Nearest correlation
This example illustrates the sensitivity analysis of the nearest correlation problem studied in [H02].
Higham, Nicholas J. Computing the nearest correlation matrix—a problem from finance. IMA journal of Numerical Analysis 22.3 (2002): 329-343.
using DiffOpt, JuMP, SCS, LinearAlgebra
solver = SCS.Optimizer
function proj(A, dH = Diagonal(ones(size(A, 1))), H = ones(size(A)))
n = LinearAlgebra.checksquare(A)
model = Model(() -> DiffOpt.diff_optimizer(solver))
@variable(model, X[1:n, 1:n] in PSDCone())
@constraint(model, [i in 1:n], X[i, i] == 1)
@objective(model, Min, sum((H .* (X - A)) .^ 2))
MOI.set(
model,
DiffOpt.ForwardObjectiveFunction(),
sum((dH .* (X - A)) .^ 2),
)
optimize!(model)
DiffOpt.forward_differentiate!(model)
dX = MOI.get.(model, DiffOpt.ForwardVariablePrimal(), X)
return value.(X), dX
end
proj (generic function with 3 methods)
Example from [H02, p. 334-335]:
A = LinearAlgebra.Tridiagonal(ones(2), ones(3), ones(2))
3×3 LinearAlgebra.Tridiagonal{Float64, Vector{Float64}}:
1.0 1.0 ⋅
1.0 1.0 1.0
⋅ 1.0 1.0
The projection is computed as follows:
X, dX = proj(A)
------------------------------------------------------------------
SCS v3.2.7 - Splitting Conic Solver
(c) Brendan O'Donoghue, Stanford University, 2012
------------------------------------------------------------------
problem: variables n: 6, constraints m: 9
cones: z: primal zero / dual free vars: 3
s: psd vars: 6, ssize: 1
settings: eps_abs: 1.0e-04, eps_rel: 1.0e-04, eps_infeas: 1.0e-07
alpha: 1.50, scale: 1.00e-01, adaptive_scale: 1
max_iters: 100000, normalize: 1, rho_x: 1.00e-06
acceleration_lookback: 10, acceleration_interval: 10
compiled with openmp parallelization enabled
lin-sys: sparse-direct-amd-qdldl
nnz(A): 9, nnz(P): 6
------------------------------------------------------------------
iter | pri res | dua res | gap | obj | scale | time (s)
------------------------------------------------------------------
0| 9.98e-01 3.35e+00 2.27e+01 -1.27e+01 1.00e-01 1.31e-04
75| 5.98e-05 2.10e-06 1.25e-04 -6.72e+00 1.00e-01 3.93e-04
------------------------------------------------------------------
status: solved
timings: total: 3.93e-04s = setup: 4.56e-05s + solve: 3.48e-04s
lin-sys: 3.76e-05s, cones: 2.05e-04s, accel: 3.94e-06s
------------------------------------------------------------------
objective = -6.721507
------------------------------------------------------------------
The projection of A
is:
X
3×3 Matrix{Float64}:
1.0 0.760748 0.157264
0.760748 1.0 0.760748
0.157264 0.760748 1.0
The derivative of the projection with respect to a uniform increase of the weights of the diagonal entries is:
dX
3×3 Matrix{Float64}:
1.56853e-7 -0.0640353 0.0213988
-0.0640353 -2.39681e-7 -0.0640353
0.0213988 -0.0640353 1.17998e-7
Example from [H02, Section 4, p. 340]:
A = LinearAlgebra.Tridiagonal(-ones(3), 2ones(4), -ones(3))
4×4 LinearAlgebra.Tridiagonal{Float64, Vector{Float64}}:
2.0 -1.0 ⋅ ⋅
-1.0 2.0 -1.0 ⋅
⋅ -1.0 2.0 -1.0
⋅ ⋅ -1.0 2.0
The projection is computed as follows:
X, dX = proj(A)
------------------------------------------------------------------
SCS v3.2.7 - Splitting Conic Solver
(c) Brendan O'Donoghue, Stanford University, 2012
------------------------------------------------------------------
problem: variables n: 10, constraints m: 14
cones: z: primal zero / dual free vars: 4
s: psd vars: 10, ssize: 1
settings: eps_abs: 1.0e-04, eps_rel: 1.0e-04, eps_infeas: 1.0e-07
alpha: 1.50, scale: 1.00e-01, adaptive_scale: 1
max_iters: 100000, normalize: 1, rho_x: 1.00e-06
acceleration_lookback: 10, acceleration_interval: 10
compiled with openmp parallelization enabled
lin-sys: sparse-direct-amd-qdldl
nnz(A): 14, nnz(P): 10
------------------------------------------------------------------
iter | pri res | dua res | gap | obj | scale | time (s)
------------------------------------------------------------------
0| 1.02e+00 3.57e+00 3.24e+01 -3.42e+01 1.00e-01 9.46e-05
75| 2.52e-05 7.03e-07 7.14e-05 -1.74e+01 1.00e-01 4.32e-04
------------------------------------------------------------------
status: solved
timings: total: 4.33e-04s = setup: 4.51e-05s + solve: 3.88e-04s
lin-sys: 3.11e-05s, cones: 2.79e-04s, accel: 4.26e-06s
------------------------------------------------------------------
objective = -17.447239
------------------------------------------------------------------
The projection of A
is:
X
4×4 Matrix{Float64}:
1.0 -0.808425 0.191576 0.10677
-0.808425 1.0 -0.656259 0.191576
0.191576 -0.656259 1.0 -0.808425
0.10677 0.191576 -0.808425 1.0
The derivative of the projection with respect to a uniform increase of the weights of the diagonal entries is:
dX
4×4 Matrix{Float64}:
4.70417e-7 -0.152359 -0.0585314 -0.0234138
-0.152359 -2.76938e-7 -0.228492 -0.0585312
-0.0585314 -0.228492 9.90301e-7 -0.152359
-0.0234138 -0.0585312 -0.152359 -1.14637e-6
This page was generated using Literate.jl.