(
d::AbstractNLPEvaluator,
g::AbstractVector{T},
x::AbstractVector{T},

)::Nothing where {T}

Given a set of vector-valued constraints l ≤ g(x) ≤ u, evaluate the constraint function g(x), storing the
result in the vector g.

Initialize

Before calling this function, you must call initialize, but you do not need to pass a value.

Implementation notes

When implementing this method, you must not assume that g is Vector{Float64}, but you may assume
that it supports setindex! and length. For example, it may be the view of a vector.

Example

This example uses the Test.HS071 evaluator.

julia> evaluator = MOI.Test.HS071(true);

julia> MOI.initialize(evaluator, Symbol[])

julia> g = fill(NaN, 2);

julia> MOI.eval_constraint(evaluator, g, [1.0, 2.0, 3.0, 4.0])

julia> g

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/nlp.jl#L247-L269
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2-element Vector{Float64}:
24.0
30.0

source

MathOptInterface.eval_objective_gradient – Function.

eval_objective_gradient(
d::AbstractNLPEvaluator,
grad::AbstractVector{T},
x::AbstractVector{T},

)::Nothing where {T}

Evaluate the gradient of the objective function grad = ∇f(x) as a dense vector, storing the result in the
vector grad.

Initialize

Before calling this function, you must call initialize with :Grad.

Implementation notes

When implementing this method, you must not assume that grad is Vector{Float64}, but you may as-
sume that it supports setindex! and length. For example, it may be the view of a vector.

Example

This example uses the Test.HS071 evaluator.

julia> evaluator = MOI.Test.HS071(true);

julia> MOI.initialize(evaluator, Symbol[:Grad])

julia> grad = fill(NaN, 4);

julia> MOI.eval_objective_gradient(evaluator, grad, [1.0, 2.0, 3.0, 4.0])

julia> grad
4-element Vector{Float64}:
28.0
4.0
5.0
6.0

source

MathOptInterface.jacobian_structure – Function.

jacobian_structure(d::AbstractNLPEvaluator)::Vector{Tuple{Int64,Int64}}

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/nlp.jl#L272-L311
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/nlp.jl#L314-L354
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Returns a vector of tuples, (row, column), where each indicates the position of a structurally nonzero

element in the Jacobian matrix: Jg(x) =


∇g1(x)
∇g2(x)

...
∇gm(x)

 , where gi is the ith component of the nonlinear
constraints g(x).

The indices are not required to be sorted and can contain duplicates, in which case the solver should
combine the corresponding elements by adding them together.

The sparsity structure is assumed to be independent of the point x.

Initialize

Before calling this function, you must call initialize with :Jac.

Example

This example uses the Test.HS071 evaluator.

julia> evaluator = MOI.Test.HS071(true);

julia> MOI.initialize(evaluator, Symbol[:Jac])

julia> MOI.jacobian_structure(evaluator)
8-element Vector{Tuple{Int64, Int64}}:
(1, 1)
(1, 2)
(1, 3)
(1, 4)
(2, 1)
(2, 2)
(2, 3)
(2, 4)

source

MathOptInterface.eval_constraint_gradient – Function.

eval_constraint_gradient(
d::AbstractNLPEvaluator,
∇g::AbstractVector{T},
x::AbstractVector{T},
i::Int,

)::Nothing where {T}

Evaluate the gradient of constraint i, ∇gi(x), and store the non-zero values in ∇g, corresponding to the
structure returned by constraint_gradient_structure.

Implementation notes

When implementing this method, you must not assume that ∇g is Vector{Float64}, but you may assume
that it supports setindex! and length. For example, it may be the view of a vector.

Initialize

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/nlp.jl#L357-L396
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Before calling this function, you must call initialize with :Jac.

Example

This example uses the Test.HS071 evaluator.

julia> evaluator = MOI.Test.HS071(true);

julia> MOI.initialize(evaluator, Symbol[:Jac])

julia> indices = MOI.constraint_gradient_structure(evaluator, 1);

julia> ∇g = zeros(length(indices));

julia> MOI.eval_constraint_gradient(evaluator, ∇g, [1.0, 2.0, 3.0, 4.0], 1)

julia> ∇g
4-element Vector{Float64}:
24.0
12.0
8.0
6.0

source

MathOptInterface.constraint_gradient_structure – Function.

constraint_gradient_structure(d::AbstractNLPEvaluator, i::Int)::Vector{Int64}

Returns a vector of indices, where each element indicates the position of a structurally nonzero element
in the gradient of constraint∇gi(x).

The indices are not required to be sorted and can contain duplicates, in which case the solver should
combine the corresponding elements by adding them together.

The sparsity structure is assumed to be independent of the point x.

Initialize

Before calling this function, you must call initialize with :Jac.

Example

This example uses the Test.HS071 evaluator.

julia> evaluator = MOI.Test.HS071(true);

julia> MOI.initialize(evaluator, Symbol[:Jac])

julia> indices = MOI.constraint_gradient_structure(evaluator, 1)
4-element Vector{Int64}:
1
2
3
4

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/nlp.jl#L575-L619
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source

MathOptInterface.eval_constraint_jacobian – Function.

eval_constraint_jacobian(
d::AbstractNLPEvaluator,
J::AbstractVector{T},
x::AbstractVector{T},

)::Nothing where {T}

Evaluates the sparse Jacobian matrix Jg(x) =


∇g1(x)
∇g2(x)

...
∇gm(x)

.
The result is stored in the vector J in the same order as the indices returned by jacobian_structure.

Implementation notes

When implementing this method, you must not assume that J is Vector{Float64}, but you may assume
that it supports setindex! and length. For example, it may be the view of a vector.

Initialize

Before calling this function, you must call initialize with :Hess.

Example

This example uses the Test.HS071 evaluator.

julia> evaluator = MOI.Test.HS071(true);

julia> MOI.initialize(evaluator, Symbol[:Jac])

julia> J_indices = MOI.jacobian_structure(evaluator);

julia> J = zeros(length(J_indices));

julia> MOI.eval_constraint_jacobian(evaluator, J, [1.0, 2.0, 3.0, 4.0])

julia> J
8-element Vector{Float64}:
24.0
12.0
8.0
6.0
2.0
4.0
6.0
8.0

source

MathOptInterface.eval_constraint_jacobian_product – Function.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/nlp.jl#L540-L572
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/nlp.jl#L622-L671
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eval_constraint_jacobian_product(
d::AbstractNLPEvaluator,
y::AbstractVector{T},
x::AbstractVector{T},
w::AbstractVector{T},

)::Nothing where {T}

Computes the Jacobian-vector product y = Jg(x)w, storing the result in the vector y.

The vectors have dimensions such that length(w) == length(x), and length(y) is the number of non-
linear constraints.

Implementation notes

When implementing this method, you must not assume that y is Vector{Float64}, but you may assume
that it supports setindex! and length. For example, it may be the view of a vector.

Initialize

Before calling this function, you must call initialize with :JacVec.

Example

This example uses the Test.HS071 evaluator.

julia> evaluator = MOI.Test.HS071(true);

julia> MOI.initialize(evaluator, Symbol[:Jac, :JacVec])

julia> y = zeros(2);

julia> x = [1.0, 2.0, 3.0, 4.0];

julia> w = [1.5, 2.5, 3.5, 4.5];

julia> MOI.eval_constraint_jacobian_product(evaluator, y, x, w)

julia> y
2-element Vector{Float64}:
121.0
70.0

source

MathOptInterface.eval_constraint_jacobian_transpose_product – Function.

eval_constraint_jacobian_transpose_product(
d::AbstractNLPEvaluator,
y::AbstractVector{T},
x::AbstractVector{T},
w::AbstractVector{T},

)::Nothing where {T}

Computes the Jacobian-transpose-vector product y = Jg(x)
Tw, storing the result in the vector y.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/nlp.jl#L674-L720
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The vectors have dimensions such that length(y) == length(x), and length(w) is the number of non-
linear constraints.

Implementation notes

When implementing this method, you must not assume that y is Vector{Float64}, but you may assume
that it supports setindex! and length. For example, it may be the view of a vector.

Initialize

Before calling this function, you must call initialize with :JacVec.

Example

This example uses the Test.HS071 evaluator.

julia> evaluator = MOI.Test.HS071(true);

julia> MOI.initialize(evaluator, Symbol[:Jac, :JacVec])

julia> y = zeros(4);

julia> x = [1.0, 2.0, 3.0, 4.0];

julia> w = [1.5, 2.5];

julia> MOI.eval_constraint_jacobian_transpose_product(evaluator, y, x, w)

julia> y
4-element Vector{Float64}:
41.0
28.0
27.0
29.0

source

MathOptInterface.hessian_lagrangian_structure – Function.

hessian_lagrangian_structure(
d::AbstractNLPEvaluator,

)::Vector{Tuple{Int64,Int64}}

Returns a vector of tuples, (row, column), where each indicates the position of a structurally nonzero
element in the Hessian-of-the-Lagrangian matrix: ∇2f(x) +

∑m
i=1 ∇2gi(x).

The indices are not required to be sorted and can contain duplicates, in which case the solver should
combine the corresponding elements by adding them together.

Any mix of lower and upper-triangular indices is valid. Elements (i, j) and (j, i), if both present, should
be treated as duplicates.

The sparsity structure is assumed to be independent of the point x.

Initialize

Before calling this function, you must call initialize with :Hess.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/nlp.jl#L723-L771
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Example

This example uses the Test.HS071 evaluator.

julia> evaluator = MOI.Test.HS071(true);

julia> MOI.initialize(evaluator, Symbol[:Hess])

julia> MOI.hessian_lagrangian_structure(evaluator)
10-element Vector{Tuple{Int64, Int64}}:
(1, 1)
(2, 1)
(2, 2)
(3, 1)
(3, 2)
(3, 3)
(4, 1)
(4, 2)
(4, 3)
(4, 4)

source

MathOptInterface.hessian_objective_structure – Function.

hessian_objective_structure(
d::AbstractNLPEvaluator,

)::Vector{Tuple{Int64,Int64}}

Returns a vector of tuples, (row, column), where each indicates the position of a structurally nonzero
element in the Hessian matrix: ∇2f(x).

The indices are not required to be sorted and can contain duplicates, in which case the solver should
combine the corresponding elements by adding them together.

Any mix of lower and upper-triangular indices is valid. Elements (i, j) and (j, i), if both present, should
be treated as duplicates.

The sparsity structure is assumed to be independent of the point x.

Initialize

Before calling this function, you must call initialize with :Hess.

Example

This example uses the Test.HS071 evaluator.

julia> evaluator = MOI.Test.HS071(true);

julia> MOI.initialize(evaluator, Symbol[:Hess])

julia> MOI.hessian_objective_structure(evaluator)
6-element Vector{Tuple{Int64, Int64}}:
(1, 1)
(2, 1)

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/nlp.jl#L493-L537
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(3, 1)
(4, 1)
(4, 2)
(4, 3)

source

MathOptInterface.hessian_constraint_structure – Function.

hessian_constraint_structure(
d::AbstractNLPEvaluator,
i::Int64,

)::Vector{Tuple{Int64,Int64}}

Returns a vector of tuples, (row, column), where each indicates the position of a structurally nonzero
element in the Hessian matrix: ∇2gi(x).

The indices are not required to be sorted and can contain duplicates, in which case the solver should
combine the corresponding elements by adding them together.

Any mix of lower and upper-triangular indices is valid. Elements (i, j) and (j, i), if both present, should
be treated as duplicates.

The sparsity structure is assumed to be independent of the point x.

Initialize

Before calling this function, you must call initialize with :Hess.

Example

This example uses the Test.HS071 evaluator.

julia> evaluator = MOI.Test.HS071(true);

julia> MOI.initialize(evaluator, Symbol[:Hess])

julia> MOI.hessian_constraint_structure(evaluator, 1)
6-element Vector{Tuple{Int64, Int64}}:
(2, 1)
(3, 1)
(3, 2)
(4, 1)
(4, 2)
(4, 3)

julia> MOI.hessian_constraint_structure(evaluator, 2)
4-element Vector{Tuple{Int64, Int64}}:
(1, 1)
(2, 2)
(3, 3)
(4, 4)

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/nlp.jl#L399-L439
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/nlp.jl#L442-L490
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MathOptInterface.eval_hessian_objective – Function.

eval_hessian_objective(
d::AbstractNLPEvaluator,
H::AbstractVector{T},
x::AbstractVector{T},

)::Nothing where {T}

This function computes the sparse Hessian matrix: ∇2f(x), storing the result in the vector H in the same
order as the indices returned by hessian_objective_structure.

Implementation notes

When implementing this method, you must not assume that H is Vector{Float64}, but you may assume
that it supports setindex! and length. For example, it may be the view of a vector.

Initialize

Before calling this function, you must call initialize with :Hess.

Example

This example uses the Test.HS071 evaluator.

julia> evaluator = MOI.Test.HS071(true, true);

julia> MOI.initialize(evaluator, Symbol[:Hess])

julia> indices = MOI.hessian_objective_structure(evaluator);

julia> H = zeros(length(indices));

julia> x = [1.0, 2.0, 3.0, 4.0];

julia> MOI.eval_hessian_objective(evaluator, H, x)

julia> H
6-element Vector{Float64}:
8.0
4.0
4.0
7.0
1.0
1.0

source

MathOptInterface.eval_hessian_constraint – Function.

eval_hessian_constraint(
d::AbstractNLPEvaluator,
H::AbstractVector{T},
x::AbstractVector{T},
i::Int64,

)::Nothing where {T}

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/nlp.jl#L832-L880
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This function computes the sparse Hessian matrix: ∇2gi(x), storing the result in the vector H in the same
order as the indices returned by hessian_constraint_structure.

Implementation notes

When implementing this method, you must not assume that H is Vector{Float64}, but you may assume
that it supports setindex! and length. For example, it may be the view of a vector.

Initialize

Before calling this function, you must call initialize with :Hess.

Example

This example uses the Test.HS071 evaluator.

julia> evaluator = MOI.Test.HS071(true, true);

julia> MOI.initialize(evaluator, Symbol[:Hess])

julia> indices = MOI.hessian_constraint_structure(evaluator, 1);

julia> H = zeros(length(indices));

julia> x = [1.0, 2.0, 3.0, 4.0];

julia> MOI.eval_hessian_constraint(evaluator, H, x, 1)

julia> H
6-element Vector{Float64}:
12.0
8.0
4.0
6.0
3.0
2.0

source

MathOptInterface.eval_hessian_lagrangian – Function.

eval_hessian_lagrangian(
d::AbstractNLPEvaluator,
H::AbstractVector{T},
x::AbstractVector{T},
σ::T,
μ::AbstractVector{T},

)::Nothing where {T}

Given scalar weight σ and vector of constraint weights μ, this function computes the sparse Hessian-of-
the-Lagrangian matrix: σ∇2f(x) +

∑m
i=1 µi∇2gi(x), storing the result in the vector H in the same order

as the indices returned by hessian_lagrangian_structure.

Implementation notes

When implementing this method, you must not assume that H is Vector{Float64}, but you may assume
that it supports setindex! and length. For example, it may be the view of a vector.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/nlp.jl#L883-L932
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Initialize

Before calling this function, you must call initialize with :Hess.

Example

This example uses the Test.HS071 evaluator.

julia> evaluator = MOI.Test.HS071(true);

julia> MOI.initialize(evaluator, Symbol[:Hess])

julia> indices = MOI.hessian_lagrangian_structure(evaluator);

julia> H = zeros(length(indices));

julia> x = [1.0, 2.0, 3.0, 4.0];

julia> σ = 1.0;

julia> μ = [1.0, 1.0];

julia> MOI.eval_hessian_lagrangian(evaluator, H, x, σ, μ)

julia> H
10-element Vector{Float64}:
10.0
16.0
2.0

12.0
4.0
2.0

13.0
4.0
3.0
2.0

source

MathOptInterface.eval_hessian_lagrangian_product – Function.

eval_hessian_lagrangian_product(
d::AbstractNLPEvaluator,
h::AbstractVector{T},
x::AbstractVector{T},
v::AbstractVector{T},
σ::T,
μ::AbstractVector{T},

)::Nothing where {T}

Given scalar weight σ and vector of constraint weights μ, computes the Hessian-of-the-Lagrangian-vector
product h =

(
σ∇2f(x) +

∑m
i=1 µi∇2gi(x)

)
v, storing the result in the vector h.

The vectors have dimensions such that length(h) == length(x) == length(v).

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/nlp.jl#L935-L994
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Implementation notes

When implementing this method, you must not assume that h is Vector{Float64}, but you may assume
that it supports setindex! and length. For example, it may be the view of a vector.

Initialize

Before calling this function, you must call initialize with :HessVec.

Example

This example uses the Test.HS071 evaluator.

julia> evaluator = MOI.Test.HS071(true, true);

julia> MOI.initialize(evaluator, Symbol[:HessVec])

julia> H = fill(NaN, 4);

julia> x = [1.0, 2.0, 3.0, 4.0];

julia> v = [1.5, 2.5, 3.5, 4.5];

julia> σ = 1.0;

julia> μ = [1.0, 1.0];

julia> MOI.eval_hessian_lagrangian_product(evaluator, H, x, v, σ, μ)

julia> H
4-element Vector{Float64}:
155.5
61.0
48.5
49.0

source

MathOptInterface.objective_expr – Function.

objective_expr(d::AbstractNLPEvaluator)::Expr

Returns a Julia Expr object representing the expression graph of the objective function.

Format

The expression has a number of limitations, compared with arbitrary Julia expressions:

• All sums and products are flattened out as simple Expr(:+, ...) and Expr(:*, ...) objects.

• All decision variables must be of the form Expr(:ref, :x, MOI.VariableIndex(i)), where i is the
ith variable in ListOfVariableIndices.

• There are currently no restrictions on recognized functions; typically these will be built-in Julia func-
tions like ^, exp, log, cos, tan, sqrt, etc., but modeling interfaces may choose to extend these basic
functions, or error if they encounter unsupported functions.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/nlp.jl#L774-L829


CHAPTER 36. API REFERENCE 1197

Initialize

Before calling this function, you must call initialize with :ExprGraph.

Example

This example uses the Test.HS071 evaluator.

julia> evaluator = MOI.Test.HS071(true);

julia> MOI.initialize(evaluator, [:ExprGraph])

julia> MOI.objective_expr(evaluator)
:(x[MOI.VariableIndex(1)] * x[MOI.VariableIndex(4)] * (x[MOI.VariableIndex(1)] +

x[MOI.VariableIndex(2)] + x[MOI.VariableIndex(3)]) + x[MOI.VariableIndex(3)])↪→

source

MathOptInterface.constraint_expr – Function.

constraint_expr(d::AbstractNLPEvaluator, i::Integer)::Expr

Returns a Julia Expr object representing the expression graph for the ith nonlinear constraint.

Format

The format is the same as objective_expr, with an additional comparison operator indicating the sense
of and bounds on the constraint.

For single-sided comparisons, the body of the constraint must be on the left-hand side, and the right-hand
side must be a constant.

For double-sided comparisons (that is, l ≤ g(x) ≤ u), the body of the constraint must be in the middle,
and the left- and right-hand sides must be constants.

The bounds on the constraints must match the NLPBoundsPairs passed to NLPBlockData.

Initialize

Before calling this function, you must call initialize with :ExprGraph.

Example

This example uses the Test.HS071 evaluator.

julia> evaluator = MOI.Test.HS071(true);

julia> MOI.initialize(evaluator, [:ExprGraph])

julia> MOI.constraint_expr(evaluator, 1)
:(x[MOI.VariableIndex(1)] * x[MOI.VariableIndex(2)] * x[MOI.VariableIndex(3)] *

x[MOI.VariableIndex(4)] >= 25.0)↪→

julia> MOI.constraint_expr(evaluator, 2)
:(x[MOI.VariableIndex(1)] ^ 2 + x[MOI.VariableIndex(2)] ^ 2 + x[MOI.VariableIndex(3)] ^ 2 +

x[MOI.VariableIndex(4)] ^ 2 == 40.0)↪→

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/nlp.jl#L997-L1035
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/nlp.jl#L1038-L1079
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36.7 Callbacks

MathOptInterface.AbstractCallback – Type.

abstract type AbstractCallback <: AbstractModelAttribute end

Abstract type for amodel attribute representing a callback function. The value set to subtypes of AbstractCallback
is a function that may be called during optimize!. As optimize! is in progress, the result attributes (that
is, the attributes attr such that is_set_by_optimize(attr)) may not be accessible from the callback,
hence trying to get result attributes might throw a OptimizeInProgress error.

At most one callback of each type can be registered. If an optimizer already has a function for a callback
type, and the user registers a new function, then the old one is replaced.

The value of the attribute should be a function taking only one argument, commonly called callback_data,
that can be used for instance in LazyConstraintCallback, HeuristicCallback and UserCutCallback.

source

MathOptInterface.AbstractSubmittable – Type.

AbstractSubmittable

Abstract supertype for objects that can be submitted to the model.

source

MathOptInterface.submit – Function.

submit(
optimizer::AbstractOptimizer,
sub::AbstractSubmittable,
values...,

)::Nothing

Submit values to the submittable sub of the optimizer optimizer.

An UnsupportedSubmittable error is thrown if model does not support the attribute attr (see supports)
and a SubmitNotAllowed error is thrown if it supports the submittable sub but it cannot be submitted.

source

Attributes

MathOptInterface.CallbackNodeStatus – Type.

CallbackNodeStatus(callback_data)

An optimizer attribute describing the (in)feasibility of the primal solution available from CallbackVariablePrimal
during a callback identified by callback_data.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1197-L1215
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L132-L136
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L615-L627
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Returns a CallbackNodeStatusCode Enum.

source

MathOptInterface.CallbackVariablePrimal – Type.

CallbackVariablePrimal(callback_data)

An AbstractVariableAttribute for the assignment to the variable's primal value during the callback
identified by callback_data.

source

MathOptInterface.CallbackNodeStatusCode – Type.

CallbackNodeStatusCode

An Enum for the value of the CallbackNodeStatus attribute.

Values

CALLBACK_NODE_STATUS_INTEGER

The primal solution available from CallbackVariablePrimal is integer feasible.

CALLBACK_NODE_STATUS_FRACTIONAL

The primal solution available from CallbackVariablePrimal is integer infeasible.

CALLBACK_NODE_STATUS_UNKNOWN

The status of the primal solution available from CallbackVariablePrimal is unknown.

source

MathOptInterface.CALLBACK_NODE_STATUS_INTEGER – Constant.

CALLBACK_NODE_STATUS_INTEGER::CallbackNodeStatusCode

An instance of the CallbackNodeStatusCode enum.

About

The primal solution available from CallbackVariablePrimal is integer feasible.

source

MathOptInterface.CALLBACK_NODE_STATUS_FRACTIONAL – Constant.

CALLBACK_NODE_STATUS_FRACTIONAL::CallbackNodeStatusCode

An instance of the CallbackNodeStatusCode enum.

About

The primal solution available from CallbackVariablePrimal is integer infeasible.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L781-L789
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L2023-L2028
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L757-L779
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L757-L767
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L757-L767
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MathOptInterface.CALLBACK_NODE_STATUS_UNKNOWN – Constant.

CALLBACK_NODE_STATUS_UNKNOWN::CallbackNodeStatusCode

An instance of the CallbackNodeStatusCode enum.

About

The status of the primal solution available from CallbackVariablePrimal is unknown.

source

Lazy constraints

MathOptInterface.LazyConstraintCallback – Type.

LazyConstraintCallback() <: AbstractCallback

The callback can be used to reduce the feasible set given the current primal solution by submitting a
LazyConstraint. For instance, it may be called at an incumbent of a mixed-integer problem. Note that
there is no guarantee that the callback is called at every feasible primal solution.

The current primal solution is accessed through CallbackVariablePrimal. Trying to access other result
attributes will throw OptimizeInProgress as discussed in AbstractCallback.

Example

x = MOI.add_variables(optimizer, 8)
MOI.set(optimizer, MOI.LazyConstraintCallback(), callback_data -> begin

sol = MOI.get(optimizer, MOI.CallbackVariablePrimal(callback_data), x)
if # should add a lazy constraint

func = # computes function
set = # computes set
MOI.submit(optimizer, MOI.LazyConstraint(callback_data), func, set)

end
end)

source

MathOptInterface.LazyConstraint – Type.

LazyConstraint(callback_data)

Lazy constraint func-in-set submitted as func, set. The optimal solution returned by VariablePrimal
will satisfy all lazy constraints that have been submitted.

This can be submitted only from the LazyConstraintCallback. The field callback_data is a solver-
specific callback type that is passed as the argument to the feasible solution callback.

Example

Suppose x and y are VariableIndexs of optimizer. To add a LazyConstraint for 2x + 3y <= 1, write

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L757-L767
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1220-L1246
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func = 2.0x + 3.0y
set = MOI.LessThan(1.0)
MOI.submit(optimizer, MOI.LazyConstraint(callback_data), func, set)

inside a LazyConstraintCallback of data callback_data.

source

User cuts

MathOptInterface.UserCutCallback – Type.

UserCutCallback() <: AbstractCallback

The callback can be used to submit UserCut given the current primal solution. For instance, it may be
called at fractional (that is, non-integer) nodes in the branch and bound tree of a mixed-integer problem.
Note that there is not guarantee that the callback is called everytime the solver has an infeasible solution.

The infeasible solution is accessed through CallbackVariablePrimal. Trying to access other result at-
tributes will throw OptimizeInProgress as discussed in AbstractCallback.

Example

x = MOI.add_variables(optimizer, 8)
MOI.set(optimizer, MOI.UserCutCallback(), callback_data -> begin

sol = MOI.get(optimizer, MOI.CallbackVariablePrimal(callback_data), x)
if # can find a user cut

func = # computes function
set = # computes set
MOI.submit(optimizer, MOI.UserCut(callback_data), func, set)

end
end

source

MathOptInterface.UserCut – Type.

UserCut(callback_data)

Constraint func-to-set suggested to help the solver detect the solution given by CallbackVariablePrimal
as infeasible. The cut is submitted as the tuple (func, set)::Tuple{MOI.AbstractFunction,MOI.AbstractSet}.

Typically CallbackVariablePrimal will violate integrality constraints, and a cut would be of the form
ScalarAffineFunction-in-LessThan or ScalarAffineFunction-in-GreaterThan.

Note that, as opposed to LazyConstraint, the provided constraint must not modify the feasible set. The
constraint should be redundant, for example, it may be a consequence of affine and integrality constraints.

This can be submitted only from the UserCutCallback. The field callback_data is a solver-specific call-
back type that is passed as the argument to the infeasible solution callback.

Note that the solver may silently ignore the provided constraint.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L645-L666
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1278-L1304
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L709-L729
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Heuristic solutions

MathOptInterface.HeuristicCallback – Type.

HeuristicCallback() <: AbstractCallback

The callback can be used to submit HeuristicSolution given the current primal solution. For example,
it may be called at fractional (that is, non-integer) nodes in the branch and bound tree of a mixed-integer
problem. Note that there is no guarantee that the callback is called every time the solver has an infeasible
solution.

The current primal solution is accessed through CallbackVariablePrimal. Trying to access other result
attributes will throw OptimizeInProgress as discussed in AbstractCallback.

Example

x = MOI.add_variables(optimizer, 8)
MOI.set(optimizer, MOI.HeuristicCallback(), callback_data -> begin

sol = MOI.get(optimizer, MOI.CallbackVariablePrimal(callback_data), x)
if # can find a heuristic solution

values = # computes heuristic solution
MOI.submit(optimizer, MOI.HeuristicSolution(callback_data), x,

values)
end

end

source

MathOptInterface.HeuristicSolution – Type.

HeuristicSolution(callback_data)

Heuristically obtained feasible solution. The solution is submitted as (variables, values)::Tuple{Vector{MOI.VariableIndex},Vector{T}},
where values[i] gives the value of variables[i].

The submit call returns a HeuristicSolutionStatus indicating whether the provided solution was ac-
cepted or rejected.

This can be submitted only from the HeuristicCallback. The field callback_data is a solver-specific
callback type that is passed as the argument to the heuristic callback.

Some solvers require a complete solution, others only partial solutions.

source

MathOptInterface.HeuristicSolutionStatus – Type.

HeuristicSolutionStatus

An Enum of possible return values for submit with HeuristicSolution.

This status informs whether the heuristic solution was accepted or rejected.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1249-L1275
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L689-L704
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Values

HEURISTIC_SOLUTION_ACCEPTED

The heuristic solution was accepted.

HEURISTIC_SOLUTION_REJECTED

The heuristic solution was rejected.

HEURISTIC_SOLUTION_UNKNOWN

No information available on the acceptance.

source

MathOptInterface.HEURISTIC_SOLUTION_ACCEPTED – Constant.

HEURISTIC_SOLUTION_ACCEPTED::HeuristicSolutionStatus

An instance of the HeuristicSolutionStatus enum.

About

The heuristic solution was accepted.

source

MathOptInterface.HEURISTIC_SOLUTION_REJECTED – Constant.

HEURISTIC_SOLUTION_REJECTED::HeuristicSolutionStatus

An instance of the HeuristicSolutionStatus enum.

About

The heuristic solution was rejected.

source

MathOptInterface.HEURISTIC_SOLUTION_UNKNOWN – Constant.

HEURISTIC_SOLUTION_UNKNOWN::HeuristicSolutionStatus

An instance of the HeuristicSolutionStatus enum.

About

No information available on the acceptance.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L671-L690
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L671-L679
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L671-L679
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L671-L679
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36.8 Errors

When anMOI call fails on amodel, precise errors should be thrownwhen possible instead of simply calling error
with a message. The docstrings for the respective methods describe the errors that the implementation should
throw in certain situations. This error-reporting system allows code to distinguish between internal errors (that
should be shown to the user) and unsupported operations which may have automatic workarounds.

When an invalid index is used in an MOI call, an InvalidIndex is thrown:

MathOptInterface.InvalidIndex – Type.

struct InvalidIndex{IndexType<:Index} <: Exception
index::IndexType

end

An error indicating that the index index is invalid.

source

When an invalid result index is used to retrieve an attribute, a ResultIndexBoundsError is thrown:

MathOptInterface.ResultIndexBoundsError – Type.

struct ResultIndexBoundsError{AttrType} <: Exception
attr::AttrType
result_count::Int

end

An error indicating that the requested attribute attr could not be retrieved, because the solver returned too
few results compared to what was requested. For instance, the user tries to retrieve VariablePrimal(2)
when only one solution is available, or when the model is infeasible and has no solution.

See also: check_result_index_bounds.

source

MathOptInterface.check_result_index_bounds – Function.

check_result_index_bounds(model::ModelLike, attr)

This function checks whether enough results are available in the model for the requested attr, using
its result_index field. If the model does not have sufficient results to answer the query, it throws a
ResultIndexBoundsError.

source

As discussed in JuMPmapping, for scalar constraint with a nonzero function constant, a ScalarFunctionConstantNotZero
exception may be thrown:

MathOptInterface.ScalarFunctionConstantNotZero – Type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/indextypes.jl#L83-L89
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L178-L190
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L196-L203
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struct ScalarFunctionConstantNotZero{T, F, S} <: Exception
constant::T

end

An error indicating that the constant part of the function in the constraint F-in-S is nonzero.

source

Some VariableIndex constraints cannot be combined on the same variable:

MathOptInterface.LowerBoundAlreadySet – Type.

LowerBoundAlreadySet{S1, S2}

Error thrown when setting a VariableIndex-in-S2 when a VariableIndex-in-S1 has already been added
and the sets S1, S2 both set a lower bound, that is, they are EqualTo, GreaterThan, Interval, Semicontinuous
or Semiinteger.

source

MathOptInterface.UpperBoundAlreadySet – Type.

UpperBoundAlreadySet{S1, S2}

Error thrown when setting a VariableIndex-in-S2 when a VariableIndex-in-S1 has already been added
and the sets S1, S2 both set an upper bound, that is, they are EqualTo, LessThan, Interval, Semicontinuous
or Semiinteger.

source

As discussed in AbstractCallback, trying to get attributes inside a callback may throw:

MathOptInterface.OptimizeInProgress – Type.

struct OptimizeInProgress{AttrType<:AnyAttribute} <: Exception
attr::AttrType

end

Error thrown from optimizer when MOI.get(optimizer, attr) is called inside an AbstractCallbackwhile
it is only defined once optimize! has completed. This can only happen when is_set_by_optimize(attr)
is true.

source

Trying to submit the wrong type of AbstractSubmittable inside an AbstractCallback (for example, a UserCut
inside a LazyConstraintCallback) will throw:

MathOptInterface.InvalidCallbackUsage – Type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/constraints.jl#L88-L95
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/constraints.jl#L273-L280
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/constraints.jl#L295-L302
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L1175-L1183
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struct InvalidCallbackUsage{C, S} <: Exception
callback::C
submittable::S

end

An error indicating that submittable cannot be submitted inside callback.

For example, UserCut cannot be submitted inside LazyConstraintCallback.

source

The rest of the errors defined in MOI fall in two categories represented by the following two abstract types:

MathOptInterface.UnsupportedError – Type.

UnsupportedError <: Exception

Abstract type for error thrown when an element is not supported by the model.

source

MathOptInterface.NotAllowedError – Type.

NotAllowedError <: Exception

Abstract type for error thrown when an operation is supported but cannot be applied in the current state
of the model.

source

The different UnsupportedError and NotAllowedError are the following errors:

MathOptInterface.UnsupportedAttribute – Type.

struct UnsupportedAttribute{AttrType} <: UnsupportedError
attr::AttrType
message::String

end

An error indicating that the attribute attr is not supported by the model, that is, that supports returns
false.

source

MathOptInterface.GetAttributeNotAllowed – Type.

struct GetAttributeNotAllowed{AttrType} <: NotAllowedError
attr::AttrType
message::String

end

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L734-L744
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/error.jl#L7-L11
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/error.jl#L37-L42
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L72-L80
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An error indicating that the attribute attr cannot be got for some reason (see the error string).

source

MathOptInterface.SetAttributeNotAllowed – Type.

struct SetAttributeNotAllowed{AttrType} <: NotAllowedError
attr::AttrType
message::String

end

An error indicating that the attribute attr is supported (see supports) but cannot be set for some reason
(see the error string).

source

MathOptInterface.AddVariableNotAllowed – Type.

struct AddVariableNotAllowed <: NotAllowedError
message::String # Human-friendly explanation why the attribute cannot be set

end

An error indicating that variables cannot be added to the model.

source

MathOptInterface.UnsupportedConstraint – Type.

struct UnsupportedConstraint{F<:AbstractFunction,S<:AbstractSet} <: UnsupportedError
message::String

end

An error indicating that constraints of type F-in-S are not supported by themodel, that is, that supports_constraint
returns false.

julia> showerror(stdout, MOI.UnsupportedConstraint{MOI.VariableIndex,MOI.ZeroOne}())
UnsupportedConstraint: `MathOptInterface.VariableIndex`-in-`MathOptInterface.ZeroOne`

constraints are not supported by the↪→

solver you have chosen, and we could not reformulate your model into a
form that is supported.

To fix this error you must choose a different solver.

source

MathOptInterface.AddConstraintNotAllowed – Type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L110-L118
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L90-L98
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/variables.jl#L9-L15
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/constraints.jl#L28-L45
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struct AddConstraintNotAllowed{F<:AbstractFunction, S<:AbstractSet} <: NotAllowedError
message::String # Human-friendly explanation why the attribute cannot be set

end

An error indicating that constraints of type F-in-S are supported (see supports_constraint) but cannot
be added.

source

MathOptInterface.ModifyConstraintNotAllowed – Type.

struct ModifyConstraintNotAllowed{F<:AbstractFunction, S<:AbstractSet,
C<:AbstractFunctionModification} <: NotAllowedError

constraint_index::ConstraintIndex{F, S}
change::C
message::String

end

An error indicating that the constraint modification change cannot be applied to the constraint of index ci.

source

MathOptInterface.ModifyObjectiveNotAllowed – Type.

struct ModifyObjectiveNotAllowed{C<:AbstractFunctionModification} <: NotAllowedError
change::C
message::String

end

An error indicating that the objective modification change cannot be applied to the objective.

source

MathOptInterface.DeleteNotAllowed – Type.

struct DeleteNotAllowed{IndexType <: Index} <: NotAllowedError
index::IndexType
message::String

end

An error indicating that the index index cannot be deleted.

source

MathOptInterface.UnsupportedSubmittable – Type.

struct UnsupportedSubmittable{SubmitType} <: UnsupportedError
sub::SubmitType
message::String

end

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/constraints.jl#L70-L77
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/modifications.jl#L7-L17
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/modifications.jl#L44-L52
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/indextypes.jl#L120-L127
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An error indicating that the submittable sub is not supported by the model, that is, that supports returns
false.

source

MathOptInterface.SubmitNotAllowed – Type.

struct SubmitNotAllowed{SubmitTyp<:AbstractSubmittable} <: NotAllowedError
sub::SubmitType
message::String

end

An error indicating that the submittable sub is supported (see supports) but cannot be added for some
reason (see the error string).

source

MathOptInterface.UnsupportedNonlinearOperator – Type.

UnsupportedNonlinearOperator(head::Symbol[, message::String]) <: UnsupportedError

An error thrown by optimizers if they do not support the operator head in a ScalarNonlinearFunction.

Example

julia> throw(MOI.UnsupportedNonlinearOperator(:black_box))
ERROR: MathOptInterface.UnsupportedNonlinearOperator: The nonlinear operator `:black_box` is not

supported by the model.↪→

Stacktrace:
[...]

source

Note that setting the ConstraintFunction of a VariableIndex constraint is not allowed:

MathOptInterface.SettingVariableIndexNotAllowed – Type.

SettingVariableIndexNotAllowed()

Error type that should be thrownwhen the user calls set to change the ConstraintFunction of a VariableIndex
constraint.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L143-L151
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L158-L166
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/functions.jl#L381-L395
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/attributes.jl#L607-L612


Chapter 37

Submodules

37.1 Benchmarks

Overview

The Benchmarks submodule

To aid the development of efficient solver wrappers, MathOptInterface provides benchmarking capability.
Benchmarking a wrapper follows a two-step process.

First, prior to making changes, create a baseline for the benchmark results on a given benchmark suite as
follows:

using SolverPackage # Replace with your choice of solver.
import MathOptInterface as MOI

suite = MOI.Benchmarks.suite() do
SolverPackage.Optimizer()

end

MOI.Benchmarks.create_baseline(
suite, "current"; directory = "/tmp", verbose = true

)

Use the exclude argument to Benchmarks.suite to exclude benchmarks that the solver doesn't support.

Second, after making changes to the package, re-run the benchmark suite and compare to the prior saved
results:

using SolverPackage
import MathOptInterface as MOI

suite = MOI.Benchmarks.suite() do
SolverPackage.Optimizer()

end

MOI.Benchmarks.compare_against_baseline(
suite, "current"; directory = "/tmp", verbose = true

)

This comparison will create a report detailing improvements and regressions.

1210
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API Reference

Benchmarks

Functions to help benchmark the performance of solver wrappers. See The Benchmarks submodule for more
details.

MathOptInterface.Benchmarks.suite – Function.

suite(
new_model::Function;
exclude::Vector{Regex} = Regex[]

)

Create a suite of benchmarks. new_model should be a function that takes no arguments, and returns a
new instance of the optimizer you wish to benchmark.

Use exclude to exclude a subset of benchmarks.

Example

julia> MOI.Benchmarks.suite() do
return GLPK.Optimizer()

end

julia> MOI.Benchmarks.suite(; exclude = [r"delete"]) do
return Gurobi.Optimizer()

end

source

MathOptInterface.Benchmarks.create_baseline – Function.

create_baseline(suite, name::String; directory::String = ""; kwargs...)

Run all benchmarks in suite and save to files called name in directory.

Extra kwargs are based to BenchmarkTools.run.

Example

julia> import GLPK

julia> my_suite = MOI.Benchmarks.suite(() -> GLPK.Optimizer());

julia> MOI.Benchmarks.create_baseline(
my_suite,
"glpk_master";
directory = "/tmp",
verbose = true,

)

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Benchmarks/Benchmarks.jl#L14-L36
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Benchmarks/Benchmarks.jl#L46-L67
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MathOptInterface.Benchmarks.compare_against_baseline – Function.

compare_against_baseline(
suite, name::String; directory::String = "",
report_filename::String = "report.txt"

)

Run all benchmarks in suite and compare against files called name in directory that were created by a
call to create_baseline.

A report summarizing the comparison is written to report_filename in directory.

Extra kwargs are based to BenchmarkTools.run.

Example

julia> import GLPK

julia> my_suite = MOI.Benchmarks.suite(() -> GLPK.Optimizer());

julia> MOI.Benchmarks.compare_against_baseline(
my_suite,
"glpk_master";
directory = "/tmp",
verbose = true,

)

source

37.2 Bridges

Overview

The Bridges submodule

The Bridges module simplifies the process of converting models between equivalent formulations.

Tip

Read our paper for more details on how bridges are implemented.

Why bridges?

A constraint can often be written in a number of equivalent formulations. For example, the constraint l ≤
a⊤x ≤ u (ScalarAffineFunction-in-Interval) could be re-formulated as two constraints: a⊤x ≥ l (ScalarAffineFunction-
in-GreaterThan) and a⊤x ≤ u (ScalarAffineFunction-in-LessThan). An alternative re-formulation is to
add a dummy variable y with the constraints l ≤ y ≤ u (VariableIndex-in-Interval) and a⊤x − y = 0
(ScalarAffineFunction-in-EqualTo).

To avoid each solver having to code these transformations manually, MathOptInterface provides bridges.

A bridge is a small transformation from one constraint type to another (potentially collection of) constraint
type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Benchmarks/Benchmarks.jl#L84-L112
https://arxiv.org/abs/2002.03447
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Because these bridges are included in MathOptInterface, they can be re-used by any optimizer. Some bridges
also implement constraint modifications and constraint primal and dual translations.

Several bridges can be used in combination to transform a single constraint into a form that the solver may
understand. Choosing the bridges to use takes the form of finding a shortest path in the hyper-graph of bridges.
The methodology is detailed in the MOI paper.

The three types of bridges

There are three types of bridges in MathOptInterface:

1. Constraint bridges

2. Variable bridges

3. Objective bridges

Constraint bridges

Constraint bridges convert constraints formulated by the user into an equivalent form supported by the solver.
Constraint bridges are subtypes of Bridges.Constraint.AbstractBridge.

The equivalent formulation may add constraints (and possibly also variables) in the underlying model.

In particular, constraint bridges can focus on rewriting the function of a constraint, and do not change the set.
Function bridges are subtypes of Bridges.Constraint.AbstractFunctionConversionBridge.

Read the list of implemented constraint bridges for more details on the types of transformations that are avail-
able. Function bridges are Bridges.Constraint.ScalarFunctionizeBridge and Bridges.Constraint.VectorFunctionizeBridge.

Variable bridges

Variable bridges convert variables added by the user, either free with add_variable/add_variables, or con-
strained with add_constrained_variable/add_constrained_variables, into an equivalent form supported
by the solver. Variable bridges are subtypes of Bridges.Variable.AbstractBridge.

The equivalent formulation may add constraints (and possibly also variables) in the underlying model.

Read the list of implemented variable bridges formore details on the types of transformations that are available.

Objective bridges

Objective bridges convert the ObjectiveFunction set by the user into an equivalent form supported by the
solver. Objective bridges are subtypes of Bridges.Objective.AbstractBridge.

The equivalent formulation may add constraints (and possibly also variables) in the underlying model.

Read the list of implemented objective bridges for more details on the types of transformations that are avail-
able.

Bridges.full_bridge_optimizer

Tip

Unless you have an advanced use-case, this is probably the only function you need to care about.

To enable the full power of MathOptInterface's bridges, wrap an optimizer in a Bridges.full_bridge_optimizer.

https://arxiv.org/abs/2002.03447
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julia> inner_optimizer = MOI.Utilities.Model{Float64}()
MOIU.Model{Float64}
├ ObjectiveSense: FEASIBILITY_SENSE
├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
├ NumberOfVariables: 0
└ NumberOfConstraints: 0

julia> optimizer = MOI.Bridges.full_bridge_optimizer(inner_optimizer, Float64)
MOIB.LazyBridgeOptimizer{MOIU.Model{Float64}}
├ Variable bridges: none
├ Constraint bridges: none
├ Objective bridges: none
└ model: MOIU.Model{Float64}
├ ObjectiveSense: FEASIBILITY_SENSE
├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
├ NumberOfVariables: 0
└ NumberOfConstraints: 0

Now, use optimizer as normal, and bridging will happen lazily behind the scenes. By lazily, we mean that
bridging will happen if and only if the constraint is not supported by the inner_optimizer.

Info

Most bridges are added by default in Bridges.full_bridge_optimizer. However, for
technical reasons, some bridges are not added by default. Three examples include
Bridges.Constraint.SOCtoPSDBridge, Bridges.Constraint.SOCtoNonConvexQuadBridge and
Bridges.Constraint.RSOCtoNonConvexQuadBridge. See the docs of those bridges for more infor-
mation.

Add a single bridge

If you don't want to use Bridges.full_bridge_optimizer, you can wrap an optimizer in a single bridge.

However, this will force the constraint to be bridged, even if the inner_optimizer supports it.

julia> inner_optimizer = MOI.Utilities.Model{Float64}();

julia> optimizer = MOI.Bridges.Constraint.SplitInterval{Float64}(inner_optimizer);

julia> x = MOI.add_variable(optimizer)
MOI.VariableIndex(1)

julia> MOI.add_constraint(optimizer, x, MOI.Interval(0.0, 1.0))
MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,

MathOptInterface.Interval{Float64}}(1)↪→

julia> MOI.get(optimizer, MOI.ListOfConstraintTypesPresent())
1-element Vector{Tuple{Type, Type}}:
(MathOptInterface.VariableIndex, MathOptInterface.Interval{Float64})

julia> MOI.get(inner_optimizer, MOI.ListOfConstraintTypesPresent())
2-element Vector{Tuple{Type, Type}}:
(MathOptInterface.VariableIndex, MathOptInterface.GreaterThan{Float64})
(MathOptInterface.VariableIndex, MathOptInterface.LessThan{Float64})
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Bridges.LazyBridgeOptimizer

If you don't want to use Bridges.full_bridge_optimizer, but you need more than a single bridge (or you
want the bridging to happen lazily), you can manually construct a Bridges.LazyBridgeOptimizer.

First, wrap an inner optimizer:

julia> inner_optimizer = MOI.Utilities.Model{Float64}()
MOIU.Model{Float64}
├ ObjectiveSense: FEASIBILITY_SENSE
├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
├ NumberOfVariables: 0
└ NumberOfConstraints: 0

julia> optimizer = MOI.Bridges.LazyBridgeOptimizer(inner_optimizer)
MOIB.LazyBridgeOptimizer{MOIU.Model{Float64}}
├ Variable bridges: none
├ Constraint bridges: none
├ Objective bridges: none
└ model: MOIU.Model{Float64}
├ ObjectiveSense: FEASIBILITY_SENSE
├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
├ NumberOfVariables: 0
└ NumberOfConstraints: 0

Then use Bridges.add_bridge to add individual bridges:

julia> MOI.Bridges.add_bridge(optimizer, MOI.Bridges.Constraint.SplitIntervalBridge{Float64})

julia> MOI.Bridges.add_bridge(optimizer, MOI.Bridges.Objective.FunctionizeBridge{Float64})

Now the constraints will be bridged only if needed:

julia> x = MOI.add_variable(optimizer)
MOI.VariableIndex(1)

julia> MOI.add_constraint(optimizer, x, MOI.Interval(0.0, 1.0))
MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,

MathOptInterface.Interval{Float64}}(1)↪→

julia> MOI.get(optimizer, MOI.ListOfConstraintTypesPresent())
1-element Vector{Tuple{Type, Type}}:
(MathOptInterface.VariableIndex, MathOptInterface.Interval{Float64})

julia> MOI.get(inner_optimizer, MOI.ListOfConstraintTypesPresent())
1-element Vector{Tuple{Type, Type}}:
(MathOptInterface.VariableIndex, MathOptInterface.Interval{Float64})

Implementation

Implementing a bridge

The easiest way to implement a bridge is to follow an existing example. There are three locations of bridges
in the source code:
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• Constraint bridges are stored in src/Bridges/Constraint/bridges

• Objective bridges are stored in src/Bridges/Objective/bridges

• Variable bridges are stored in src/Bridges/Variable/bridges

The Implementing a constraint bridge tutorial has a more detailed guide on what is required to implement a
bridge.

When opening a pull request that adds a new bridge, use the checklist Adding a new bridge.

If you need help or advice, please contact the Developer Chatroom.

SetMap bridges

For constraint and variable bridges, a common reformulation is that f(x) ∈ F is reformulated to g(x) ∈ G. In
this case, no additional variables and constraints are added, and the bridge needs only a way to map between
the functions f and g and the sets F and G.

To implementation a bridge of this form, subtype the abstract type Bridges.Constraint.SetMapBridge or
Bridges.Variable.SetMapBridge and implement the API described in the docstring of each type.

final_touch

Some bridges require information from other parts of the model. One set of examples are the various com-
binatorial ToMILP bridges, such as Bridges.Constraint.SOS1ToMILPBridge, which require knowledge of the
variable bounds.

Bridges requiring information from other parts of the model should implement Bridges.final_touch and
Bridges.needs_final_touch.

During the bridge's construction, store the function and set and make no changes to the underlying model.
Then, in Bridges.final_touch, query the additional information and add the reformulated problem to the
model.

When implementing, you must consider that:

• Bridges.final_touch may be called multiple times, so that your reformulation should be applied only
if necessary. Sometimes the additional data will be the same, and sometimes it may be different.

• We do not currently support final_touch bridges that introduce constraints which also require a final_touch
bridge. Therefore, you should implement final_touch only if necessary, and we recommend that you
contact the Developer Chatroom for advice before doing so.

Testing

Use the Bridges.runtests function to test a bridge. It takes three arguments: the type of the bridge, the
input model as a string, and the output model as a string.

Here is an example:

julia> MOI.Bridges.runtests(
MOI.Bridges.Constraint.GreaterToLessBridge,
"""
variables: x
x >= 1.0
""",

https://jump.dev/chatroom/
https://jump.dev/chatroom/
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"""
variables: x
-1.0 * x <= -1.0
""",

)
Test Summary: | Pass Total Time
Bridges.runtests | 29 29 0.0s

There are a number of other useful keyword arguments.

• eltype can be used to specify the element type of the model (and bridge). It defaults to Float64.

• variable_start and constraint_start are used as the values to set the VariablePrimalStart and
ConstraintPrimalStart attributes to. They default to 1.2. If you use a different eltype, you must
set appropriate starting values of the same type. The default 1.2 was chosen to minimize the risk that
the starting point is undefined, which could happen for common situations like 0.0 and 1.0. The tests
associated with the starting values do not necessarily check for correctness, only that they can be set
and get to produce the same result.

• print_inner_model can be used to print the reformulated output model from the bridge. This is es-
pecially helpful during debugging to see what the bridge is doing, and to spot mistakes. It defaults to
false.

Here is an example:

julia> MOI.Bridges.runtests(
MOI.Bridges.Constraint.GreaterToLessBridge,
"""
variables: x
x >= 1
""",
"""
variables: x
::Int: -1 * x <= -1
""";
eltype = Int,
print_inner_model = true,
variable_start = 2,
constraint_start = 2,

)
Feasibility

Subject to:

ScalarAffineFunction{Int64}-in-LessThan{Int64}
(0) - (1) x <= (-1)
Test Summary: | Pass Total Time
Bridges.runtests | 29 29 0.0s

List of bridges

List of bridges

This section describes the Bridges.AbstractBridges that are implemented in MathOptInterface.
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Constraint bridges

These bridges are subtypes of Bridges.Constraint.AbstractBridge.

MathOptInterface.Bridges.Constraint.AbstractFunctionConversionBridge – Type.

abstract type AbstractFunctionConversionBridge{F,S} <: AbstractBridge end

Abstract type to support writing bridges in which the function changes but the set does not.

By convention, the transformed function is stored in the .constraint field.

source

MathOptInterface.Bridges.Constraint.AbstractToIntervalBridge – Type.

AbstractToIntervalBridge{T<:AbstractFloat,S,F}

An abstract type that simplifies the creation of other bridges.

Warning

T must be a AbstractFloat type because otherwise typemin and typemax would either be not
implemented (for example, BigInt), or would not give infinite value (for example, Int). For this
reason, this bridge is only added to MOI.Bridges.full_bridge_optimizer when T is a subtype of
AbstractFloat.

source

MathOptInterface.Bridges.Constraint.AllDifferentToCountDistinctBridge – Type.

AllDifferentToCountDistinctBridge{T,F} <: Bridges.Constraint.AbstractBridge

AllDifferentToCountDistinctBridge implements the following reformulations:

• x ∈ AllDifferent(d) to (n, x) ∈ CountDistinct(1 + d) and n = d

• f(x) ∈ AllDifferent(d) to (d, f(x)) ∈ CountDistinct(1 + d)

Source node

AllDifferentToCountDistinctBridge supports:

• F in MOI.AllDifferent

where F is MOI.VectorOfVariables or MOI.VectorAffineFunction{T}.

Target nodes

AllDifferentToCountDistinctBridge creates:

• F in MOI.CountDistinct

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/AbstractFunctionConversionBridge.jl#L7-L14
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/AbstractToIntervalBridge.jl#L7-L18
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• MOI.VariableIndex in MOI.EqualTo{T}

source

MathOptInterface.Bridges.Constraint.BinPackingToMILPBridge – Type.

BinPackingToMILPBridge{T,F} <: Bridges.Constraint.AbstractBridge

BinPackingToMILPBridge implements the following reformulation:

• x ∈ BinPacking(c, w) into a mixed-integer linear program.

Reformulation

The reformulation is non-trivial, and it depends on the finite domain of each variable xi, which we as define
Si = {li, . . . , ui}.

First, we introduce new binary variables zij , which are 1 if variable xi takes the value j in the optimal
solution and 0 otherwise:

zij ∈ {0, 1} ∀i ∈ 1 . . . d, j ∈ Si

xi −
∑
j∈Si

j · zij = 0 ∀i ∈ 1 . . . d

∑
j∈Si

zij = 1 ∀i ∈ 1 . . . d

Then, we add the capacity constraint for all possible bins j:

∑
i

wizij ≤ c∀j ∈
∪

i=1,...,d

Si

Source node

BinPackingToMILPBridge supports:

• F in MOI.BinPacking{T}

Target nodes

BinPackingToMILPBridge creates:

• MOI.VariableIndex in MOI.ZeroOne

• MOI.ScalarAffineFunction{T} in MOI.EqualTo{T}

• MOI.ScalarAffineFunction{T} in MOI.LessThan{T}

source

MathOptInterface.Bridges.Constraint.CircuitToMILPBridge – Type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/AllDifferentToCountDistinctBridge.jl#L7-L31
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/BinPackingToMILPBridge.jl#L7-L47
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CircuitToMILPBridge{T,F} <: Bridges.Constraint.AbstractBridge

CircuitToMILPBridge implements the following reformulation:

• x ∈ Circuit(d) to the Miller-Tucker-Zemlin formulation of the Traveling Salesperson Problem.

Source node

CircuitToMILPBridge supports:

• F in MOI.Circuit

where F is MOI.VectorOfVariables or MOI.VectorAffineFunction{T}.

Target nodes

CircuitToMILPBridge creates:

• MOI.VariableIndex in MOI.ZeroOne

• MOI.VariableIndex in MOI.Integer

• MOI.VariableIndex in MOI.Interval{T}

• MOI.ScalarAffineFunction{T} in MOI.EqualTo{T}

• MOI.ScalarAffineFunction{T} in MOI.LessThan{T}

source

MathOptInterface.Bridges.Constraint.ComplexNormInfinityToSecondOrderConeBridge – Type.

ComplexNormInfinityToSecondOrderConeBridge{T} <: Bridges.Constraint.AbstractBridge

ComplexNormInfinityToSecondOrderConeBridge implements the following reformulation:

• (t, x) ∈ NormInfinity(1 + d) into (t, real(xi), imag(xi)) ∈ SecondOrderCone() for all i.

Source node

ComplexNormInfinityToSecondOrderConeBridge supports:

• MOI.VectorAffineFunction{Complex{T}} in MOI.NormInfinityCone

Target nodes

ComplexNormInfinityToSecondOrderConeBridge creates:

• MOI.VectorAffineFunction{T} in MOI.SecondOrderCone

source

MathOptInterface.Bridges.Constraint.CountAtLeastToCountBelongsBridge – Type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/CircuitToMILPBridge.jl#L7-L33
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/ComplexNormInfinityToSecondOrderConeBridge.jl#L7-L27
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CountAtLeastToCountBelongsBridge{T,F} <: Bridges.Constraint.AbstractBridge

CountAtLeastToCountBelongsBridge implements the following reformulation:

• x ∈ CountAtLeast(n, d,S) to (ni, xdi) ∈ CountBelongs(1 + d,S) and ni ≥ n for all i.

Source node

CountAtLeastToCountBelongsBridge supports:

• F in MOI.CountAtLeast

where F is MOI.VectorOfVariables or MOI.VectorAffineFunction{T}.

Target nodes

CountAtLeastToCountBelongsBridge creates:

• F in MOI.CountBelongs
• MOI.VariableIndex in MOI.GreaterThan{T}

source

MathOptInterface.Bridges.Constraint.CountBelongsToMILPBridge – Type.

CountBelongsToMILPBridge{T,F} <: Bridges.Constraint.AbstractBridge

CountBelongsToMILPBridge implements the following reformulation:

• (n, x) ∈ CountBelongs(1 + d,S) into a mixed-integer linear program.

Reformulation

The reformulation is non-trivial, and it depends on the finite domain of each variable xi, which we as define
Si = {li, . . . , ui}.

First, we introduce new binary variables zij , which are 1 if variable xi takes the value j in the optimal
solution and 0 otherwise:

zij ∈ {0, 1} ∀i ∈ 1 . . . d, j ∈ Si

xi −
∑
j∈Si

j · zij = 0 ∀i ∈ 1 . . . d

∑
j∈Si

zij = 1 ∀i ∈ 1 . . . d

Finally, n is constrained to be the number of zij elements that are in S:

n−
∑

i∈1...d,j∈S

zij = 0

Source node

CountBelongsToMILPBridge supports:

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/CountAtLeastToCountBelongsBridge.jl#L7-L31
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• F in MOI.CountBelongs

where F is MOI.VectorOfVariables or MOI.VectorAffineFunction{T}.

Target nodes

CountBelongsToMILPBridge creates:

• MOI.VariableIndex in MOI.ZeroOne

• MOI.ScalarAffineFunction{T} in MOI.EqualTo{T}

source

MathOptInterface.Bridges.Constraint.CountDistinctToMILPBridge – Type.

CountDistinctToMILPBridge{T,F} <: Bridges.Constraint.AbstractBridge

CountDistinctToMILPBridge implements the following reformulation:

• (n, x) ∈ CountDistinct(1 + d) into a mixed-integer linear program.

Reformulation

The reformulation is non-trivial, and it depends on the finite domain of each variable xi, which we as define
Si = {li, . . . , ui}.

First, we introduce new binary variables zij , which are 1 if variable xi takes the value j in the optimal
solution and 0 otherwise:

zij ∈ {0, 1} ∀i ∈ 1 . . . d, j ∈ Si

xi −
∑
j∈Si

j · zij = 0 ∀i ∈ 1 . . . d

∑
j∈Si

zij = 1 ∀i ∈ 1 . . . d

Then, we introduce new binary variables yj , which are 1 if a variable takes the value j in the optimal
solution and 0 otherwise.

yj ∈ {0, 1} ∀j ∈
∪

i=1,...,d

Si

yj ≤
∑

i∈1...d:j∈Si

zij ≤Myj ∀j ∈
∪

i=1,...,d

Si

Finally, n is constrained to be the number of yj elements that are non-zero:

n−
∑

j∈
∪

i=1,...,d Si

yj = 0

Formulation (special case)

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/CountBelongsToMILPBridge.jl#L7-L51
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In the special case that the constraint is [2, x, y] in CountDistinct(3), then the constraint is equiv-
alent to [x, y] in AllDifferent(2), which is equivalent to x != y.

(x− y ≤ −1) ∨ (y − x ≤ −1)

which is equivalent to (for suitable M):

z ∈ {0, 1}
x− y −Mz ≤ −1

y − x−M(1− z) ≤ −1

Source node

CountDistinctToMILPBridge supports:

• F in MOI.CountDistinct

where F is MOI.VectorOfVariables or MOI.VectorAffineFunction{T}.

Target nodes

CountDistinctToMILPBridge creates:

• MOI.VariableIndex in MOI.ZeroOne

• MOI.ScalarAffineFunction{T} in MOI.EqualTo{T}

• MOI.ScalarAffineFunction{T} in MOI.LessThan{T}

source

MathOptInterface.Bridges.Constraint.CountGreaterThanToMILPBridge – Type.

CountGreaterThanToMILPBridge{T,F} <: Bridges.Constraint.AbstractBridge

CountGreaterThanToMILPBridge implements the following reformulation:

• (c, y, x) ∈ CountGreaterThan() into a mixed-integer linear program.

Source node

CountGreaterThanToMILPBridge supports:

• F in MOI.CountGreaterThan

Target nodes

CountGreaterThanToMILPBridge creates:

• MOI.VariableIndex in MOI.ZeroOne

• MOI.ScalarAffineFunction{T} in MOI.EqualTo{T}

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/CountDistinctToMILPBridge.jl#L7-L78
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• MOI.ScalarAffineFunction{T} in MOI.GreaterThan{T}

source

MathOptInterface.Bridges.Constraint.ExponentialConeToScalarNonlinearFunctionBridge – Type.

ExponentialConeToScalarNonlinearFunctionBridge{T,F} <:
Bridges.Constraint.AbstractBridge

ExponentialConeToScalarNonlinearFunctionBridge implements the following reformulation:

• (x, y, z) ∈ ExponentialCone() to y · exp(x/y))− z ≤ 0, y ≥ 0.

Source node

ExponentialConeToScalarNonlinearFunctionBridge supports:

• F in MOI.ExponentialCone

Target nodes

ExponentialConeToScalarNonlinearFunctionBridge creates:

• MOI.ScalarNonlinearFunction in MOI.LessThan{T}

• MOI.ScalarAffineFunction in MOI.GreaterThan{T}

source

MathOptInterface.Bridges.Constraint.FlipSignBridge – Type.

FlipSignBridge{T,S1,S2,F,G}

An abstract type that simplifies the creation of other bridges.

source

MathOptInterface.Bridges.Constraint.FunctionConversionBridge – Type.

FunctionConversionBridge{T,F,G,S} <: AbstractFunctionConversionBridge{G,S}

FunctionConversionBridge implements the following reformulations:

• g(x) ∈ S into f(x) ∈ S

for these pairs of functions:

• MOI.ScalarAffineFunctionto [MOI.ScalarQuadraticFunction‘](@ref)

• MOI.ScalarQuadraticFunction to MOI.ScalarNonlinearFunction

• MOI.VectorAffineFunction to MOI.VectorQuadraticFunction

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/CountGreaterThanToMILPBridge.jl#L7-L27
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/ExponentialConeToScalarNonlinearFunctionBridge.jl#L7-L29
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/FlipSignBridge.jl#L7-L11
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See also SetConversionBridge.

Source node

FunctionConversionBridge supports:

• G in S

Target nodes

FunctionConversionBridge creates:

• F in S

source

MathOptInterface.Bridges.Constraint.GeoMeanBridge – Type.

GeoMeanBridge{T,F,G,H} <: Bridges.Constraint.AbstractBridge

GeoMeanBridge implements a reformulation from MOI.GeometricMeanCone into MOI.RotatedSecondOrderCone.

The reformulation is best described in an example.

Consider the cone of dimension 4:

t ≤ 3
√
x1x2x3

This can be rewritten as ∃y ≥ 0 such that:

t ≤ y,

y4 ≤ x1x2x3y.

Note that we need to create y and not use t4 directly because t is not allowed to be negative.

This is equivalent to:

t ≤ y1√
4
,

y21 ≤ 2y2y3,

y22 ≤ 2x1x2,

y23 ≤ 2x3(y1/
√
4)

y ≥ 0.

More generally, you can show how the geometric mean code is recursively expanded into a set of new
variables y in MOI.Nonnegatives, a set of MOI.RotatedSecondOrderCone constraints, and a MOI.LessThan
constraint between t and y1.

Source node

GeoMeanBridge supports:

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/AbstractFunctionConversionBridge.jl#L177-L203
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• H in MOI.GeometricMeanCone

Target nodes

GeoMeanBridge creates:

• F in MOI.LessThan{T}

• G in MOI.RotatedSecondOrderCone

• G in MOI.Nonnegatives

source

MathOptInterface.Bridges.Constraint.GeoMeanToPowerBridge – Type.

GeoMeanToPowerBridge{T,F} <: Bridges.Constraint.AbstractBridge

GeoMeanToPowerBridge implements the following reformulation:

• (y, x...) ∈ GeometricMeanCone(1+d) into (x1, t, y) ∈ PowerCone(1/d) and (t, x2, ..., xd)inGeometricMeanCone(d),
which is then recursively expanded into more PowerCone constraints.

Source node

GeoMeanToPowerBridge supports:

• F in MOI.GeometricMeanCone

Target nodes

GeoMeanToPowerBridge creates:

• F in MOI.PowerCone{T}

• MOI.VectorOfVariables in MOI.Nonnegatives

source

MathOptInterface.Bridges.Constraint.GeoMeantoRelEntrBridge – Type.

GeoMeantoRelEntrBridge{T,F,G,H} <: Bridges.Constraint.AbstractBridge

GeoMeantoRelEntrBridge implements the following reformulation:

• (u,w) ∈ GeometricMeanCone into (0, w, (u+ y)1) ∈ RelativeEntropyCone and y ≥ 0

Source node

GeoMeantoRelEntrBridge supports:

• H in MOI.GeometricMeanCone

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/GeoMeanBridge.jl#L7-L58
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/GeoMeanToPowerBridge.jl#L7-L28
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Target nodes

GeoMeantoRelEntrBridge creates:

• G in MOI.RelativeEntropyCone

• F in MOI.Nonnegatives

Derivation

The derivation of the bridge is as follows:

(u,w) ∈ GeometricMeanCone ⇐⇒ u ≤

(
n∏

i=1

wi

)1/n

⇐⇒ 0 ≤ u+ y ≤

(
n∏

i=1

wi

)1/n

, y ≥ 0

⇐⇒ 1 ≤
(
∏n

i=1 wi)
1/n

u+ y
, y ≥ 0

⇐⇒ 1 ≤

(
n∏

i=1

wi

u+ y

)1/n

, y ≥ 0

⇐⇒ 0 ≤
n∑

i=1

log
(

wi

u+ y

)
, y ≥ 0

⇐⇒ 0 ≥
n∑

i=1

log
(
u+ y

wi

)
, y ≥ 0

⇐⇒ 0 ≥
n∑

i=1

(u+ y) log
(
u+ y

wi

)
, y ≥ 0

⇐⇒ (0, w, (u+ y)1) ∈ RelativeEntropyCone, y ≥ 0

This derivation assumes that u+ y > 0, which is enforced by the relative entropy cone.

source

MathOptInterface.Bridges.Constraint.GreaterToIntervalBridge – Type.

GreaterToIntervalBridge{T,F} <: Bridges.Constraint.AbstractBridge

GreaterToIntervalBridge implements the following reformulations:

• f(x) ≥ l into f(x) ∈ [l,∞)

Source node

GreaterToIntervalBridge supports:

• F in MOI.GreaterThan{T}

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/GeoMeantoRelEntrBridge.jl#L7-L47
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Target nodes

GreaterToIntervalBridge creates:

• F in MOI.Interval{T}

source

MathOptInterface.Bridges.Constraint.GreaterToLessBridge – Type.

GreaterToLessBridge{T,F,G} <: Bridges.Constraint.AbstractBridge

GreaterToLessBridge implements the following reformulation:

• f(x) ≥ l into −f(x) ≤ −l

Source node

GreaterToLessBridge supports:

• G in MOI.GreaterThan{T}

Target nodes

GreaterToLessBridge creates:

• F in MOI.LessThan{T}

source

MathOptInterface.Bridges.Constraint.HermitianToComplexSymmetricBridge – Type.

HermitianToComplexSymmetricBridge{T,F,G} <: Bridges.Constraint.AbstractBridge

HermitianToSymmetricBridge implements the following reformulation:

• Hermitian positive semidefinite n x n represented as a vector of real entries with real and imaginary
parts on different entries to a vector of complex entries.

See also MOI.Bridges.Constraint.HermitianToSymmetricPSDBridge.

Source node

HermitianToComplexSymmetricBridge supports:

• G in MOI.HermitianPositiveSemidefiniteConeTriangle

Target node

HermitianToComplexSymmetricBridge creates:

• F in MOI.PositiveSemidefiniteConeTriangle

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/AbstractToIntervalBridge.jl#L47-L65
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/FlipSignBridge.jl#L86-L104
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Note that if G is MOI.VectorAffineFunction{T} then F will be MOI.VectorAffineFunction{Complex{T}}

source

MathOptInterface.Bridges.Constraint.HermitianToSymmetricPSDBridge – Type.

HermitianToSymmetricPSDBridge{T,F,G} <: Bridges.Constraint.AbstractBridge

HermitianToSymmetricPSDBridge implements the following reformulation:

• Hermitian positive semidefinite n x n complex matrix to a symmetric positive semidefinite 2n x 2n
real matrix.

See also MOI.Bridges.Variable.HermitianToSymmetricPSDBridge.

Source node

HermitianToSymmetricPSDBridge supports:

• G in MOI.HermitianPositiveSemidefiniteConeTriangle

Target node

HermitianToSymmetricPSDBridge creates:

• F in MOI.PositiveSemidefiniteConeTriangle

Reformulation

The reformulation is best described by example.

The Hermitian matrix:

 x11 x12 + y12im x13 + y13im
x12 − y12im x22 x23 + y23im
x13 − y13im x23 − y23im x33


is positive semidefinite if and only if the symmetric matrix:


x11 x12 x13 0 y12 y13

x22 x23 −y12 0 y23
x33 −y13 −y23 0

x11 x12 x13
x22 x23

x33


is positive semidefinite.

The bridge achieves this reformulation by constraining the abovematrix to belong to the MOI.PositiveSemidefiniteConeTriangle(6).

source

MathOptInterface.Bridges.Constraint.IndicatorActiveOnFalseBridge – Type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/HermitianToComplexSymmetricBridge.jl#L7-L32
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/HermitianToSymmetricPSDBridge.jl#L7-L56
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IndicatorActiveOnFalseBridge{T,F,S} <: Bridges.Constraint.AbstractBridge

IndicatorActiveOnFalseBridge implements the following reformulation:

• ¬z =⇒ f(x) ∈ S into y =⇒ f(x) ∈ S, z + y = 1, and y ∈ {0, 1}

Source node

IndicatorActiveOnFalseBridge supports:

• MOI.VectorAffineFunction{T} in MOI.Indicator{MOI.ACTIVATE_ON_ZERO,S}

Target nodes

IndicatorActiveOnFalseBridge creates:

• MOI.VectorAffineFunction{T} in MOI.Indicator{MOI.ACTIVATE_ON_ONE,S}

• MOI.ScalarAffineFunction{T} in MOI.EqualTo

• MOI.VariableIndex in MOI.ZeroOne

source

MathOptInterface.Bridges.Constraint.IndicatorGreaterToLessThanBridge – Type.

IndicatorGreaterToLessThanBridge{T,A} <: Bridges.Constraint.AbstractBridge

IndicatorGreaterToLessThanBridge implements the following reformulation:

• z =⇒ f(x) ≥ l into z =⇒ −f(x) ≤ −l

Source node

IndicatorGreaterToLessThanBridge supports:

• MOI.VectorAffineFunction{T} in MOI.Indicator{A,MOI.GreaterThan{T}}

Target nodes

IndicatorGreaterToLessThanBridge creates:

• MOI.VectorAffineFunction{T} in MOI.Indicator{A,MOI.LessThan{T}}

source

MathOptInterface.Bridges.Constraint.IndicatorLessToGreaterThanBridge – Type.

IndicatorLessToGreaterThanBridge{T,A} <: Bridges.Constraint.AbstractBridge

IndicatorLessToGreaterThanBridge implements the following reformulations:

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/IndicatorActiveOnFalseBridge.jl#L7-L31
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/IndicatorSetMapBridge.jl#L115-L135
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• z =⇒ f(x) ≤ u into z =⇒ −f(x) ≥ −u

Source node

IndicatorLessToGreaterThanBridge supports:

• MOI.VectorAffineFunction{T} in MOI.Indicator{A,MOI.LessThan{T}}

Target nodes

IndicatorLessToGreaterThanBridge creates:

• MOI.VectorAffineFunction{T} in MOI.Indicator{A,MOI.GreaterThan{T}}

source

MathOptInterface.Bridges.Constraint.IndicatorSOS1Bridge – Type.

IndicatorSOS1Bridge{T,S} <: Bridges.Constraint.AbstractBridge

IndicatorSOS1Bridge implements the following reformulation:

• z =⇒ f(x) ∈ S into f(x) + y ∈ S, SOS1(y, z)

Warning

This bridge assumes that the solver supports MOI.SOS1{T} constraints in which one of the variables
(y) is continuous.

Source node

IndicatorSOS1Bridge supports:

• MOI.VectorAffineFunction{T} in MOI.Indicator{MOI.ACTIVATE_ON_ONE,S}

Target nodes

IndicatorSOS1Bridge creates:

• MOI.ScalarAffineFunction{T} in S

• MOI.VectorOfVariables in MOI.SOS1{T}

source

MathOptInterface.Bridges.Constraint.IndicatorSetMapBridge – Type.

IndicatorSetMapBridge{T,A,S1,S2} <: Bridges.Constraint.AbstractBridge

IndicatorSetMapBridge implements the following reformulations:

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/IndicatorSetMapBridge.jl#L151-L171
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/IndicatorSOS1Bridge.jl#L7-L32
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• z =⇒ f(x) ≥ l into z =⇒ −f(x) ≤ −l
• z =⇒ f(x) ≤ u into z =⇒ −f(x) ≥ −u

Source node

IndicatorSetMapBridge supports:

• MOI.VectorAffineFunction{T} in MOI.Indicator{A,S1}

Target nodes

IndicatorSetMapBridge creates:

• MOI.VectorAffineFunction{T} in MOI.Indicator{A,S2}

source

MathOptInterface.Bridges.Constraint.IndicatorToMILPBridge – Type.

IndicatorToMILPBridge{T,F,A,S} <: Bridges.Constraint.AbstractBridge

IndicatorToMILPBridge implements the following reformulation:

• x ∈ Indicator(s) into a mixed-integer linear program.

Source node

IndicatorToMILPBridge supports:

• F in MOI.Indicator{A,S}

where F is MOI.VectorOfVariables or MOI.VectorAffineFunction{T}.

Target nodes

IndicatorToMILPBridge creates:

• MOI.VariableIndex in MOI.ZeroOne

• MOI.ScalarAffineFunction{T} in S

source

MathOptInterface.Bridges.Constraint.InequalityToComplementsBridge – Type.

InequalityToComplementsBridge{T,F,S,G} <: Bridges.Constraint.AbstractBridge

InequalityToComplementsBridge implements the following reformulations:

• f(x) ≥ b into ∃y such that f(x)− b ⊥ y ≥ 0

• f(x) ≤ b into f(x)− b ⊥ y ≤ 0

• f(x) = b into f(x)− b ⊥ y

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/IndicatorSetMapBridge.jl#L7-L26
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/IndicatorToMILPBridge.jl#L7-L29
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Source node

InequalityToComplementsBridge supports:

• F in MOI.GreaterThan{T}

• F in MOI.LessThan{T}

• F in MOI.EqualTo

Target nodes

InequalityToComplementsBridge creates:

• MOI.VariableIndex in MOI.LessThan{T}

• MOI.VariableIndex in MOI.GreaterThan{T}

• G in MOI.Complements

source

MathOptInterface.Bridges.Constraint.IntegerToZeroOneBridge – Type.

IntegerToZeroOneBridge{T} <: Bridges.Constraint.AbstractBridge

IntegerToZeroOneBridge implements the following reformulation:

• x ∈ Z into yi ∈ {0, 1}, x == lb+
∑

2i−1yi.

Source node

IntegerToZeroOneBridge supports:

• VariableIndex in MOI.Integer

Target nodes

IntegerToZeroOneBridge creates:

• MOI.VariableIndex in MOI.ZeroOne

• MOI.ScalarAffineFunction{T} in MOI.EqualTo{T}

Developer note

This bridge is implemented as a constraint bridge instead of a variable bridge because we don't want to
substitute the linear combination of y for every instance of x. Doing so would be expensive and greatly
reduce the sparsity of the constraints.

source

MathOptInterface.Bridges.Constraint.LessToGreaterBridge – Type.

LessToGreaterBridge{T,F,G} <: Bridges.Constraint.AbstractBridge

LessToGreaterBridge implements the following reformulation:

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/InequalityToComplementsBridge.jl#L7-L31
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/IntegerToZeroOneBridge.jl#L7-L34
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• f(x) ≤ u into −f(x) ≥ −u

Source node

LessToGreaterBridge supports:

• G in MOI.LessThan{T}

Target nodes

LessToGreaterBridge creates:

• F in MOI.GreaterThan{T}

source

MathOptInterface.Bridges.Constraint.LessToIntervalBridge – Type.

LessToIntervalBridge{T,F} <: Bridges.Constraint.AbstractBridge

LessToIntervalBridge implements the following reformulations:

• f(x) ≤ u into f(x) ∈ (−∞, u]

Source node

LessToIntervalBridge supports:

• F in MOI.LessThan{T}

Target nodes

LessToIntervalBridge creates:

• F in MOI.Interval{T}

source

MathOptInterface.Bridges.Constraint.LogDetBridge – Type.

LogDetBridge{T,F,G,H,I} <: Bridges.Constraint.AbstractBridge

The MOI.LogDetConeTriangle is representable by MOI.PositiveSemidefiniteConeTriangle and MOI.ExponentialCone
constraints.

Indeed, log det(X) =
n∑

i=1

log(δi) where δi are the eigenvalues of X .

Adapting the method from [1, p. 149], we see that t ≤ u log(det(X/u)) for u > 0 if and only if there
exists a lower triangular matrix such that

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/FlipSignBridge.jl#L139-L157
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/AbstractToIntervalBridge.jl#L96-L114
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(
X
⊤ Diag()

)
� 0

t−
n∑

i=1

u log
(

ii

u

)
≤ 0

Which we reformulate further into

(
X
⊤ Diag()

)
� 0

(li, u, ii) ∈ ExponentialCone ∀i

t−
n∑

i=1

li ≤ 0

Source node

LogDetBridge supports:

• I in MOI.LogDetConeTriangle

Target nodes

LogDetBridge creates:

• F in MOI.PositiveSemidefiniteConeTriangle

• G in MOI.ExponentialCone

• H in MOI.LessThan{T}

[1] Ben-Tal, Aharon, and Arkadi Nemirovski. Lectures on modern convex optimization: analysis, algorithms,
and engineering applications. Society for Industrial and Applied Mathematics, 2001.

source

MathOptInterface.Bridges.Constraint.MultiSetMapBridge – Type.

abstract type MultiSetMapBridge{T,S1,G} <: AbstractBridge end

Same as SetMapBridge but the output constraint type does not only depend on the input constraint type.

When subtyping MultiSetMapBridge, added_constraint_types and supports should additionally be im-
plemented by the bridge.

For example, if a bridge BridgeType may create either a constraint of type F2-in-S2 or F3-in-S3, these
methods should be implemented as follows:

function MOI.Bridges.added_constraint_types(
::Type{<:BridgeType{T,F2,F3}},

) where {T,F2,F3}
return Tuple{Type,Type}[(F2, S2), (F3, S3)]

end

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/LogDetBridge.jl#L51-L102
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function MOI.supports(
model::MOI.ModelLike,
attr::Union{MOI.ConstraintPrimalStart,MOI.ConstraintDualStart},
::Type{<:BridgeType{T,F2,F3}},

) where {T,F2,F3}
return MOI.supports(model, attr, MOI.ConstraintIndex{F2,S2}) ||

MOI.supports(model, attr, MOI.ConstraintIndex{F3,S3})
end

source

MathOptInterface.Bridges.Constraint.NonnegToNonposBridge – Type.

NonnegToNonposBridge{T,F,G} <: Bridges.Constraint.AbstractBridge

NonnegToNonposBridge implements the following reformulation:

• f(x) ∈ R+ into −f(x) ∈ R−

Source node

NonnegToNonposBridge supports:

• G in MOI.Nonnegatives

Target nodes

NonnegToNonposBridge creates:

• F in MOI.Nonpositives

source

MathOptInterface.Bridges.Constraint.NonposToNonnegBridge – Type.

NonposToNonnegBridge{T,F,G} <: Bridges.Constraint.AbstractBridge

NonposToNonnegBridge implements the following reformulation:

• f(x) ∈ R− into −f(x) ∈ R+

Source node

NonposToNonnegBridge supports:

• G in MOI.Nonpositives

Target nodes

NonposToNonnegBridge creates:

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/set_map.jl#L7-L34
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/FlipSignBridge.jl#L189-L207
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• F in MOI.Nonnegatives

source

MathOptInterface.Bridges.Constraint.NormInfinityBridge – Type.

NormInfinityBridge{T,F,G} <: Bridges.Constraint.AbstractBridge

NormInfinityBridge implements the following reformulation:

• |x|∞ ≤ t into [t− xi, t+ xi] ∈ R+.

Source node

NormInfinityBridge supports:

• G in MOI.NormInfinityCone{T}

Target nodes

NormInfinityBridge creates:

• F in MOI.Nonnegatives

source

MathOptInterface.Bridges.Constraint.NormInfinityConeToNormConeBridge – Type.

NormInfinityConeToNormConeBridge{T,F} <: Bridges.Constraint.AbstractBridge

NormInfinityConeToNormConeBridge implements the following reformulations:

• (t, x)inNormInfinityCone(d) into (t, x)inNormCone(Inf, d)

Source node

NormInfinityConeToNormConeBridge supports:

• F in MOI.NormInfinityCone

Target nodes

NormInfinityConeToNormConeBridge creates:

• F in MOI.NormCone

source

MathOptInterface.Bridges.Constraint.NormNuclearBridge – Type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/FlipSignBridge.jl#L242-L260
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/NormInfinityBridge.jl#L7-L25
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/NormSpecialCaseBridge.jl#L91-L109


CHAPTER 37. SUBMODULES 1238

NormNuclearBridge{T,F,G,H} <: Bridges.Constraint.AbstractBridge

NormNuclearBridge implements the following reformulation:

• t ≥
∑

i σi(X) into
[
U X⊤

X V

]
� 0 and 2t ≥ tr(U) + tr(V ).

Source node

NormNuclearBridge supports:

• H in MOI.NormNuclearCone

Target nodes

NormNuclearBridge creates:

• F in MOI.GreaterThan{T}

• G in MOI.PositiveSemidefiniteConeTriangle

source

MathOptInterface.Bridges.Constraint.NormOneBridge – Type.

NormOneBridge{T,F,G} <: Bridges.Constraint.AbstractBridge

NormOneBridge implements the following reformulation:

•
∑

|xi| ≤ t into [t−
∑
yi, yi − xi, yi + xi] ∈ R+.

Source node

NormOneBridge supports:

• G in MOI.NormOneCone{T}

Target nodes

NormOneBridge creates:

• F in MOI.Nonnegatives

source

MathOptInterface.Bridges.Constraint.NormOneConeToNormConeBridge – Type.

NormOneConeToNormConeBridge{T,F} <: Bridges.Constraint.AbstractBridge

NormOneConeToNormConeBridge implements the following reformulations:

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/NormNuclearBridge.jl#L218-L239
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/NormOneBridge.jl#L7-L26
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• (t, x)inNormOneCone(d) into (t, x)inNormCone(1, d)

Source node

NormOneConeToNormConeBridge supports:

• F in MOI.NormOneCone

Target nodes

NormOneConeToNormConeBridge creates:

• F in MOI.NormCone

source

MathOptInterface.Bridges.Constraint.NormSpectralBridge – Type.

NormSpectralBridge{T,F,G} <: Bridges.Constraint.AbstractBridge

NormSpectralBridge implements the following reformulation:

• t ≥ σ1(X) into
[
tI X⊤

X tI

]
� 0

Source node

NormSpectralBridge supports:

• G in MOI.NormSpectralCone

Target nodes

NormSpectralBridge creates:

• F in MOI.PositiveSemidefiniteConeTriangle

source

MathOptInterface.Bridges.Constraint.NormToPowerBridge – Type.

NormToPowerBridge{T,F} <: Bridges.Constraint.AbstractBridge

NormToPowerBridge implements the following reformulation:

• (t, x) ∈ NormCone(p, 1 + d) into (ri, t, xi) ∈ PowerCone(1/p) for all i, and
∑
i

ri == t.

For details, see Alizadeh, F., and Goldfarb, D. (2001). "Second-order cone programming." Mathematical
Programming, Series B, 95:3-51.

Source node

NormToPowerBridge supports:

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/NormSpecialCaseBridge.jl#L41-L59
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/NormNuclearBridge.jl#L7-L26
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• F in MOI.NormCone

Target nodes

NormToPowerBridge creates:

• F in MOI.PowerCone{T}

• MOI.ScalarAffineFunction in MOI.EqualTo

source

MathOptInterface.Bridges.Constraint.NumberConversionBridge – Type.

NumberConversionBridge{T,F1,S1,F2,S2} <: Bridges.Constraint.AbstractBridge

NumberConversionBridge implements the following reformulation:

• f1(x) ∈ S1 to f2(x) ∈ S2

where f and S are the same functional form, but differ in their coefficient type.

Source node

NumberConversionBridge supports:

• F1 in S1

Target node

NumberConversionBridge creates:

• F2 in S2

source

MathOptInterface.Bridges.Constraint.QuadtoSOCBridge – Type.

QuadtoSOCBridge{T} <: Bridges.Constraint.AbstractBridge

QuadtoSOCBridge converts quadratic inequalities

1

2
xTQx+ aTx ≤ ub

into MOI.RotatedSecondOrderCone constraints, but it only applies when Q is positive definite.

This is because, if Q is positive definite, there exists U such thatQ = UTU , and so the inequality can then
be rewritten as;

‖Ux‖22 ≤ 2(−aTx+ ub)

Therefore, QuadtoSOCBridge implements the following reformulations:

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/NormToPowerBridge.jl#L7-L30
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/NumberConversionBridge.jl#L7-L28
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• 1
2x

TQx+ aTx ≤ ub into (1,−aTx+ ub, Ux) ∈ RotatedSecondOrderCone where Q = UTU

• 1
2x

TQx+ aTx ≥ lb into (1, aTx− lb, Ux) ∈ RotatedSecondOrderCone where −Q = UTU

Source node

QuadtoSOCBridge supports:

• MOI.ScalarAffineFunction{T} in MOI.LessThan{T}

• MOI.ScalarAffineFunction{T} in MOI.GreaterThan{T}

Target nodes

RelativeEntropyBridge creates:

• MOI.VectorAffineFunction{T} in MOI.RotatedSecondOrderCone

Errors

This bridge errors if Q is not positive definite.

source

MathOptInterface.Bridges.Constraint.RSOCtoNonConvexQuadBridge – Type.

RSOCtoNonConvexQuadBridge{T} <: Bridges.Constraint.AbstractBridge

RSOCtoNonConvexQuadBridge implements the following reformulations:

• ||x||22 ≤ 2tu into
∑
x2 − 2tu ≤ 0, 1t+ 0 ≥ 0, and 1u+ 0 ≥ 0.

The MOI.ScalarAffineFunctions 1t + 0 and 1u + 0 are used in case the variables have other bound
constraints.

Warning

This transformation starts from a convex constraint and creates a non-convex constraint. Unless
the solver has explicit support for detecting rotated second-order cones in quadratic form, this may
(wrongly) be interpreted by the solver as being non-convex. Therefore, this bridge is not added
automatically by MOI.Bridges.full_bridge_optimizer. Care is recommended when adding this
bridge to a optimizer.

Source node

RSOCtoNonConvexQuadBridge supports:

• MOI.VectorOfVariables in MOI.RotatedSecondOrderCone

Target nodes

RSOCtoNonConvexQuadBridge creates:

• MOI.ScalarQuadraticFunction{T} in MOI.LessThan{T}

• MOI.ScalarAffineFunction{T} in MOI.GreaterThan{T}

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/QuadtoSOCBridge.jl#L7-L48
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source

MathOptInterface.Bridges.Constraint.RSOCtoPSDBridge – Type.

RSOCtoPSDBridge{T,F,G} <: Bridges.Constraint.AbstractBridge

RSOCtoPSDBridge implements the following reformulation:

• ||x||22 ≤ 2t · u into
[
t x⊤

x 2tuI

]
� 0

Source node

RSOCtoPSDBridge supports:

• G in MOI.RotatedSecondOrderCone

Target nodes

RSOCtoPSDBridge creates:

• F in MOI.PositiveSemidefiniteConeTriangle

source

MathOptInterface.Bridges.Constraint.RSOCtoSOCBridge – Type.

RSOCtoSOCBridge{T,F,G} <: Bridges.Constraint.AbstractBridge

RSOCtoSOCBridge implements the following reformulation:

• ||x||22 ≤ 2tu into || t−u√
2
, x||2 ≤ t+u√

2

Source node

RSOCtoSOCBridge supports:

• G in MOI.RotatedSecondOrderCone

Target node

RSOCtoSOCBridge creates:

• F in MOI.SecondOrderCone

source

MathOptInterface.Bridges.Constraint.ReifiedAllDifferentToCountDistinctBridge – Type.

ReifiedAllDifferentToCountDistinctBridge{T,F} <:
Bridges.Constraint.AbstractBridge

ReifiedAllDifferentToCountDistinctBridge implements the following reformulations:

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/SOCtoNonConvexQuadBridge.jl#L166-L197
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/SOCtoPSDBridge.jl#L158-L177
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/RSOCtoSOCBridge.jl#L7-L26
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• r ⇐⇒ x ∈ AllDifferent(d) to r ⇐⇒ (n, x) ∈ CountDistinct(1 + d) and n = d

• r ⇐⇒ f(x) ∈ AllDifferent(d) to r ⇐⇒ (d, f(x)) ∈ CountDistinct(1 + d)

Source node

ReifiedAllDifferentToCountDistinctBridge supports:

• F in MOI.Reified{MOI.AllDifferent}

where F is MOI.VectorOfVariables or MOI.VectorAffineFunction{T}.

Target nodes

ReifiedAllDifferentToCountDistinctBridge creates:

• F in MOI.Reified{MOI.CountDistinct}

• MOI.VariableIndex in MOI.EqualTo{T}

source

MathOptInterface.Bridges.Constraint.ReifiedCountDistinctToMILPBridge – Type.

ReifiedCountDistinctToMILPBridge{T,F} <: Bridges.Constraint.AbstractBridge

ReifiedCountDistinctToMILPBridge implements the following reformulation:

• r ⇐⇒ (n, x) ∈ CountDistinct(1 + d) into a mixed-integer linear program.

Reformulation

The reformulation is non-trivial, and it depends on the finite domain of each variable xi, which we as define
Si = {li, . . . , ui}.

First, we introduce new binary variables zij , which are 1 if variable xi takes the value j in the optimal
solution and 0 otherwise:

zij ∈ {0, 1} ∀i ∈ 1 . . . d, j ∈ Si

xi −
∑
j∈Si

j · zij = 0 ∀i ∈ 1 . . . d

∑
j∈Si

zij = 1 ∀i ∈ 1 . . . d

Then, we introduce new binary variables yj , which are 1 if a variable takes the value j in the optimal
solution and 0 otherwise.

yj ∈ {0, 1} ∀j ∈
∪

i=1,...,d

Si

yj ≤
∑

i∈1...d:j∈Si

zij ≤Myj ∀j ∈
∪

i=1,...,d

Si

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/ReifiedAllDifferentToCountDistinctBridge.jl#L7-L34
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Finally, n is constrained to be the number of yj elements that are non-zero, with some slack:

n−
∑

j∈
∪

i=1,...,d Si

yj = δ+ − δ−

And then the slack is constrained to respect the reif variable r:

d1 ≤ δ+ ≤Md1

d2 ≤ δ− ≤Mds

d1 + d2 + r = 1

d1, d2 ∈ {0, 1}

Source node

ReifiedCountDistinctToMILPBridge supports:

• F in MOI.Reified{MOI.CountDistinct}

where F is MOI.VectorOfVariables or MOI.VectorAffineFunction{T}.

Target nodes

ReifiedCountDistinctToMILPBridge creates:

• MOI.VariableIndex in MOI.ZeroOne

• MOI.ScalarAffineFunction{T} in MOI.EqualTo{T}

• MOI.ScalarAffineFunction{T} in MOI.LessThan{T}

source

MathOptInterface.Bridges.Constraint.RelativeEntropyBridge – Type.

RelativeEntropyBridge{T,F,G,H} <: Bridges.Constraint.AbstractBridge

RelativeEntropyBridge implements the following reformulation that converts a MOI.RelativeEntropyCone
into an MOI.ExponentialCone:

• u ≥
∑n

i=1 wi log
(

wi

vi

)
into yi ≥ 0, u ≥

∑n
i=1 yi, and (−yi, wi, vi) ∈ ExponentialCone.

Source node

RelativeEntropyBridge supports:

• H in MOI.RelativeEntropyCone

Target nodes

RelativeEntropyBridge creates:

• F in MOI.GreaterThan{T}

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/ReifiedCountDistinctToMILPBridge.jl#L7-L70


CHAPTER 37. SUBMODULES 1245

• G in MOI.ExponentialCone

source

MathOptInterface.Bridges.Constraint.RootDetBridge – Type.

RootDetBridge{T,F,G,H} <: Bridges.Constraint.AbstractBridge

The MOI.RootDetConeTriangle is representable by MOI.PositiveSemidefiniteConeTriangle and MOI.GeometricMeanCone
constraints, see [1, p. 149].

Indeed, t ≤ det(X)1/n if and only if there exists a lower triangular matrix such that:

(
X
⊤ Diag()

)
� 0

(t,Diag()) ∈ GeometricMeanCone

Source node

RootDetBridge supports:

• I in MOI.RootDetConeTriangle

Target nodes

RootDetBridge creates:

• F in MOI.PositiveSemidefiniteConeTriangle
• G in MOI.GeometricMeanCone

[1] Ben-Tal, Aharon, and Arkadi Nemirovski. Lectures on modern convex optimization: analysis, algorithms,
and engineering applications. Society for Industrial and Applied Mathematics, 2001.

source

MathOptInterface.Bridges.Constraint.SOCtoNonConvexQuadBridge – Type.

SOCtoNonConvexQuadBridge{T} <: Bridges.Constraint.AbstractBridge

SOCtoNonConvexQuadBridge implements the following reformulations:

• ||x||2 ≤ t into
∑
x2 − t2 ≤ 0 and 1t+ 0 ≥ 0

The MOI.ScalarAffineFunction 1t+ 0 is used in case the variable has other bound constraints.

Warning

This transformation starts from a convex constraint and creates a non-convex constraint. Un-
less the solver has explicit support for detecting second-order cones in quadratic form, this may
(wrongly) be interpreted by the solver as being non-convex. Therefore, this bridge is not added
automatically by MOI.Bridges.full_bridge_optimizer. Care is recommended when adding this
bridge to a optimizer.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/RelativeEntropyBridge.jl#L7-L29
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/LogDetBridge.jl#L296-L331
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Source node

SOCtoNonConvexQuadBridge supports:

• MOI.VectorOfVariables in MOI.SecondOrderCone

Target nodes

SOCtoNonConvexQuadBridge creates:

• MOI.ScalarQuadraticFunction{T} in MOI.LessThan{T}

• MOI.ScalarAffineFunction{T} in MOI.GreaterThan{T}

source

MathOptInterface.Bridges.Constraint.SOCtoPSDBridge – Type.

SOCtoPSDBridge{T,F,G} <: Bridges.Constraint.AbstractBridge

SOCtoPSDBridge implements the following reformulation:

• ||x||2 ≤ t into
[
t x⊤

x tI

]
� 0

Warning

This bridge is not added by default by MOI.Bridges.full_bridge_optimizer because bridging
second order cone constraints to semidefinite constraints can be achieved by the SOCtoRSOCBridge
followed by the RSOCtoPSDBridge, while creating a smaller semidefinite constraint.

Source node

SOCtoPSDBridge supports:

• G in MOI.SecondOrderCone

Target nodes

SOCtoPSDBridge creates:

• F in MOI.PositiveSemidefiniteConeTriangle

source

MathOptInterface.Bridges.Constraint.SOCtoRSOCBridge – Type.

SOCtoRSOCBridge{T,F,G} <: Bridges.Constraint.AbstractBridge

SOCtoRSOCBridge implements the following reformulation:

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/SOCtoNonConvexQuadBridge.jl#L83-L113
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/SOCtoPSDBridge.jl#L41-L66
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• ||x||2 ≤ t into (t+ x1)(t− x1) ≥ ||(x2 . . . , xN )||22

Assumptions

• SOCtoRSOCBridge assumes that the length of x is at least one.

Source node

SOCtoRSOCBridge supports:

• G in MOI.SecondOrderCone

Target node

SOCtoRSOCBridge creates:

• F in MOI.RotatedSecondOrderCone

source

MathOptInterface.Bridges.Constraint.SOS1ToMILPBridge – Type.

SOS1ToMILPBridge{T,F} <: Bridges.Constraint.AbstractBridge

SOS1ToMILPBridge implements the following reformulation:

• x ∈ SOS1(d) into a mixed-integer linear program.

Source node

SOS1ToMILPBridge supports:

• F in MOI.SOS1

where F is MOI.VectorOfVariables or MOI.VectorAffineFunction{T}.

Target nodes

SOS1ToMILPBridge creates:

• MOI.VariableIndex in MOI.ZeroOne

• MOI.ScalarAffineFunction{T} in MOI.EqualTo{T}

• MOI.ScalarAffineFunction{T} in MOI.LessThan{T}

source

MathOptInterface.Bridges.Constraint.SOS2ToMILPBridge – Type.

SOS2ToMILPBridge{T,F} <: Bridges.Constraint.AbstractBridge

SOS2ToMILPBridge implements the following reformulation:

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/SOCtoRSOCBridge.jl#L7-L29
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/SOS1ToMILPBridge.jl#L7-L30
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• x ∈ SOS2(d) into a mixed-integer linear program.

Source node

SOS2ToMILPBridge supports:

• F in MOI.SOS2

where F is MOI.VectorOfVariables or MOI.VectorAffineFunction{T}.

Target nodes

SOS2ToMILPBridge creates:

• MOI.VariableIndex in MOI.ZeroOne

• MOI.ScalarAffineFunction{T} in MOI.EqualTo{T}

• MOI.ScalarAffineFunction{T} in MOI.LessThan{T}

source

MathOptInterface.Bridges.Constraint.ScalarFunctionizeBridge – Type.

ScalarFunctionizeBridge{T,S} =
FunctionConversionBridge{T,MOI.ScalarAffineFunction{T},MOI.VariableIndex,S}↪→

ScalarFunctionizeBridge implements the following reformulations:

• x ∈ S into 1x+ 0 ∈ S

Source node

ScalarFunctionizeBridge supports:

• MOI.VariableIndex in S

Target nodes

ScalarFunctionizeBridge creates:

• MOI.ScalarAffineFunction{T} in S

source

MathOptInterface.Bridges.Constraint.ScalarSlackBridge – Type.

ScalarSlackBridge{T,F,S} <: Bridges.Constraint.AbstractBridge

ScalarSlackBridge implements the following reformulation:

• f(x) ∈ S into f(x)− y == 0 and y ∈ S

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/SOS2ToMILPBridge.jl#L7-L30
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/AbstractFunctionConversionBridge.jl#L317-L336
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Source node

ScalarSlackBridge supports:

• G in S, where G is not MOI.VariableIndex and S is not MOI.EqualTo

Target nodes

ScalarSlackBridge creates:

• F in MOI.EqualTo{T}

• MOI.VariableIndex in S

source

MathOptInterface.Bridges.Constraint.ScalarizeBridge – Type.

ScalarizeBridge{T,F,S}

ScalarizeBridge implements the following reformulations:

• f(x)− a ∈ R+ into fi(x) ≥ ai for all i

• f(x)− a ∈ R− into fi(x) ≤ ai for all i

• f(x)− a ∈ {0} into fi(x) == ai for all i

Source node

ScalarizeBridge supports:

• G in MOI.Nonnegatives{T}

• G in MOI.Nonpositives{T}

• G in MOI.Zeros{T}

Target nodes

ScalarizeBridge creates:

• F in S, where S is one of MOI.GreaterThan{T}, MOI.LessThan{T}, and MOI.EqualTo{T}, depending
on the type of the input set.

source

MathOptInterface.Bridges.Constraint.SecondOrderConeToNormConeBridge – Type.

SecondOrderConeToNormConeBridge{T,F} <: Bridges.Constraint.AbstractBridge

SecondOrderConeToNormConeBridge implements the following reformulations:

• (t, x)inSecondOrderCone(d) into (t, x)inNormCone(2, d)

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/ScalarSlackBridge.jl#L208-L228
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/ScalarizeBridge.jl#L7-L31
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Source node

SecondOrderConeToNormConeBridge supports:

• F in MOI.SecondOrderCone

Target nodes

SecondOrderConeToNormConeBridge creates:

• F in MOI.NormCone

source

MathOptInterface.Bridges.Constraint.SemiToBinaryBridge – Type.

SemiToBinaryBridge{T,S} <: Bridges.Constraint.AbstractBridge

SemiToBinaryBridge implements the following reformulations:

• x ∈ {0} ∪ [l, u] into

x ≤ zu

x ≥ zl

z ∈ {0, 1}

• x ∈ {0} ∪ {l, . . . , u} into

x ≤ zu

x ≥ zl

z ∈ {0, 1}
x ∈ Z

Source node

SemiToBinaryBridge supports:

• MOI.VariableIndex in MOI.Semicontinuous{T}

• MOI.VariableIndex in MOI.Semiinteger{T}

Target nodes

SemiToBinaryBridge creates:

• MOI.VariableIndex in MOI.ZeroOne

• MOI.ScalarAffineFunction{T} in MOI.LessThan{T}

• MOI.ScalarAffineFunction{T} in MOI.GreaterThan{T}

• MOI.VariableIndex{T} in MOI.Integer (if S is MOI.Semiinteger{T}

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/NormSpecialCaseBridge.jl#L66-L84
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source

MathOptInterface.Bridges.Constraint.SetConversionBridge – Type.

SetConversionBridge{T,S2,S1,F} <:
MOI.Bridges.Constraint.SetMapBridge{T,S2,S1,F,F}

SetConversionBridge implements the following reformulations:

• f(x) ∈ S1 into f(x) ∈ S2

In order to add this bridge, you need to create a bridge specific for a given type T and set S2:

MOI.Bridges.add_bridge(model, MOI.Bridges.Constraint.SetConversionBridge{T,S2})

In order to define a bridge with S2 specified but T unspecified, for example for JuMP.add_bridge, you can
use

const MyBridge{T,S1,F} = MOI.Bridges.Constraint.SetConversionBridge{T,S2,S1,F}

See also FunctionConversionBridge.

Source node

SetConversionBridge supports:

• F in S1

Target nodes

SetConversionBridge creates:

• F in S2

source

MathOptInterface.Bridges.Constraint.SetDotInverseScalingBridge – Type.

SetDotInverseScalingBridge{T,S,F,G} <: Bridges.Constraint.AbstractBridge

SetDotInverseScalingBridge implements the reformulation from constraints in the MOI.Scaled{S} to
constraints in the S.

Source node

SetDotInverseScalingBridge supports:

• G in MOI.Scaled{S}

Target node

SetDotInverseScalingBridge creates:

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/SemiToBinaryBridge.jl#L7-L46
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/SetConversionBridge.jl#L7-L39
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• F in S

source

MathOptInterface.Bridges.Constraint.SetDotScalingBridge – Type.

SetDotScalingBridge{T,S,F,G} <: Bridges.Constraint.AbstractBridge

SetDotScalingBridge implements the reformulation from constraints in S to constraints in MOI.Scaled{S}.

Source node

SetDotScalingBridge supports:

• G in S

Target node

SetDotScalingBridge creates:

• F in MOI.Scaled{S}

source

MathOptInterface.Bridges.Constraint.SetMapBridge – Type.

abstract type SetMapBridge{T,S2,S1,F,G} <: MultiSetMapBridge{T,S1,G} end

Consider two type of sets, S1 and S2, and a linear mapping A such that the image of a set of type S1 under
A is a set of type S2.

A SetMapBridge{T,S2,S1,F,G} is a bridge that maps G-in-S1 constraints into F-in-S2 by mapping the
function through A.

The linear map A is described by;

• MOI.Bridges.map_set

• MOI.Bridges.map_function.

Implementing a method for these two functions is sufficient to bridge constraints. However, in order for
the getters and setters of attributes such as dual solutions and starting values to work as well, a method
for the following functions must be implemented:

• MOI.Bridges.inverse_map_set

• MOI.Bridges.inverse_map_function

• MOI.Bridges.adjoint_map_function

• MOI.Bridges.inverse_adjoint_map_function

See the docstrings of each function to see which feature would be missing if it was not implemented for a
given bridge.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/SetDotScalingBridge.jl#L111-L128
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/SetDotScalingBridge.jl#L7-L24
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/set_map.jl#L283-L309
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MathOptInterface.Bridges.Constraint.SplitComplexEqualToBridge – Type.

SplitComplexEqualToBridge{T,F,G} <: Bridges.Constraint.AbstractBridge

SplitComplexEqualToBridge implements the following reformulation:

• f(x) + g(x) ∗ im = a+ b ∗ im into f(x) = a and g(x) = b

Source node

SplitComplexEqualToBridge supports:

• G in MOI.EqualTo{Complex{T}}

where G is a function with Complex coefficients.

Target nodes

SplitComplexEqualToBridge creates:

• F in MOI.EqualTo{T}

where F is the type of the real/imaginary part of G.

source

MathOptInterface.Bridges.Constraint.SplitComplexZerosBridge – Type.

SplitComplexZerosBridge{T,F,G} <: Bridges.Constraint.AbstractBridge

SplitComplexZerosBridge implements the following reformulation:

• f(x) ∈ {0}n into Re(f(x)) ∈ {0}n and Im(f(x)) ∈ {0}n

Source node

SplitComplexZerosBridge supports:

• G in MOI.Zeros

where G is a function with Complex coefficients.

Target nodes

SplitComplexZerosBridge creates:

• F in MOI.Zeros

where F is the type of the real/imaginary part of G.

source

MathOptInterface.Bridges.Constraint.SplitHyperRectangleBridge – Type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/SplitComplexEqualToBridge.jl#L7-L29
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/SplitComplexZerosBridge.jl#L7-L30
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SplitHyperRectangleBridge{T,G,F} <: Bridges.Constraint.AbstractBridge

SplitHyperRectangleBridge implements the following reformulation:

• f(x) ∈ HyperRectangle(l, u) to [f(x)− l;u− f(x)] ∈ R+.

Source node

SplitHyperRectangleBridge supports:

• F in MOI.HyperRectangle

Target nodes

SplitHyperRectangleBridge creates:

• G in MOI.Nonnegatives

source

MathOptInterface.Bridges.Constraint.SplitIntervalBridge – Type.

SplitIntervalBridge{T,F,S,LS,US} <: Bridges.Constraint.AbstractBridge

SplitIntervalBridge implements the following reformulations:

• l ≤ f(x) ≤ u into f(x) ≥ l and f(x) ≤ u

• f(x) = b into f(x) ≥ b and f(x) ≤ b

• f(x) ∈ {0} into f(x) ∈ R+ and f(x) ∈ R−

Source node

SplitIntervalBridge supports:

• F in MOI.Interval{T}

• F in MOI.EqualTo{T}

• F in MOI.Zeros

Target nodes

SplitIntervalBridge creates:

• F in MOI.LessThan{T}

• F in MOI.GreaterThan{T}

or

• F in MOI.Nonnegatives

• F in MOI.Nonpositives

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/SplitHyperRectangleBridge.jl#L7-L26
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Note

If T<:AbstractFloat and S is MOI.Interval{T} then no lower (resp. upper) bound constraint
is created if the lower (resp. upper) bound is typemin(T) (resp. typemax(T)). Similarly, when
MOI.ConstraintSet is set, a lower or upper bound constraint may be deleted or created accord-
ingly.

source

MathOptInterface.Bridges.Constraint.SquareBridge – Type.

SquareBridge{T,F,G,TT,ST} <: Bridges.Constraint.AbstractBridge

SquareBridge implements the following reformulations:

• (t, u,X) ∈ LogDetConeSquare into (t, u, Y )inLogDetConeTriangle

• (t,X) ∈ RootDetConeSquare into (t, Y )inRootDetConeTriangle

• X ∈ AbstractSymmetricMatrixSetSquare intoY inAbstractSymmetricMatrixSetTriangle

where Y is the upper triangluar component of X .

In addition, constraints are added as necessary to constrain the matrix X to be symmetric. For example,
the constraint for the matrix:

 1 1 + x 2− 3x
1 + x 2 + x 3− x
2− 3x 2 + x 2x


can be broken down to the constraint of the symmetric matrix

1 1 + x 2− 3x
· 2 + x 3− x
· · 2x


and the equality constraint between the off-diagonal entries (2, 3) and (3, 2) 3−x == 2+x. Note that no
symmetrization constraint needs to be added between the off-diagonal entries (1, 2) and (2, 1) or between
(1, 3) and (3, 1) because the expressions are the same.

Source node

SquareBridge supports:

• F in ST

Target nodes

SquareBridge creates:

• G in TT

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/SplitIntervalBridge.jl#L7-L44
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source

MathOptInterface.Bridges.Constraint.TableToMILPBridge – Type.

TableToMILPBridge{T,F} <: Bridges.Constraint.AbstractBridge

TableToMILPBridge implements the following reformulation:

• x ∈ Table(t) into

zj ∈ {0, 1} ∀i, j
n∑

j=1

zj = 1

n∑
j=1

tijzj = xi ∀i

Source node

TableToMILPBridge supports:

• F in MOI.Table{T}

Target nodes

TableToMILPBridge creates:

• MOI.VariableIndex in MOI.ZeroOne

• MOI.ScalarAffineFunction{T} in MOI.EqualTo{T}

source

MathOptInterface.Bridges.Constraint.ToScalarNonlinearBridge – Type.

ToScalarNonlinearBridge{T,G,S} <: AbstractFunctionConversionBridge{G,S}

ToScalarNonlinearBridge implements the following reformulation:

• g(x) ∈ S into f(x) ∈ S

where g is an abstract scalar function and f is a MOI.ScalarNonlinearFunction.

Source node

ToScalarNonlinearBridge supports:

• G<:AbstractScalarFunction in S

Target nodes

ToScalarNonlinearBridge creates:

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/SquareBridge.jl#L7-L52
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/TableToMILPBridge.jl#L7-L33
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• MOI.ScalarNonlinearFunction in S

source

MathOptInterface.Bridges.Constraint.ToScalarQuadraticBridge – Type.

ToScalarQuadraticBridge{T,G,S} <: AbstractFunctionConversionBridge{G,S}

ToScalarQuadraticBridge implements the following reformulation:

• g(x) ∈ S into f(x) ∈ S

where g is an abstract scalar function and f is a MOI.ScalarQuadraticFunction.

Source node

ToScalarQuadraticBridge supports:

• G<:AbstractScalarFunction in S

Target nodes

ToScalarQuadraticBridge creates:

• MOI.ScalarQuadraticFunction in S

source

MathOptInterface.Bridges.Constraint.ToVectorQuadraticBridge – Type.

ToVectorQuadraticBridge{T,G,S} <: AbstractFunctionConversionBridge{G,S}

ToVectorQuadraticBridge implements the following reformulation:

• g(x) ∈ S into f(x) ∈ S

where g is an abstract vector function and f is a MOI.VectorQuadraticFunction.

Source node

ToVectorQuadraticBridge supports:

• G<:AbstractVectorFunction in S

Target nodes

ToVectorQuadraticBridge creates:

• MOI.VectorQuadraticFunction in S

source

MathOptInterface.Bridges.Constraint.VectorFunctionizeBridge – Type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/AbstractFunctionConversionBridge.jl#L436-L457
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/AbstractFunctionConversionBridge.jl#L376-L397
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/AbstractFunctionConversionBridge.jl#L406-L427
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VectorFunctionizeBridge{T,S} = FunctionConversionBridge{T,MOI.VectorAffineFunction{T},S}

VectorFunctionizeBridge implements the following reformulations:

• x ∈ S into Ix+ 0 ∈ S

Source node

VectorFunctionizeBridge supports:

• MOI.VectorOfVariables in S

Target nodes

VectorFunctionizeBridge creates:

• MOI.VectorAffineFunction{T} in S

source

MathOptInterface.Bridges.Constraint.VectorSlackBridge – Type.

VectorSlackBridge{T,F,S} <: Bridges.Constraint.AbstractBridge

VectorSlackBridge implements the following reformulation:

• f(x) ∈ S into f(x)− y ∈ {0} and y ∈ S

Source node

VectorSlackBridge supports:

• G in S, where G is not MOI.VectorOfVariables and S is not MOI.Zeros

Target nodes

VectorSlackBridge creates:

• F in MOI.Zeros

• MOI.VectorOfVariables in S

source

MathOptInterface.Bridges.Constraint.VectorizeBridge – Type.

VectorizeBridge{T,F,S,G} <: Bridges.Constraint.AbstractBridge

VectorizeBridge implements the following reformulations:

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/AbstractFunctionConversionBridge.jl#L345-L363
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/ScalarSlackBridge.jl#L341-L361
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• g(x) ≥ a into [g(x)− a] ∈ R+

• g(x) ≤ a into [g(x)− a] ∈ R−

• g(x) == a into [g(x)− a] ∈ {0}

where T is the coefficient type of g(x) - a.

Source node

VectorizeBridge supports:

• G in MOI.GreaterThan{T}

• G in MOI.LessThan{T}

• G in MOI.EqualTo{T}

Target nodes

VectorizeBridge creates:

• F in S, where S is one of MOI.Nonnegatives, MOI.Nonpositives, MOI.Zeros depending on the type
of the input set.

source

MathOptInterface.Bridges.Constraint.ZeroOneBridge – Type.

ZeroOneBridge{T} <: Bridges.Constraint.AbstractBridge

ZeroOneBridge implements the following reformulation:

• x ∈ {0, 1} into x ∈ Z, 1x ∈ [0, 1].

Note

ZeroOneBridge adds a linear constraint instead of adding variable bounds to avoid conflicting with
bounds set by the user.

Source node

ZeroOneBridge supports:

• MOI.VariableIndex in MOI.ZeroOne

Target nodes

ZeroOneBridge creates:

• MOI.VariableIndex in MOI.Integer

• MOI.ScalarAffineFunction{T} in MOI.Interval{T}

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/VectorizeBridge.jl#L7-L33
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/ZeroOneBridge.jl#L7-L30
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Objective bridges

These bridges are subtypes of Bridges.Objective.AbstractBridge.

MathOptInterface.Bridges.Objective.FunctionConversionBridge – Type.

FunctionConversionBridge{T,F,G} <: AbstractBridge

FunctionConversionBridge implements the following reformulations:

• min{g(x)} into min{f(x)}
• max{g(x)} into max{f(x)}

for these pairs of functions:

• MOI.ScalarAffineFunctionto [MOI.ScalarQuadraticFunction‘](@ref)

• MOI.ScalarQuadraticFunction to MOI.ScalarNonlinearFunction

• MOI.VectorAffineFunction to MOI.VectorQuadraticFunction

Source node

FunctionConversionBridge supports:

• MOI.ObjectiveFunction{G}

Target nodes

FunctionConversionBridge creates:

• One objective node: MOI.ObjectiveFunction{F}

source

MathOptInterface.Bridges.Objective.FunctionizeBridge – Type.

FunctionizeBridge{T,G} <: FunctionConversionBridge{T,MOI.ScalarAffineFunction{T},G}

FunctionizeBridge implements the following reformulations:

• min{x} into min{1x+ 0}
• max{x} into max{1x+ 0}

where T is the coefficient type of 1 and 0.

Source node

FunctionizeBridge supports:

• MOI.ObjectiveFunction{G}

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Objective/bridges/FunctionConversionBridge.jl#L7-L32
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Target nodes

FunctionizeBridge creates:

• One objective node: MOI.ObjectiveFunction{MOI.ScalarAffineFunction{T}}

source

MathOptInterface.Bridges.Objective.QuadratizeBridge – Type.

QuadratizeBridge{T,G} <: FunctionConversionBridge{T,MOI.ScalarQuadraticFunction{T},G}

QuadratizeBridge implements the following reformulations:

• min{a⊤x+ b} into min{x⊤0x+ a⊤x+ b}
• max{a⊤x+ b} into max{x⊤0x+ a⊤x+ b}

where T is the coefficient type of 0.

Source node

QuadratizeBridge supports:

• MOI.ObjectiveFunction{G}

Target nodes

QuadratizeBridge creates:

• One objective node: MOI.ObjectiveFunction{MOI.ScalarQuadraticFunction{T}}

source

MathOptInterface.Bridges.Objective.SlackBridge – Type.

SlackBridge{T,F,G}

SlackBridge implements the following reformulations:

• min{f(x)} into min{y | f(x)− y ≤ 0}
• max{f(x)} into max{y | f(x)− y ≥ 0}

where F is the type of f(x) - y, G is the type of f(x), and T is the coefficient type of f(x).

Source node

SlackBridge supports:

• MOI.ObjectiveFunction{G}

Target nodes

SlackBridge creates:

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Objective/bridges/FunctionConversionBridge.jl#L120-L141
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Objective/bridges/FunctionConversionBridge.jl#L148-L169
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• One variable node: MOI.VariableIndex in MOI.Reals

• One objective node: MOI.ObjectiveFunction{MOI.VariableIndex}

• One constraint node, that depends on the MOI.ObjectiveSense:

– F-in-MOI.LessThan if MIN_SENSE
– F-in-MOI.GreaterThan if MAX_SENSE

Warning

When using this bridge, changing the optimization sense is not supported. Set the sense to
MOI.FEASIBILITY_SENSE first to delete the bridge, then set MOI.ObjectiveSense and re-add the
objective.

source

MathOptInterface.Bridges.Objective.VectorFunctionizeBridge – Type.

VectorFunctionizeBridge{T,G} <: FunctionConversionBridge{T,MOI.VectorAffineFunction{T},G}

VectorFunctionizeBridge implements the following reformulations:

• min{x} into min{1x+ 0}
• max{x} into max{1x+ 0}

where T is the coefficient type of 1 and 0.

Source node

VectorFunctionizeBridge supports:

• MOI.ObjectiveFunction{G}

Target nodes

VectorFunctionizeBridge creates:

• One objective node: MOI.ObjectiveFunction{MOI.VectorAffineFunction{T}}

source

MathOptInterface.Bridges.Objective.VectorSlackBridge – Type.

VectorSlackBridge{T,F,G}

VectorSlackBridge implements the following reformulations:

• min{f(x)} into min{y | y − f(x) ∈ R+}
• max{f(x)} into max{y | f(x)− y ∈ R+}

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Objective/bridges/SlackBridge.jl#L7-L38
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Objective/bridges/FunctionConversionBridge.jl#L176-L197
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where F is the type of f(x) - y, G is the type of f(x), and T is the coefficient type of f(x).

Source node

VectorSlackBridge supports:

• MOI.ObjectiveFunction{G}

Target nodes

VectorSlackBridge creates:

• One variable node: MOI.VectorOfVariables in MOI.Reals

• One objective node: MOI.ObjectiveFunction{MOI.VectorOfVariables}

• One constraint node: F-in-MOI.Nonnegatives

Warning

When using this bridge, changing the optimization sense is not supported. Set the sense to
MOI.FEASIBILITY_SENSE first to delete the bridge, then set MOI.ObjectiveSense and re-add the
objective.

source

Variable bridges

These bridges are subtypes of Bridges.Variable.AbstractBridge.

MathOptInterface.Bridges.Variable.FlipSignBridge – Type.

abstract type FlipSignBridge{T,S1,S2} <: SetMapBridge{T,S2,S1} end

An abstract type that simplifies the creation of other bridges.

source

MathOptInterface.Bridges.Variable.FreeBridge – Type.

FreeBridge{T} <: Bridges.Variable.AbstractBridge

FreeBridge implements the following reformulation:

• x ∈ R into y, z ≥ 0 with the substitution rule x = y − z,

where T is the coefficient type of y - z.

Source node

FreeBridge supports:

• MOI.VectorOfVariables in MOI.Reals

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Objective/bridges/VectorSlackBridge.jl#L7-L36
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Variable/bridges/FlipSignBridge.jl#L7-L11
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Target nodes

FreeBridge creates:

• One variable node: MOI.VectorOfVariables in MOI.Nonnegatives

source

MathOptInterface.Bridges.Variable.HermitianToSymmetricPSDBridge – Type.

HermitianToSymmetricPSDBridge{T} <: Bridges.Variable.AbstractBridge

HermitianToSymmetricPSDBridge implements the following reformulation:

• Hermitian positive semidefinite n x n complex matrix to a symmetric positive semidefinite 2n x 2n
real matrix satisfying equality constraints described below.

Source node

HermitianToSymmetricPSDBridge supports:

• MOI.VectorOfVariables in MOI.HermitianPositiveSemidefiniteConeTriangle

Target node

HermitianToSymmetricPSDBridge creates:

• MOI.VectorOfVariables in MOI.PositiveSemidefiniteConeTriangle

• MOI.ScalarAffineFunction{T} in MOI.EqualTo{T}

Reformulation

The reformulation is best described by example.

The Hermitian matrix:

 x11 x12 + y12im x13 + y13im
x12 − y12im x22 x23 + y23im
x13 − y13im x23 − y23im x33


is positive semidefinite if and only if the symmetric matrix:


x11 x12 x13 0 y12 y13

x22 x23 −y12 0 y23
x33 −y13 −y23 0

x11 x12 x13
x22 x23

x33


is positive semidefinite.

The bridge achieves this reformulation by adding a new set of variables in MOI.PositiveSemidefiniteConeTriangle(6),
and then adding three groups of equality constraints to:

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Variable/bridges/FreeBridge.jl#L7-L28
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• constrain the two x blocks to be equal

• force the diagonal of the y blocks to be 0

• force the lower triangular of the y block to be the negative of the upper triangle.

source

MathOptInterface.Bridges.Variable.NonposToNonnegBridge – Type.

NonposToNonnegBridge{T} <: Bridges.Variable.AbstractBridge

NonposToNonnegBridge implements the following reformulation:

• x ∈ R− into y ∈ R+ with the substitution rule x = −y,

where T is the coefficient type of -y.

Source node

NonposToNonnegBridge supports:

• MOI.VectorOfVariables in MOI.Nonpositives

Target nodes

NonposToNonnegBridge creates:

• One variable node: MOI.VectorOfVariables in MOI.Nonnegatives,

source

MathOptInterface.Bridges.Variable.ParameterToEqualToBridge – Type.

ParameterToEqualToBridge{T} <: Bridges.Variable.AbstractBridge

ParameterToEqualToBridge implements the following reformulation:

• x ∈ Parameter(v) into x == v

Source node

ParameterToEqualToBridge supports:

• MOI.VariableIndex in MOI.Parameter

Target nodes

ParameterToEqualToBridge creates:

• One variable node: MOI.VariableIndex in MOI.EqualTo{T}

source

MathOptInterface.Bridges.Variable.RSOCtoPSDBridge – Type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Variable/bridges/HermitianToSymmetricPSDBridge.jl#L7-L63
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Variable/bridges/FlipSignBridge.jl#L47-L68
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Variable/bridges/ParameterToEqualToBridge.jl#L7-L25
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RSOCtoPSDBridge{T} <: Bridges.Variable.AbstractBridge

RSOCtoPSDBridge implements the following reformulation:

• ||x||22 ≤ 2tu where t, u ≥ 0 into Y � 0, with the substitution rule: Y =

[
t x⊤

x 2uI

]
.

Additional bounds are added to ensure the off-diagonals of the 2uI submatrix are 0, and linear constraints
are added to ensure the diagonal of 2uI takes the same values.

As a special case, if |x|| = 0, then RSOCtoPSDBridge reformulates into (t, u) ∈ R+.

Source node

RSOCtoPSDBridge supports:

• MOI.VectorOfVariables in MOI.RotatedSecondOrderCone

Target nodes

RSOCtoPSDBridge creates:

• One variable node that depends on the input dimension:

– MOI.VectorOfVariables in MOI.Nonnegatives if dimension is 1 or 2
– MOI.VectorOfVariables in

MOI.PositiveSemidefiniteConeTriangle otherwise

• The constraint node MOI.VariableIndex in MOI.EqualTo

• The constant node MOI.ScalarAffineFunction in MOI.EqualTo

source

MathOptInterface.Bridges.Variable.RSOCtoSOCBridge – Type.

RSOCtoSOCBridge{T} <: Bridges.Variable.AbstractBridge

RSOCtoSOCBridge implements the following reformulation:

• ||x||22 ≤ 2tu into ||v||2 ≤ w, with the substitution rules t = w√
2
+ v1√

2
, u = w√

2
− v1√

2
, and

x = (v2, . . . , vN ).

Source node

RSOCtoSOCBridge supports:

• MOI.VectorOfVariables in MOI.RotatedSecondOrderCone

Target node

RSOCtoSOCBridge creates:

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Variable/bridges/RSOCtoPSDBridge.jl#L7-L40
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• MOI.VectorOfVariables in MOI.SecondOrderCone

source

MathOptInterface.Bridges.Variable.SOCtoRSOCBridge – Type.

SOCtoRSOCBridge{T} <: Bridges.Variable.AbstractBridge

SOCtoRSOCBridge implements the following reformulation:

• ||x||2 ≤ t into 2uv ≥ ||w||22, with the substitution rules t = u√
2
+ v√

2
, x = ( u√

2
− v√

2
, w).

Assumptions

• SOCtoRSOCBridge assumes that |x| ≥ 1.

Source node

SOCtoRSOCBridge supports:

• MOI.VectorOfVariables in MOI.SecondOrderCone

Target node

SOCtoRSOCBridge creates:

• MOI.VectorOfVariables in MOI.RotatedSecondOrderCone

source

MathOptInterface.Bridges.Variable.SetMapBridge – Type.

abstract type SetMapBridge{T,S1,S2} <: AbstractBridge end

Consider two type of sets, S1 and S2, and a linear mapping A such that the image of a set of type S1 under
A is a set of type S2.

A SetMapBridge{T,S1,S2} is a bridge that substitutes constrained variables in S2 into the image through
A of constrained variables in S1.

The linear map A is described by:

• MOI.Bridges.map_set

• MOI.Bridges.map_function

Implementing a method for these two functions is sufficient to bridge constrained variables. However, in
order for the getters and setters of attributes such as dual solutions and starting values to work as well, a
method for the following functions must be implemented:

• MOI.Bridges.inverse_map_set

• MOI.Bridges.inverse_map_function

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Variable/bridges/RSOCtoSOCBridge.jl#L7-L28
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Variable/bridges/SOCtoRSOCBridge.jl#L7-L31
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• MOI.Bridges.adjoint_map_function

• MOI.Bridges.inverse_adjoint_map_function.

See the docstrings of each function to see which feature would be missing if it was not implemented for a
given bridge.

Fieldnames

If S1 and S2 are [MOI.AbstractScalarSet], the struct must have fields:

• variable::MOI.VariableIndex

• constraint::MOI.ConstraintIndex{MOI.VariableIndex,S1}

If S1 and S2 are [MOI.AbstractVectorSet], the struct must have fields:

• variable::Vector{MOI.VariableIndex}

• constraint::MOI.ConstraintIndex{MOI.VectorOfVariables,S1}

source

MathOptInterface.Bridges.Variable.VectorizeBridge – Type.

VectorizeBridge{T,S} <: Bridges.Variable.AbstractBridge

VectorizeBridge implements the following reformulations:

• x ≥ a into [y] ∈ R+ with the substitution rule x = a+ y

• x ≤ a into [y] ∈ R− with the substitution rule x = a+ y

• x == a into [y] ∈ {0} with the substitution rule x = a+ y

where T is the coefficient type of a + y.

Source node

VectorizeBridge supports:

• MOI.VariableIndex in MOI.GreaterThan{T}

• MOI.VariableIndex in MOI.LessThan{T}

• MOI.VariableIndex in MOI.EqualTo{T}

Target nodes

VectorizeBridge creates:

• One variable node: MOI.VectorOfVariables in S, where S is one of MOI.Nonnegatives, MOI.Nonpositives,
MOI.Zeros depending on the type of S.

source

MathOptInterface.Bridges.Variable.ZerosBridge – Type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Variable/set_map.jl#L7-L45
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Variable/bridges/VectorizeBridge.jl#L7-L36
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ZerosBridge{T} <: Bridges.Variable.AbstractBridge

ZerosBridge implements the following reformulation:

• x ∈ {0} into the substitution rule x = 0,

where T is the coefficient type of 0.

Source node

ZerosBridge supports:

• MOI.VectorOfVariables in MOI.Zeros

Target nodes

ZerosBridge does not create target nodes. It replaces all instances of x with 0 via substitution. This means
that no variables are created in the underlying model.

Caveats

The bridged variables are similar to parameters with zero values. Parameters with non-zero values can be
created with constrained variables in MOI.EqualTo by combining a VectorizeBridge and this bridge.

However, functions modified by ZerosBridge cannot be unbridged. That is, for a given function, we cannot
determine if the bridged variables were used.

A related implication is that this bridge does not support MOI.ConstraintDual. However, if a MOI.Utilities.CachingOptimizer
is used, the dual can be determined by the bridged optimizer using MOI.Utilities.get_fallback because
the caching optimizer records the unbridged function.

source

API Reference

Bridges

AbstractBridge API

MathOptInterface.Bridges.AbstractBridge – Type.

abstract type AbstractBridge end

An abstract type representing a bridged constraint or variable in a MOI.Bridges.AbstractBridgeOptimizer.

All bridges must implement:

• added_constrained_variable_types

• added_constraint_types

• MOI.get(::AbstractBridge, ::MOI.NumberOfVariables)

• MOI.get(::AbstractBridge, ::MOI.ListOfVariableIndices)

• MOI.get(::AbstractBridge, ::MOI.NumberOfConstraints)

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Variable/bridges/ZerosBridge.jl#L7-L42
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• MOI.get(::AbstractBridge, ::MOI.ListOfConstraintIndices)

Subtypes of AbstractBridge may have additional requirements. Consult their docstrings for details.

In addition, all subtypes may optionally implement the following constraint attributes with the bridge in
place of the constraint index:

• MOI.ConstraintDual

• MOI.ConstraintPrimal

source

MathOptInterface.Bridges.added_constrained_variable_types – Function.

added_constrained_variable_types(
BT::Type{<:AbstractBridge},

)::Vector{Tuple{Type}}

Return a list of the types of constrained variables that bridges of concrete type BT add.

Implementation notes

• This method depends only on the type of the bridge, not the runtime value. If the bridge may add a
constrained variable, the type must be included in the return vector.

• If the bridge adds a free variable via MOI.add_variable or MOI.add_variables, the return vector
must include (MOI.Reals,).

Example

julia> MOI.Bridges.added_constrained_variable_types(
MOI.Bridges.Variable.NonposToNonnegBridge{Float64},

)
1-element Vector{Tuple{Type}}:
(MathOptInterface.Nonnegatives,)

source

MathOptInterface.Bridges.added_constraint_types – Function.

added_constraint_types(
BT::Type{<:AbstractBridge},

)::Vector{Tuple{Type,Type}}

Return a list of the types of constraints that bridges of concrete type BT add.

Implementation notes

• This method depends only on the type of the bridge, not the runtime value. If the bridge may add a
constraint, the type must be included in the return vector.

Example

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/bridge.jl#L7-L30
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/bridge.jl#L188-L213
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julia> MOI.Bridges.added_constraint_types(
MOI.Bridges.Constraint.ZeroOneBridge{Float64},

)
2-element Vector{Tuple{Type, Type}}:
(MathOptInterface.ScalarAffineFunction{Float64}, MathOptInterface.Interval{Float64})
(MathOptInterface.VariableIndex, MathOptInterface.Integer)

source

MathOptInterface.get – Method.

MOI.get(b::AbstractBridge, ::MOI.NumberOfVariables)::Int64

Return the number of variables created by the bridge b in the model.

See also MOI.NumberOfConstraints.

Implementation notes

• There is a default fallback, so you need only implement this if the bridge adds new variables.

source

MathOptInterface.get – Method.

MOI.get(b::AbstractBridge, ::MOI.ListOfVariableIndices)

Return the list of variables created by the bridge b.

See also MOI.ListOfVariableIndices.

Implementation notes

• There is a default fallback, so you need only implement this if the bridge adds new variables.

source

MathOptInterface.get – Method.

MOI.get(b::AbstractBridge, ::MOI.NumberOfConstraints{F,S})::Int64 where {F,S}

Return the number of constraints of the type F-in-S created by the bridge b.

See also MOI.NumberOfConstraints.

Implementation notes

• There is a default fallback, so you need only implement this for the constraint types returned by
added_constraint_types.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/bridge.jl#L216-L240
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/bridge.jl#L42-L53
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/bridge.jl#L56-L67
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source

MathOptInterface.get – Method.

MOI.get(b::AbstractBridge, ::MOI.ListOfConstraintIndices{F,S}) where {F,S}

Return a Vector{ConstraintIndex{F,S}} with indices of all constraints of type F-in-S created by the bride
b.

See also MOI.ListOfConstraintIndices.

Implementation notes

• There is a default fallback, so you need only implement this for the constraint types returned by
added_constraint_types.

source

MathOptInterface.Bridges.needs_final_touch – Function.

needs_final_touch(bridge::AbstractBridge)::Bool

Return whether final_touch is implemented by bridge.

source

MathOptInterface.Bridges.final_touch – Function.

final_touch(bridge::AbstractBridge, model::MOI.ModelLike)::Nothing

A function that is called immediately prior to MOI.optimize! to allow bridges tomodify their reformulations
with respect to other variables and constraints in model.

For example, if the correctness of bridge depends on the bounds of a variable or the fact that variables
are integer, then the bridge can implement final_touch to check assumptions immediately before a call
to MOI.optimize!.

If you implement this method, you must also implement needs_final_touch.

source

MathOptInterface.Bridges.bridging_cost – Function.

bridging_cost(b::AbstractBridgeOptimizer, S::Type{<:MOI.AbstractSet}})

Return the cost of bridging variables constrained in S on creation, is_bridged(b, S) is assumed to be
true.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/bridge.jl#L70-L82
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/bridge.jl#L85-L97
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/bridge.jl#L266-L270
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/bridge.jl#L273-L287
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bridging_cost(
b::AbstractBridgeOptimizer,
F::Type{<:MOI.AbstractFunction},
S::Type{<:MOI.AbstractSet},

)

Return the cost of bridging F-in-S constraints.

is_bridged(b, S) is assumed to be true.

source

MathOptInterface.Bridges.runtests – Function.

runtests(
Bridge::Type{<:AbstractBridge},
input_fn::Function,
output_fn::Function;
variable_start = 1.2,
constraint_start = 1.2,
eltype = Float64,
cannot_unbridge::Bool = false,

)

Run a series of tests that check the correctness of Bridge.

input_fn and output_fn are functions such that input_fn(model) and output_fn(model) load the cor-
responding model into model.

Set cannot_unbridge to true if the bridge transformation is not invertible. If Bridge is a variable bridge
this allows Variable.unbridged_map to returns nothing so that the tests allow errors that can be raised
due to this. If Bridge is a constraint bridge this allows the getter of MOI.ConstraintFunction and
MOI.ConstraintPrimalStart to throw MOI.GetAttributeNotAllowed.

Example

julia> MOI.Bridges.runtests(
MOI.Bridges.Constraint.ZeroOneBridge,
model -> MOI.add_constrained_variable(model, MOI.ZeroOne()),
model -> begin

x, _ = MOI.add_constrained_variable(model, MOI.Integer())
MOI.add_constraint(model, 1.0 * x, MOI.Interval(0.0, 1.0))

end,
)

Test Summary: | Pass Total Time
Bridges.runtests | 32 32 0.8s

source

runtests(
Bridge::Type{<:AbstractBridge},
input::String,
output::String;

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/bridge_optimizer.jl#L1017-L1032
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Bridges.jl#L252-L288
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variable_start = 1.2,
constraint_start = 1.2,
eltype = Float64,

)

Run a series of tests that check the correctness of Bridge.

input and output are models in the style of MOI.Utilities.loadfromstring!.

Example

julia> MOI.Bridges.runtests(
MOI.Bridges.Constraint.ZeroOneBridge,
"""
variables: x
x in ZeroOne()
""",
"""
variables: x
x in Integer()
1.0 * x in Interval(0.0, 1.0)
""",

)
Test Summary: | Pass Total Time
Bridges.runtests | 32 32 0.0s

source

Constraint bridge API

MathOptInterface.Bridges.Constraint.AbstractBridge – Type.

abstract type AbstractBridge <: MOI.Bridges.AbstractType

Subtype of MOI.Bridges.AbstractBridge for constraint bridges.

In addition to the required implementation described in MOI.Bridges.AbstractBridge, subtypes of AbstractBridge
must additionally implement:

• MOI.supports_constraint(::Type{<:AbstractBridge}, ::Type{<:MOI.AbstractFunction}, ::Type{<:MOI.AbstractSet})

• concrete_bridge_type

• bridge_constraint

source

MathOptInterface.Bridges.Constraint.SingleBridgeOptimizer – Type.

SingleBridgeOptimizer{BT<:AbstractBridge}(model::MOI.ModelLike)

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Bridges.jl#L409-L442
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridge.jl#L7-L19
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Return AbstractBridgeOptimizer that always bridges any objective function supported by the bridge BT.

This is in contrast with the MOI.Bridges.LazyBridgeOptimizer, which only bridges the objective function
if it is supported by the bridge BT and unsupported by model.

Example

julia> struct MyNewBridge{T} <: MOI.Bridges.Constraint.AbstractBridge end

julia> bridge = MOI.Bridges.Constraint.SingleBridgeOptimizer{MyNewBridge{Float64}}(
MOI.Utilities.Model{Float64}(),

)
MOIB.Constraint.SingleBridgeOptimizer{MyNewBridge{Float64}, MOIU.Model{Float64}}
├ ObjectiveSense: FEASIBILITY_SENSE
├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
├ NumberOfVariables: 0
└ NumberOfConstraints: 0

Implementation notes

All bridges should simplify the creation of SingleBridgeOptimizers by defining a constant that wraps the
bridge in a SingleBridgeOptimizer.

julia> const MyNewBridgeModel{T,OT<:MOI.ModelLike} =
MOI.Bridges.Constraint.SingleBridgeOptimizer{MyNewBridge{T},OT};

This enables users to create bridged models as follows:

julia> MyNewBridgeModel{Float64}(MOI.Utilities.Model{Float64}());

source

MathOptInterface.supports_constraint – Method.

MOI.supports_constraint(
BT::Type{<:AbstractBridge},
F::Type{<:MOI.AbstractFunction},
S::Type{<:MOI.AbstractSet},

)::Bool

Return a Bool indicating whether the bridges of type BT support bridging F-in-S constraints.

Implementation notes

• This method depends only on the type of the inputs, not the runtime values.

• There is a default fallback, so you need only implement this method for constraint types that the
bridge implements.

source

MathOptInterface.Bridges.Constraint.concrete_bridge_type – Function.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/single_bridge_optimizer.jl#L7-L44
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridge.jl#L22-L37
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concrete_bridge_type(
BT::Type{<:AbstractBridge},
F::Type{<:MOI.AbstractFunction},
S::Type{<:MOI.AbstractSet}

)::Type

Return the concrete type of the bridge supporting F-in-S constraints.

This function can only be called if MOI.supports_constraint(BT, F, S) is true.

Example

The SplitIntervalBridge bridges a MOI.VariableIndex-in-MOI.Interval constraint into a MOI.VariableIndex-
in-MOI.GreaterThan and a MOI.VariableIndex-in-MOI.LessThan constraint.

julia> MOI.Bridges.Constraint.concrete_bridge_type(
MOI.Bridges.Constraint.SplitIntervalBridge{Float64},
MOI.VariableIndex,
MOI.Interval{Float64},

)
MathOptInterface.Bridges.Constraint.SplitIntervalBridge{Float64, MathOptInterface.VariableIndex,

MathOptInterface.Interval{Float64}, MathOptInterface.GreaterThan{Float64},
MathOptInterface.LessThan{Float64}}

↪→

↪→

source

MathOptInterface.Bridges.Constraint.bridge_constraint – Function.

bridge_constraint(
BT::Type{<:AbstractBridge},
model::MOI.ModelLike,
func::AbstractFunction,
set::MOI.AbstractSet,

)::BT

Bridge the constraint func-in-set using bridge BT to model and returns a bridge object of type BT.

Implementation notes

• The bridge type BT should be a concrete type, that is, all the type parameters of the bridge must be
set.

source

MathOptInterface.Bridges.Constraint.add_all_bridges – Function.

add_all_bridges(model, ::Type{T}) where {T}

Add all bridges defined in the Bridges.Constraint submodule to model.

The coefficient type used is T.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridge.jl#L46-L72
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridge.jl#L89-L104
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/Constraint.jl#L26-L32
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MathOptInterface.Bridges.Constraint.conversion_cost – Function.

conversion_cost(
F::Type{<:MOI.AbstractFunction},
G::Type{<:MOI.AbstractFunction},

)::Float64

Return a Float64 returning the cost of converting any function of type G to a function of type F with
convert.

This cost is used to compute MOI.Bridges.bridging_cost.

The default cost is Inf, which means that MOI.Bridges.Constraint.FunctionConversionBridge should
not attempt the conversion.

source

Objective bridge API

MathOptInterface.Bridges.Objective.AbstractBridge – Type.

abstract type AbstractBridge <: MOI.Bridges.AbstractBridge end

Subtype of MOI.Bridges.AbstractBridge for objective bridges.

In addition to the required implementation described in MOI.Bridges.AbstractBridge, subtypes of AbstractBridge
must additionally implement:

• supports_objective_function

• concrete_bridge_type

• bridge_objective

• MOI.Bridges.set_objective_function_type

source

MathOptInterface.Bridges.Objective.SingleBridgeOptimizer – Type.

SingleBridgeOptimizer{BT<:AbstractBridge}(model::MOI.ModelLike)

Return AbstractBridgeOptimizer that always bridges any objective function supported by the bridge BT.

This is in contrast with the MOI.Bridges.LazyBridgeOptimizer, which only bridges the objective function
if it is supported by the bridge BT and unsupported by model.

Example

julia> struct MyNewBridge{T} <: MOI.Bridges.Objective.AbstractBridge end

julia> bridge = MOI.Bridges.Objective.SingleBridgeOptimizer{MyNewBridge{Float64}}(
MOI.Utilities.Model{Float64}(),

);

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Constraint/bridges/AbstractFunctionConversionBridge.jl#L221-L235
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Objective/bridge.jl#L7-L20
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Implementation notes

All bridges should simplify the creation of SingleBridgeOptimizers by defining a constant that wraps the
bridge in a SingleBridgeOptimizer.

julia> const MyNewBridgeModel{T,OT<:MOI.ModelLike} =
MOI.Bridges.Objective.SingleBridgeOptimizer{MyNewBridge{T},OT};

This enables users to create bridged models as follows:

julia> MyNewBridgeModel{Float64}(MOI.Utilities.Model{Float64}());

source

MathOptInterface.Bridges.Objective.supports_objective_function – Function.

supports_objective_function(
BT::Type{<:MOI.Bridges.Objective.AbstractBridge},
F::Type{<:MOI.AbstractFunction},

)::Bool

Return a Bool indicating whether the bridges of type BT support bridging objective functions of type F.

Implementation notes

• This method depends only on the type of the inputs, not the runtime values.
• There is a default fallback, so you need only implement this method For objective functions that the
bridge implements.

source

MathOptInterface.Bridges.set_objective_function_type – Function.

set_objective_function_type(
BT::Type{<:Objective.AbstractBridge},

)::Type{<:MOI.AbstractFunction}

Return the type of objective function that bridges of concrete type BT set.

Implementation notes

• This method depends only on the type of the bridge, not the runtime value.

Example

julia> MOI.Bridges.set_objective_function_type(
MOI.Bridges.Objective.FunctionizeBridge{Float64},

)
MathOptInterface.ScalarAffineFunction{Float64}

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Objective/single_bridge_optimizer.jl#L7-L39
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Objective/bridge.jl#L23-L37
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/bridge.jl#L243-L263
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MathOptInterface.Bridges.Objective.concrete_bridge_type – Function.

concrete_bridge_type(
BT::Type{<:MOI.Bridges.Objective.AbstractBridge},
F::Type{<:MOI.AbstractFunction},

)::Type

Return the concrete type of the bridge supporting objective functions of type F.

This function can only be called if MOI.supports_objective_function(BT, F) is true.

source

MathOptInterface.Bridges.Objective.bridge_objective – Function.

bridge_objective(
BT::Type{<:MOI.Bridges.Objective.AbstractBridge},
model::MOI.ModelLike,
func::MOI.AbstractFunction,

)::BT

Bridge the objective function func using bridge BT to model and returns a bridge object of type BT.

Implementation notes

• The bridge type BT must be a concrete type, that is, all the type parameters of the bridge must be
set.

source

MathOptInterface.Bridges.Objective.add_all_bridges – Function.

add_all_bridges(model, ::Type{T}) where {T}

Add all bridges defined in the Bridges.Objective submodule to model.

The coefficient type used is T.

source

Variable bridge API

MathOptInterface.Bridges.Variable.AbstractBridge – Type.

abstract type AbstractBridge <: MOI.Bridges.AbstractBridge end

Subtype of MOI.Bridges.AbstractBridge for variable bridges.

In addition to the required implementation described in MOI.Bridges.AbstractBridge, subtypes of AbstractBridge
must additionally implement:

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Objective/bridge.jl#L45-L56
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Objective/bridge.jl#L71-L85
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Objective/Objective.jl#L21-L27


CHAPTER 37. SUBMODULES 1280

• supports_constrained_variable

• concrete_bridge_type

• bridge_constrained_variable

source

MathOptInterface.Bridges.Variable.SingleBridgeOptimizer – Type.

SingleBridgeOptimizer{BT<:AbstractBridge}(model::MOI.ModelLike)

Return MOI.Bridges.AbstractBridgeOptimizer that always bridges any variables constrained on cre-
ation supported by the bridge BT.

This is in contrast with the MOI.Bridges.LazyBridgeOptimizer, which only bridges the variables con-
strained on creation if they are supported by the bridge BT and unsupported by model.

Warning

Two SingleBridgeOptimizers cannot be used together as both of them assume that
the underlying model only returns variable indices with nonnegative values. Use
MOI.Bridges.LazyBridgeOptimizer instead.

Example

julia> struct MyNewBridge{T} <: MOI.Bridges.Variable.AbstractBridge end

julia> bridge = MOI.Bridges.Variable.SingleBridgeOptimizer{MyNewBridge{Float64}}(
MOI.Utilities.Model{Float64}(),

);

Implementation notes

All bridges should simplify the creation of SingleBridgeOptimizers by defining a constant that wraps the
bridge in a SingleBridgeOptimizer.

julia> const MyNewBridgeModel{T,OT<:MOI.ModelLike} =
MOI.Bridges.Variable.SingleBridgeOptimizer{MyNewBridge{T},OT};

This enables users to create bridged models as follows:

julia> MyNewBridgeModel{Float64}(MOI.Utilities.Model{Float64}());

source

MathOptInterface.Bridges.Variable.supports_constrained_variable – Function.

supports_constrained_variable(
BT::Type{<:AbstractBridge},
S::Type{<:MOI.AbstractSet},

)::Bool

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Variable/bridge.jl#L7-L19
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Variable/single_bridge_optimizer.jl#L7-L44
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Return a Bool indicating whether the bridges of type BT support bridging constrained variables in S. That
is, it returns true if the bridge of type BT converts constrained variables of type S into a form supported
by the solver.

Implementation notes

• This method depends only on the type of the bridge and set, not the runtime values.

• There is a default fallback, so you need only implement this method for sets that the bridge imple-
ments.

Example

julia> MOI.Bridges.Variable.supports_constrained_variable(
MOI.Bridges.Variable.NonposToNonnegBridge{Float64},
MOI.Nonpositives,

)
true

julia> MOI.Bridges.Variable.supports_constrained_variable(
MOI.Bridges.Variable.NonposToNonnegBridge{Float64},
MOI.Nonnegatives,

)
false

source

MathOptInterface.Bridges.Variable.concrete_bridge_type – Function.

concrete_bridge_type(
BT::Type{<:AbstractBridge},
S::Type{<:MOI.AbstractSet},

)::Type

Return the concrete type of the bridge supporting variables in S constraints.

This function can only be called if MOI.supports_constrained_variable(BT, S) is true.

Example

As a variable in MOI.GreaterThan is bridged into variables in MOI.Nonnegatives by the VectorizeBridge:

julia> MOI.Bridges.Variable.concrete_bridge_type(
MOI.Bridges.Variable.VectorizeBridge{Float64},
MOI.GreaterThan{Float64},

)
MathOptInterface.Bridges.Variable.VectorizeBridge{Float64, MathOptInterface.Nonnegatives}

source

MathOptInterface.Bridges.Variable.bridge_constrained_variable – Function.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Variable/bridge.jl#L22-L55
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Variable/bridge.jl#L63-L87
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bridge_constrained_variable(
BT::Type{<:AbstractBridge},
model::MOI.ModelLike,
set::MOI.AbstractSet,

)::BT

Bridge the constrained variable in set using bridge BT to model and returns a bridge object of type BT.

Implementation notes

• The bridge type BT must be a concrete type, that is, all the type parameters of the bridge must be
set.

source

MathOptInterface.Bridges.Variable.add_all_bridges – Function.

add_all_bridges(model, ::Type{T}) where {T}

Add all bridges defined in the Bridges.Variable submodule to model.

The coefficient type used is T.

source

MathOptInterface.Bridges.Variable.unbridged_map – Function.

unbridged_map(
bridge::MOI.Bridges.Variable.AbstractBridge,
vi::MOI.VariableIndex,

)

For a bridged variable in a scalar set, return a tuple of pairs mapping the variables created by the bridge
to an affine expression in terms of the bridged variable vi.

unbridged_map(
bridge::MOI.Bridges.Variable.AbstractBridge,
vis::Vector{MOI.VariableIndex},

)

For a bridged variable in a vector set, return a tuple of pairs mapping the variables created by the bridge
to an affine expression in terms of the bridged variable vis. If this method is not implemented, it falls back
to calling the following method for every variable of vis.

unbridged_map(
bridge::MOI.Bridges.Variable.AbstractBridge,
vi::MOI.VariableIndex,
i::MOI.Bridges.IndexInVector,

)

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Variable/bridge.jl#L97-L111
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Variable/Variable.jl#L22-L28
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For a bridged variable in a vector set, return a tuple of pairs mapping the variables created by the bridge
to an affine expression in terms of the bridged variable vi corresponding to the ith variable of the vector.

If there is no way to recover the expression in terms of the bridged variable(s) vi(s), return nothing. See
ZerosBridge for an example of bridge returning nothing.

source

AbstractBridgeOptimizer API

MathOptInterface.Bridges.AbstractBridgeOptimizer – Type.

abstract type AbstractBridgeOptimizer <: MOI.AbstractOptimizer end

An abstract type that implements generic functions for bridges.

Implementation notes

By convention, the inner optimizer should be stored in a model field. If not, the optimizer must implement
MOI.optimize!.

source

MathOptInterface.Bridges.bridged_variable_function – Function.

bridged_variable_function(
b::AbstractBridgeOptimizer,
vi::MOI.VariableIndex,

)

Return a MOI.AbstractScalarFunction of variables of b.model that equals vi. That is, if the variable vi
is bridged, it returns its expression in terms of the variables of b.model. Otherwise, it returns vi.

source

MathOptInterface.Bridges.unbridged_variable_function – Function.

unbridged_variable_function(
b::AbstractBridgeOptimizer,
vi::MOI.VariableIndex,

)

Return a MOI.AbstractScalarFunction of variables of b that equals vi. That is, if the variable vi is an
internal variable of b.model created by a bridge but not visible to the user, it returns its expression in terms
of the variables of bridged variables. Otherwise, it returns vi.

source

MathOptInterface.Bridges.bridged_function – Function.

bridged_function(b::AbstractBridgeOptimizer, value)::typeof(value)

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Variable/bridge.jl#L163-L200
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/bridge_optimizer.jl#L7-L16
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/bridge_optimizer.jl#L2242-L2252
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/bridge_optimizer.jl#L2301-L2311
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Substitute any bridged MOI.VariableIndex in value by an equivalent expression in terms of variables of
b.model.

source

MathOptInterface.Bridges.supports_constraint_bridges – Function.

supports_constraint_bridges(b::AbstractBridgeOptimizer)::Bool

Return a Bool indicating if b supports MOI.Bridges.Constraint.AbstractBridge.

source

MathOptInterface.Bridges.recursive_model – Function.

recursive_model(b::AbstractBridgeOptimizer)

If a variable, constraint, or objective is bridged, return the context of the inner variables. For most opti-
mizers, this should be b.model.

source

MathOptInterface.Bridges.FirstBridge – Type.

struct FirstBridge <: MOI.AbstractConstraintAttribute end

Returns the first bridge used to bridge the constraint.

Warning

The indices of the bridge correspond to internal indices and may not correspond to indices of the
model this attribute is got from.

source

LazyBridgeOptimizer API

MathOptInterface.Bridges.LazyBridgeOptimizer – Type.

LazyBridgeOptimizer(model::MOI.ModelLike)

The LazyBridgeOptimizer is a bridge optimizer that supports multiple bridges, and only bridges things
which are not supported by the internal model.

Internally, the LazyBridgeOptimizer solves a shortest hyper-path problem to determine which bridges to
use.

In general, you should use full_bridge_optimizer instead of this constructor because full_bridge_optimizer
automatically adds a large number of supported bridges.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/bridge_optimizer.jl#L2270-L2275
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/bridge_optimizer.jl#L29-L34
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/bridge_optimizer.jl#L21-L26
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/bridge.jl#L327-L335
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See also: add_bridge, remove_bridge, has_bridge and full_bridge_optimizer.

Example

julia> model = MOI.Bridges.LazyBridgeOptimizer(MOI.Utilities.Model{Float64}());

julia> MOI.Bridges.add_bridge(model, MOI.Bridges.Variable.FreeBridge{Float64})

julia> MOI.Bridges.has_bridge(model, MOI.Bridges.Variable.FreeBridge{Float64})
true

source

MathOptInterface.Bridges.full_bridge_optimizer – Function.

full_bridge_optimizer(model::MOI.ModelLike, ::Type{T}) where {T}

Returns a LazyBridgeOptimizer bridging model for every bridge defined in this package (see below
for the few exceptions) and for the coefficient type T, as well as the bridges in the list returned by the
ListOfNonstandardBridges attribute.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> bridged_model = MOI.Bridges.full_bridge_optimizer(model, Float64);

Exceptions

The following bridges are not added by full_bridge_optimizer, except if they are in the list returned by
the ListOfNonstandardBridges attribute:

• Constraint.SOCtoNonConvexQuadBridge

• Constraint.RSOCtoNonConvexQuadBridge](@ref)

• Constraint.SOCtoPSDBridge

• If T is not a subtype of AbstractFloat, subtypes of Constraint.AbstractToIntervalBridge

– Constraint.GreaterToIntervalBridge

– Constraint.LessToIntervalBridge)

See the docstring of the each bridge for the reason they are not added.

source

MathOptInterface.Bridges.ListOfNonstandardBridges – Type.

ListOfNonstandardBridges{T}() <: MOI.AbstractOptimizerAttribute

Any optimizer can be wrapped in a LazyBridgeOptimizer using full_bridge_optimizer. However, by
default LazyBridgeOptimizer uses a limited set of bridges that are:

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/lazy_bridge_optimizer.jl#L9-L35
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Bridges.jl#L34-L64
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1. implemented in MOI.Bridges

2. generally applicable for all optimizers.

For some optimizers however, it is useful to add additional bridges, such as those that are implemented
in external packages (for example, within the solver package itself) or only apply in certain circumstances
(for example, Constraint.SOCtoNonConvexQuadBridge).

Such optimizers should implement the ListOfNonstandardBridges attribute to return a vector of bridge
types that are added by full_bridge_optimizer in addition to the list of default bridges.

Note that optimizers implementing ListOfNonstandardBridgesmay require package-specific functions or
sets to be used if the non-standard bridges are not added. Therefore, you are recommended to use model =
MOI.instantiate(Package.Optimizer; with_bridge_type = T) instead of model = MOI.instantiate(Package.Optimizer).
See MOI.instantiate.

Example

An optimizer using a non-default bridge in MOI.Bridges

Solvers supporting MOI.ScalarQuadraticFunction can support MOI.SecondOrderCone and MOI.RotatedSecondOrderCone
by defining:

function MOI.get(::MyQuadraticOptimizer, ::ListOfNonstandardBridges{Float64})
return Type[

MOI.Bridges.Constraint.SOCtoNonConvexQuadBridge{Float64},
MOI.Bridges.Constraint.RSOCtoNonConvexQuadBridge{Float64},

]
end

An optimizer defining an internal bridge

Suppose an optimizer can exploit specific structure of a constraint, for example, it can exploit the structure
of the matrix A in the linear system of equations A * x = b.

The optimizer can define the function:

struct MatrixAffineFunction{T} <: MOI.AbstractVectorFunction
A::SomeStructuredMatrixType{T}
b::Vector{T}

end

and then a bridge

struct MatrixAffineFunctionBridge{T} <: MOI.Constraint.AbstractBridge
# ...

end
# ...

from VectorAffineFunction{T} to the MatrixAffineFunction. Finally, it defines:

function MOI.get(::Optimizer{T}, ::ListOfNonstandardBridges{T}) where {T}
return Type[MatrixAffineFunctionBridge{T}]

end
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source

MathOptInterface.Bridges.add_bridge – Function.

add_bridge(b::LazyBridgeOptimizer, BT::Type{<:AbstractBridge})

Enable the use of the bridges of type BT by b.

source

MathOptInterface.Bridges.remove_bridge – Function.

remove_bridge(b::LazyBridgeOptimizer, BT::Type{<:AbstractBridge})

Disable the use of the bridges of type BT by b.

source

MathOptInterface.Bridges.has_bridge – Function.

has_bridge(b::LazyBridgeOptimizer, BT::Type{<:AbstractBridge})

Return a Bool indicating whether the bridges of type BT are used by b.

source

MathOptInterface.Bridges.print_active_bridges – Function.

print_active_bridges([io::IO=stdout,] b::MOI.Bridges.LazyBridgeOptimizer)

Print the set of bridges that are active in the model b.

source

print_active_bridges(
[io::IO=stdout,]
b::MOI.Bridges.LazyBridgeOptimizer,
F::Type{<:MOI.AbstractFunction}

)

Print the set of bridges required for an objective function of type F.

source

print_active_bridges(
[io::IO=stdout,]
b::MOI.Bridges.LazyBridgeOptimizer,
F::Type{<:MOI.AbstractFunction},
S::Type{<:MOI.AbstractSet},

)

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/Bridges.jl#L76-L145
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/lazy_bridge_optimizer.jl#L393-L397
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/lazy_bridge_optimizer.jl#L406-L410
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/lazy_bridge_optimizer.jl#L425-L429
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/debug.jl#L538-L542
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/debug.jl#L580-L588
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Print the set of bridges required for a constraint of type F-in-S.

source

print_active_bridges(
[io::IO=stdout,]
b::MOI.Bridges.LazyBridgeOptimizer,
S::Type{<:MOI.AbstractSet}

)

Print the set of bridges required for a variable constrained to set S.

source

MathOptInterface.Bridges.print_graph – Function.

print_graph([io::IO = stdout,] b::LazyBridgeOptimizer)

Print the hyper-graph containing all variable, constraint, and objective types that could be obtained by
bridging the variables, constraints, and objectives that are present in the model by all the bridges added
to b.

Each node in the hyper-graph corresponds to a variable, constraint, or objective type.

• Variable nodes are indicated by [ ]

• Constraint nodes are indicated by ( )

• Objective nodes are indicated by | |

The number inside each pair of brackets is an index of the node in the hyper-graph.

Note that this hyper-graph is the full list of possible transformations. When the bridged model is created,
we select the shortest hyper-path from this graph, so many nodes may be un-used.

To see which nodes are used, call print_active_bridges.

For more information, see Legat, B., Dowson, O., Garcia, J., and Lubin, M. (2020). "MathOptInterface: a
data structure for mathematical optimization problems." URL

source

MathOptInterface.Bridges.debug_supports_constraint – Function.

debug_supports_constraint(
b::LazyBridgeOptimizer,
F::Type{<:MOI.AbstractFunction},
S::Type{<:MOI.AbstractSet};
io::IO = Base.stdout,

)

Prints to io explanations for the value of MOI.supports_constraint with the same arguments.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/debug.jl#L624-L633
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/debug.jl#L686-L694
https://arXiv.org/abs/2002.03447
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/debug.jl#L79-L105
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/debug.jl#L479-L489
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MathOptInterface.Bridges.debug_supports – Function.

debug_supports(
b::LazyBridgeOptimizer,
::MOI.ObjectiveFunction{F};
io::IO = Base.stdout,

) where F

Prints to io explanations for the value of MOI.supports with the same arguments.

source

SetMap API

MathOptInterface.Bridges.MapNotInvertible – Type.

struct MapNotInvertible <: Exception
message::String

end

An error thrown by inverse_map_function or inverse_adjoint_map_function indicating that the linear
map A defined in Variable.SetMapBridge and Constraint.SetMapBridge is not invertible.

source

MathOptInterface.Bridges.map_set – Function.

map_set(bridge::MOI.Bridges.AbstractBridge, set)
map_set(::Type{BT}, set) where {BT}

Return the image of set through the linearmap A defined in Variable.SetMapBridge and Constraint.SetMapBridge.

This function is used for bridging the constraint and setting the MOI.ConstraintSet.

source

MathOptInterface.Bridges.inverse_map_set – Function.

inverse_map_set(bridge::MOI.Bridges.AbstractBridge, set)
inverse_map_set(::Type{BT}, set) where {BT}

Return the preimage of set through the linearmap A defined in Variable.SetMapBridge and Constraint.SetMapBridge.

This function is used for getting the MOI.ConstraintSet.

The method can alternatively be defined on the bridge type. This legacy interface is kept for backward
compatibility.

source

MathOptInterface.Bridges.map_function – Function.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/debug.jl#L519-L528
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/set_map.jl#L7-L16
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/set_map.jl#L21-L30
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/set_map.jl#L33-L44
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map_function(bridge::MOI.Bridges.AbstractBridge, func)
map_function(::Type{BT}, func) where {BT}

Return the image of func through the linearmap A defined in Variable.SetMapBridge and Constraint.SetMapBridge.

This function is used for getting the MOI.ConstraintPrimal of variable bridges. For constraint bridges, this
is used for bridging the constraint, setting the MOI.ConstraintFunction and MOI.ConstraintPrimalStart
and modifying the function with MOI.modify.

The default implementation of Constraint.bridge_constraint uses map_function with the bridge type
so if this function is defined on the bridge type, Constraint.bridge_constraint does not need to be
implemented.

source

map_function(::Type{BT}, func, i::IndexInVector) where {BT}

Return the scalar function at the ith index of the vector function that would be returned by map_function(BT,
func) except that it may compute the ith element. This is used by bridged_function and for getting the
MOI.VariablePrimal and MOI.VariablePrimalStart of variable bridges.

source

MathOptInterface.Bridges.inverse_map_function – Function.

inverse_map_function(bridge::MOI.Bridges.AbstractBridge, func)
inverse_map_function(::Type{BT}, func) where {BT}

Return the image of func through the inverse of the linear map A defined in Variable.SetMapBridge and
Constraint.SetMapBridge.

This function is used by Variable.unbridged_map and for setting the MOI.VariablePrimalStart of vari-
able bridges and for getting the MOI.ConstraintFunction, the MOI.ConstraintPrimal and the MOI.ConstraintPrimalStart
of constraint bridges.

If the linear map A is not invertible, the error MapNotInvertible is thrown.

The method can alternatively be defined on the bridge type. This legacy interface is kept for backward
compatibility.

source

MathOptInterface.Bridges.adjoint_map_function – Function.

adjoint_map_function(bridge::MOI.Bridges.AbstractBridge, func)
adjoint_map_function(::Type{BT}, func) where {BT}

Return the image of func through the adjoint of the linear map A defined in Variable.SetMapBridge and
Constraint.SetMapBridge.

This function is used for getting the MOI.ConstraintDual and MOI.ConstraintDualStart of constraint
bridges.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/set_map.jl#L49-L65
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/set_map.jl#L70-L78
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/set_map.jl#L87-L104
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The method can alternatively be defined on the bridge type. This legacy interface is kept for backward
compatibility.

source

MathOptInterface.Bridges.inverse_adjoint_map_function – Function.

inverse_adjoint_map_function(bridge::MOI.Bridges.AbstractBridge, func)
inverse_adjoint_map_function(::Type{BT}, func) where {BT}

Return the image of func through the inverse of the adjoint of the linearmap A defined in Variable.SetMapBridge
and Constraint.SetMapBridge.

This function is used for getting the MOI.ConstraintDual of variable bridges and setting the MOI.ConstraintDualStart
of constraint bridges.

If the linear map A is not invertible, the error MapNotInvertible is thrown.

The method can alternatively be defined on the bridge type. This legacy interface is kept for backward
compatibility.

source

Bridging graph API

MathOptInterface.Bridges.Graph – Type.

Graph()

A type-stable datastructure for computing the shortest hyperpath problem.

Nodes

There are three types of nodes in the graph:

• VariableNode

• ConstraintNode

• ObjectiveNode

Add nodes to the graph using add_node.

Edges

There are two types of edges in the graph:

• Edge

• ObjectiveEdge

Add edges to the graph using add_edge.

For the ability to add a variable constrained on creation as a free variable followed by a constraint, use
set_variable_constraint_node.

Optimal hyper-edges

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/set_map.jl#L109-L121
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/set_map.jl#L126-L141
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Use bridge_index to compute the minimum-cost bridge leaving a node.

Note that bridge_index lazy runs a Bellman-Ford algorithm to compute the set of minimum cost edges.
Thus, the first call to bridge_index after adding new nodes or edges will take longer than subsequent
calls.

source

MathOptInterface.Bridges.VariableNode – Type.

VariableNode(index::Int)

A node in Graph representing a variable constrained on creation.

source

MathOptInterface.Bridges.ConstraintNode – Type.

ConstraintNode(index::Int)

A node in Graph representing a constraint.

source

MathOptInterface.Bridges.ObjectiveNode – Type.

ObjectiveNode(index::Int)

A node in Graph representing an objective function.

source

MathOptInterface.Bridges.Edge – Type.

Edge(
bridge_index::Int,
added_variables::Vector{VariableNode},
added_constraints::Vector{ConstraintNode},
cost::Float64 = 1.0,

)

Return a new datastructure representing an edge in Graph that starts at a VariableNode or a ConstraintNode.

source

MathOptInterface.Bridges.ObjectiveEdge – Type.

ObjectiveEdge(
bridge_index::Int,
added_variables::Vector{VariableNode},
added_constraints::Vector{ConstraintNode},

)

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/graph.jl#L102-L136
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/graph.jl#L12-L16
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/graph.jl#L21-L25
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/graph.jl#L30-L34
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/graph.jl#L41-L51
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Return a new datastructure representing an edge in Graph that starts at an ObjectiveNode.

source

MathOptInterface.Bridges.add_node – Function.

add_node(graph::Graph, ::Type{VariableNode})::VariableNode
add_node(graph::Graph, ::Type{ConstraintNode})::ConstraintNode
add_node(graph::Graph, ::Type{ObjectiveNode})::ObjectiveNode

Add a new node to graph.

source

MathOptInterface.Bridges.add_edge – Function.

add_edge(graph::Graph, node::VariableNode, edge::Edge)::Nothing
add_edge(graph::Graph, node::ConstraintNode, edge::Edge)::Nothing
add_edge(graph::Graph, node::ObjectiveNode, edge::ObjectiveEdge)::Nothing

Add edge to graph, where edge starts at node and connects to the nodes defined in edge.

source

MathOptInterface.Bridges.set_variable_constraint_node – Function.

set_variable_constraint_node(
graph::Graph,
variable_node::VariableNode,
constraint_node::ConstraintNode,
cost::Int,

)

As an alternative to variable_node, add a virtual edge to graph that represents adding a free variable,
followed by a constraint of type constraint_node, with bridging cost cost.

Why is this needed?

Variables can either be added as a variable constrained on creation, or as a free variable which then has
a constraint added to it.

source

MathOptInterface.Bridges.bridge_index – Function.

bridge_index(graph::Graph, node::VariableNode)::Int
bridge_index(graph::Graph, node::ConstraintNode)::Int
bridge_index(graph::Graph, node::ObjectiveNode)::Int

Return the optimal index of the bridge to chose from node.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/graph.jl#L68-L77
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/graph.jl#L238-L244
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/graph.jl#L215-L222
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/graph.jl#L270-L286
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/graph.jl#L303-L309
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MathOptInterface.Bridges.is_variable_edge_best – Function.

is_variable_edge_best(graph::Graph, node::VariableNode)::Bool

Return a Bool indicating whether node should be added as a variable constrained on creation, or as a free
variable followed by a constraint.

source

37.3 FileFormats

Overview

The FileFormats submodule

The FileFormats module provides functions for reading and writing MOI models using write_to_file and
read_from_file.

Supported file types

Youmust read andwrite files to a FileFormats.Model object. Specific the file-type by passing a FileFormats.FileFormat
enum. For example:

The Conic Benchmark Format

julia> model = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_CBF)
MOI.FileFormats.CBF.Model
├ ObjectiveSense: FEASIBILITY_SENSE
├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
├ NumberOfVariables: 0
└ NumberOfConstraints: 0

The LP file format

julia> model = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_LP)
MOI.FileFormats.LP.Model
├ ObjectiveSense: FEASIBILITY_SENSE
├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
├ NumberOfVariables: 0
└ NumberOfConstraints: 0

The MathOptFormat file format

julia> model = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_MOF)
MOI.FileFormats.MOF.Model
├ ObjectiveSense: FEASIBILITY_SENSE
├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
├ NumberOfVariables: 0
└ NumberOfConstraints: 0

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Bridges/graph.jl#L325-L330
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The MPS file format

julia> model = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_MPS)
MOI.FileFormats.MPS.Model
├ ObjectiveSense: FEASIBILITY_SENSE
├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
├ NumberOfVariables: 0
└ NumberOfConstraints: 0

The NL file format

julia> model = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_NL)
MOI.FileFormats.NL.Model
├ ObjectiveSense: unknown
├ ObjectiveFunctionType: unknown
├ NumberOfVariables: unknown
└ NumberOfConstraints: unknown

The REW file format

julia> model = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_REW)
MOI.FileFormats.MPS.Model
├ ObjectiveSense: FEASIBILITY_SENSE
├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
├ NumberOfVariables: 0
└ NumberOfConstraints: 0

Note that the REW format is identical to the MPS file format, except that all names are replaced with generic
identifiers.

The SDPA file format

julia> model = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_SDPA)
MOI.FileFormats.SDPA.Model
├ ObjectiveSense: FEASIBILITY_SENSE
├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
├ NumberOfVariables: 0
└ NumberOfConstraints: 0

Write to file

To write a model src to a MathOptFormat file, use:

julia> src = MOI.Utilities.Model{Float64}();

julia> MOI.add_variable(src);

julia> dest = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_MOF);

https://jump.dev/MathOptFormat/
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julia> MOI.copy_to(dest, src)
MathOptInterface.Utilities.IndexMap with 1 entry:
MOI.VariableIndex(1) => MOI.VariableIndex(1)

julia> MOI.write_to_file(dest, "file.mof.json")

julia> print(read("file.mof.json", String))
{"name":"MathOptFormat

Model","version":{"major":1,"minor":7},"variables":[{"name":"x1"}],"objective":{"sense":"feasibility"},"constraints":[]}↪→

Read from file

To read a MathOptFormat file, use:

julia> dest = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_MOF);

julia> MOI.read_from_file(dest, "file.mof.json")

julia> MOI.get(dest, MOI.ListOfVariableIndices())
1-element Vector{MathOptInterface.VariableIndex}:
MOI.VariableIndex(1)

julia> rm("file.mof.json") # Clean up after ourselves.

Detecting the file-type automatically

Instead of the format keyword, you can also use the filename keyword argument to FileFormats.Model. This
will attempt to automatically guess the format from the file extension. For example:

julia> src = MOI.Utilities.Model{Float64}();

julia> dest = MOI.FileFormats.Model(filename = "file.cbf.gz");

julia> MOI.copy_to(dest, src)
MathOptInterface.Utilities.IndexMap()

julia> MOI.write_to_file(dest, "file.cbf.gz")

julia> src_2 = MOI.FileFormats.Model(filename = "file.cbf.gz");

julia> MOI.read_from_file(src_2, "file.cbf.gz")

julia> rm("file.cbf.gz") # Clean up after ourselves.

Note how the compression format (GZip) is also automatically detected from the filename.

Unsupported constraints

In some cases srcmay contain constraints that are not supported by the file format (for example, the CBF for-
mat supports integer variables but not binary). If so, copy src to a bridgedmodel using Bridges.full_bridge_optimizer:
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julia> src = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variable(src);

julia> MOI.add_constraint(src, x, MOI.ZeroOne());

julia> dest = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_CBF);

julia> bridged = MOI.Bridges.full_bridge_optimizer(dest, Float64);

julia> MOI.copy_to(bridged, src);

julia> MOI.write_to_file(dest, "my_model.cbf")

julia> rm("my_model.cbf") # Clean up after ourselves.

Note

Even after bridging, it may still not be possible to write the model to file because of unsupported
constraints (for example, PSD variables in the LP file format).

Read and write to io

In addition to write_to_file and read_from_file, you can read and write directly from IO streams using
Base.write and Base.read!:

julia> src = MOI.Utilities.Model{Float64}();

julia> dest = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_MPS);

julia> MOI.copy_to(dest, src)
MathOptInterface.Utilities.IndexMap()

julia> io = IOBuffer();

julia> write(io, dest)

julia> seekstart(io);

julia> src_2 = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_MPS);

julia> read!(io, src_2);

ScalarNonlinearFunction

By default, reading a .nl or .mof.json that contains nonlinear expressions will create an NLPBlock.

To instead read nonlinear expressions as ScalarNonlinearFunction, pass the use_nlp_block = false key-
word argument to the Model constructor:
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julia> model = MOI.FileFormats.Model(;
format = MOI.FileFormats.FORMAT_MOF,
use_nlp_block = false,

);

julia> model = MOI.FileFormats.Model(;
format = MOI.FileFormats.FORMAT_NL,
use_nlp_block = false,

);

Validating MOF files

MathOptFormat files are governed by a schema. Use JSONSchema.jl to check if a .mof.json file satisfies the
schema.

First, construct the schema object as follows:

julia> import JSON, JSONSchema

julia> schema = JSONSchema.Schema(JSON.parsefile(MOI.FileFormats.MOF.SCHEMA_PATH))
A JSONSchema

Then, check if a model file is valid using isvalid:

julia> good_model = JSON.parse("""
{
"version": {
"major": 1,
"minor": 5

},
"variables": [{"name": "x"}],
"objective": {"sense": "feasibility"},
"constraints": []

}
""");

julia> isvalid(schema, good_model)
true

If we construct an invalid file, for example by mis-typing name as NaMe, the validation fails:

julia> bad_model = JSON.parse("""
{
"version": {
"major": 1,
"minor": 5

},
"variables": [{"NaMe": "x"}],
"objective": {"sense": "feasibility"},
"constraints": []

}
""");

https://github.com/fredo-dedup/JSONSchema.jl
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julia> isvalid(schema, bad_model)
false

Use JSONSchema.validate to obtain more insight into why the validation failed:

julia> JSONSchema.validate(schema, bad_model)
Validation failed:
path: [variables][1]
instance: Dict{String, Any}("NaMe" => "x")
schema key: required
schema value: Any["name"]

API Reference

File Formats

Functions to help read and write MOI models to/from various file formats. See The FileFormats submodule for
more details.

MathOptInterface.FileFormats.Model – Function.

Model(;
format::FileFormat = FORMAT_AUTOMATIC,
filename::Union{Nothing, String} = nothing,
kwargs...

)

Returnmodel corresponding to the FileFormats.FileFormat format, or, if format == FORMAT_AUTOMATIC,
guess the format from filename.

The filename argument is only needed if format == FORMAT_AUTOMATIC.

kwargs are passed to the underlying model constructor.

source

MathOptInterface.FileFormats.FileFormat – Type.

FileFormat

List of accepted export formats.

Values

FORMAT_AUTOMATIC

Try to detect the file format based on the file name.

FORMAT_CBF

The Conic Benchmark format.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/FileFormats/FileFormats.jl#L80-L93
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See FileFormats.CBF.Model for more details.

FORMAT_LP

The LP file format.

See FileFormats.LP.Model for more details.

FORMAT_MOF

The MathOptFormat file format.

See FileFormats.MOF.Model for more details.

FORMAT_MPS

The MPS file format.

See FileFormats.MPS.Model for more details.

FORMAT_NL

The AMPL .nl file format.

See FileFormats.NL.Model for more details.

FORMAT_REW

The .rew file format, which is equivalent to theMPS format (FileFormats.FORMAT_MPS) with the generic_names
= true keyword argument set by default.

See FileFormats.MPS.Model for more details.

FORMAT_SDPA

The SemiDefinite Programming Algorithm format.

See FileFormats.SDPA.Model for more details.

source

MathOptInterface.FileFormats.FORMAT_AUTOMATIC – Constant.

FORMAT_AUTOMATIC::FileFormat

An instance of the FileFormat enum.

About

Try to detect the file format based on the file name.

source

MathOptInterface.FileFormats.FORMAT_CBF – Constant.

FORMAT_CBF::FileFormat

An instance of the FileFormat enum.

About

The Conic Benchmark format.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/FileFormats/FileFormats.jl#L23-L78
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/FileFormats/FileFormats.jl#L23-L32
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See FileFormats.CBF.Model for more details.

source

MathOptInterface.FileFormats.CBF.Model – Type.

Model()

Create an empty instance of FileFormats.CBF.Model.

source

MathOptInterface.FileFormats.FORMAT_LP – Constant.

FORMAT_LP::FileFormat

An instance of the FileFormat enum.

About

The LP file format.

See FileFormats.LP.Model for more details.

source

MathOptInterface.FileFormats.LP.Model – Type.

Model(; kwargs...)

Create an empty instance of FileFormats.LP.Model.

Keyword arguments are:

• maximum_length::Int=255: the maximum length for the name of a variable. lp_solve 5.0 allows
only 16 characters, while CPLEX 12.5+ allow 255.

• warn::Bool=false: print a warning when variables or constraints are renamed.

source

MathOptInterface.FileFormats.FORMAT_MOF – Constant.

FORMAT_MOF::FileFormat

An instance of the FileFormat enum.

About

The MathOptFormat file format.

See FileFormats.MOF.Model for more details.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/FileFormats/FileFormats.jl#L23-L34
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/FileFormats/CBF/CBF.jl#L57-L61
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/FileFormats/FileFormats.jl#L23-L34
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/FileFormats/LP/LP.jl#L83-L94
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/FileFormats/FileFormats.jl#L23-L34
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MathOptInterface.FileFormats.MOF.Model – Type.

Model(; kwargs...)

Create an empty instance of FileFormats.MOF.Model.

Keyword arguments are:

• print_compact::Bool=false: print the JSON file in a compact format without spaces or newlines.
• warn::Bool=false: print a warning when variables or constraints are renamed
• differentiation_backend::MOI.Nonlinear.AbstractAutomaticDifferentiation = MOI.Nonlinear.SparseReverseMode():
automatic differentiation backend to use when reading models with nonlinear constraints and objec-
tives.

• use_nlp_block::Bool=true: if true parse "ScalarNonlinearFunction" into an MOI.NLPBlock. If
false, "ScalarNonlinearFunction" are parsed as MOI.ScalarNonlinearFunction functions.

source

MathOptInterface.FileFormats.FORMAT_MPS – Constant.

FORMAT_MPS::FileFormat

An instance of the FileFormat enum.

About

The MPS file format.

See FileFormats.MPS.Model for more details.

source

MathOptInterface.FileFormats.MPS.Model – Type.

Model(; kwargs...)

Create an empty instance of FileFormats.MPS.Model.

Keyword arguments are:

• warn::Bool=false: print a warning when variables or constraints are renamed.
• print_objsense::Bool=false: print the OBJSENSE section when writing
• generic_names::Bool=false: strip all names in the model and replace them with the generic names

C$i and R$i for the i'th column and row respectively.
• quadratic_format::QuadraticFormat = kQuadraticFormatGurobi: specify the solver-specific ex-
tension usedwhenwriting the quadratic components of themodel. Options are kQuadraticFormatGurobi,
kQuadraticFormatCPLEX, and kQuadraticFormatMosek.

source

MathOptInterface.FileFormats.FORMAT_NL – Constant.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/FileFormats/MOF/MOF.jl#L126-L142
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/FileFormats/FileFormats.jl#L23-L34
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/FileFormats/MPS/MPS.jl#L124-L140
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FORMAT_NL::FileFormat

An instance of the FileFormat enum.

About

The AMPL .nl file format.

See FileFormats.NL.Model for more details.

source

MathOptInterface.FileFormats.NL.Model – Type.

Model(; use_nlp_block::Bool = true)

Create a new Optimizer object.

source

MathOptInterface.FileFormats.FORMAT_REW – Constant.

FORMAT_REW::FileFormat

An instance of the FileFormat enum.

About

The .rew file format, which is equivalent to theMPS format (FileFormats.FORMAT_MPS) with the generic_names
= true keyword argument set by default.

See FileFormats.MPS.Model for more details.

source

MathOptInterface.FileFormats.FORMAT_SDPA – Constant.

FORMAT_SDPA::FileFormat

An instance of the FileFormat enum.

About

The SemiDefinite Programming Algorithm format.

See FileFormats.SDPA.Model for more details.

source

MathOptInterface.FileFormats.SDPA.Model – Type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/FileFormats/FileFormats.jl#L23-L34
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/FileFormats/NL/NL.jl#L121-L125
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/FileFormats/FileFormats.jl#L23-L36
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/FileFormats/FileFormats.jl#L23-L34
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Model(; number_type::Type = Float64)

Create an empty instance of FileFormats.SDPA.Model{number_type}.

It is important to be aware that the SDPA file format is interpreted in geometric form and not standard
conic form. The standard conic form and geometric conic form are two dual standard forms for semidefinite
programs (SDPs). The geometric conic form of an SDP is as follows:

min
y∈Rm

bT y (37.1)

s.t.
m∑
i=1

Aiyi − C ∈ K (37.2)

where K is a cartesian product of nonnegative orthant and positive semidefinite matrices that align with
a block diagonal structure shared with the matrices A_i and C.

In other words, the geometric conic form contains free variables and affine constraints in either the nonneg-
ative orthant or the positive semidefinite cone. That is, in theMathOptInterface's terminology, MOI.VectorAffineFunction-
in-MOI.Nonnegatives and MOI.VectorAffineFunction-in-MOI.PositiveSemidefiniteConeTriangle con-
straints.

The corresponding standard conic form of the dual SDP is as follows:

max
X∈K

tr(CX) (37.3)

s.t. tr(AiX) = bi i = 1, . . . ,m. (37.4)

In other words, the standard conic form contains nonnegative and positive semidefinite variables with
equality constraints. That is, in theMathOptInterface's terminology, MOI.VectorOfVariables-in-MOI.Nonnegatives,
MOI.VectorOfVariables-in-MOI.PositiveSemidefiniteConeTriangle and MOI.ScalarAffineFunction-
in-MOI.EqualTo constraints.

If a model is in standard conic form, use Dualization.jl to transform it into the geometric conic form be-
fore writting it. Otherwise, the nonnegative (resp. positive semidefinite) variables will be bridged into free
variables with affine constraints constraining them to belong to the nonnegative orthant (resp. positive
semidefinite cone) by the MOI.Bridges.Constraint.VectorFunctionizeBridge. Moreover, equality con-
straints will be bridged into pairs of affine constraints in the nonnegative orthant by the MOI.Bridges.Constraint.SplitIntervalBridge
and then the MOI.Bridges.Constraint.VectorizeBridge.

If a solver is in standard conic form, use Dualization.jl to transform the model read into standard conic
form before copying it to the solver. Otherwise, the free variables will be bridged into pairs of variables in
the nonnegative orthant by the MOI.Bridges.Variable.FreeBridge and affine constraints will be bridged
into equality constraints by creating a slack variable by the MOI.Bridges.Constraint.VectorSlackBridge.

source

Other helpers

MathOptInterface.FileFormats.NL.SolFileResults – Type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/FileFormats/SDPA/SDPA.jl#L57-L124
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SolFileResults(
filename::String,
model::Model;
suffix_lower_bound_duals::Vector{String} =

["ipopt_zL_out", "lower_bound_duals"],
suffix_uuper_bound_duals::Vector{String} =

["ipopt_zU_out", "upper_bound_duals"],
)

Parse the .sol file filename created by solving model and return a SolFileResults struct.

The returned struct supports the MOI.get API for querying result attributes such as MOI.TerminationStatus,
MOI.VariablePrimal, and MOI.ConstraintDual.

source

SolFileResults(
raw_status::String,
termination_status::MOI.TerminationStatusCode,

)

Return a SolFileResults struct with MOI.RawStatusString set to raw_status, MOI.TerminationStatus
set to termination_status, and MOI.PrimalStatus and MOI.DualStatus set to NO_SOLUTION.

All other attributes are un-set.

source

37.4 Nonlinear

Overview

Nonlinear

The Nonlinear submodule contains data structures and functions for working with a nonlinear optimization
problem in the form of an expression graph. This page explains the API and describes the rationale behind its
design.

Standard form

Nonlinear programs (NLPs) are a class of optimization problems in which some of the constraints or the objective
function are nonlinear:

min
x∈Rn

f0(x) (37.5)

s.t.lj ≤ fj(x) ≤ uj j = 1 . . .m (37.6)

There may be additional constraints, as well as things like variable bounds and integrality restrictions, but we
do not consider them here because they are best dealt with by other components of MathOptInterface.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/FileFormats/NL/sol.jl#L21-L37
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/FileFormats/NL/sol.jl#L42-L53
https://en.wikipedia.org/wiki/Nonlinear_programming
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API overview

The core element of the Nonlinear submodule is Nonlinear.Model:

julia> const Nonlinear = MOI.Nonlinear;

julia> model = Nonlinear.Model()
A Nonlinear.Model with:
0 objectives
0 parameters
0 expressions
0 constraints

Nonlinear.Model is a mutable struct that stores all of the nonlinear information added to the model.

Decision variables

Decision variables are represented by VariableIndexes. The user is responsible for creating these using
MOI.VariableIndex(i), where i is the column associated with the variable.

Expressions

The input data structure is a Julia Expr. The input expressions can incorporate VariableIndexes, but these
must be interpolated into the expression with $:

julia> x = MOI.VariableIndex(1)
MOI.VariableIndex(1)

julia> input = :(1 + sin($x)^2)
:(1 + sin(MathOptInterface.VariableIndex(1)) ^ 2)

There are a number of restrictions on the input Expr:

• It cannot contain macros

• It cannot contain broadcasting

• It cannot contain splatting (except in limited situations)

• It cannot contain linear algebra, such as matrix-vector products

• It cannot contain generator expressions, including sum(i for i in S)

Given an input expression, add an expression using Nonlinear.add_expression:

julia> expr = Nonlinear.add_expression(model, input)
MathOptInterface.Nonlinear.ExpressionIndex(1)

The return value, expr, is a Nonlinear.ExpressionIndex that can then be interpolated into other input ex-
pressions.

Looking again at model, we see:
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julia> model
A Nonlinear.Model with:
0 objectives
0 parameters
1 expression
0 constraints

Parameters

In addition to constant literals like 1 or 1.23, you can create parameters. Parameters are placeholders whose
values can change before passing the expression to the solver. Create a parameter using Nonlinear.add_parameter,
which accepts a default value:

julia> p = Nonlinear.add_parameter(model, 1.23)
MathOptInterface.Nonlinear.ParameterIndex(1)

The return value, p, is a Nonlinear.ParameterIndex that can then be interpolated into other input expressions.

Looking again at model, we see:

julia> model
A Nonlinear.Model with:
0 objectives
1 parameter
1 expression
0 constraints

Update a parameter as follows:

julia> model[p]
1.23

julia> model[p] = 4.56
4.56

julia> model[p]
4.56

Objectives

Set a nonlinear objective using Nonlinear.set_objective:

julia> Nonlinear.set_objective(model, :($p + $expr + $x))

julia> model
A Nonlinear.Model with:
1 objective
1 parameter
1 expression
0 constraints
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Clear a nonlinear objective by passing nothing:

julia> Nonlinear.set_objective(model, nothing)

julia> model
A Nonlinear.Model with:
0 objectives
1 parameter
1 expression
0 constraints

But we'll re-add the objective for later:

julia> Nonlinear.set_objective(model, :($p + $expr + $x));

Constraints

Add a constraint using Nonlinear.add_constraint:

julia> c = Nonlinear.add_constraint(model, :(1 + sqrt($x)), MOI.LessThan(2.0))
MathOptInterface.Nonlinear.ConstraintIndex(1)

julia> model
A Nonlinear.Model with:
1 objective
1 parameter
1 expression
1 constraint

The return value, c, is a Nonlinear.ConstraintIndex that is a unique identifier for the constraint. Interval
constraints are also supported:

julia> c2 = Nonlinear.add_constraint(model, :(1 + sqrt($x)), MOI.Interval(-1.0, 2.0))
MathOptInterface.Nonlinear.ConstraintIndex(2)

julia> model
A Nonlinear.Model with:
1 objective
1 parameter
1 expression
2 constraints

Delete a constraint using Nonlinear.delete:

julia> Nonlinear.delete(model, c2)

julia> model
A Nonlinear.Model with:
1 objective
1 parameter
1 expression
1 constraint
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User-defined operators

By default, Nonlinear supports a wide range of univariate and multivariate operators. However, you can also
define your own operators by registering them.

Univariate operators

Register a univariate user-defined operator using Nonlinear.register_operator:

julia> f(x) = 1 + sin(x)^2
f (generic function with 1 method)

julia> Nonlinear.register_operator(model, :my_f, 1, f)

Now, you can use :my_f in expressions:

julia> new_expr = Nonlinear.add_expression(model, :(my_f($x + 1)))
MathOptInterface.Nonlinear.ExpressionIndex(2)

By default, Nonlinearwill compute first- and second-derivatives of the registered operator using ForwardDiff.jl.
Override this by passing functions which compute the respective derivative:

julia> f′(x) = 2 * sin(x) * cos(x)
f′ (generic function with 1 method)

julia> Nonlinear.register_operator(model, :my_f2, 1, f, f′)

or

julia> f′′(x) = 2 * (cos(x)^2 - sin(x)^2)
f′′ (generic function with 1 method)

julia> Nonlinear.register_operator(model, :my_f3, 1, f, f′, f′′)

Multivariate operators

Register a multivariate user-defined operator using Nonlinear.register_operator:

julia> g(x...) = x[1]^2 + x[1] * x[2] + x[2]^2
g (generic function with 1 method)

julia> Nonlinear.register_operator(model, :my_g, 2, g)

Now, you can use :my_g in expressions:

julia> new_expr = Nonlinear.add_expression(model, :(my_g($x + 1, $x)))
MathOptInterface.Nonlinear.ExpressionIndex(3)

https://github.com/JuliaDiff/ForwardDiff.jl


CHAPTER 37. SUBMODULES 1310

By default, Nonlinear will compute the gradient of the registered operator using ForwardDiff.jl. (Hessian
information is not supported.) Override this by passing a function to compute the gradient:

julia> function ∇g(ret, x...)
ret[1] = 2 * x[1] + x[2]
ret[2] = x[1] + 2 * x[2]
return

end
∇g (generic function with 1 method)

julia> Nonlinear.register_operator(model, :my_g2, 2, g, ∇g)

MathOptInterface

MathOptInterface communicates the nonlinear portion of an optimization problem to solvers using concrete
subtypes of AbstractNLPEvaluator, which implement the Nonlinear programming API.

Create an AbstractNLPEvaluator from Nonlinear.Model using Nonlinear.Evaluator.

Nonlinear.Evaluator requires an Nonlinear.AbstractAutomaticDifferentiation backend and an ordered
list of the variables that are included in the model.

There following backends are available to choose from within MOI, although other packages may add more
options by sub-typing Nonlinear.AbstractAutomaticDifferentiation:

• Nonlinear.ExprGraphOnly

• Nonlinear.SparseReverseMode.

julia> evaluator = Nonlinear.Evaluator(model, Nonlinear.ExprGraphOnly(), [x])
Nonlinear.Evaluator with available features:
* :ExprGraph

The functions of the Nonlinear programming API implemented by Nonlinear.Evaluator depends upon the
chosen Nonlinear.AbstractAutomaticDifferentiation backend.

The :ExprGraph feature means we can call objective_expr and constraint_expr to retrieve the expression
graph of the problem. However, we cannot call gradient terms such as eval_objective_gradient because
Nonlinear.ExprGraphOnly does not have the capability to differentiate a nonlinear expression.

If, instead, we pass Nonlinear.SparseReverseMode, then we get access to :Grad, the gradient of the objective
function, :Jac, the Jacobianmatrix of the constraints, :JacVec, the ability to compute Jacobian-vector products,
and :ExprGraph.

julia> evaluator = Nonlinear.Evaluator(
model,
Nonlinear.SparseReverseMode(),
[x],

)
Nonlinear.Evaluator with available features:
* :Grad
* :Jac
* :JacVec
* :ExprGraph

https://github.com/JuliaDiff/ForwardDiff.jl
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However, before using the evaluator, we need to call initialize:

julia> MOI.initialize(evaluator, [:Grad, :Jac, :JacVec, :ExprGraph])

Now we can call methods like eval_objective:

julia> x = [1.0]
1-element Vector{Float64}:
1.0

julia> MOI.eval_objective(evaluator, x)
7.268073418273571

and eval_objective_gradient:

julia> grad = [0.0]
1-element Vector{Float64}:
0.0

julia> MOI.eval_objective_gradient(evaluator, grad, x)

julia> grad
1-element Vector{Float64}:
1.909297426825682

Instead of passing Nonlinear.Evaluator directly to solvers, solvers query the NLPBlock attribute, which re-
turns an NLPBlockData. This object wraps an Nonlinear.Evaluator and includes other information such as
constraint bounds and whether the evaluator has a nonlinear objective. Create and set NLPBlockData as
follows:

julia> block = MOI.NLPBlockData(evaluator);

julia> model = MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}());

julia> MOI.set(model, MOI.NLPBlock(), block);

Warning

Only call NLPBlockData once you have finished modifying the problem in model.

Putting everything together, you can create a nonlinear optimization problem in MathOptInterface as follows:

import MathOptInterface as MOI

function build_model(
model::MOI.ModelLike;
backend::MOI.Nonlinear.AbstractAutomaticDifferentiation,

)
x = MOI.add_variable(model)
y = MOI.add_variable(model)
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MOI.set(model, MOI.ObjectiveSense(), MOI.MIN_SENSE)
nl_model = MOI.Nonlinear.Model()
MOI.Nonlinear.set_objective(nl_model, :($x^2 + $y^2))
evaluator = MOI.Nonlinear.Evaluator(nl_model, backend, [x, y])
MOI.set(model, MOI.NLPBlock(), MOI.NLPBlockData(evaluator))
return

end

# Replace `model` and `backend` with your optimizer and backend of choice.
model = MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}())
build_model(model; backend = MOI.Nonlinear.SparseReverseMode())

Expression-graph representation

Nonlinear.Model stores nonlinear expressions in Nonlinear.Expressions. This section explains the design
of the expression graph data structure in Nonlinear.Expression.

Given a nonlinear function like f(x) = sin(x)^2 + x, a conceptual aid for thinking about the graph represen-
tation of the expression is to convert it into Polish prefix notation:

f(x, y) = (+ (^ (sin x) 2) x)

This format identifies each operator (function), as well as a list of arguments. Operators can be univariate, like
sin, or multivariate, like +.

A common way of representing Polish prefix notation in code is as follows:

julia> x = MOI.VariableIndex(1);

julia> struct ExprNode
op::Symbol
children::Vector{Union{ExprNode,Float64,MOI.VariableIndex}}

end

julia> expr = ExprNode(:+, [ExprNode(:^, [ExprNode(:sin, [x]), 2.0]), x]);

This data structure follows our Polish prefix notation very closely, and we can easily identify the arguments
to an operator. However, it has a significant draw-back: each node in the graph requires a Vector, which is
heap-allocated and tracked by Julia's garbage collector (GC). For large models, we can expect to have millions
of nodes in the expression graph, so this overhead quickly becomes prohibitive for computation.

An alternative is to record the expression as a linear tape:

julia> expr = Any[:+, 2, :^, 2, :sin, 1, x, 2.0, x]
9-element Vector{Any}:
:+
2
:^
2
:sin
1
MOI.VariableIndex(1)

https://en.wikipedia.org/wiki/Polish_notation
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2.0
MOI.VariableIndex(1)

The Int after each operator Symbol specifies the number of arguments.

This data-structure is a single vector, which resolves our problem with the GC, but each element is the abstract
type, Any, and so any operations on it will lead to slower dynamic dispatch. It's also hard to identify the children
of each operation without reading the entire tape.

To summarize, representing expression graphs in Julia has the following challenges:

• Nodes in the expression graph should not contain a heap-allocated object

• All data-structures should be concretely typed

• It should be easy to identify the children of a node

Sketch of the design in Nonlinear

Nonlinear overcomes these problems by decomposing the data structure into a number of different concrete-
typed vectors.

First, we create vectors of the supported uni- and multivariate operators.

julia> const UNIVARIATE_OPERATORS = [:sin];

julia> const MULTIVARIATE_OPERATORS = [:+, :^];

In practice, there are many more supported operations than the ones listed here.

Second, we create an enum to represent the different types of nodes present in the expression graph:

julia> @enum(
NodeType,
NODE_CALL_MULTIVARIATE,
NODE_CALL_UNIVARIATE,
NODE_VARIABLE,
NODE_VALUE,

)

In practice, there are node types other than the ones listed here.

Third, we create two concretely typed structs as follows:

julia> struct Node
type::NodeType
parent::Int
index::Int

end

julia> struct Expression
nodes::Vector{Node}
values::Vector{Float64}

end
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For each node node in the .nodes field, if node.type is:

• NODE_CALL_MULTIVARIATE, we look up MULTIVARIATE_OPERATORS[node.index] to retrieve the operator

• NODE_CALL_UNIVARIATE, we look up UNIVARIATE_OPERATORS[node.index] to retrieve the operator

• NODE_VARIABLE, we create MOI.VariableIndex(node.index)

• NODE_VALUE, we look up values[node.index]

The .parent field of each node is the integer index of the parent node in .nodes. For the first node, the parent
is -1 by convention.

Therefore, we can represent our function as:

julia> expr = Expression(
[

Node(NODE_CALL_MULTIVARIATE, -1, 1),
Node(NODE_CALL_MULTIVARIATE, 1, 2),
Node(NODE_CALL_UNIVARIATE, 2, 1),
Node(NODE_VARIABLE, 3, 1),
Node(NODE_VALUE, 2, 1),
Node(NODE_VARIABLE, 1, 1),

],
[2.0],

);

The ordering of the nodes in the tape must satisfy two rules:

• The children of a node must appear after the parent. This means that the tape is ordered topologically,
so that a reverse pass of the nodes evaluates all children nodes before their parent

• The arguments for a CALL node are ordered in the tape based on the order in which they appear in the
function call.

Design goals

This is less readable than the other options, but does this data structure meet our design goals?

Instead of a heap-allocated object for each node, we only have two Vectors for each expression, nodes and
values, as well as two constant vectors for the OPERATORS. In addition, all fields are concretely typed, and
there are no Union or Any types.

For our third goal, it is not easy to identify the children of a node, but it is easy to identify the parent of any
node. Therefore, we can use Nonlinear.adjacency_matrix to compute a sparse matrix that maps parents to
their children.

The design in practice

In practice, Node and Expression are exactly Nonlinear.Node and Nonlinear.Expression. However, Nonlinear.NodeType
has more fields to account for comparison operators such as :>= and :<=, logic operators such as :&& and :||,
nonlinear parameters, and nested subexpressions.

Moreover, instead of storing the operators as global constants, they are stored in Nonlinear.OperatorRegistry,
and it also stores a vector of logic operators and a vector of comparison operators. In addition to Nonlinear.DEFAULT_UNIVARIATE_OPERATORS
and Nonlinear.DEFAULT_MULTIVARIATE_OPERATORS, you can register user-defined functions using Nonlinear.register_operator.
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Nonlinear.Model is a struct that stores the Nonlinear.OperatorRegistry, as well as a list of parameters and
subexpressions in the model.

ReverseAD

Nonlinear.ReverseAD is a submodule for computing derivatives of a nonlinear optimization problem using
sparse reverse-mode automatic differentiation (AD).

This section does not attempt to explain how sparse reverse-mode AD works, but instead explains why MOI
contains its own implementation, and highlights notable differences from similar packages.

Warning

Don't use the API in ReverseAD to compute derivatives. Instead, create a Nonlinear.Evaluator object
with Nonlinear.SparseReverseMode as the backend, and then query the MOI API methods.

Design goals

The JuliaDiff organization maintains a list of packages for doing AD in Julia. At last count, there were at least
ten packages——not including ReverseAD——for reverse-mode AD in Julia. ReverseAD exists because it has a
different set of design goals.

• Goal: handle scale and sparsity. The types of nonlinear optimization problems that MOI represents
can be large scale (10^5 or more functions across 10^5 or more variables) with very sparse derivatives.
The ability to compute a sparse Hessian matrix is essential. To the best of our knowledge, ReverseAD is
the only reverse-mode AD system in Julia that handles sparsity by default.

• Goal: limit the scope to improve robustness. Most other AD packages accept arbitrary Julia func-
tions as input and then trace an expression graph using operator overloading. This means they must
deal (or detect and ignore) with control flow, I/O, and other vagaries of Julia. In contrast, ReverseAD only
accepts functions in the form of Nonlinear.Expression, which greatly limits the range of syntax that it
must deal with. By reducing the scope of what we accept as input to functions relevant for mathematical
optimization, we can provide a simpler implementation with various performance optimizations.

• Goal: provide outputs which match what solvers expect. Other AD packages focus on differenti-
ating individual Julia functions. In contrast, ReverseAD has a very specific use-case: to generate outputs
needed by the MOI nonlinear API. This means it needs to efficiently compute sparse Hessians, and it
needs subexpression handling to avoid recomputing subexpressions that are shared between functions.

History

ReverseAD started life as ReverseDiffSparse.jl, development of which began in early 2014(!). This was well
before the other AD packages started development. Because we had a well-tested, working AD in JuMP, there
was less motivation to contribute to and explore other AD packages. The lack of historical interaction also
meant that other packages were not optimized for the types of problems that JuMP is built for (that is, large-
scale sparse problems). When we first created MathOptInterface, we kept the AD in JuMP to simplify the
transition, and post-poned the development of a first-class nonlinear interface in MathOptInterface.

Prior to the introduction of Nonlinear, JuMP's nonlinear implementation was a confusing mix of functions and
types spread across the code base and in the private _Derivatives submodule. This made it hard to swap
the AD system for another. The main motivation for refactoring JuMP to create the Nonlinear submodule in
MathOptInterface was to abstract the interface between JuMP and the AD system, allowing us to swap-in and
test new AD systems in the future.

https://juliadiff.org
https://github.com/mlubin/ReverseDiffSparse.jl
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SymbolicAD

SymbolicAD

The Nonlinear.SymbolicAD submodule contains data structures and functions for working with the symbolic
derivatives of a nonlinear optimization problem. This page explains the API and describes the rationale behind
its design.

Background

The code in SymbolicAD is inspired by Hassan Hijazi's work on coin-or/gravity, a high-performance algebraic
modeling language in C++.

Hassan made the following observations:

• For large scale models, symbolic differentiation is slower than other automatic differentiation techniques,
such as the reverse mode algorithm implemented in MOI.Nonlinear.ReverseAD.

• However, most large-scale nonlinear programs have a lot of structure.

• Gravity asks the user to provide structure in the form of template constraints, where the user gives the
symbolic form of the constraint as well as a set of data to convert from a symbolic form to the numerical
form.

• Instead of differentiating each constraint in its numerical form, we can compute one symbolic derivative
of the constraint in symbolic form, and then plug in the data in to get the numerical derivative of each
function.

• As a final step, if users don't provide the structure, we can still infer it –perhaps with less accuracy–by
comparing the expression tree of each constraint.

The symbolic differentiation approach of Gravity works well when the problem is large with few unique con-
straints. For example, a model like:

model = Model()
@variable(model, 0 <= x[1:10_000] <= 1)
@constraint(model, [i=1:10_000], sin(x[i]) <= 1)
@objective(model, Max, sum(x))

is ideal, because although the Jacobianmatrix has 10,000 rows, we can compute the derivative of sin(x[i]) as
cos(x[i]), and then fill in the Jacobian by evaluating the derivative function instead of having to differentiation
10,000 expressions.

The symbolic differentiation approach of Gravity works poorly if there are a large number of unique constraints
in the model (which would require a lot of expressions to be symbolically differentiated), or if the nonlinear
functions contain a large number of nonlinear terms (which would make the symbolic derivative expensive to
compute).

SymbolicAD started life as MathOptSymbolicAD.jl, development of which began in early 2022. This initial
version of SymbolicAD used the Symbolics.jl package to compute the symbolic derivatives. In 2025, we
rewrote MathOptSymbolicAD.jl to remove the dependence on Symbolics.jl, and, since the rewrite depended
only on MathOptInterface, we added it to MOI.Nonlinear as a new submodule.

For more details on MathOptSymbolicAD.jl, see Oscar's JuMP-dev 2022 talk, although note that the syntax
has changed since the original recording.

https://github.com/coin-or/Gravity
https://github.com/lanl-ansi/MathOptSymbolicAD.jl
https://www.youtube.com/watch?v=d_X3gj3Iz-k
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Use SymbolicAD with JuMP

To use SymbolicADwith JuMP, set the AutomaticDifferentiationBackend attribute to Nonlinear.SymbolicMode:

using JuMP, Ipopt
model = Model(Ipopt.Optimizer)
set_attribute(

model,
MOI.AutomaticDifferentiationBackend(),
MOI.Nonlinear.SymbolicMode(),

)
@variable(model, x[1:2])
@objective(model, Min, (1 - x[1])^2 + 100 * (x[2] - x[1]^2)^2)
optimize!(model)

To revert back to the default sparse reverse mode algorithm, set the AutomaticDifferentiationBackend
attribute to Nonlinear.SparseReverseMode.

simplify

Use Nonlinear.SymbolicAD.simplify to simplify nonlinear expressions. The simplification algorithm per-
forms simple rewrites such as lifting nested summations:

julia> x = MOI.VariableIndex(1)
MOI.VariableIndex(1)

julia> f = MOI.ScalarNonlinearFunction(
:+,
Any[MOI.ScalarNonlinearFunction(:+, Any[1.0, x]), 2.0 * x + 3.0],

)
+(+(1.0, MOI.VariableIndex(1)), 3.0 + 2.0 MOI.VariableIndex(1))

julia> MOI.Nonlinear.SymbolicAD.simplify(f)
4.0 + 3.0 MOI.VariableIndex(1)

and trivial identities such as x1 = x:

julia> x = MOI.VariableIndex(1)
MOI.VariableIndex(1)

julia> f = MOI.ScalarNonlinearFunction(:^, Any[x, 1])
^(MOI.VariableIndex(1), (1))

julia> MOI.Nonlinear.SymbolicAD.simplify(f)
MOI.VariableIndex(1)

The list of rewrites that will bemade is intentionally limited to keep the codebase simple. Nonlinear.SymbolicAD
is not a substitute for a Computer Algebraic System (CAS). For example, we do not detect the relationship
sin(x)2 + cos(x)2 = 1:

julia> x = MOI.VariableIndex(1)
MOI.VariableIndex(1)
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julia> sin_x = MOI.ScalarNonlinearFunction(:sin, Any[x])
sin(MOI.VariableIndex(1))

julia> cos_x = MOI.ScalarNonlinearFunction(:cos, Any[x])
cos(MOI.VariableIndex(1))

julia> f = MOI.ScalarNonlinearFunction(
:+,
Any[

MOI.ScalarNonlinearFunction(:^, Any[sin_x, 2]),
MOI.ScalarNonlinearFunction(:^, Any[cos_x, 2]),

],
)

+(^(sin(MOI.VariableIndex(1)), (2)), ^(cos(MOI.VariableIndex(1)), (2)))

julia> MOI.Nonlinear.SymbolicAD.simplify(f)
+(^(sin(MOI.VariableIndex(1)), (2)), ^(cos(MOI.VariableIndex(1)), (2)))

In addition to Nonlinear.SymbolicAD.simplify, there is an in-place version Nonlinear.SymbolicAD.simplify!
that may make changes to the existing function.

variables

Use Nonlinear.SymbolicAD.variables to return a sorted list of the variables that appear in the function:

julia> x = MOI.VariableIndex.(1:3)
3-element Vector{MathOptInterface.VariableIndex}:
MOI.VariableIndex(1)
MOI.VariableIndex(2)
MOI.VariableIndex(3)

julia> f = MOI.ScalarNonlinearFunction(:atan, Any[x[3], 2.0 * x[1]])
atan(MOI.VariableIndex(3), 0.0 + 2.0 MOI.VariableIndex(1))

julia> MOI.Nonlinear.SymbolicAD.variables(f)
2-element Vector{MathOptInterface.VariableIndex}:
MOI.VariableIndex(1)
MOI.VariableIndex(3)

derivative

Use Nonlinear.SymbolicAD.derivative to compute the symbolic derivative of a function with respect to a
decision variable:

julia> x = MOI.VariableIndex(1)
MOI.VariableIndex(1)

julia> f = MOI.ScalarNonlinearFunction(:sin, Any[x])
sin(MOI.VariableIndex(1))

julia> MOI.Nonlinear.SymbolicAD.derivative(f, x)
cos(MOI.VariableIndex(1))
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Note that the resultant expression can often be simplified. Thus, inmost cases you should call Nonlinear.SymbolicAD.simplify
on the expression before using it in other places:

julia> x = MOI.VariableIndex(1)
MOI.VariableIndex(1)

julia> f = MOI.ScalarNonlinearFunction(:sin, Any[x + 1.0])
sin(1.0 + 1.0 MOI.VariableIndex(1))

julia> df_dx = MOI.Nonlinear.SymbolicAD.derivative(f, x)
*(cos(1.0 + 1.0 MOI.VariableIndex(1)), 1.0)

julia> MOI.Nonlinear.SymbolicAD.simplify!(df_dx)
cos(1.0 + 1.0 MOI.VariableIndex(1))

gradient_and_hessian

In some cases, you may want to compute the gradient and (sparse) Hessian matrix of a function. One way to
achieve this is by recursively calling Nonlinear.SymbolicAD.derivative on the result of Nonlinear.SymbolicAD.derivative
for each variable in the list of Nonlinear.SymbolicAD.variables. But, to simplify the process, you should use
Nonlinear.SymbolicAD.gradient_and_hessian:

julia> x = MOI.VariableIndex.(1:2);

julia> f = MOI.ScalarNonlinearFunction(:sin, Any[1.0 * x[1] + 2.0 * x[2]])
sin(0.0 + 1.0 MOI.VariableIndex(1) + 2.0 MOI.VariableIndex(2))

julia> y, ∇f, H, ∇²f = MOI.Nonlinear.SymbolicAD.gradient_and_hessian(f);

julia> y
2-element Vector{MathOptInterface.VariableIndex}:
MOI.VariableIndex(1)
MOI.VariableIndex(2)

julia> ∇f
2-element Vector{Any}:
cos(0.0 + 1.0 MOI.VariableIndex(1) + 2.0 MOI.VariableIndex(2))
*(cos(0.0 + 1.0 MOI.VariableIndex(1) + 2.0 MOI.VariableIndex(2)), 2.0)

julia> H
3-element Vector{Tuple{Int64, Int64}}:
(1, 1)
(1, 2)
(2, 2)

julia> ∇²f
3-element Vector{Any}:
-(sin(0.0 + 1.0 MOI.VariableIndex(1) + 2.0 MOI.VariableIndex(2)))
*(-(sin(0.0 + 1.0 MOI.VariableIndex(1) + 2.0 MOI.VariableIndex(2))), 2.0)
*(-(sin(0.0 + 1.0 MOI.VariableIndex(1) + 2.0 MOI.VariableIndex(2))), 4.0)

where:
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• y is the list of variables that appear in f

• ∇f is the first partial derivatives of f with respect to each variable in y

• H and ∇²f form a sparse Hessian matrix, were H is the (row, column) index of each element, and the
corresponding element in ∇²f is the second partial derivative of fwith respect to y[row] and y[column].

Unlike Nonlinear.SymbolicAD.derivative, the gradient and Hessian expressions have already been simpli-
fied; you do not need to call Nonlinear.SymbolicAD.simplify.

API Reference

Nonlinear Modeling

More information can be found in the Nonlinear section of the manual.

MathOptInterface.Nonlinear.Model – Type.

Model()

The core datastructure for representing a nonlinear optimization problem.

It has the following fields:

• objective::Union{Nothing,Expression} : holds the nonlinear objective function, if one exists,
otherwise nothing.

• expressions::Vector{Expression} : a vector of expressions in the model.

• constraints::OrderedDict{ConstraintIndex,Constraint} : amap from ConstraintIndex to the
corresponding Constraint. An OrderedDict is used instead of a Vector to support constraint dele-
tion.

• parameters::Vector{Float64} : holds the current values of the parameters.

• operators::OperatorRegistry : stores the operators used in the model.

source

Expressions

MathOptInterface.Nonlinear.ExpressionIndex – Type.

ExpressionIndex

An index to a nonlinear expression that is returned by add_expression.

Given data::Model and ex::ExpressionIndex, use data[ex] to retrieve the corresponding Expression.

source

MathOptInterface.Nonlinear.add_expression – Function.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/types.jl#L145-L159
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/types.jl#L121-L128
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add_expression(model::Model, expr)::ExpressionIndex

Parse expr into a Expression and add to model. Returns an ExpressionIndex that can be interpolated
into other input expressions.

expr must be a type that is supported by parse_expression.

Example

julia> model = MOI.Nonlinear.Model();

julia> x = MOI.VariableIndex(1);

julia> ex = MOI.Nonlinear.add_expression(model, :($x^2 + 1))
MathOptInterface.Nonlinear.ExpressionIndex(1)

julia> MOI.Nonlinear.set_objective(model, :(sqrt($ex)))

source

Parameters

MathOptInterface.Nonlinear.ParameterIndex – Type.

ParameterIndex

An index to a nonlinear parameter that is returned by add_parameter. Given data::Model and p::ParameterIndex,
use data[p] to retrieve the current value of the parameter and data[p] = value to set a new value.

source

MathOptInterface.Nonlinear.add_parameter – Function.

add_parameter(model::Model, value::Float64)::ParameterIndex

Add a new parameter to model with the default value value. Returns a ParameterIndex that can be
interpolated into other input expressions and used to modify the value of the parameter.

Example

julia> model = MOI.Nonlinear.Model()
A Nonlinear.Model with:
0 objectives
0 parameters
0 expressions
0 constraints

julia> x = MOI.VariableIndex(1)
MOI.VariableIndex(1)

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/model.jl#L80-L100
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/types.jl#L110-L116
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julia> p = MOI.Nonlinear.add_parameter(model, 1.2)
MathOptInterface.Nonlinear.ParameterIndex(1)

julia> c = MOI.Nonlinear.add_constraint(model, :($x^2 - $p), MOI.LessThan(0.0))
MathOptInterface.Nonlinear.ConstraintIndex(1)

source

Objectives

MathOptInterface.Nonlinear.set_objective – Function.

set_objective(model::Model, obj)::Nothing

Parse obj into a Expression and set as the objective function of model.

obj must be a type that is supported by parse_expression.

To remove the objective, pass nothing.

Example

julia> model = MOI.Nonlinear.Model()
A Nonlinear.Model with:
0 objectives
0 parameters
0 expressions
0 constraints

julia> x = MOI.VariableIndex(1)
MOI.VariableIndex(1)

julia> MOI.Nonlinear.set_objective(model, :($x^2 + 1))

julia> MOI.Nonlinear.set_objective(model, x)

julia> MOI.Nonlinear.set_objective(model, nothing)

source

Constraints

MathOptInterface.Nonlinear.ConstraintIndex – Type.

ConstraintIndex

An index to a nonlinear constraint that is returned by add_constraint.

Given data::Model and c::ConstraintIndex, use data[c] to retrieve the corresponding Constraint.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/model.jl#L205-L231
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/model.jl#L40-L69
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/types.jl#L133-L140
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MathOptInterface.Nonlinear.add_constraint – Function.

add_constraint(
model::Model,
func,
set::Union{

MOI.GreaterThan{Float64},
MOI.LessThan{Float64},
MOI.Interval{Float64},
MOI.EqualTo{Float64},

},
)

Parse func and set into a Constraint and add to model. Returns a ConstraintIndex that can be used to
delete the constraint or query solution information.

Example

julia> model = MOI.Nonlinear.Model();

julia> x = MOI.VariableIndex(1);

julia> c = MOI.Nonlinear.add_constraint(model, :($x^2), MOI.LessThan(1.0))
MathOptInterface.Nonlinear.ConstraintIndex(1)

source

MathOptInterface.Nonlinear.delete – Function.

delete(model::Model, c::ConstraintIndex)::Nothing

Delete the constraint index c from model.

Example

julia> model = MOI.Nonlinear.Model()
A Nonlinear.Model with:
0 objectives
0 parameters
0 expressions
0 constraints

julia> x = MOI.VariableIndex(1)
MOI.VariableIndex(1)

julia> c = MOI.Nonlinear.add_constraint(model, :($x^2), MOI.LessThan(1.0))
MathOptInterface.Nonlinear.ConstraintIndex(1)

julia> model
A Nonlinear.Model with:
0 objectives

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/model.jl#L110-L136
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0 parameters
0 expressions
1 constraint

julia> MOI.Nonlinear.delete(model, c)

julia> model
A Nonlinear.Model with:
0 objectives
0 parameters
0 expressions
0 constraints

source

User-defined operators

MathOptInterface.Nonlinear.OperatorRegistry – Type.

OperatorRegistry()

Create a new OperatorRegistry to store and evaluate univariate and multivariate operators.

source

MathOptInterface.Nonlinear.DEFAULT_UNIVARIATE_OPERATORS – Constant.

DEFAULT_UNIVARIATE_OPERATORS

The list of univariate operators that are supported by default.

Example

julia> MOI.Nonlinear.DEFAULT_UNIVARIATE_OPERATORS
73-element Vector{Symbol}:
:+
:-
:abs
:sign
:sqrt
:cbrt
:abs2
:inv
:log
:log10
�
:airybi
:airyaiprime
:airybiprime
:besselj0
:besselj1

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/model.jl#L154-L191
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/operators.jl#L158-L163
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:bessely0
:bessely1
:erfcx
:dawson

source

MathOptInterface.Nonlinear.DEFAULT_MULTIVARIATE_OPERATORS – Constant.

DEFAULT_MULTIVARIATE_OPERATORS

The list of multivariate operators that are supported by default.

Example

julia> MOI.Nonlinear.DEFAULT_MULTIVARIATE_OPERATORS
9-element Vector{Symbol}:
:+
:-
:*
:^
:/
:ifelse
:atan
:min
:max

source

MathOptInterface.Nonlinear.register_operator – Function.

register_operator(
model::Model,
op::Symbol,
nargs::Int,
f::Function,
[∇f::Function],
[∇²f::Function],

)

Register the user-defined operator op with nargs input arguments in model.

Univariate functions

• f(x::T)::T must be a function that takes a single input argument x and returns the function evalu-
ated at x. If ∇f and ∇²f are not provided, f must support any Real input type T.

• ∇f(x::T)::T is a function that takes a single input argument x and returns the first derivative of f
with respect to x. If ∇²f is not provided, ∇f must support any Real input type T.

• ∇²f(x::T)::T is a function that takes a single input argument x and returns the second derivative
of f with respect to x.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/operators.jl#L100-L131
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/operators.jl#L134-L154
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Multivariate functions

• f(x::T...)::T must be a function that takes a nargs input arguments x and returns the function
evaluated at x. If ∇f and ∇²f are not provided, f must support any Real input type T.

• ∇f(g::AbstractVector{T}, x::T...)::T is a function that takes a cache vector g of length length(x),
and fills each element g[i] with the partial derivative of f with respect to x[i].

• ∇²f(H::AbstractMatrix, x::T...)::T is a function that takes amatrix H and fills the lower-triangular
components H[i, j] with the Hessian of f with respect to x[i] and x[j] for i >= j.

Notes for multivariate Hessians

• H has size(H) == (length(x), length(x)), but you must not access elements H[i, j] for i > j.

• H is dense, but you do not need to fill structural zeros.

source

MathOptInterface.Nonlinear.register_operator_if_needed – Function.

register_operator_if_needed(
registry::OperatorRegistry,
op::Symbol,
nargs::Int,
f::Function;

)

Similar to register_operator, but this function warns if the function is not registered, and skips silently
if it already is.

source

MathOptInterface.Nonlinear.assert_registered – Function.

assert_registered(registry::OperatorRegistry, op::Symbol, nargs::Int)

Throw an error if op is not registered in registry with nargs arguments.

source

MathOptInterface.Nonlinear.check_return_type – Function.

check_return_type(::Type{T}, ret::S) where {T,S}

Overload this method for new types S to throw an informative error if a user-defined function returns the
type S instead of T.

source

MathOptInterface.Nonlinear.eval_univariate_function – Function.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/model.jl#L245-L285
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/operators.jl#L470-L480
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/operators.jl#L494-L498
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/operators.jl#L518-L523
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eval_univariate_function(
registry::OperatorRegistry,
op::Union{Symbol,Integer},
x::T,

) where {T}

Evaluate the operator op(x)::T, where op is a univariate function in registry.

If op isa Integer, then op is the index in registry.univariate_operators[op].

Example

julia> r = MOI.Nonlinear.OperatorRegistry();

julia> MOI.Nonlinear.eval_univariate_function(r, :abs, -1.2)
1.2

julia> r.univariate_operators[3]
:abs

julia> MOI.Nonlinear.eval_univariate_function(r, 3, -1.2)
1.2

source

MathOptInterface.Nonlinear.eval_univariate_gradient – Function.

eval_univariate_gradient(
registry::OperatorRegistry,
op::Union{Symbol,Integer},
x::T,

) where {T}

Evaluate the first-derivative of the operator op(x)::T, where op is a univariate function in registry.

If op isa Integer, then op is the index in registry.univariate_operators[op].

Example

julia> r = MOI.Nonlinear.OperatorRegistry();

julia> MOI.Nonlinear.eval_univariate_gradient(r, :abs, -1.2)
-1.0

julia> r.univariate_operators[3]
:abs

julia> MOI.Nonlinear.eval_univariate_gradient(r, 3, -1.2)
-1.0

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/operators.jl#L533-L560
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/operators.jl#L584-L611
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MathOptInterface.Nonlinear.eval_univariate_function_and_gradient – Function.

eval_univariate_function_and_gradient(
registry::OperatorRegistry,
op::Union{Symbol,Integer},
x::T,

)::Tuple{T,T} where {T}

Evaluate the function and first-derivative of the operator op(x)::T, where op is a univariate function in
registry.

If op isa Integer, then op is the index in registry.univariate_operators[op].

Example

julia> r = MOI.Nonlinear.OperatorRegistry();

julia> MOI.Nonlinear.eval_univariate_function_and_gradient(r, :abs, -1.2)
(1.2, -1.0)

julia> r.univariate_operators[3]
:abs

julia> MOI.Nonlinear.eval_univariate_function_and_gradient(r, 3, -1.2)
(1.2, -1.0)

source

MathOptInterface.Nonlinear.eval_univariate_hessian – Function.

eval_univariate_hessian(
registry::OperatorRegistry,
op::Union{Symbol,Integer},
x::T,

) where {T}

Evaluate the second-derivative of the operator op(x)::T, where op is a univariate function in registry.

If op isa Integer, then op is the index in registry.univariate_operators[op].

Example

julia> r = MOI.Nonlinear.OperatorRegistry();

julia> MOI.Nonlinear.eval_univariate_hessian(r, :sin, 1.0)
-0.8414709848078965

julia> r.univariate_operators[16]
:sin

julia> MOI.Nonlinear.eval_univariate_hessian(r, 16, 1.0)
-0.8414709848078965

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/operators.jl#L635-L662


CHAPTER 37. SUBMODULES 1329

julia> -sin(1.0)
-0.8414709848078965

source

MathOptInterface.Nonlinear.eval_multivariate_function – Function.

eval_multivariate_function(
registry::OperatorRegistry,
op::Symbol,
x::AbstractVector{T},

) where {T}

Evaluate the operator op(x)::T, where op is a multivariate function in registry.

source

MathOptInterface.Nonlinear.eval_multivariate_gradient – Function.

eval_multivariate_gradient(
registry::OperatorRegistry,
op::Symbol,
g::AbstractVector{T},
x::AbstractVector{T},

) where {T}

Evaluate the gradient of operator g .= ∇op(x), where op is a multivariate function in registry.

source

MathOptInterface.Nonlinear.eval_multivariate_hessian – Function.

eval_multivariate_hessian(
registry::OperatorRegistry,
op::Symbol,
H::AbstractMatrix,
x::AbstractVector{T},

)::Bool where {T}

Evaluate the Hessian of operator ∇²op(x), where op is a multivariate function in registry.

The Hessian is stored in the lower-triangular part of the matrix H.

Returns a Bool indicating whether non-zeros were stored in the matrix.

Note

Implementations of the Hessian operators will not fill structural zeros. Therefore, before calling
this function you should pre-populate the matrix H with 0.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/operators.jl#L685-L715
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/operators.jl#L753-L762
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/operators.jl#L803-L813
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/operators.jl#L893-L912
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MathOptInterface.Nonlinear.eval_logic_function – Function.

eval_logic_function(
registry::OperatorRegistry,
op::Symbol,
lhs::T,
rhs::T,

)::Bool where {T}

Evaluate (lhs op rhs)::Bool, where op is a logic operator in registry.

source

MathOptInterface.Nonlinear.eval_comparison_function – Function.

eval_comparison_function(
registry::OperatorRegistry,
op::Symbol,
lhs::T,
rhs::T,

)::Bool where {T}

Evaluate (lhs op rhs)::Bool, where op is a comparison operator in registry.

source

Automatic-differentiation backends

MathOptInterface.Nonlinear.Evaluator – Type.

Evaluator(
model::Model,
backend::AbstractAutomaticDifferentiation,
ordered_variables::Vector{MOI.VariableIndex},

)

Create Evaluator, a subtype of MOI.AbstractNLPEvaluator, from Model.

source

MathOptInterface.Nonlinear.AbstractAutomaticDifferentiation – Type.

AbstractAutomaticDifferentiation

An abstract type for extending Evaluator.

source

MathOptInterface.Nonlinear.ExprGraphOnly – Type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/operators.jl#L1002-L1011
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/operators.jl#L1026-L1036
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/types.jl#L194-L202
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/types.jl#L180-L184
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ExprGraphOnly() <: AbstractAutomaticDifferentiation

The default implementation of AbstractAutomaticDifferentiation. The only supported feature is :ExprGraph.

source

MathOptInterface.Nonlinear.SparseReverseMode – Type.

SparseReverseMode() <: AbstractAutomaticDifferentiation

An implementation of AbstractAutomaticDifferentiation that uses sparse reverse-mode automatic
differentiation to compute derivatives. Supports all features in the MOI nonlinear interface.

source

MathOptInterface.Nonlinear.SymbolicMode – Type.

SymbolicMode() <: AbstractAutomaticDifferentiation

A type for setting as the value of the MOI.AutomaticDifferentiationBackend() attribute to enable sym-
bolic automatic differentiation.

source

Data-structure

MathOptInterface.Nonlinear.Node – Type.

struct Node
type::NodeType
index::Int
parent::Int

end

A single node in a nonlinear expression tree. Used by Expression.

See the MathOptInterface documentation for information on how the nodes and values form an expression
tree.

source

MathOptInterface.Nonlinear.NodeType – Type.

NodeType

An enum describing the possible node types. Each Node has a .index field, which should be interpreted
as follows:

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/types.jl#L266-L271
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/types.jl#L278-L284
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/types.jl#L295-L300
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/types.jl#L47-L59
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• NODE_CALL_MULTIVARIATE: the index into operators.multivariate_operators
• NODE_CALL_UNIVARIATE: the index into operators.univariate_operators
• NODE_LOGIC: the index into operators.logic_operators
• NODE_COMPARISON: the index into operators.comparison_operators
• NODE_MOI_VARIABLE: the value of MOI.VariableIndex(index) in the user's space of the model.
• NODE_VARIABLE: the 1-based index of the internal vector
• NODE_VALUE: the index into the .values field of Expression
• NODE_PARAMETER: the index into data.parameters
• NODE_SUBEXPRESSION: the index into data.expressions

source

MathOptInterface.Nonlinear.Expression – Type.

struct Expression
nodes::Vector{Node}
values::Vector{Float64}

end

The core type that represents a nonlinear expression. See the MathOptInterface documentation for infor-
mation on how the nodes and values form an expression tree.

source

MathOptInterface.Nonlinear.Constraint – Type.

struct Constraint
expression::Expression
set::Union{

MOI.LessThan{Float64},
MOI.GreaterThan{Float64},
MOI.EqualTo{Float64},
MOI.Interval{Float64},

}
end

A type to hold information relating to the nonlinear constraint f(x) in S, where f(x) is defined by .expression,
and S is .set.

source

MathOptInterface.Nonlinear.adjacency_matrix – Function.

adjacency_matrix(nodes::Vector{Node})

Compute the sparse adjacency matrix describing the parent-child relationships in nodes.

The element (i, j) is true if there is an edge from node[j] to node[i]. Since we get a column-oriented
matrix, this gives us a fast way to look up the edges leaving any node (that is, the children).

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/types.jl#L7-L23
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/types.jl#L66-L75
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/types.jl#L86-L99
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/evaluator.jl#L260-L269
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MathOptInterface.Nonlinear.parse_expression – Function.

parse_expression(data::Model, input)::Expression

Parse input into a Expression.

source

parse_expression(
data::Model,
expr::Expression,
input::Any,
parent_index::Int,

)::Expression

Parse input into a Expression, and add it to expr as a child of expr.nodes[parent_index]. Existing
subexpressions and parameters are stored in data.

You can extend parsing support to new types of objects by overloading this method with a different type
on input::Any.

source

MathOptInterface.Nonlinear.convert_to_expr – Function.

convert_to_expr(data::Model, expr::Expression)

Convert the Expression expr into a Julia Expr.

• subexpressions are represented by a ExpressionIndex object.

• parameters are represented by a ParameterIndex object.

• variables are represented by an MOI.VariableIndex object.

source

convert_to_expr(
evaluator::Evaluator,
expr::Expression;
moi_output_format::Bool,

)

Convert the Expression expr into a Julia Expr.

If moi_output_format = true:

• subexpressions will be converted to Julia Expr and substituted into the output expression.

• the current value of each parameter will be interpolated into the expression

• variables will be represented in the form x[MOI.VariableIndex(i)]

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/parse.jl#L7-L11
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/parse.jl#L18-L32
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/parse.jl#L401-L409
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If moi_output_format = false:

• subexpressions will be represented by a ExpressionIndex object.

• parameters will be represented by a ParameterIndex object.

• variables will be represented by an MOI.VariableIndex object.

Warning

To use moi_output_format = true, you must have first called MOI.initialize with :ExprGraph
as a requested feature.

source

MathOptInterface.Nonlinear.ordinal_index – Function.

ordinal_index(evaluator::Evaluator, c::ConstraintIndex)::Int

Return the 1-indexed value of the constraint index c in evaluator.

Example

julia> model = MOI.Nonlinear.Model()
A Nonlinear.Model with:
0 objectives
0 parameters
0 expressions
0 constraints

julia> x = MOI.VariableIndex(1)
MOI.VariableIndex(1)

julia> c1 = MOI.Nonlinear.add_constraint(model, :($x^2), MOI.LessThan(1.0))
MathOptInterface.Nonlinear.ConstraintIndex(1)

julia> c2 = MOI.Nonlinear.add_constraint(model, :($x^2), MOI.LessThan(1.0))
MathOptInterface.Nonlinear.ConstraintIndex(2)

julia> evaluator = MOI.Nonlinear.Evaluator(model)
Nonlinear.Evaluator with available features:
* :ExprGraph

julia> MOI.initialize(evaluator, Symbol[])

julia> MOI.Nonlinear.ordinal_index(evaluator, c2) # Returns 2
2

julia> MOI.Nonlinear.delete(model, c1)

julia> evaluator = MOI.Nonlinear.Evaluator(model)
Nonlinear.Evaluator with available features:
* :ExprGraph

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/evaluator.jl#L287-L310
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julia> MOI.initialize(evaluator, Symbol[])

julia> MOI.Nonlinear.ordinal_index(evaluator, c2) # Returns 1
1

source

SymbolicAD

MathOptInterface.Nonlinear.SymbolicAD.simplify – Function.

simplify(f)

Return a simplified copy of the function f.

Warning

This function is not type stable by design.

Example

julia> x = MOI.VariableIndex(1)
MOI.VariableIndex(1)

julia> f = MOI.ScalarNonlinearFunction(:^, Any[x, 1])
^(MOI.VariableIndex(1), (1))

julia> MOI.Nonlinear.SymbolicAD.simplify(f)
MOI.VariableIndex(1)

source

MathOptInterface.Nonlinear.SymbolicAD.simplify! – Function.

simplify!(f)

Simplify the function f in-place and return either the function f or a new object if f can be represented in
a simpler type.

Warning

This function is not type stable by design.

Example

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/evaluator.jl#L11-L55
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/SymbolicAD/SymbolicAD.jl#L14-L34
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julia> x = MOI.VariableIndex(1)
MOI.VariableIndex(1)

julia> f = MOI.ScalarNonlinearFunction(
:+,
Any[MOI.ScalarNonlinearFunction(:+, Any[1.0, x]), 2.0 * x + 3.0],

)
+(+(1.0, MOI.VariableIndex(1)), 3.0 + 2.0 MOI.VariableIndex(1))

julia> MOI.Nonlinear.SymbolicAD.simplify!(f)
4.0 + 3.0 MOI.VariableIndex(1)

julia> f
+(1.0, MOI.VariableIndex(1), 3.0 + 2.0 MOI.VariableIndex(1))

source

simplify!(::Val{head}, f::MOI.ScalarNonlinearFunction)

Simplify the function f in-place and return either the function f or a new object if f can be represented in
a simpler type.

Val

The head in Val{head} is taken from f.head. This function should be called as:

f = simplify!(Val(f.head), f)

Implementing a method that dispatches on head enables custom simplification rules for different operators
without needing a giant switch statement.

Note

It is important that this function does not recursively call simplify!. Deal only with the immediate operator.
The children arguments will already be simplified.

source

MathOptInterface.Nonlinear.SymbolicAD.variables – Function.

variables(f::Union{Real,MOI.AbstractScalarFunction})

Return a sorted list of the MOI.VariableIndex present in the function f.

Example

julia> x = MOI.VariableIndex.(1:3)
3-element Vector{MathOptInterface.VariableIndex}:
MOI.VariableIndex(1)
MOI.VariableIndex(2)
MOI.VariableIndex(3)

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/SymbolicAD/SymbolicAD.jl#L41-L68
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/SymbolicAD/SymbolicAD.jl#L184-L206
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julia> f = MOI.ScalarNonlinearFunction(:atan, Any[x[3], 2.0 * x[1]])
atan(MOI.VariableIndex(3), 0.0 + 2.0 MOI.VariableIndex(1))

julia> MOI.Nonlinear.SymbolicAD.variables(f)
2-element Vector{MathOptInterface.VariableIndex}:
MOI.VariableIndex(1)
MOI.VariableIndex(3)

source

MathOptInterface.Nonlinear.SymbolicAD.derivative – Function.

derivative(f::Union{Real,MOI.AbstractScalarFunction}, x::MOI.VariableIndex)

Return an expression representing the partial derivative of f with respect to x.

Expression swelling

With few exceptions, the algorithm used to compute the derivative does not perform simplications. As
a result, the returned expression may contain terms like *(false, g) that can be trivially simplified to
false.

In most cases, you should call simplify!(derivative(f, x)) to return a simplified expression of the
derivative.

Example

julia> x = MOI.VariableIndex(1)
MOI.VariableIndex(1)

julia> f = MOI.ScalarNonlinearFunction(:sin, Any[x])
sin(MOI.VariableIndex(1))

julia> df_dx = MOI.Nonlinear.SymbolicAD.derivative(f, x)
cos(MOI.VariableIndex(1))

source

MathOptInterface.Nonlinear.SymbolicAD.gradient_and_hessian – Function.

gradient_and_hessian(
[filter_fn::Function = x -> true,]
f::MOI.AbstractScalarFunction,

)

Compute the symbolic gradient and Hessian of f, and return the result as a tuple of four elements:

1. x::Vector{MOI.VariableIndex}: the list of variables that appear in f

2. ∇f::Vector{Any}: a vector for the first partial derivative of f with respect to each element in x

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/SymbolicAD/SymbolicAD.jl#L347-L369
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/SymbolicAD/SymbolicAD.jl#L442-L469
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3. H::Vector{Tuple{Int,Int}}: a vector of (row, column) tuples that list the non-zero entries in the
Hessian of f

4. ∇²f::Vector{Any}: a vector of expressions, in the same order as H, for the non-zero entries in the
Hessian of f

filter_fn

This argument is a function, filter_fn(::MOI.VariableIndex)::Bool that returns true if the gradient
and Hessian of f should be computed with respect to it.

Use this argument to filter out constant parameters from decision variables.

source

37.5 Utilities

Overview

The Utilities submodule

The Utilities submodule provides a variety of functions and datastructures for managing MOI.ModelLike ob-
jects.

Utilities.Model

Utilities.Model provides an implementation of a ModelLike that efficiently supports all functions and sets
defined within MOI. However, given the extensibility of MOI, this might not cover all use cases.

Create a model as follows:

julia> model = MOI.Utilities.Model{Float64}()
MOIU.Model{Float64}
├ ObjectiveSense: FEASIBILITY_SENSE
├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
├ NumberOfVariables: 0
└ NumberOfConstraints: 0

Utilities.UniversalFallback

Utilities.UniversalFallback is a layer that sits on top of any ModelLike and provides non-specialized
(slower) fallbacks for constraints and attributes that the underlying ModelLike does not support.

For example, Utilities.Model doesn't support some variable attributes like VariablePrimalStart, so JuMP
uses a combination of Universal fallback and Utilities.Model as a generic problem cache:

julia> model = MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}())
MOIU.UniversalFallback{MOIU.Model{Float64}}
├ ObjectiveSense: FEASIBILITY_SENSE
├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
├ NumberOfVariables: 0
└ NumberOfConstraints: 0

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Nonlinear/SymbolicAD/SymbolicAD.jl#L743-L766
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Warning

Adding a UniversalFallback means that your model will now support all constraints, even if the inner-
model does not. This can lead to unexpected behavior.

Utilities.@model

For advanced use cases that need efficient support for functions and sets defined outside of MOI (but still
known at compile time), we provide the Utilities.@model macro.

The @model macro takes a name (for a new type, which must not exist yet), eight tuples specifying the types
of constraints that are supported, and then a Bool indicating the type is a subtype of MOI.AbstractOptimizer
(if true) or MOI.ModelLike (if false).

The eight tuples are in the following order:

1. Un-typed scalar sets, for example, Integer

2. Typed scalar sets, for example, LessThan

3. Un-typed vector sets, for example, Nonnegatives

4. Typed vector sets, for example, PowerCone

5. Un-typed scalar functions, for example, VariableIndex

6. Typed scalar functions, for example, ScalarAffineFunction

7. Un-typed vector functions, for example, VectorOfVariables

8. Typed vector functions, for example, VectorAffineFunction

The tuples can contain more than one element. Typed-sets must be specified without their type parameter,
for example, MOI.LessThan, not MOI.LessThan{Float64}.

Here is an example:

julia> MOI.Utilities.@model(
MyNewModel,
(MOI.Integer,), # Un-typed scalar sets
(MOI.GreaterThan,), # Typed scalar sets
(MOI.Nonnegatives,), # Un-typed vector sets
(MOI.PowerCone,), # Typed vector sets
(MOI.VariableIndex,), # Un-typed scalar functions
(MOI.ScalarAffineFunction,), # Typed scalar functions
(MOI.VectorOfVariables,), # Un-typed vector functions
(MOI.VectorAffineFunction,), # Typed vector functions
true, # <:MOI.AbstractOptimizer?

)
MathOptInterface.Utilities.GenericOptimizer{T, MathOptInterface.Utilities.ObjectiveContainer{T},

MathOptInterface.Utilities.VariablesContainer{T}, MyNewModelFunctionConstraints{T}} where T↪→

julia> model = MyNewModel{Float64}()
MOIU.GenericOptimizer{Float64, MOIU.ObjectiveContainer{Float64}, MOIU.VariablesContainer{Float64},

MyNewModelFunctionConstraints{Float64}}↪→

├ ObjectiveSense: FEASIBILITY_SENSE
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├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
├ NumberOfVariables: 0
└ NumberOfConstraints: 0

Warning

MyNewModel supports every VariableIndex-in-Set constraint, as well as VariableIndex,
ScalarAffineFunction, and ScalarQuadraticFunction objective functions. Implement
MOI.supports as needed to forbid constraint and objective function combinations.

As another example, PATHSolver, which only supports VectorAffineFunction-in-Complements defines its op-
timizer as:

julia> MOI.Utilities.@model(
PathOptimizer,
(), # Scalar sets
(), # Typed scalar sets
(MOI.Complements,), # Vector sets
(), # Typed vector sets
(), # Scalar functions
(), # Typed scalar functions
(), # Vector functions
(MOI.VectorAffineFunction,), # Typed vector functions
true, # is_optimizer

)
MathOptInterface.Utilities.GenericOptimizer{T, MathOptInterface.Utilities.ObjectiveContainer{T},

MathOptInterface.Utilities.VariablesContainer{T},
MathOptInterface.Utilities.VectorOfConstraints{MathOptInterface.VectorAffineFunction{T},
MathOptInterface.Complements}} where T

↪→

↪→

↪→

However, PathOptimizer does not support some VariableIndex-in-Set constraints, so we must explicitly
define:

julia> function MOI.supports_constraint(
::PathOptimizer,
::Type{MOI.VariableIndex},
::Type{Union{<:MOI.Semiinteger,MOI.Semicontinuous,MOI.ZeroOne,MOI.Integer}}

)
return false

end

Finally, PATH doesn't support an objective function, so we need to add:

julia> MOI.supports(::PathOptimizer, ::MOI.ObjectiveFunction) = false

Warning

This macro creates a new type, so it must be called from the top-level of a module, for example, it
cannot be called from inside a function.

https://github.com/chkwon/PATHSolver.jl
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Utilities.CachingOptimizer

A [Utilities.CachingOptimizer] is an MOI layer that abstracts the difference between solvers that support
incremental modification (for example, they support adding variables one-by-one), and solvers that require the
entire problem in a single API call (for example, they only accept the A, b and c matrices of a linear program).

It has two parts:

1. A cache, where the model can be built and modified incrementally

2. An optimizer, which is used to solve the problem

julia> model = MOI.Utilities.CachingOptimizer(
MOI.Utilities.Model{Float64}(),
PathOptimizer{Float64}(),

)
MOIU.CachingOptimizer
├ state: EMPTY_OPTIMIZER
├ mode: AUTOMATIC
├ model_cache: MOIU.Model{Float64}
│ ├ ObjectiveSense: FEASIBILITY_SENSE
│ ├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
│ ├ NumberOfVariables: 0
│ └ NumberOfConstraints: 0
└ optimizer: MOIU.GenericOptimizer{Float64, MOIU.ObjectiveContainer{Float64},

MOIU.VariablesContainer{Float64}, MOIU.VectorOfConstraints{MOI.VectorAffineFunction{Float64},
MOI.Complements}}

↪→

↪→

├ ObjectiveSense: FEASIBILITY_SENSE
├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
├ NumberOfVariables: 0
└ NumberOfConstraints: 0

A Utilities.CachingOptimizer may be in one of three possible states:

• NO_OPTIMIZER: The CachingOptimizer does not have any optimizer.

• EMPTY_OPTIMIZER: The CachingOptimizer has an empty optimizer, and it is not synchronized with the
cached model. Modifications are forwarded to the cache, but not to the optimizer.

• ATTACHED_OPTIMIZER: The CachingOptimizer has an optimizer, and it is synchronized with the cached
model. Modifications are forwarded to the optimizer. If the optimizer does not support modifications,
and error will be thrown.

Use Utilities.attach_optimizer to go from EMPTY_OPTIMIZER to ATTACHED_OPTIMIZER:

julia> MOI.Utilities.attach_optimizer(model)

julia> MOI.Utilities.state(model)
ATTACHED_OPTIMIZER::CachingOptimizerState = 2
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Info

You must be in ATTACHED_OPTIMIZER to use optimize!.

Use Utilities.reset_optimizer to go from ATTACHED_OPTIMIZER to EMPTY_OPTIMIZER:

julia> MOI.Utilities.reset_optimizer(model)

julia> MOI.Utilities.state(model)
EMPTY_OPTIMIZER::CachingOptimizerState = 1

Info

Calling MOI.empty!(model) also resets the state to EMPTY_OPTIMIZER. So after emptying a model, the
modification will only be applied to the cache.

Use Utilities.drop_optimizer to go from any state to NO_OPTIMIZER:

julia> MOI.Utilities.drop_optimizer(model)

julia> MOI.Utilities.state(model)
NO_OPTIMIZER::CachingOptimizerState = 0

julia> model
MOIU.CachingOptimizer
├ state: NO_OPTIMIZER
├ mode: AUTOMATIC
├ model_cache: MOIU.Model{Float64}
│ ├ ObjectiveSense: FEASIBILITY_SENSE
│ ├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
│ ├ NumberOfVariables: 0
│ └ NumberOfConstraints: 0
└ optimizer: nothing

Pass an empty optimizer to Utilities.reset_optimizer to go from NO_OPTIMIZER to EMPTY_OPTIMIZER:

julia> MOI.Utilities.reset_optimizer(model, PathOptimizer{Float64}())

julia> MOI.Utilities.state(model)
EMPTY_OPTIMIZER::CachingOptimizerState = 1

julia> model
MOIU.CachingOptimizer
├ state: EMPTY_OPTIMIZER
├ mode: AUTOMATIC
├ model_cache: MOIU.Model{Float64}
│ ├ ObjectiveSense: FEASIBILITY_SENSE
│ ├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
│ ├ NumberOfVariables: 0
│ └ NumberOfConstraints: 0
└ optimizer: MOIU.GenericOptimizer{Float64, MOIU.ObjectiveContainer{Float64},

MOIU.VariablesContainer{Float64}, MOIU.VectorOfConstraints{MOI.VectorAffineFunction{Float64},
MOI.Complements}}

↪→

↪→
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├ ObjectiveSense: FEASIBILITY_SENSE
├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
├ NumberOfVariables: 0
└ NumberOfConstraints: 0

Deciding when to attach and reset the optimizer is tedious, and you will often write code like this:

try
# modification

catch
MOI.Utilities.reset_optimizer(model)
# Re-try modification

end

To make this easier, Utilities.CachingOptimizer has two modes of operation:

• AUTOMATIC: The CachingOptimizer changes its state when necessary. Attempting to add a constraint
or perform a modification not supported by the optimizer results in a drop to EMPTY_OPTIMIZER mode.

• MANUAL: The user must change the state of the CachingOptimizer. Attempting to perform an operation
in the incorrect state results in an error.

By default, AUTOMATIC mode is chosen. However, you can create a CachingOptimizer in MANUAL mode as
follows:

julia> model = MOI.Utilities.CachingOptimizer(
MOI.Utilities.Model{Float64}(),
MOI.Utilities.MANUAL,

)
MOIU.CachingOptimizer
├ state: NO_OPTIMIZER
├ mode: MANUAL
├ model_cache: MOIU.Model{Float64}
│ ├ ObjectiveSense: FEASIBILITY_SENSE
│ ├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
│ ├ NumberOfVariables: 0
│ └ NumberOfConstraints: 0
└ optimizer: nothing

julia> MOI.Utilities.reset_optimizer(model, PathOptimizer{Float64}())

julia> model
MOIU.CachingOptimizer
├ state: EMPTY_OPTIMIZER
├ mode: MANUAL
├ model_cache: MOIU.Model{Float64}
│ ├ ObjectiveSense: FEASIBILITY_SENSE
│ ├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
│ ├ NumberOfVariables: 0
│ └ NumberOfConstraints: 0
└ optimizer: MOIU.GenericOptimizer{Float64, MOIU.ObjectiveContainer{Float64},

MOIU.VariablesContainer{Float64}, MOIU.VectorOfConstraints{MOI.VectorAffineFunction{Float64},
MOI.Complements}}

↪→

↪→
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├ ObjectiveSense: FEASIBILITY_SENSE
├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
├ NumberOfVariables: 0
└ NumberOfConstraints: 0

Printing

Use print to print the formulation of the model.

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variable(model)
MOI.VariableIndex(1)

julia> MOI.set(model, MOI.VariableName(), x, "x_var")

julia> MOI.add_constraint(model, x, MOI.ZeroOne())
MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex, MathOptInterface.ZeroOne}(1)

julia> MOI.set(model, MOI.ObjectiveFunction{typeof(x)}(), x)

julia> MOI.set(model, MOI.ObjectiveSense(), MOI.MAX_SENSE)

julia> print(model)
Maximize VariableIndex:
x_var

Subject to:

VariableIndex-in-ZeroOne
x_var ∈ {0, 1}

Use Utilities.latex_formulation to display the model in LaTeX form:

julia> MOI.Utilities.latex_formulation(model)
$$ \begin{aligned}
\max\quad & x\_var \\
\text{Subject to}\\
& \text{VariableIndex-in-ZeroOne} \\
& x\_var \in \{0, 1\} \\
\end{aligned} $$

Tip

In IJulia, calling print or ending a cell with Utilities.latex_formulation will render the model in
LaTeX.

Utilities.PenaltyRelaxation

Pass Utilities.PenaltyRelaxation to modify to relax the problem by adding penalized slack variables to
the constraints. This is helpful when debugging sources of infeasible models.
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julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variable(model);

julia> MOI.set(model, MOI.VariableName(), x, "x")

julia> c = MOI.add_constraint(model, 1.0 * x, MOI.LessThan(2.0));

julia> map = MOI.modify(model, MOI.Utilities.PenaltyRelaxation(Dict(c => 2.0)));

julia> print(model)
Minimize ScalarAffineFunction{Float64}:
0.0 + 2.0 v[2]

Subject to:

ScalarAffineFunction{Float64}-in-LessThan{Float64}
0.0 + 1.0 x - 1.0 v[2] <= 2.0

VariableIndex-in-GreaterThan{Float64}
v[2] >= 0.0

julia> map[c]
0.0 + 1.0 MOI.VariableIndex(2)

You can also modify a single constraint using Utilities.ScalarPenaltyRelaxation:

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variable(model);

julia> MOI.set(model, MOI.VariableName(), x, "x")

julia> c = MOI.add_constraint(model, 1.0 * x, MOI.LessThan(2.0));

julia> f = MOI.modify(model, c, MOI.Utilities.ScalarPenaltyRelaxation(2.0));

julia> print(model)
Minimize ScalarAffineFunction{Float64}:
0.0 + 2.0 v[2]

Subject to:

ScalarAffineFunction{Float64}-in-LessThan{Float64}
0.0 + 1.0 x - 1.0 v[2] <= 2.0

VariableIndex-in-GreaterThan{Float64}
v[2] >= 0.0

julia> f
0.0 + 1.0 MOI.VariableIndex(2)

Utilities.MatrixOfConstraints
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The constraints of Utilities.Model are stored as a vector of tuples of function and set in a Utilities.VectorOfConstraints.

Other representations can be used by parameterizing the type Utilities.GenericModel (resp. Utilities.GenericOptimizer).

For example, if all non-VariableIndex constraints are affine, the coefficients of all the constraints can be
stored in a single sparse matrix using Utilities.MatrixOfConstraints.

The constraints storage can even be customized up to a point where it exactly matches the storage of the
solver of interest, in which case copy_to can be implemented for the solver by calling copy_to to this custom
model.

For example, Clp.jl defines the following model:

julia> MOI.Utilities.@product_of_sets(
SupportedSets,
MOI.EqualTo{T},
MOI.LessThan{T},
MOI.GreaterThan{T},
MOI.Interval{T},

);

julia> const OptimizerCache = MOI.Utilities.GenericModel{
Float64,
MOI.Utilities.ObjectiveContainer{Float64},
MOI.Utilities.VariablesContainer{Float64},
MOI.Utilities.MatrixOfConstraints{

Float64,
MOI.Utilities.MutableSparseMatrixCSC{

# The data type of the coefficients
Float64,
# The data type of the variable indices
Cint,
# Can also be MOI.Utilities.OneBasedIndexing
MOI.Utilities.ZeroBasedIndexing,

},
MOI.Utilities.Hyperrectangle{Float64},
SupportedSets{Float64},

},
};

Given the input model:

julia> src = MOI.Utilities.Model{Float64}();

julia> MOI.Utilities.loadfromstring!(
src,
"""
variables: x, y, z
maxobjective: x + 2.0 * y + -3.1 * z
x + y <= 1.0
2.0 * y >= 3.0
-4.0 * x + z == 5.0
x in Interval(0.0, 1.0)
y <= 10.0
z == 5.0
""",

)

https://github.com/jump-dev/Clp.jl
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We can construct a new cached model and copy src to it:

julia> dest = OptimizerCache();

julia> index_map = MOI.copy_to(dest, src);

From dest, we can access the A matrix in sparse matrix form:

julia> A = dest.constraints.coefficients;

julia> A.n
3

julia> A.m
3

julia> A.colptr
4-element Vector{Int32}:
0
2
4
5

julia> A.rowval
5-element Vector{Int32}:
0
1
1
2
0

julia> A.nzval
5-element Vector{Float64}:
-4.0
1.0
1.0
2.0
1.0

The lower and upper row bounds:

julia> row_bounds = dest.constraints.constants;

julia> row_bounds.lower
3-element Vector{Float64}:

5.0
-Inf
3.0

julia> row_bounds.upper
3-element Vector{Float64}:
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5.0
1.0
Inf

The lower and upper variable bounds:

julia> dest.variables.lower
3-element Vector{Float64}:

0.0
-Inf
5.0

julia> dest.variables.upper
3-element Vector{Float64}:
1.0
10.0
5.0

Because of larger variations between solvers, the objective can be queried using the standard MOI methods:

julia> MOI.get(dest, MOI.ObjectiveSense())
MAX_SENSE::OptimizationSense = 1

julia> F = MOI.get(dest, MOI.ObjectiveFunctionType())
MathOptInterface.ScalarAffineFunction{Float64}

julia> F = MOI.get(dest, MOI.ObjectiveFunction{F}())
0.0 + 1.0 MOI.VariableIndex(1) + 2.0 MOI.VariableIndex(2) - 3.1 MOI.VariableIndex(3)

Thus, Clp.jl implements copy_to methods similar to the following:

# This method copies from the cache to the `Clp.Optimizer` object.
function MOI.copy_to(dest::Optimizer, src::OptimizerCache)

@assert MOI.is_empty(dest)
A = src.constraints.coefficients
row_bounds = src.constraints.constants
Clp_loadProblem(

dest,
A.n,
A.m,
A.colptr,
A.rowval,
A.nzval,
src.lower_bound,
src.upper_bound,
# (...) objective vector (omitted),
row_bounds.lower,
row_bounds.upper,

)
return MOI.Utilities.identity_index_map(src)

end
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# This method copies from an arbitrary model to the optimizer, by the
# intermediate `OptimizerCache` representation.
function MOI.copy_to(dest::Optimizer, src::MOI.ModelLike)

cache = OptimizerCache()
index_map = MOI.copy_to(cache, src)
MOI.copy_to(dest, cache)
return index_map

end

# This is a special method that gets called in some cases when `OptimizerCache`
# is used as the backing data structure in a `MOI.Utilities.CachingOptimizer`.
# It is needed for performance, but not correctness.
function MOI.copy_to(

dest::Optimizer,
src::MOI.Utilities.UniversalFallback{OptimizerCache},

)
MOI.Utilities.throw_unsupported(src)
return MOI.copy_to(dest, src.model)

end

Tip

For other examples of Utilities.MatrixOfConstraints, see:

• Cbc.jl

• ECOS.jl

• SCS.jl

ModelFilter

Utilities provides Utilities.ModelFilter as a useful tool to copy a subset of a model. For example, given an
infeasiblemodel, we can copy the irreducible infeasible subsystem (formodels implementing ConstraintConflictStatus)
as follows:

my_filter(::Any) = true
function my_filter(ci::MOI.ConstraintIndex)

status = MOI.get(dest, MOI.ConstraintConflictStatus(), ci)
return status != MOI.NOT_IN_CONFLICT

end
filtered_src = MOI.Utilities.ModelFilter(my_filter, src)
index_map = MOI.copy_to(dest, filtered_src)

Fallbacks

The value of some attributes can be inferred from the value of other attributes.

For example, the value of ObjectiveValue can be computed using ObjectiveFunction and VariablePrimal.

When a solver gives direct access to an attribute, it is better to return this value. However, if this is not the
case, Utilities.get_fallback can be used instead. For example:

https://github.com/jump-dev/Cbc.jl
https://github.com/jump-dev/ECOS.jl
https://github.com/jump-dev/SCS.jl
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function MOI.get(model::Optimizer, attr::MOI.ObjectiveFunction)
return MOI.Utilities.get_fallback(model, attr)

end

DoubleDicts

When writing MOI interfaces, we often need to handle situations in which we map ConstraintIndexs to dif-
ferent values. For example, to a string for ConstraintName.

One option is to use a dictionary like Dict{MOI.ConstraintIndex,String}. However, this incurs a perfor-
mance cost because the key is not a concrete type.

The DoubleDicts submodule helps this situation by providing two typesmain types Utilities.DoubleDicts.DoubleDict
and Utilities.DoubleDicts.IndexDoubleDict. These types act like normal dictionaries, but internally they
use more efficient dictionaries specialized to the type of the function-set pair.

The most common usage of a DoubleDict is in the index_map returned by copy_to. Performance can be
improved, by using a function barrier. That is, instead of code like:

index_map = MOI.copy_to(dest, src)
for (F, S) in MOI.get(src, MOI.ListOfConstraintTypesPresent())

for ci in MOI.get(src, MOI.ListOfConstraintIndices{F,S}())
dest_ci = index_map[ci]
# ...

end
end

use instead:

function function_barrier(
dest,
src,
index_map::MOI.Utilities.DoubleDicts.IndexDoubleDictInner{F,S},

) where {F,S}
for ci in MOI.get(src, MOI.ListOfConstraintIndices{F,S}())

dest_ci = index_map[ci]
# ...

end
return

end

index_map = MOI.copy_to(dest, src)
for (F, S) in MOI.get(src, MOI.ListOfConstraintTypesPresent())

function_barrier(dest, src, index_map[F, S])
end

API Reference

Utilities.Model

MathOptInterface.Utilities.Model – Type.
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MOI.Utilities.Model{T}() where {T}

An implementation of ModelLike that supports all functions and sets defined in MOI. It is parameterized
by the coefficient type.

Example

julia> model = MOI.Utilities.Model{Float64}()
MOIU.Model{Float64}
├ ObjectiveSense: FEASIBILITY_SENSE
├ ObjectiveFunctionType: MOI.ScalarAffineFunction{Float64}
├ NumberOfVariables: 0
└ NumberOfConstraints: 0

source

Utilities.UniversalFallback

MathOptInterface.Utilities.UniversalFallback – Type.

UniversalFallback

The UniversalFallback can be applied on a MOI.ModelLike model to create themodel UniversalFallback(model)
supporting any constraint and attribute. This allows to have a specialized implementation in model for per-
formance critical constraints and attributes while still supporting other attributes with a small performance
penalty. Note that model is unaware of constraints and attributes stored by UniversalFallback so this is
not appropriate if model is an optimizer (for this reason, MOI.optimize! has not been implemented). In
that case, optimizer bridges should be used instead.

source

Utilities.@model

MathOptInterface.Utilities.@model – Macro.

macro model(
model_name,
scalar_sets,
typed_scalar_sets,
vector_sets,
typed_vector_sets,
scalar_functions,
typed_scalar_functions,
vector_functions,
typed_vector_functions,
is_optimizer = false

)

Creates a type model_name implementing the MOI model interface and supporting all combinations of the
provided functions and sets.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/model.jl#L853-L869
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/universalfallback.jl#L7-L19
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Each typed_ scalar/vector sets/functions argument is a tuple of types. A type is "typed" if it has a
coefficient {T} as the first type parameter.

Tuple syntax

To give no set/function, write (). To give one set or function X, write (X,).

is_optimizer

If is_optimizer = true, the resulting struct is a of GenericOptimizer, which is a subtype of MOI.AbstractOptimizer,
otherwise, it is a GenericModel, which is a subtype of MOI.ModelLike.

VariableIndex

• The function MOI.VariableIndex must not be given in scalar_functions.

• Themodel supports MOI.VariableIndex-in-S constraints where S is MOI.EqualTo, MOI.GreaterThan,
MOI.LessThan, MOI.Interval, MOI.Integer, MOI.ZeroOne, MOI.Semicontinuous or MOI.Semiinteger.

• The sets supported with MOI.VariableIndex cannot be controlled from themacro; use UniversalFallback
to support more sets.

Example

The model describing a linear program would be:

@model(
LPModel, # model_name
(), # untyped scalar sets
(MOI.EqualTo, MOI.GreaterThan, MOI.LessThan, MOI.Interval), # typed scalar sets
(MOI.Zeros, MOI.Nonnegatives, MOI.Nonpositives), # untyped vector sets
(), # typed vector sets
(), # untyped scalar functions
(MOI.ScalarAffineFunction,), # typed scalar functions
(MOI.VectorOfVariables,), # untyped vector functions
(MOI.VectorAffineFunction,), # typed vector functions
false, # is_optimizer

)

source

MathOptInterface.Utilities.GenericModel – Type.

mutable struct GenericModel{T,O,V,C} <: AbstractModelLike{T}

Implements a model supporting coefficients of type T and:

• An objective function stored in .objective::O

• Variables and VariableIndex constraints stored in .variable_bounds::V

• F-in-S constraints (excluding VariableIndex constraints) stored in .constraints::C

All interactions take place via the MOI interface, so the types O, V, and Cmust implement the API as needed
for their functionality.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/model.jl#L636-L695
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/model.jl#L9-L21


CHAPTER 37. SUBMODULES 1353

MathOptInterface.Utilities.GenericOptimizer – Type.

mutable struct GenericOptimizer{T,O,V,C} <: AbstractOptimizer{T}

Implements a model supporting coefficients of type T and:

• An objective function stored in .objective::O

• Variables and VariableIndex constraints stored in .variable_bounds::V

• F-in-S constraints (excluding VariableIndex constraints) stored in .constraints::C

All interactions take place via the MOI interface, so the types O, V, and Cmust implement the API as needed
for their functionality.

source

.objective

MathOptInterface.Utilities.ObjectiveContainer – Type.

ObjectiveContainer{T}

A helper struct to simplify the handling of objective functions in Utilities.Model.

source

.variables

MathOptInterface.Utilities.VariablesContainer – Type.

struct VariablesContainer{T} <: AbstractVectorBounds
set_mask::Vector{UInt16}
lower::Vector{T}
upper::Vector{T}

end

A struct for storing variables and VariableIndex-related constraints. Used in MOI.Utilities.Model by
default.

source

MathOptInterface.Utilities.FreeVariables – Type.

mutable struct FreeVariables <: MOI.ModelLike
n::Int64
FreeVariables() = new(0)

end

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/model.jl#L52-L64
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/objective_container.jl#L7-L12
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/variables_container.jl#L178-L187
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A struct for storing free variables that can be used as the variables field of GenericModel or GenericModel.
It represents a model that does not support any constraint nor objective function.

Example

The followingmodel type represents a conic model in geometric form. As opposed to VariablesContainer,
FreeVariables does not support constraint bounds so they are bridged into an affine constraint in the
MOI.Nonnegatives cone as expected for the geometric conic form.

julia> MOI.Utilities.@product_of_sets(
Cones,
MOI.Zeros,
MOI.Nonnegatives,
MOI.SecondOrderCone,
MOI.PositiveSemidefiniteConeTriangle,

);

julia> const ConicModel{T} = MOI.Utilities.GenericOptimizer{
T,
MOI.Utilities.ObjectiveContainer{T},
MOI.Utilities.FreeVariables,
MOI.Utilities.MatrixOfConstraints{

T,
MOI.Utilities.MutableSparseMatrixCSC{

T,
Int,
MOI.Utilities.OneBasedIndexing,

},
Vector{T},
Cones{T},

},
};

julia> model = MOI.instantiate(ConicModel{Float64}, with_bridge_type=Float64);

julia> x = MOI.add_variable(model)
MathOptInterface.VariableIndex(1)

julia> c = MOI.add_constraint(model, x, MOI.GreaterThan(1.0))
MathOptInterface.ConstraintIndex{MathOptInterface.VariableIndex,

MathOptInterface.GreaterThan{Float64}}(1)↪→

julia> MOI.Bridges.is_bridged(model, c)
true

julia> bridge = MOI.Bridges.bridge(model, c)
MathOptInterface.Bridges.Constraint.VectorizeBridge{Float64,

MathOptInterface.VectorAffineFunction{Float64}, MathOptInterface.Nonnegatives,
MathOptInterface.VariableIndex}(MathOptInterface.ConstraintIndex{MathOptInterface.VectorAffineFunction{Float64},
MathOptInterface.Nonnegatives}(1), 1.0)

↪→

↪→

↪→

julia> bridge.vector_constraint
MathOptInterface.ConstraintIndex{MathOptInterface.VectorAffineFunction{Float64},

MathOptInterface.Nonnegatives}(1)↪→

julia> MOI.Bridges.is_bridged(model, bridge.vector_constraint)
false
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source

.constraints

MathOptInterface.Utilities.VectorOfConstraints – Type.

mutable struct VectorOfConstraints{
F<:MOI.AbstractFunction,
S<:MOI.AbstractSet,

} <: MOI.ModelLike
constraints::CleverDicts.CleverDict{

MOI.ConstraintIndex{F,S},
Tuple{F,S},
typeof(CleverDicts.key_to_index),
typeof(CleverDicts.index_to_key),

}
end

A struct storing F-in-S constraints as a mapping between the constraint indices to the corresponding tuple
of function and set.

source

MathOptInterface.Utilities.StructOfConstraints – Type.

abstract type StructOfConstraints <: MOI.ModelLike end

A struct storing a subfields other structs storing constraints of different types.

See Utilities.@struct_of_constraints_by_function_types and Utilities.@struct_of_constraints_by_set_types.

source

MathOptInterface.Utilities.@struct_of_constraints_by_function_types – Macro.

Utilities.@struct_of_constraints_by_function_types(name, func_types...)

Given a vector of n function types (F1, F2,..., Fn) in func_types, defines a subtype of StructOfConstraints
of name name and which type parameters {T, C1, C2, ..., Cn}. It contains n field where the ith field
has type Ci and stores the constraints of function type Fi.

The expression Fi can also be a union in which case any constraint for which the function type is in the
union is stored in the field with type Ci.

source

MathOptInterface.Utilities.@struct_of_constraints_by_set_types – Macro.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/free_variables.jl#L7-L69
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/vector_of_constraints.jl#L24-L39
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/struct_of_constraints.jl#L7-L15
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/struct_of_constraints.jl#L395-L406
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Utilities.@struct_of_constraints_by_set_types(name, func_types...)

Given a vector of n set types (S1, S2,..., Sn) in func_types, defines a subtype of StructOfConstraints
of name name and which type parameters {T, C1, C2, ..., Cn}. It contains n field where the ith field
has type Ci and stores the constraints of set type Si. The expression Si can also be a union in which case
any constraint for which the set type is in the union is stored in the field with type Ci. This can be useful
if Ci is a MatrixOfConstraints in order to concatenate the coefficients of constraints of several different
set types in the same matrix.

source

MathOptInterface.Utilities.struct_of_constraint_code – Function.

struct_of_constraint_code(struct_name, types, field_types = nothing)

Given a vector of n Union{SymbolFun,_UnionSymbolFS{SymbolFun}} or Union{SymbolSet,_UnionSymbolFS{SymbolSet}}
in types, defines a subtype of StructOfConstraints of name name and which type parameters {T,
F1, F2, ..., Fn} if field_types is nothing and a {T} otherwise. It contains n field where the ith
field has type Ci if field_types is nothing and type field_types[i] otherwise. If types is vector of
Union{SymbolFun,_UnionSymbolFS{SymbolFun}} (resp. Union{SymbolSet,_UnionSymbolFS{SymbolSet}})
then the constraints of that function (resp. set) type are stored in the corresponding field.

This function is used by themacros @model, @struct_of_constraints_by_function_types and @struct_of_constraints_by_set_types.

source

Caching optimizer

MathOptInterface.Utilities.CachingOptimizer – Type.

CachingOptimizer

CachingOptimizer is an intermediate layer that stores a cache of the model and links it with an optimizer.
It supports incremental model construction and modification even when the optimizer doesn't.

Mode

A Utilities.CachingOptimizer has twomodes of operation: Utilities.AUTOMATIC and Utilities.MANUAL.
See their docstrings for details.

Use Utilities.mode to query the mode of a Utilities.CachingOptimizer.

State

A Utilities.CachingOptimizermay be in one of three possible states: NO_OPTIMIZER, Utilities.EMPTY_OPTIMIZER,
and Utilities.ATTACHED_OPTIMIZER. See their docstrings for details.

Use Utilities.state to query the state of a Utilities.CachingOptimizer.

Constructor with optimizer

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/struct_of_constraints.jl#L412-L425
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/struct_of_constraints.jl#L262-L279
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CachingOptimizer(cache::MOI.ModelLike, optimizer::AbstractOptimizer)

Creates a CachingOptimizer in AUTOMATIC mode, with the optimizer optimizer.

The type of the optimizer returned is CachingOptimizer{typeof(optimizer),typeof(cache)} so it does
not support the function Utilities.reset_optimizer(::CachingOptimizer, new_optimizer) if the type
of new_optimizer is different from the type of optimizer.

Constructor without optimizer

CachingOptimizer(cache::MOI.ModelLike, mode::CachingOptimizerMode)

Creates a CachingOptimizer in the NO_OPTIMIZER Utilities.CachingOptimizerState and the Utilities.CachingOptimizerMode
mode.

The type of the optimizer returned is CachingOptimizer{MOI.AbstractOptimizer,typeof(cache)} so it
does support the function reset_optimizer(::CachingOptimizer, new_optimizer) if the type of new_optimizer
is different from the type of optimizer.

source

MathOptInterface.Utilities.CachingOptimizerState – Type.

CachingOptimizerState

A Utilities.CachingOptimizer may be in one of three possible states.

Values

NO_OPTIMIZER

The CachingOptimizer does not have any optimizer.

EMPTY_OPTIMIZER

The CachingOptimizer has an optimizer. The optimizer is empty and it is not synchronized with the cached
model.

ATTACHED_OPTIMIZER

The CachingOptimizer has an optimizer, and it is synchronized with the cached model.

source

MathOptInterface.Utilities.NO_OPTIMIZER – Constant.

NO_OPTIMIZER::CachingOptimizerState

An instance of the CachingOptimizerState enum.

About

The CachingOptimizer does not have any optimizer.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/cachingoptimizer.jl#L62-L115
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/cachingoptimizer.jl#L15-L36
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/cachingoptimizer.jl#L15-L23
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MathOptInterface.Utilities.EMPTY_OPTIMIZER – Constant.

EMPTY_OPTIMIZER::CachingOptimizerState

An instance of the CachingOptimizerState enum.

About

The CachingOptimizer has an optimizer. The optimizer is empty and it is not synchronized with the cached
model.

source

MathOptInterface.Utilities.ATTACHED_OPTIMIZER – Constant.

ATTACHED_OPTIMIZER::CachingOptimizerState

An instance of the CachingOptimizerState enum.

About

The CachingOptimizer has an optimizer, and it is synchronized with the cached model.

source

MathOptInterface.Utilities.state – Function.

state(m::CachingOptimizer)::CachingOptimizerState

Returns the state of the CachingOptimizer m.

See Utilities.CachingOptimizer.

source

MathOptInterface.Utilities.CachingOptimizerMode – Type.

CachingOptimizerMode

A Utilities.CachingOptimizer has two modes of operation.

Values

MANUAL

The only methods that change the state of the CachingOptimizer are Utilities.reset_optimizer,
Utilities.drop_optimizer, and Utilities.attach_optimizer.

Attempting to perform an operation in the incorrect state results in an error.

AUTOMATIC

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/cachingoptimizer.jl#L15-L25
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/cachingoptimizer.jl#L15-L25
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/cachingoptimizer.jl#L193-L199
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The Utilities.CachingOptimizer changes its state when necessary. For example, MOI.optimize! will
automatically call Utilities.attach_optimizer (an optimizer must have been previously set). Attempt-
ing to add a constraint or perform a modification not supported by the optimizer results in a drop to the
EMPTY_OPTIMIZER state.

source

MathOptInterface.Utilities.AUTOMATIC – Constant.

AUTOMATIC::CachingOptimizerMode

An instance of the CachingOptimizerMode enum.

About

The Utilities.CachingOptimizer changes its state when necessary. For example, MOI.optimize! will
automatically call Utilities.attach_optimizer (an optimizer must have been previously set). Attempt-
ing to add a constraint or perform a modification not supported by the optimizer results in a drop to the
EMPTY_OPTIMIZER state.

source

MathOptInterface.Utilities.MANUAL – Constant.

MANUAL::CachingOptimizerMode

An instance of the CachingOptimizerMode enum.

About

The only methods that change the state of the CachingOptimizer are Utilities.reset_optimizer,
Utilities.drop_optimizer, and Utilities.attach_optimizer.

Attempting to perform an operation in the incorrect state results in an error.

source

MathOptInterface.Utilities.mode – Function.

mode(m::CachingOptimizer)::CachingOptimizerMode

Returns the operating mode of the CachingOptimizer m.

See Utilities.CachingOptimizer.

source

MathOptInterface.Utilities.attach_optimizer – Function.

attach_optimizer(model::CachingOptimizer)

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/cachingoptimizer.jl#L36-L60
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/cachingoptimizer.jl#L36-L49
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/cachingoptimizer.jl#L36-L50
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/cachingoptimizer.jl#L202-L208
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Attaches the optimizer to model, copying all model data into it. Can be called only from the EMPTY_OPTIMIZER
state. If the copy succeeds, the CachingOptimizer will be in state ATTACHED_OPTIMIZER after the call, oth-
erwise an error is thrown; see MOI.copy_to for more details on which errors can be thrown.

source

MOIU.attach_optimizer(model::GenericModel)

Call MOIU.attach_optimizer on the backend of model.

Cannot be called in direct mode.

source

MathOptInterface.Utilities.reset_optimizer – Function.

reset_optimizer(m::CachingOptimizer, optimizer::MOI.AbstractOptimizer)

Sets or resets m to have the given empty optimizer optimizer.

Can be called from any state. An assertion error will be thrown if optimizer is not empty.

The CachingOptimizer m will be in state EMPTY_OPTIMIZER after the call.

source

reset_optimizer(m::CachingOptimizer)

Detaches and empties the current optimizer. Can be called from ATTACHED_OPTIMIZER or EMPTY_OPTIMIZER
state. The CachingOptimizer will be in state EMPTY_OPTIMIZER after the call.

source

MOIU.reset_optimizer(model::GenericModel, optimizer::MOI.AbstractOptimizer)

Call MOIU.reset_optimizer on the backend of model.

Cannot be called in direct mode.

source

MOIU.reset_optimizer(model::GenericModel)

Call MOIU.reset_optimizer on the backend of model.

Cannot be called in direct mode.

source

MathOptInterface.Utilities.drop_optimizer – Function.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/cachingoptimizer.jl#L256-L264
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L445-L451
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/cachingoptimizer.jl#L211-L220
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/cachingoptimizer.jl#L229-L235
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L400-L406
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L417-L423
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drop_optimizer(m::CachingOptimizer)

Drops the optimizer, if one is present. Can be called from any state. The CachingOptimizer will be in
state NO_OPTIMIZER after the call.

source

MOIU.drop_optimizer(model::GenericModel)

Call MOIU.drop_optimizer on the backend of model.

Cannot be called in direct mode.

source

Mock optimizer

MathOptInterface.Utilities.MockOptimizer – Type.

MockOptimizer

MockOptimizer is a fake optimizer especially useful for testing. Its main feature is that it can store the
values that should be returned for each attribute.

source

Printing

MathOptInterface.Utilities.latex_formulation – Function.

latex_formulation(model::MOI.ModelLike; kwargs...)

Wrap model in a type so that it can be pretty-printed as text/latex in a notebook like IJulia, or in Docu-
menter.

To render themodel, end the cell with latex_formulation(model), or call display(latex_formulation(model))
in to force the display of the model from inside a function.

Possible keyword arguments are:

• simplify_coefficients : Simplify coefficients if possible by omitting them or removing trailing
zeros.

• default_name : The name given to variables with an empty name.

• print_types : Print the MOI type of each function and set for clarity.

source

Copy utilities

MathOptInterface.Utilities.default_copy_to – Function.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/cachingoptimizer.jl#L244-L249
https://github.com/jump-dev/JuMP.jl/blob/dce3879c440c8b94941935d8fd61e26205959120/src/optimizer_interface.jl#L432-L438
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/mockoptimizer.jl#L17-L23
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/print.jl#L657-L673
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default_copy_to(dest::MOI.ModelLike, src::MOI.ModelLike)

A default implementation of MOI.copy_to(dest, src) for models that implement the incremental inter-
face, that is, MOI.supports_incremental_interface returns true.

source

MathOptInterface.Utilities.IndexMap – Type.

IndexMap()

The dictionary-like object returned by MOI.copy_to.

source

MathOptInterface.Utilities.identity_index_map – Function.

identity_index_map(model::MOI.ModelLike)

Return an IndexMap that maps all variable and constraint indices of model to themselves.

source

MathOptInterface.Utilities.ModelFilter – Type.

ModelFilter(filter::Function, model::MOI.ModelLike)

A layer to filter out various components of model.

The filter function takes a single argument, which is each element from the list returned by the attributes
below. It returns true if the element should be visible in the filtered model and false otherwise.

The components that are filtered are:

• Entire constraint types via:

– MOI.ListOfConstraintTypesPresent

• Individual constraints via:

– MOI.ListOfConstraintIndices{F,S}

• Specific attributes via:

– MOI.ListOfModelAttributesSet
– MOI.ListOfConstraintAttributesSet
– MOI.ListOfVariableAttributesSet

Warning

The list of attributes filtered may change in a future release. You should write functions that are
generic and not limited to the five types listed above. Thus, you should probably define a fallback
filter(::Any) = true.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/copy.jl#L374-L380
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/copy/index_map.jl#L25-L29
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/copy/index_map.jl#L46-L51
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See below for examples of how this works.

Note

This layer has a limited scope. It is intended by be used in conjunction with MOI.copy_to.

Example: copy model excluding integer constraints

Use the do syntax to provide a single function.

filtered_src = MOI.Utilities.ModelFilter(src) do item
return item != (MOI.VariableIndex, MOI.Integer)

end
MOI.copy_to(dest, filtered_src)

Example: copy model excluding names

Use type dispatch to simplify the implementation:

my_filter(::Any) = true # Note the generic fallback
my_filter(::MOI.VariableName) = false
my_filter(::MOI.ConstraintName) = false
filtered_src = MOI.Utilities.ModelFilter(my_filter, src)
MOI.copy_to(dest, filtered_src)

Example: copy irreducible infeasible subsystem

my_filter(::Any) = true # Note the generic fallback
function my_filter(ci::MOI.ConstraintIndex)

status = MOI.get(dest, MOI.ConstraintConflictStatus(), ci)
return status != MOI.NOT_IN_CONFLICT

end
filtered_src = MOI.Utilities.ModelFilter(my_filter, src)
MOI.copy_to(dest, filtered_src)

source

MathOptInterface.Utilities.loadfromstring! – Function.

loadfromstring!(model, s)

A utility function to aid writing tests.

Warning

This function is not intended for widespread use. It is mainly used as a tool to simplify writing
tests in MathOptInterface. Do not use it as an exchange format for storing or transmitting problem
instances. Use the FileFormats submodule instead.

Example

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/copy.jl#L561-L626
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julia> model = MOI.Utilities.Model{Float64}();

julia> MOI.Utilities.loadfromstring!(model, """
variables: x, y, z
constrainedvariable: [a, b, c] in Nonnegatives(3)
minobjective::Float64: 2x + 3y
con1: x + y <= 1.0
con2: [x, y] in Nonnegatives(2)
x >= 0.0
""")

Notes

Special labels are:

• variables

• minobjective

• maxobjectives

Everything else denotes a constraint with a name.

Append ::T to use an element type of T when parsing the function.

Do not name VariableIndex constraints.

Exceptions

• x - y does NOT currently parse. Instead, write x + -1.0 * y.

• x^2 does NOT currently parse. Instead, write x * x.

source

Penalty relaxation

MathOptInterface.Utilities.PenaltyRelaxation – Type.

PenaltyRelaxation(
penalties = Dict{MOI.ConstraintIndex,Float64}();
default::Union{Nothing,T} = 1.0,

)

A problem modifier that, when passed to MOI.modify, destructively modifies the model in-place to create
a penalized relaxation of the constraints.

Warning

This is a destructive routine that modifies the model in-place. If you don't want to modify the
original model, use JuMP.copy_model to create a copy before calling MOI.modify.

Reformulation

See Utilities.ScalarPenaltyRelaxation for details of the reformulation.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/parser.jl#L327-L371
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For each constraint ci, the penalty passed to Utilities.ScalarPenaltyRelaxation is get(penalties,
ci, default). If the value is nothing, because ci does not exist in penalties and default = nothing,
then the constraint is skipped.

Return value

MOI.modify(model, PenaltyRelaxation()) returns a Dict{MOI.ConstraintIndex,MOI.ScalarAffineFunction}
that maps each constraint index to the corresponding y + z as a MOI.ScalarAffineFunction. In an op-
timal solution, query the value of these functions to compute the violation of each constraint.

Relax a subset of constraints

To relax a subset of constraints, pass a penalties dictionary and set default = nothing.

Supported constraint types

The penalty relaxation is currently limited tomodifying MOI.ScalarAffineFunction and MOI.ScalarQuadraticFunction
constraints in the linear sets MOI.LessThan, MOI.GreaterThan, MOI.EqualTo and MOI.Interval.

It does not include variable bound or integrality constraints, because these cannot be modified in-place.

To modify variable bounds, rewrite them as linear constraints.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variable(model);

julia> c = MOI.add_constraint(model, 1.0 * x, MOI.LessThan(2.0));

julia> map = MOI.modify(model, MOI.Utilities.PenaltyRelaxation(default = 2.0));

julia> print(model)
Minimize ScalarAffineFunction{Float64}:
0.0 + 2.0 v[2]

Subject to:

ScalarAffineFunction{Float64}-in-LessThan{Float64}
0.0 + 1.0 v[1] - 1.0 v[2] <= 2.0

VariableIndex-in-GreaterThan{Float64}
v[2] >= 0.0

julia> map[c] isa MOI.ScalarAffineFunction{Float64}
true

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variable(model);

julia> c = MOI.add_constraint(model, 1.0 * x, MOI.LessThan(2.0));

julia> map = MOI.modify(model, MOI.Utilities.PenaltyRelaxation(Dict(c => 3.0)));

julia> print(model)



CHAPTER 37. SUBMODULES 1366

Minimize ScalarAffineFunction{Float64}:
0.0 + 3.0 v[2]

Subject to:

ScalarAffineFunction{Float64}-in-LessThan{Float64}
0.0 + 1.0 v[1] - 1.0 v[2] <= 2.0

VariableIndex-in-GreaterThan{Float64}
v[2] >= 0.0

julia> map[c] isa MOI.ScalarAffineFunction{Float64}
true

source

MathOptInterface.Utilities.ScalarPenaltyRelaxation – Type.

ScalarPenaltyRelaxation(penalty::T) where {T}

A problem modifier that, when passed to MOI.modify, destructively modifies the constraint in-place to
create a penalized relaxation of the constraint.

Warning

This is a destructive routine that modifies the constraint in-place. If you don't want to modify the
original model, use JuMP.copy_model to create a copy before calling MOI.modify.

Reformulation

The penalty relaxation modifies constraints of the form f(x) ∈ S into f(x) + y − z ∈ S, where y, z ≥ 0,
and then it introduces a penalty term into the objective of a× (y+ z) (if minimizing, else −a), where a is
penalty

When S is MOI.LessThan or MOI.GreaterThan, we omit y or z respectively as a performance optimization.

Return value

MOI.modify(model, ci, ScalarPenaltyRelaxation(penalty)) returns y + z as a MOI.ScalarAffineFunction.
In an optimal solution, query the value of this function to compute the violation of the constraint.

Example

julia> model = MOI.Utilities.Model{Float64}();

julia> x = MOI.add_variable(model);

julia> c = MOI.add_constraint(model, 1.0 * x, MOI.LessThan(2.0));

julia> f = MOI.modify(model, c, MOI.Utilities.ScalarPenaltyRelaxation(2.0));

julia> print(model)
Minimize ScalarAffineFunction{Float64}:

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/penalty_relaxation.jl#L141-L241
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0.0 + 2.0 v[2]

Subject to:

ScalarAffineFunction{Float64}-in-LessThan{Float64}
0.0 + 1.0 v[1] - 1.0 v[2] <= 2.0

VariableIndex-in-GreaterThan{Float64}
v[2] >= 0.0

julia> f isa MOI.ScalarAffineFunction{Float64}
true

source

MatrixOfConstraints

MathOptInterface.Utilities.MatrixOfConstraints – Type.

mutable struct MatrixOfConstraints{T,AT,BT,ST} <: MOI.ModelLike
coefficients::AT
constants::BT
sets::ST
caches::Vector{Any}
are_indices_mapped::Vector{BitSet}
final_touch::Bool

end

Represent ScalarAffineFunction and VectorAffinefunction constraints in a matrix form where the
linear coefficients of the functions are stored in the coefficients field, the constants of the functions or
sets are stored in the constants field. Additional information about the sets are stored in the sets field.

This model can only be used as the constraints field of a MOI.Utilities.AbstractModel.

When the constraints are added, they are stored in the caches field. They are only loaded in the coefficients
and constants fields once MOI.Utilities.final_touch is called. For this reason, MatrixOfConstraints
should not be used by an incremental interface. Use MOI.copy_to instead.

The constraints can be added in two different ways:

1. With add_constraint, in which case a canonicalized copy of the function is stored in caches.

2. With pass_nonvariable_constraints, in which case the functions and sets are stored themselves
in caches without mapping the variable indices. The corresponding index in caches is added in
are_indices_mapped. This avoids doing a copy of the function in case the getter of CanonicalConstraintFunction
does not make a copy for the source model, for example, this is the case of VectorOfConstraints.

We illustrate this with an example. Suppose a model is copied from a src::MOI.Utilities.Model to a
bridged model with a MatrixOfConstraints. For all the types that are not bridged, the constraints will
be copied with pass_nonvariable_constraints. Hence the functions stored in caches are exactly the
same as the ones stored in src. This is ok since this is only during the copy_to operation during which
src cannot be modified. On the other hand, for the types that are bridged, the functions added may

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/penalty_relaxation.jl#L7-L61
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contain duplicates even if the functions did not contain duplicates in src so duplicates are removed with
MOI.Utilities.canonical.

Interface

The .coefficients::AT type must implement:

• AT()

• MOI.empty(::AT)!

• MOI.Utilities.add_column

• MOI.Utilities.set_number_of_rows

• MOI.Utilities.allocate_terms

• MOI.Utilities.load_terms

• MOI.Utilities.final_touch

The .constants::BT type must implement:

• BT()

• Base.empty!(::BT)

• Base.resize(::BT)

• MOI.Utilities.load_constants

• MOI.Utilities.function_constants

• MOI.Utilities.set_from_constants

The .sets::ST type must implement:

• ST()

• MOI.is_empty(::ST)

• MOI.empty(::ST)

• MOI.dimension(::ST)

• MOI.is_valid(::ST, ::MOI.ConstraintIndex)

• MOI.get(::ST, ::MOI.ListOfConstraintTypesPresent)

• MOI.get(::ST, ::MOI.NumberOfConstraints)

• MOI.get(::ST, ::MOI.ListOfConstraintIndices)

• MOI.Utilities.set_types

• MOI.Utilities.set_index

• MOI.Utilities.add_set

• MOI.Utilities.rows

• MOI.Utilities.final_touch

source

.coefficients

MathOptInterface.Utilities.add_column – Function.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/matrix_of_constraints.jl#L7-L87


CHAPTER 37. SUBMODULES 1369

add_column(coefficients)::Nothing

Tell coefficients to pre-allocate datastructures as needed to store one column.

source

MathOptInterface.Utilities.allocate_terms – Function.

allocate_terms(coefficients, index_map, func)::Nothing

Tell coefficients that the terms of the function funcwhere the variable indices aremappedwith index_map
will be loaded with load_terms.

The function func must be canonicalized before calling allocate_terms. See is_canonical.

source

MathOptInterface.Utilities.set_number_of_rows – Function.

set_number_of_rows(coefficients, n)::Nothing

Tell coefficients to pre-allocate datastructures as needed to store n rows.

source

MathOptInterface.Utilities.load_terms – Function.

load_terms(coefficients, index_map, func, offset)::Nothing

Loads the terms of func to coefficients, mapping the variable indices with index_map.

The ith dimension of func is loaded at the (offset + i)th row of coefficients.

The function must be allocated first with allocate_terms.

The function func must be canonicalized, see is_canonical.

source

MathOptInterface.Utilities.final_touch – Function.

final_touch(coefficients)::Nothing

Informs the coefficients that all functions have been added with load_terms. No more modification is
allowed unless MOI.empty! is called.

final_touch(sets)::Nothing

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/matrix_of_constraints.jl#L106-L111
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/matrix_of_constraints.jl#L121-L129
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/matrix_of_constraints.jl#L114-L118
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/matrix_of_constraints.jl#L132-L144
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Informs the sets that all functions have been added with add_set. No more modification is allowed unless
MOI.empty! is called.

source

MathOptInterface.Utilities.extract_function – Function.

extract_function(coefficients, row::Integer, constant::T) where {T}

Return the MOI.ScalarAffineFunction{T} function corresponding to row row in coefficients.

extract_function(
coefficients,
rows::UnitRange,
constants::Vector{T},

) where{T}

Return the MOI.VectorAffineFunction{T} function corresponding to rows rows in coefficients.

source

MathOptInterface.Utilities.MutableSparseMatrixCSC – Type.

mutable struct MutableSparseMatrixCSC{Tv,Ti<:Integer,I<:AbstractIndexing}
indexing::I
m::Int
n::Int
colptr::Vector{Ti}
rowval::Vector{Ti}
nzval::Vector{Tv}
nz_added::Vector{Ti}

end

Matrix type loading sparse matrices in the Compressed Sparse Column format. The indexing used is
indexing, see AbstractIndexing. The other fields have the samemeaning than for SparseArrays.SparseMatrixCSC
except that the indexing is different unless indexing is OneBasedIndexing. In addition, nz_added is used
to cache the number of non-zero terms that have been added to each column due to the incremental
nature of load_terms.

The matrix is loaded in 5 steps:

1. MOI.empty! is called.

2. MOI.Utilities.add_column and MOI.Utilities.allocate_terms are called in any order.

3. MOI.Utilities.set_number_of_rows is called.

4. MOI.Utilities.load_terms is called for each affine function.

5. MOI.Utilities.final_touch is called.

source

MathOptInterface.Utilities.AbstractIndexing – Type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/matrix_of_constraints.jl#L147-L157
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/matrix_of_constraints.jl#L160-L174
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/sparse_matrix.jl#L42-L67
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abstract type AbstractIndexing end

Indexing to be used for storing the row and column indices of MutableSparseMatrixCSC. See ZeroBasedIndexing
and OneBasedIndexing.

source

MathOptInterface.Utilities.ZeroBasedIndexing – Type.

struct ZeroBasedIndexing <: AbstractIndexing end

Zero-based indexing: the ith row or column has index i - 1. This is useful when the vectors of row and
column indices need to be communicated to a library using zero-based indexing such as C libraries.

source

MathOptInterface.Utilities.OneBasedIndexing – Type.

struct ZeroBasedIndexing <: AbstractIndexing end

One-based indexing: the ith row or column has index i. This enables an allocation-free conversion of
MutableSparseMatrixCSC to SparseArrays.SparseMatrixCSC.

source

.constants

MathOptInterface.Utilities.load_constants – Function.

load_constants(constants, offset, func_or_set)::Nothing

This function loads the constants of func_or_set in constants at an offset of offset. Where offset is the
sum of the dimensions of the constraints already loaded. The storage should be preallocated with resize!
before calling this function.

This function should be implemented to be usable as storage of constants for MatrixOfConstraints.

The constants are loaded in three steps:

1. Base.empty! is called.

2. Base.resize! is called with the sum of the dimensions of all constraints.

3. MOI.Utilities.load_constants is called for each function for vector constraint or set for scalar
constraint.

source

MathOptInterface.Utilities.function_constants – Function.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/sparse_matrix.jl#L7-L13
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/sparse_matrix.jl#L16-L22
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/sparse_matrix.jl#L25-L31
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/matrix_of_constraints.jl#L181-L197
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function_constants(constants, rows)

This function returns the function constants that were loaded with load_constants at the rows rows.

This function should be implemented to be usable as storage of constants for MatrixOfConstraints.

source

MathOptInterface.Utilities.set_from_constants – Function.

set_from_constants(constants, S::Type, rows)::S

This function returns an instance of the set S for which the constants where loaded with load_constants
at the rows rows.

This function should be implemented to be usable as storage of constants for MatrixOfConstraints.

source

MathOptInterface.Utilities.modify_constants – Function.

modify_constants(constants, row::Integer, new_constant::T) where {T}
modify_constants(

constants,
rows::AbstractVector{<:Integer},
new_constants::AbstractVector{T},

) where {T}

Modify constants in-place to store new_constant in the row row, or rows rows.

This functionmust be implemented to enable MOI.ScalarConstantChange and MOI.VectorConstantChange
for MatrixOfConstraints.

source

MathOptInterface.Utilities.Hyperrectangle – Type.

struct Hyperrectangle{T} <: AbstractVectorBounds
lower::Vector{T}
upper::Vector{T}

end

A struct for the .constants field in MatrixOfConstraints.

source

.sets

MathOptInterface.Utilities.set_index – Function.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/matrix_of_constraints.jl#L200-L208
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/matrix_of_constraints.jl#L211-L219
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/matrix_of_constraints.jl#L222-L235
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/variables_container.jl#L453-L460
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set_index(sets, ::Type{S})::Union{Int,Nothing} where {S<:MOI.AbstractSet}

Return an integer corresponding to the index of the set type in the list given by set_types.

If S is not part of the list, return nothing.

source

MathOptInterface.Utilities.set_types – Function.

set_types(sets)::Vector{Type}

Return the list of the types of the sets allowed in sets.

source

MathOptInterface.Utilities.add_set – Function.

add_set(sets, i)::Int64

Add a scalar set of type index i.

add_set(sets, i, dim)::Int64

Add a vector set of type index i and dimension dim.

Both methods return a unique Int64 of the set that can be used to reference this set.

source

MathOptInterface.Utilities.rows – Function.

rows(sets, ci::MOI.ConstraintIndex)::Union{Int,UnitRange{Int}}

Return the rows in 1:MOI.dimension(sets) corresponding to the set of id ci.value.

For scalar sets, this returns an Int. For vector sets, this returns an UnitRange{Int}.

source

MathOptInterface.Utilities.num_rows – Function.

num_rows(sets::OrderedProductOfSets, ::Type{S}) where {S}

Return the number of rows corresponding to a set of type S. That is, it is the sum of the dimensions of the
sets of type S.

source

MathOptInterface.Utilities.set_with_dimension – Function.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/matrix_of_constraints.jl#L254-L261
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/matrix_of_constraints.jl#L242-L246
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/matrix_of_constraints.jl#L264-L275
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/matrix_of_constraints.jl#L278-L286
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/product_of_sets.jl#L263-L268
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set_with_dimension(::Type{S}, dim) where {S<:MOI.AbstractVectorSet}

Returns the instance of S of MOI.dimension dim. This needs to be implemented for sets of type S to be
useable with MatrixOfConstraints.

source

MathOptInterface.Utilities.ProductOfSets – Type.

abstract type ProductOfSets{T} end

Represents a cartesian product of sets of given types.

source

MathOptInterface.Utilities.MixOfScalarSets – Type.

abstract type MixOfScalarSets{T} <: ProductOfSets{T} end

Product of scalar sets in the order the constraints are added, mixing the constraints of different types.

Use @mix_of_scalar_sets to generate a new subtype.

source

MathOptInterface.Utilities.@mix_of_scalar_sets – Macro.

@mix_of_scalar_sets(name, set_types...)

Generate a new MixOfScalarSets subtype.

Example

julia> MOI.Utilities.@mix_of_scalar_sets(
MixedIntegerLinearProgramSets,
MOI.GreaterThan{T},
MOI.LessThan{T},
MOI.EqualTo{T},
MOI.Integer,

)

source

MathOptInterface.Utilities.OrderedProductOfSets – Type.

abstract type OrderedProductOfSets{T} <: ProductOfSets{T} end

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/matrix_of_constraints.jl#L574-L580
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/product_of_sets.jl#L7-L11
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/product_of_sets.jl#L41-L48
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/product_of_sets.jl#L51-L67
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Product of sets in the order the constraints are added, grouping the constraints of the same types contigu-
ously.

Use @product_of_sets to generate new subtypes.

source

MathOptInterface.Utilities.@product_of_sets – Macro.

@product_of_sets(name, set_types...)

Generate a new OrderedProductOfSets subtype.

Example

julia> MOI.Utilities.@product_of_sets(
LinearOrthants,
MOI.Zeros,
MOI.Nonnegatives,
MOI.Nonpositives,
MOI.ZeroOne,

)

source

Fallbacks

MathOptInterface.Utilities.get_fallback – Function.

get_fallback(model::MOI.ModelLike, ::MOI.ObjectiveValue)

Compute the objective function value using the VariablePrimal results and the ObjectiveFunction
value.

source

get_fallback(
model::MOI.ModelLike,
::MOI.DualObjectiveValue,
::Type{T},

)::T where {T}

Compute the dual objective value of type T using the ConstraintDual results and the ConstraintFunction
and ConstraintSet values.

Note that the nonlinear part of the model is ignored.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/product_of_sets.jl#L139-L146
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/product_of_sets.jl#L149-L165
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/results.jl#L32-L37
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/results.jl#L155-L166
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get_fallback(
model::MOI.ModelLike,
::MOI.ConstraintPrimal,
constraint_index::MOI.ConstraintIndex,

)

Compute the value of the function of the constraint of index constraint_index using the VariablePrimal
results and the ConstraintFunction values.

source

get_fallback(
model::MOI.ModelLike,
attr::MOI.ConstraintDual,
ci::MOI.ConstraintIndex{Union{MOI.VariableIndex,MOI.VectorOfVariables}},
::Type{T} = Float64,

) where {T}

Compute the dual of the constraint of index ci using the ConstraintDual of other constraints and the
ConstraintFunction values.

Throws an error if some constraints are quadratic or if there is one another MOI.VariableIndex-in-S or
MOI.VectorOfVariables-in-S constraint with one of the variables in the function of the constraint ci.

source

Function utilities

The following utilities are available for functions:

MathOptInterface.Utilities.eval_variables – Function.

eval_variables(value_fn::Function, f::MOI.AbstractFunction)

Returns the value of function f if each variable index vi is evaluated as value_fn(vi).

Note that value_fn must return a Number. See substitute_variables for a similar function where
value_fn returns an MOI.AbstractScalarFunction.

Warning

The two-argument version of eval_variables is deprecated and may be removed in MOI
v2.0.0. Use the three-argument method eval_variables(::Function, ::MOI.ModelLike,
::MOI.AbstractFunction) instead.

source

MathOptInterface.Utilities.map_indices – Function.

map_indices(index_map::Function, attr::MOI.AnyAttribute, x::X)::X where {X}

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/results.jl#L191-L200
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/results.jl#L459-L473
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/functions.jl#L104-L119
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Substitute any MOI.VariableIndex (resp. MOI.ConstraintIndex) in x by the MOI.VariableIndex (resp.
MOI.ConstraintIndex) of the same type given by index_map(x).

When to implement this method for new types X

This function is used by implementations of MOI.copy_to on constraint functions, attribute values and
submittable values. If you define a new attribute whose values x::X contain variable or constraint indices,
you must also implement this function.

source

map_indices(
variable_map::AbstractDict{T,T},
x::X,

)::X where {T<:MOI.Index,X}

Shortcut for map_indices(vi -> variable_map[vi], x).

source

MathOptInterface.Utilities.substitute_variables – Function.

substitute_variables(variable_map::Function, x)

Substitute any MOI.VariableIndex in x by variable_map(x). The variable_map function returns either
MOI.VariableIndex or MOI.ScalarAffineFunction, see eval_variables for a similar function where
variable_map returns a number.

This function is used by bridge optimizers on constraint functions, attribute values and submittable values
when at least one variable bridge is used hence it needs to be implemented for custom types that are
meant to be used as attribute or submittable value.

Note

When implementing a new method, don't use substitute_variables(::Function, because Julia
will not specialize on it. Use instead substitute_variables(::F, ...) where {F<:Function}.

source

MathOptInterface.Utilities.filter_variables – Function.

filter_variables(keep::Function, f::AbstractFunction)

Return a new function f with the variable vi such that !keep(vi) removed.

WARNING: Don't define filter_variables(::Function, ...) because Julia will not specialize on this.
Define instead filter_variables(::F, ...) where {F<:Function}.

source

MathOptInterface.Utilities.remove_variable – Function.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/functions.jl#L210-L223
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/functions.jl#L229-L236
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/functions.jl#L423-L440
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/functions.jl#L1233-L1241
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remove_variable(f::AbstractFunction, vi::VariableIndex)

Return a new function f with the variable vi removed.

source

remove_variable(
f::MOI.AbstractFunction,
s::MOI.AbstractSet,
vi::MOI.VariableIndex,

)

Return a tuple (g, t) representing the constraint f-in-s with the variable vi removed. That is, the terms
containing the variable vi in the function f are removed and the dimension of the set s is updated if needed
(for example, when f is a VectorOfVariables with vi being one of the variables).

source

MathOptInterface.Utilities.all_coefficients – Function.

all_coefficients(p::Function, f::MOI.AbstractFunction)

Determine whether predicate p returns true for all coefficients of f, returning false as soon as the first
coefficient of f for which p returns false is encountered (short-circuiting). Similar to all.

source

MathOptInterface.Utilities.unsafe_add – Function.

unsafe_add(t1::MOI.ScalarAffineTerm, t2::MOI.ScalarAffineTerm)

Sums the coefficients of t1 and t2 and returns an output MOI.ScalarAffineTerm. It is unsafe because it
uses the variable of t1 as the variable of the output without checking that it is equal to that of t2.

source

unsafe_add(t1::MOI.ScalarQuadraticTerm, t2::MOI.ScalarQuadraticTerm)

Sums the coefficients of t1 and t2 and returns an output MOI.ScalarQuadraticTerm. It is unsafe because
it uses the variable's of t1 as the variable's of the output without checking that they are the same (up
to permutation) to those of t2.

source

unsafe_add(t1::MOI.VectorAffineTerm, t2::MOI.VectorAffineTerm)

Sums the coefficients of t1 and t2 and returns an output MOI.VectorAffineTerm. It is unsafe because it
uses the output_index and variable of t1 as the output_index and variable of the output term without
checking that they are equal to those of t2.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/functions.jl#L1317-L1321
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/vector_of_constraints.jl#L187-L199
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/functions.jl#L1133-L1139
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/functions.jl#L900-L906
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/functions.jl#L911-L918
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/functions.jl#L927-L934
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MathOptInterface.Utilities.isapprox_zero – Function.

isapprox_zero(f::MOI.AbstractFunction, tol)

Return a Bool indicating whether the function f is approximately zero using tol as a tolerance.

Important note

This function assumes that f does not contain any duplicate terms, you might want to first call canonical
if that is not guaranteed.

Example

julia> x = MOI.VariableIndex(1)
MOI.VariableIndex(1)

julia> f = MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.([1, -1], [x, x]), 0)
(0) + (1) MOI.VariableIndex(1) - (1) MOI.VariableIndex(1)

julia> MOI.Utilities.isapprox_zero(f, 1e-8)
false

julia> MOI.Utilities.isapprox_zero(MOI.Utilities.canonical(f), 1e-8)
true

source

MathOptInterface.Utilities.modify_function – Function.

modify_function(f::AbstractFunction, change::AbstractFunctionModification)

Return a copy of the function f, modified according to change.

source

MathOptInterface.Utilities.zero_with_output_dimension – Function.

zero_with_output_dimension(::Type{T}, output_dimension::Integer) where {T}

Create an instance of type T with the output dimension output_dimension.

This is mostly useful in Bridges, when code needs to be agnostic to the type of vector-valued function that
is passed in.

source

The following functions can be used to canonicalize a function:

MathOptInterface.Utilities.is_canonical – Function.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/functions.jl#L1152-L1178
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/functions.jl#L1335-L1339
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/functions.jl#L868-L875
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is_canonical(f::Union{ScalarAffineFunction, VectorAffineFunction})

Returns a Bool indicating whether the function is in canonical form. See canonical.

source

is_canonical(f::Union{ScalarQuadraticFunction, VectorQuadraticFunction})

Returns a Bool indicating whether the function is in canonical form. See canonical.

source

MathOptInterface.Utilities.canonical – Function.

canonical(f::MOI.AbstractFunction)

Returns the function in a canonical form, that is,

• A term appear only once.
• The coefficients are nonzero.
• The terms appear in increasing order of variable where there the order of the variables is the order
of their value.

• For a AbstractVectorFunction, the terms are sorted in ascending order of output index.

The output of canonical can be assumed to be a copy of f, even for VectorOfVariables.

Example

julia> x, y, z = MOI.VariableIndex.(1:3);

julia> f = MOI.ScalarAffineFunction(
MOI.ScalarAffineTerm.(Float64[2, 1, 3, -2, -3], [y, x, z, x, z]),
5.0,

)
5.0 + 2.0 MOI.VariableIndex(2) + 1.0 MOI.VariableIndex(1) + 3.0 MOI.VariableIndex(3) - 2.0

MOI.VariableIndex(1) - 3.0 MOI.VariableIndex(3)↪→

julia> MOI.Utilities.canonical(f)
5.0 - 1.0 MOI.VariableIndex(1) + 2.0 MOI.VariableIndex(2)

source

MathOptInterface.Utilities.canonicalize! – Function.

canonicalize!(f::Union{ScalarAffineFunction, VectorAffineFunction})

Convert a function to canonical form in-place, without allocating a copy to hold the result. See canonical.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/functions.jl#L969-L974
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/functions.jl#L981-L986
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/functions.jl#L1019-L1048
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/functions.jl#L1059-L1064
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canonicalize!(f::Union{ScalarQuadraticFunction, VectorQuadraticFunction})

Convert a function to canonical form in-place, without allocating a copy to hold the result. See canonical.

source

The following functions can be used to manipulate functions with basic algebra:

MathOptInterface.Utilities.scalar_type – Function.

scalar_type(F::Type{<:MOI.AbstractVectorFunction})

Type of functions obtained by indexing objects obtained by calling eachscalar on functions of type F.

source

MathOptInterface.Utilities.scalarize – Function.

scalarize(func::MOI.VectorOfVariables, ignore_constants::Bool = false)

Returns a vector of scalar functionsmaking up the vector function in the form of a Vector{MOI.SingleVariable}.

See also eachscalar.

source

scalarize(func::MOI.VectorAffineFunction{T}, ignore_constants::Bool = false)

Returns a vector of scalar functionsmaking up the vector function in the form of a Vector{MOI.ScalarAffineFunction{T}}.

See also eachscalar.

source

scalarize(func::MOI.VectorQuadraticFunction{T}, ignore_constants::Bool = false)

Returns a vector of scalar functionsmaking up the vector function in the form of a Vector{MOI.ScalarQuadraticFunction{T}}.

See also eachscalar.

source

MathOptInterface.Utilities.eachscalar – Function.

eachscalar(f::MOI.AbstractVectorFunction)

Returns an iterator for the scalar components of the vector function.

See also scalarize.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/functions.jl#L1088-L1093
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/functions.jl#L589-L594
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/functions.jl#L2273-L2280
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/functions.jl#L2285-L2292
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/functions.jl#L2312-L2319
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/functions.jl#L723-L729
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eachscalar(f::MOI.AbstractVector)

Returns an iterator for the scalar components of the vector.

source

MathOptInterface.Utilities.promote_operation – Function.

promote_operation(
op::Function,
::Type{T},
ArgsTypes::Type{<:Union{T,AbstractVector{T},MOI.AbstractFunction}}...,

) where {T<:Number}

Compute the return type of the call operate(op, T, args...), where the types of the arguments args
are ArgsTypes.

One assumption is that the element type T is invariant under each operation. That is, op(::T, ::T)::T
where op is a +, -, *, and /.

There are six methods for which we implement Utilities.promote_operation:

1. + a. promote_operation(::typeof(+), ::Type{T}, ::Type{F1}, ::Type{F2})

2. - a. promote_operation(::typeof(-), ::Type{T}, ::Type{F}) b. promote_operation(::typeof(-),
::Type{T}, ::Type{F1}, ::Type{F2})

3. * a. promote_operation(::typeof(*), ::Type{T}, ::Type{T}, ::Type{F}) b. promote_operation(::typeof(*),
::Type{T}, ::Type{F}, ::Type{T}) c. promote_operation(::typeof(*), ::Type{T}, ::Type{F1},
::Type{F2})where F1 and F2 are VariableIndex or ScalarAffineFunction d. promote_operation(::typeof(*),
::Type{T}, ::Type{<:Diagonal{T}}, ::Type{F}

4. / a. promote_operation(::typeof(/), ::Type{T}, ::Type{F}, ::Type{T})

5. vcat a. promote_operation(::typeof(vcat), ::Type{T}, ::Type{F}...)

6. imag a. promote_operation(::typeof(imag), ::Type{T}, ::Type{F})where F is VariableIndex
or VectorOfVariables

In each case, F (or F1 and F2) is one of the ten supported types, with a restriction that the mathematical
operation makes sense, for example, we don't define promote_operation(-, T, F1, F2) where F1 is a
scalar-valued function and F2 is a vector-valued function. The ten supported types are:

1. ::T

2. ::VariableIndex

3. ::ScalarAffineFunction{T}

4. ::ScalarQuadraticFunction{T}

5. ::ScalarNonlinearFunction

6. ::AbstractVector{T}

7. ::VectorOfVariables

8. ::VectorAffineFunction{T}

9. ::VectorQuadraticFunction{T}

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/functions.jl#L732-L736
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10. ::VectorNonlinearFunction

source

MathOptInterface.Utilities.operate – Function.

operate(
op::Function,
::Type{T},
args::Union{T,MOI.AbstractFunction}...,

)::MOI.AbstractFunction where {T<:Number}

Returns an MOI.AbstractFunction representing the function resulting from the operation op(args...)
on functions of coefficient type T.

No argument can be modified.

Methods

1. + a. operate(::typeof(+), ::Type{T}, ::F1) b. operate(::typeof(+), ::Type{T}, ::F1, ::F2)
c. operate(::typeof(+), ::Type{T}, ::F1...)

2. - a. operate(::typeof(-), ::Type{T}, ::F) b. operate(::typeof(-), ::Type{T}, ::F1, ::F2)

3. * a. operate(::typeof(*), ::Type{T}, ::T, ::F) b. operate(::typeof(*), ::Type{T}, ::F,
::T) c. operate(::typeof(*), ::Type{T}, ::F1, ::F2) where F1 and F2 are VariableIndex or
ScalarAffineFunction d. operate(::typeof(*), ::Type{T}, ::Diagonal{T}, ::F)

4. / a. operate(::typeof(/), ::Type{T}, ::F, ::T)

5. vcat a. operate(::typeof(vcat), ::Type{T}, ::F...)

6. imag a. operate(::typeof(imag), ::Type{T}, ::F)where F is VariableIndex or VectorOfVariables

One assumption is that the element type T is invariant under each operation. That is, op(::T, ::T)::T
where op is a +, -, *, and /.

In each case, F (or F1 and F2) is one of the ten supported types, with a restriction that the mathematical
operation makes sense, for example, we don't define promote_operation(-, T, F1, F2) where F1 is a
scalar-valued function and F2 is a vector-valued function. The ten supported types are:

1. ::T

2. ::VariableIndex

3. ::ScalarAffineFunction{T}

4. ::ScalarQuadraticFunction{T}

5. ::ScalarNonlinearFunction

6. ::AbstractVector{T}

7. ::VectorOfVariables

8. ::VectorAffineFunction{T}

9. ::VectorQuadraticFunction{T}

10. ::VectorNonlinearFunction

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/promote_operation.jl#L7-L56
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/operate.jl#L7-L60
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MathOptInterface.Utilities.operate! – Function.

operate!(
op::Function,
::Type{T},
args::Union{T,MOI.AbstractFunction}...,

)::MOI.AbstractFunction where {T<:Number}

Returns an MOI.AbstractFunction representing the function resulting from the operation op(args...)
on functions of coefficient type T.

The first argument may be modified, in which case the return value is identical to the first argument. For
operations which cannot be implemented in-place, this function returns a new object.

source

MathOptInterface.Utilities.operate_output_index! – Function.

operate_output_index!(
op::Union{typeof(+),typeof(-)},
::Type{T},
output_index::Integer,
f::Union{AbstractVector{T},MOI.AbstractVectorFunction}
g::Union{T,MOI.AbstractScalarFunction}...

) where {T<:Number}

Return an MOI.AbstractVectorFunction in which the scalar function in row output_index is the result of
op(f[output_index], g).

The functions at output index different to output_index are the same as the functions at the same output
index in func. The first argument may be modified.

Methods

1. + a. operate_output_index!(+, ::Type{T}, ::Int, ::VectorF, ::ScalarF)

2. - a. operate_output_index!(-, ::Type{T}, ::Int, ::VectorF, ::ScalarF)

source

MathOptInterface.Utilities.vectorize – Function.

vectorize(x::AbstractVector{<:Number})

Returns x.

source

vectorize(x::AbstractVector{MOI.VariableIndex})

Returns the vector of scalar affine functions in the form of a MOI.VectorAffineFunction{T}.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/operate.jl#L1039-L1052
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/operate.jl#L1613-L1635
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/functions.jl#L2175-L2179
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/functions.jl#L2182-L2187
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vectorize(funcs::AbstractVector{MOI.ScalarAffineFunction{T}}) where T

Returns the vector of scalar affine functions in the form of a MOI.VectorAffineFunction{T}.

source

vectorize(funcs::AbstractVector{MOI.ScalarQuadraticFunction{T}}) where T

Returns the vector of scalar quadratic functions in the form of a MOI.VectorQuadraticFunction{T}.

source

Constraint utilities

The following utilities are available for moving the function constant to the set for scalar constraints:

MathOptInterface.Utilities.shift_constant – Function.

shift_constant(set::MOI.AbstractScalarSet, offset)

Returns a new scalar set new_set such that func-in-set is equivalent to func + offset-in-new_set.

Use supports_shift_constant to check if the set supports shifting:

if MOI.Utilities.supports_shift_constant(typeof(set))
new_set = MOI.Utilities.shift_constant(set, -func.constant)
func.constant = 0
MOI.add_constraint(model, func, new_set)

else
MOI.add_constraint(model, func, set)

end

Note for developers

Only define this function if it makes sense and you have implemented supports_shift_constant to return
true.

Example

julia> set = MOI.Interval(-2.0, 3.0)
MathOptInterface.Interval{Float64}(-2.0, 3.0)

julia> MOI.Utilities.supports_shift_constant(typeof(set))
true

julia> MOI.Utilities.shift_constant(set, 1.0)
MathOptInterface.Interval{Float64}(-1.0, 4.0)

source

MathOptInterface.Utilities.supports_shift_constant – Function.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/functions.jl#L2198-L2203
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/functions.jl#L2221-L2226
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/sets.jl#L7-L41
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supports_shift_constant(::Type{S}) where {S<:MOI.AbstractSet}

Return true if shift_constant is defined for set S.

See also shift_constant.

Example

julia> MOI.Utilities.supports_shift_constant(MOI.Interval{Float64})
true

julia> MOI.Utilities.supports_shift_constant(MOI.ZeroOne)
false

source

MathOptInterface.Utilities.normalize_and_add_constraint – Function.

normalize_and_add_constraint(
model::MOI.ModelLike,
func::MOI.AbstractScalarFunction,
set::MOI.AbstractScalarSet;
allow_modify_function::Bool = false,

)

Adds the scalar constraint obtained bymoving the constant term in func to the set in model. If allow_modify_function
is true then the function func can be modified.

source

MathOptInterface.Utilities.normalize_constant – Function.

normalize_constant(
func::MOI.AbstractScalarFunction,
set::MOI.AbstractScalarSet;
allow_modify_function::Bool = false,

)

Return the func-in-set constraint in normalized form. That is, if func is MOI.ScalarQuadraticFunction
or MOI.ScalarAffineFunction, the constant is moved to the set. If allow_modify_function is true then
the function func can be modified.

source

The following utility identifies those constraints imposing bounds on a given variable, and returns those bound
values:

MathOptInterface.Utilities.get_bounds – Function.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/sets.jl#L44-L60
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/constraints.jl#L7-L18
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/constraints.jl#L35-L46


CHAPTER 37. SUBMODULES 1387

get_bounds(model::MOI.ModelLike, ::Type{T}, x::MOI.VariableIndex)

Return a tuple (lb, ub) of type Tuple{T, T}, where lb and ub are lower and upper bounds, respectively,
imposed on x in model.

source

get_bounds(
model::MOI.ModelLike,
bounds_cache::Dict{MOI.VariableIndex,NTuple{2,T}},
f::MOI.ScalarAffineFunction{T},

) where {T} --> Union{Nothing,NTuple{2,T}}

Return the lower and upper bound of f as a tuple. If the domain is not bounded, return nothing.

source

get_bounds(
model::MOI.ModelLike,
bounds_cache::Dict{MOI.VariableIndex,NTuple{2,T}},
x::MOI.VariableIndex,

) where {T} --> Union{Nothing,NTuple{2,T}}

Return the lower and upper bound of x as a tuple. If the domain is not bounded, return nothing.

Similar to get_bounds(::MOI.ModelLike, ::Type{T}, ::MOI.VariableIndex), except that the second
argument is a cache which maps variables to their bounds and avoids repeated lookups.

source

The following utilities are useful when working with symmetric matrix cones.

MathOptInterface.Utilities.is_diagonal_vectorized_index – Function.

is_diagonal_vectorized_index(index::Base.Integer)

Return whether index is the index of a diagonal element in a MOI.AbstractSymmetricMatrixSetTriangle
set.

source

MathOptInterface.Utilities.side_dimension_for_vectorized_dimension – Function.

side_dimension_for_vectorized_dimension(n::Integer)

Return the dimension d such that MOI.dimension(MOI.PositiveSemidefiniteConeTriangle(d)) is n.

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/variables.jl#L7-L12
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/variables.jl#L60-L69
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/variables.jl#L95-L108
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/sets.jl#L143-L148
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/sets.jl#L159-L164
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Set utilities

The following utilities are available for sets:

MathOptInterface.Utilities.AbstractDistance – Type.

abstract type AbstractDistance end

An abstract type used to enable dispatch of Utilities.distance_to_set.

source

MathOptInterface.Utilities.ProjectionUpperBoundDistance – Type.

ProjectionUpperBoundDistance() <: AbstractDistance

An upper bound on the minimum distance between point and the closest feasible point in set.

Definition of distance

The minimum distance is computed as:

d(x,K) = min
y∈K

||x− y||

where x is point and K is set. The norm is computed as:

||x|| =
√
f(x, x,K)

where f is Utilities.set_dot.

In the default case, where the set does not have a specialized method for Utilities.set_dot, the norm
is equivalent to the Euclidean norm ||x|| =

√∑
x2i .

Why an upper bound?

In most cases, distance_to_set should return the smallest upper bound, but it may return a larger value
if the smallest upper bound is expensive to compute.

For example, given an epigraph from of a conic set, {(t, x)|f(x) ≤ t}, it may be simpler to return δ such
that f(x) ≤ t+ δ, rather than computing the nearest projection onto the set.

If the distance is not the smallest upper bound, the docstring of the appropriate distance_to_setmethod
must describe the way that the distance is computed.

source

MathOptInterface.Utilities.distance_to_set – Function.

distance_to_set(
[d::AbstractDistance = ProjectionUpperBoundDistance()],]
point::T,
set::MOI.AbstractScalarSet,

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/distance_to_set.jl#L7-L12
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/distance_to_set.jl#L15-L49
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) where {T}

distance_to_set(
[d::AbstractDistance = ProjectionUpperBoundDistance(),]
point::AbstractVector{T},
set::MOI.AbstractVectorSet,

) where {T}

Compute the distance between point and set using the distance metric d. If point is in the set set, this
function must return zero(T).

If d is omitted, the default distance is Utilities.ProjectionUpperBoundDistance.

source

distance_to_set(::ProjectionUpperBoundDistance, x, ::MOI.RotatedSecondOrderCone)

Let (t, u, y...) = x. Return the 2-norm of the vector d such that in x + d, u is projected to 1 if u <=
0, and t is increased such that x + d belongs to the set.

source

distance_to_set(::ProjectionUpperBoundDistance, x, ::MOI.ExponentialCone)

Let (u, v, w) = x. If v > 0, return the epigraph distance d such that (u, v, w + d) belongs to the set.

If v <= 0 return the 2-norm of the vector d such that x + d = (u, 1, z) where z satisfies the constraints.

source

distance_to_set(::ProjectionUpperBoundDistance, x, ::MOI.DualExponentialCone)

Let (u, v, w) = x. If u < 0, return the epigraph distance d such that (u, v, w + d) belongs to the set.

If u >= 0 return the 2-norm of the vector d such that x + d = (u, -1, z)where z satisfies the constraints.

source

distance_to_set(::ProjectionUpperBoundDistance, x, ::MOI.GeometricMeanCone)

Let (t, y...) = x. If all y are non-negative, return the epigraph distance d such that (t + d, y...)
belongs to the set.

If any y are strictly negative, return the 2-norm of the vector d that projects negative y elements to 0 and
t to ℝ₋.

source

distance_to_set(::ProjectionUpperBoundDistance, x, ::MOI.PowerCone)

Let (a, b, c) = x. If a and b are non-negative, return the epigraph distance required to increase c such
that the constraint is satisfied.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/distance_to_set.jl#L52-L69
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/distance_to_set.jl#L231-L237
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/distance_to_set.jl#L253-L261
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/distance_to_set.jl#L276-L284
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/distance_to_set.jl#L299-L307
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If a or b is strictly negative, return the 2-norm of the vector d such that in the vector x + d: c, and any
negative a and b are projected to 0.

source

distance_to_set(::ProjectionUpperBoundDistance, x, ::MOI.DualPowerCone)

Let (a, b, c) = x. If a and b are non-negative, return the epigraph distance required to increase c such
that the constraint is satisfied.

If a or b is strictly negative, return the 2-norm of the vector d such that in the vector x + d: c, and any
negative a and b are projected to 0.

source

distance_to_set(::ProjectionUpperBoundDistance, x, ::MOI.NormOneCone)

Let (t, y...) = x. Return the epigraph distance d such that (t + d, y...) belongs to the set.

source

distance_to_set(::ProjectionUpperBoundDistance, x, ::MOI.NormInfinityCone)

Let (t, y...) = x. Return the epigraph distance d such that (t + d, y...) belongs to the set.

source

distance_to_set(::ProjectionUpperBoundDistance, x, ::MOI.RelativeEntropyCone)

Let (u, v..., w...) = x. If v and w are strictly positive, return the epigraph distance required to increase
u such that the constraint is satisfied.

If any elements in v or w are non-positive, return the 2-norm of the vector d such that in the vector x
+ d: any non-positive elements in v and w are projected to 1, and u is projected such that the epigraph
constraint holds.

source

distance_to_set(::ProjectionUpperBoundDistance, x, set::MOI.NormCone)

Let (t, y...) = x. Return the epigraph distance d such that (t + d, y...) belongs to the set.

source

distance_to_set(
::ProjectionUpperBoundDistance,
x::AbstractVector,
set::Union{

MOI.PositiveSemidefiniteConeSquare,
MOI.PositiveSemidefiniteConeTriangle,

},
)

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/distance_to_set.jl#L322-L331
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/distance_to_set.jl#L347-L356
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/distance_to_set.jl#L372-L377
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/distance_to_set.jl#L388-L393
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/distance_to_set.jl#L404-L414
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/distance_to_set.jl#L452-L457
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LetX be x reshaped into the appropriate matrix. The returned distance is ||X−Y ||22 where Y is the eigen
decomposition of X with negative eigen values removed.

source

MathOptInterface.Utilities.set_dot – Function.

set_dot(x::AbstractVector, y::AbstractVector, set::AbstractVectorSet)

Return the scalar product between a vector x of the set set and a vector y of the dual of the set s.

source

set_dot(x, y, set::AbstractScalarSet)

Return the scalar product between a number x of the set set and a number y of the dual of the set s.

source

DoubleDicts

MathOptInterface.Utilities.DoubleDicts.DoubleDict – Type.

DoubleDict{V}

An optimized dictionary to map MOI.ConstraintIndex to values of type V.

Works as a AbstractDict{MOI.ConstraintIndex,V} with minimal differences.

If V is also a MOI.ConstraintIndex, use IndexDoubleDict.

Note that MOI.ConstraintIndex is not a concrete type, opposed to MOI.ConstraintIndex{MOI.VariableIndex,
MOI.Integers}, which is a concrete type.

When looping through multiple keys of the same Function-in-Set type, use

inner = dict[F, S]

to return a type-stable DoubleDictInner.

source

MathOptInterface.Utilities.DoubleDicts.DoubleDictInner – Type.

DoubleDictInner{F,S,V}

A type stable inner dictionary of DoubleDict.

source

MathOptInterface.Utilities.DoubleDicts.IndexDoubleDict – Type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/distance_to_set.jl#L511-L524
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/set_dot.jl#L11-L16
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/set_dot.jl#L21-L26
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/DoubleDicts.jl#L25-L43
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/DoubleDicts.jl#L51-L55
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IndexDoubleDict

A specialized version of [DoubleDict] in which the values are of type MOI.ConstraintIndex

When looping through multiple keys of the same Function-in-Set type, use

inner = dict[F, S]

to return a type-stable IndexDoubleDictInner.

source

MathOptInterface.Utilities.DoubleDicts.IndexDoubleDictInner – Type.

IndexDoubleDictInner{F,S}

A type stable inner dictionary of IndexDoubleDict.

source

MathOptInterface.Utilities.DoubleDicts.outer_keys – Function.

outer_keys(d::AbstractDoubleDict)

Return an iterator over the outer keys of the AbstractDoubleDict d. Each outer key is a Tuple{Type,Type}
so that a double loop can be easily used:

for (F, S) in DoubleDicts.outer_keys(dict)
for (k, v) in dict[F, S]

# ...
end

end

For performance, it is recommended that the inner loop lies in a separate function to guarantee type-
stability. Some outer keys (F, S)might lead to an empty dict[F, S]. If you want only nonempty dict[F,
S], use nonempty_outer_keys.

source

MathOptInterface.Utilities.DoubleDicts.nonempty_outer_keys – Function.

nonempty_outer_keys(d::AbstractDoubleDict)

Return a vector of outer keys of the AbstractDoubleDict d.

Only outer keys that have a nonempty set of inner keys will be returned.

Each outer key is a Tuple{Type,Type} so that a double loop can be easily used

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/DoubleDicts.jl#L70-L81
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/DoubleDicts.jl#L89-L93
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/DoubleDicts.jl#L300-L318
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for (F, S) in DoubleDicts.nonempty_outer_keys(dict)
for (k, v) in dict[F, S]

# ...
end

end
For performance, it is recommended that the inner loop lies in a separate
function to guarantee type-stability.

If you want an iterator of all current outer keys, use [`outer_keys`](@ref).

source

37.6 Test

Overview

The Test submodule

The Test submodule provides tools to help solvers implement unit tests in order to ensure they implement the
MathOptInterface API correctly, and to check for solver-correctness.

We use a centralized repository of tests, so that if we find a bug in one solver, instead of adding a test to that
particular repository, we add it here so that all solvers can benefit.

How to test a solver

The skeleton below can be used for the wrapper test file of a solver named FooBar.

# ============================ /test/MOI_wrapper.jl ============================
module TestFooBar

import FooBar
using Test

import MathOptInterface as MOI

const OPTIMIZER = MOI.instantiate(
MOI.OptimizerWithAttributes(FooBar.Optimizer, MOI.Silent() => true),

)

const BRIDGED = MOI.instantiate(
MOI.OptimizerWithAttributes(FooBar.Optimizer, MOI.Silent() => true),
with_bridge_type = Float64,

)

# See the docstring of MOI.Test.Config for other arguments.
const CONFIG = MOI.Test.Config(

# Modify tolerances as necessary.
atol = 1e-6,
rtol = 1e-6,
# Use MOI.LOCALLY_SOLVED for local solvers.
optimal_status = MOI.OPTIMAL,
# Pass attributes or MOI functions to `exclude` to skip tests that
# rely on this functionality.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Utilities/DoubleDicts.jl#L321-L341
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exclude = Any[MOI.VariableName, MOI.delete],
)

"""
runtests()

This function runs all functions in the this Module starting with `test_`.
"""
function runtests()

for name in names(@__MODULE__; all = true)
if startswith("$(name)", "test_")

@testset "$(name)" begin
getfield(@__MODULE__, name)()

end
end

end
end

"""
test_runtests()

This function runs all the tests in MathOptInterface.Test.

Pass arguments to `exclude` to skip tests for functionality that is not
implemented or that your solver doesn't support.
"""
function test_runtests()

MOI.Test.runtests(
BRIDGED,
CONFIG,
exclude = [

"test_attribute_NumberOfThreads",
"test_quadratic_",

],
# This argument is useful to prevent tests from failing on future
# releases of MOI that add new tests. Don't let this number get too far
# behind the current MOI release though. You should periodically check
# for new tests to fix bugs and implement new features.
exclude_tests_after = v"0.10.5",

)
return

end

"""
test_SolverName()

You can also write new tests for solver-specific functionality. Write each new
test as a function with a name beginning with `test_`.
"""
function test_SolverName()

@test MOI.get(FooBar.Optimizer(), MOI.SolverName()) == "FooBar"
return

end

end # module TestFooBar
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# This line at tne end of the file runs all the tests!
TestFooBar.runtests()

Then modify your runtests.jl file to include the MOI_wrapper.jl file:

# ============================ /test/runtests.jl ============================

using Test

@testset "MOI" begin
include("test/MOI_wrapper.jl")

end

Info

The optimizer BRIDGED constructed with instantiate automatically bridges constraints that are not
supported by OPTIMIZER using the bridges listed in Bridges. It is recommended for an implementation
of MOI to only support constraints that are natively supported by the solver and let bridges trans-
form the constraint to the appropriate form. For this reason it is expected that tests may not pass if
OPTIMIZER is used instead of BRIDGED.

How to debug a failing test

When writing a solver, it's likely that you will initially fail many tests. Some failures will be bugs, but other
failures you may choose to exclude.

There are two ways to exclude tests:

• Exclude tests whose names contain a string using:

MOI.Test.runtests(
model,
config;
exclude = String["test_to_exclude", "test_conic_"],

)

This will exclude tests whose name contains either of the two strings provided.

• Exclude tests which rely on specific functionality using:

MOI.Test.Config(exclude = Any[MOI.VariableName, MOI.optimize!])

This will exclude tests which use the MOI.VariableName attribute, or which call MOI.optimize!.

Each test that fails can be independently called as:
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model = FooBar.Optimizer()
config = MOI.Test.Config()
MOI.empty!(model)
MOI.Test.test_category_name_that_failed(model, config)

You can look-up the source code of the test that failed by searching for it in the src/Test/test_category.jl
file.

Tip

Each test function also has a docstring that explains what the test is for. Use ?
MOI.Test.test_category_name_that_failed from the REPL to read it.

Periodically, you should re-run excluded tests to see if they now pass. The easiest way to do this is to swap
the exclude keyword argument of runtests to include. For example:

MOI.Test.runtests(
model,
config;
exclude = String["test_to_exclude", "test_conic_"],

)

becomes

MOI.Test.runtests(
model,
config;
include = String["test_to_exclude", "test_conic_"],

)

How to add a test

To detect bugs in solvers, we add new tests to MOI.Test.

As an example, ECOS errored calling optimize! twice in a row. (See ECOS.jl PR #72.) We could add a test to
ECOS.jl, but that would only stop us from re-introducing the bug to ECOS.jl in the future, but it would not catch
other solvers in the ecosystem with the same bug. Instead, if we add a test to MOI.Test, then all solvers will
also check that they handle a double optimize call.

For this test, we care about correctness, rather than performance. therefore, we don't expect solvers to effi-
ciently decide that they have already solved the problem, only that calling optimize! twice doesn't throw an
error or give the wrong answer.

Step 1

Install the MathOptInterface julia package in dev mode:

julia> ]
(@v1.6) pkg> dev MathOptInterface

Step 2

https://github.com/jump-dev/ECOS.jl/pull/72
https://pkgdocs.julialang.org/v1/managing-packages/#developing-1
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From here on, proceed with making the following changes in the ~/.julia/dev/MathOptInterface folder (or
equivalent dev path on your machine).

Step 3

Since the double-optimize error involves solving an optimization problem, add a new test to src/Test/test_solve.jl:

"""
test_unit_optimize!_twice(model::MOI.ModelLike, config::Config)

Test that calling `MOI.optimize!` twice does not error.

This problem was first detected in ECOS.jl PR#72:
https://github.com/jump-dev/ECOS.jl/pull/72
"""
function test_unit_optimize!_twice(

model::MOI.ModelLike,
config::Config{T},

) where {T}
# Use the `@requires` macro to check conditions that the test function
# requires to run. Models failing this `@requires` check will silently skip
# the test.
@requires MOI.supports_constraint(

model,
MOI.VariableIndex,
MOI.GreaterThan{Float64},

)
@requires _supports(config, MOI.optimize!)
# If needed, you can test that the model is empty at the start of the test.
# You can assume that this will be the case for tests run via `runtests`.
# User's calling tests individually need to call `MOI.empty!` themselves.
@test MOI.is_empty(model)
# Create a simple model. Try to make this as simple as possible so that the
# majority of solvers can run the test.
x = MOI.add_variable(model)
MOI.add_constraint(model, x, MOI.GreaterThan(one(T)))
MOI.set(model, MOI.ObjectiveSense(), MOI.MIN_SENSE)
MOI.set(

model,
MOI.ObjectiveFunction{MOI.VariableIndex}(),
x,

)
# The main component of the test: does calling `optimize!` twice error?
MOI.optimize!(model)
MOI.optimize!(model)
# Check we have a solution.
@test MOI.get(model, MOI.TerminationStatus()) == MOI.OPTIMAL
# There is a three-argument version of `Base.isapprox` for checking
# approximate equality based on the tolerances defined in `config`:
@test isapprox(MOI.get(model, MOI.VariablePrimal(), x), one(T), config)
# For code-style, these tests should always `return` `nothing`.
return

end

https://github.com/jump-dev/MathOptInterface.jl/blob/master/src/Test/test_solve.jl
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Info

Make sure the function is agnostic to the number type T; don't assume it is a Float64 capable solver.

We also need to write a test for the test. Place this function immediately below the test you just wrote in the
same file:

function setup_test(
::typeof(test_unit_optimize!_twice),
model::MOI.Utilities.MockOptimizer,
::Config,

)
MOI.Utilities.set_mock_optimize!(

model,
(mock::MOI.Utilities.MockOptimizer) -> MOIU.mock_optimize!(

mock,
MOI.OPTIMAL,
(MOI.FEASIBLE_POINT, [1.0]),

),
)
return

end

Finally, you also need to implement Test.version_added. If we added this test when the latest released
version of MOI was v0.10.5, define:

version_added(::typeof(test_unit_optimize!_twice)) = v"0.10.6"

Step 6

Commit the changes to git from ~/.julia/dev/MathOptInterface and submit the PR for review.

Tip

If you need help writing a test, open an issue on GitHub, or ask the Developer Chatroom.

API Reference

The Test submodule

Functions to help test implementations of MOI. See The Test submodule for more details.

MathOptInterface.Test.Config – Type.

Config(
::Type{T} = Float64;
atol::Real = Base.rtoldefault(T),
rtol::Real = Base.rtoldefault(T),
optimal_status::MOI.TerminationStatusCode = MOI.OPTIMAL,
infeasible_status::MOI.TerminationStatusCode = MOI.INFEASIBLE,
exclude::Vector{Any} = Any[],

) where {T}

https://github.com/jump-dev/MathOptInterface.jl/issues/new
https://jump.dev/chatroom/
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Return an object that is used to configure various tests.

Configuration arguments

• atol::Real = Base.rtoldefault(T): Control the absolute tolerance used when comparing solu-
tions.

• rtol::Real = Base.rtoldefault(T): Control the relative tolerance used when comparing solu-
tions.

• optimal_status = MOI.OPTIMAL: Set to MOI.LOCALLY_SOLVED if the solver cannot prove global op-
timality.

• infeasible_status = MOI.INFEASIBLE: Set to MOI.LOCALLY_INFEASIBLE if the solver cannot prove
global infeasibility.

• exclude = Vector{Any}: Pass attributes or functions to exclude to skip parts of tests that require
certain functionality. Common arguments include:

– MOI.delete to skip deletion-related tests
– MOI.optimize! to skip optimize-related tests
– MOI.ConstraintDual to skip dual-related tests
– MOI.VariableName to skip setting variable names
– MOI.ConstraintName to skip setting constraint names

Example

For a nonlinear solver that finds local optima and does not support finding dual variables or constraint
names:

julia> config = MOI.Test.Config(
Float64;
optimal_status = MOI.LOCALLY_SOLVED,
exclude = Any[

MOI.ConstraintDual,
MOI.VariableName,
MOI.ConstraintName,
MOI.delete,

],
);

source

MathOptInterface.Test.runtests – Function.

runtests(
model::MOI.ModelLike,
config::Config;
include::Vector{Union{String,Regex}} = String[],
exclude::Vector{Union{String,Regex}} = String[],
warn_unsupported::Bool = false,
exclude_tests_after::VersionNumber = v"999.0.0",
verbose::Bool = false,
test_module = MathOptInterface.Test,

)

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Test/Test.jl#L45-L92


CHAPTER 37. SUBMODULES 1400

Run all tests in test_module, which defaults to MathOptInterface.Test, on model.

Configuration arguments

• config is a Test.Config object that can be used to modify the behavior of tests.

• If include is not empty, only run tests if an element from include occursin the name of the test.

• If exclude is not empty, skip tests if an element from exclude occursin the name of the test.

• exclude takes priority over include.

• If warn_unsupported is false, runtestswill silently skip tests that fail with a MOI.NotAllowedError,
MOI.UnsupportedError, or RequirementUnmet error. (The latter is thrown when an @requires state-
ment returns false.) When warn_unsupported is true, a warning will be printed. For most cases
the default behavior, false, is what you want, since these tests likely test functionality that is not
supported by model. However, it can be useful to run warn_unsupported = true to check you are
not skipping tests due to a missing supports_constraint method or equivalent.

• exclude_tests_after is a version number that excludes any tests to MOI added after that version
number. This is useful for solvers who can declare a fixed set of tests, and not cause their tests to
break if a new patch of MOI is released with a new test.

• verbose is a Bool that controls whether the name of the test is printed before executing it. This can
be helpful when debugging.

• test_module is a Module where all the functions starting with test_ are considered as tests.

See also: setup_test.

Example

config = MathOptInterface.Test.Config()
MathOptInterface.Test.runtests(

model,
config;
include = ["test_linear_", r"^test_model_Name$"],
exclude = ["VariablePrimalStart"],
warn_unsupported = true,
verbose = true,
exclude_tests_after = v"0.10.5",

)

source

MathOptInterface.Test.setup_test – Function.

setup_test(::typeof(f), model::MOI.ModelLike, config::Config)

Overload this method to modify model before running the test function f on model with config. You can
also modify the fields in config (for example, to loosen the default tolerances).

This function should either return nothing, or return a function which, when called with zero arguments,
undoes the setup to return the model to its previous state. You do not need to undo any modifications to
config.

This function is most useful when writing new tests of the tests for MOI, but it can also be used to set
test-specific tolerances, etc.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Test/Test.jl#L165-L222
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See also: runtests

Example

function MOI.Test.setup_test(
::typeof(MOI.Test.test_linear_VariablePrimalStart_partial),
mock::MOIU.MockOptimizer,
::MOI.Test.Config,

)
MOIU.set_mock_optimize!(

mock,
(mock::MOIU.MockOptimizer) -> MOIU.mock_optimize!(mock, [1.0, 0.0]),

)
mock.eval_variable_constraint_dual = false

function reset_function()
mock.eval_variable_constraint_dual = true
return

end
return reset_function

end

source

MathOptInterface.Test.version_added – Function.

version_added(::typeof(function_name))

Returns the version of MOI in which the test function_name was added.

This method should be implemented for all new tests.

See the exclude_tests_after keyword of runtests for more details.

source

MathOptInterface.Test.@requires – Macro.

@requires(x)

Check that the condition x is true. Otherwise, throw an RequirementUnmet error to indicate that the model
does not support something required by the test function.

Example

@requires MOI.supports(model, MOI.Silent())
@test MOI.get(model, MOI.Silent())

source

MathOptInterface.Test.RequirementUnmet – Type.

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Test/Test.jl#L114-L151
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Test/Test.jl#L154-L162
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Test/Test.jl#L300-L313
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RequirementUnmet(msg::String) <: Exception

An error for throwing in tests to indicate that the model does not support some requirement expected by
the test function.

source

MathOptInterface.Test.HS071 – Type.

HS071(
enable_hessian::Bool,
enable_hessian_vector_product::Bool = false,

)

An MOI.AbstractNLPEvaluator for the problem:

min x1 ∗ x4 ∗ (x1 + x2 + x3) + x3

subject to x1 ∗ x2 ∗ x3 ∗ x4 ≥ 25

x21 + x22 + x23 + x24 = 40

1 ≤ x1, x2, x3, x4 ≤ 5

The optimal solution is [1.000, 4.743, 3.821, 1.379].

source

https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Test/Test.jl#L285-L290
https://github.com/jump-dev/MathOptInterface.jl/blob/v1.40.1/src/Test/test_nonlinear.jl#L7-L25


Chapter 38

Developer Docs

38.1 Checklists

The purpose of this page is to collate a series of checklists for commonly performed changes to the source
code of MathOptInterface.

In each case, copy the checklist into the description of the pull request.

Making a release

Use this checklist when making a release of the MathOptInterface repository.

## Basic

- [ ] `version` field of `Project.toml` has been updated
- If a breaking change, increment the MAJOR field and reset others to 0
- If adding new features, increment the MINOR field and reset PATCH to 0
- If adding bug fixes or documentation changes, increment the PATCH field

## Documentation

- [ ] Add a new entry to `docs/src/changelog.md`, following existing style

## Tests

- [ ] The `solver-tests.yml` GitHub action does not have unexpected failures.
To run the action, go to:
https://github.com/jump-dev/MathOptInterface.jl/actions/workflows/solver-tests.yml
and click "Run workflow"

- [ ] If new tests were added, ensure that `MOI.Test.version_added` is implemented.

Adding a new set

Use this checklist when adding a new set to the MathOptInterface repository.

## Basic

- [ ] Add a new `AbstractScalarSet` or `AbstractVectorSet` to `src/sets.jl`
- [ ] If `isbitstype(S) == false`, implement `Base.copy(set::S)`

1403
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- [ ] If `isbitstype(S) == false`, implement `Base.:(==)(x::S, y::S)`
- [ ] If an `AbstractVectorSet`, implement `dimension(set::S)`, unless the

dimension is given by `set.dimension`.

## Utilities

- [ ] If an `AbstractVectorSet`, implement `Utilities.set_dot`,
unless the dot product between two vectors in the set is equivalent to
`LinearAlgebra.dot`

- [ ] If an `AbstractVectorSet`, implement `Utilities.set_with_dimension` in
`src/Utilities/matrix_of_constraints.jl`

- [ ] Add the set to the `@model` macro at the bottom of `src/Utilities.model.jl`

## Documentation

- [ ] Add a docstring, which gives the mathematical definition of the set,
along with an `## Example` block containing a `jldoctest`

- [ ] Add the docstring to `docs/src/reference/standard_form.md`
- [ ] Add the set to the relevant table in `docs/src/manual/standard_form.md`

## Tests

- [ ] Define a new `_set(::Type{S})` method in `src/Test/test_basic_constraint.jl`
and add the name of the set to the list at the bottom of that files

- [ ] If the set has any checks in its constructor, add tests to `test/sets.jl`

## MathOptFormat

- [ ] Open an issue at `https://github.com/jump-dev/MathOptFormat` to add
support for the new set {{ replace with link to the issue }}

## Optional

- [ ] Implement `dual_set(::S)` and `dual_set_type(::Type{S})`
- [ ] Add new tests to the `Test` submodule exercising your new set
- [ ] Add new bridges to convert your set into more commonly used sets

Adding a new bridge

Use this checklist when adding a new bridge to the MathOptInterface repository.

The steps are mostly the same, but locations depend on whether the bridge is a Constraint, Objective, or
Variable bridge. In each case below, replace XXX with the appropriate type of bridge.

## Basic

- [ ] Create a new file in `src/Bridges/XXX/bridges` named after the type of
the bridge

- [ ] Define the bridge, following existing examples. The name of the bridge
struct must end in `Bridge`

- [ ] Check if your bridge can be a subtype of [`MOI.Bridges.Constraint.SetMapBridge`](@ref)
- [ ] Define a new `const` that is a `SingleBridgeOptimizer` wrapping the

new bridge. The name of the const must be the name of the bridge, less
the `Bridge` suffix
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- [ ] If the bridge should be enabled by default, add the bridge to
`add_all_bridges` at the bottom of `src/Bridges/XXX/XXX.jl`

## Tests

- [ ] Create a new file in the appropriate subdirectory of `tests/Bridges/XXX`
named after the type of the bridge

- [ ] Use `MOI.Bridges.runtests` to test various inputs and outputs of the
bridge

- [ ] If, after opening the pull request to add the bridge, some lines are not
covered by the tests, add additional bridge-specific tests to cover the
untested lines.

## Documentation

- [ ] Add a docstring which uses the same template as existing bridges.

## Final touch

If the bridge depends on run-time values of other variables and constraints in
the model:

- [ ] Implement `MOI.Utilities.needs_final_touch(::Bridge)`
- [ ] Implement `MOI.Utilities.final_touch(::Bridge, ::MOI.ModelLike)`
- [ ] Ensure that `final_touch` can be called multiple times in a row

Updating MathOptFormat

Use this checklist when updating the version of MathOptFormat.

## Basic

- [ ] The file at `src/FileFormats/MOF/mof.schema.json` is updated
- [ ] The constant `_SUPPORTED_VERSIONS` is updated in

`src/FileFormats/MOF/MOF.jl`

## New sets

- [ ] New sets are added to the `@model` in `src/FileFormats/MOF/MOF.jl`
- [ ] New sets are added to the `@enum` in `src/FileFormats/MOF/read.jl`
- [ ] `set_to_moi` is defined for each set in `src/FileFormats/MOF/read.jl`
- [ ] `head_name` is defined for each set in `src/FileFormats/MOF/write.jl`
- [ ] A new unit test calling `_test_model_equality` is aded to

`test/FileFormats/MOF/MOF.jl`

## Tests

- [ ] The version field in `test/FileFormats/MOF/nlp.mof.json` is updated

## Documentation

- [ ] The version fields are updated in `docs/src/submodules/FileFormats/overview.md`
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