All of the examples can be found in Jupyter notebook form here.
POVM simulation
This notebook shows how we can check how much depolarizing noise a qubit positive operator-valued measure (POVM) can take before it becomes simulable by projective measurements. The general method is described in arXiv:1609.06139. The question of simulability by projective measurements boils down to an SDP problem. Eq. (8) from the paper defines the noisy POVM that we obtain subjecting a POVM $\mathbf{M}$ to a depolarizing channel $\Phi_t$:
If this visibility $t\in[0,1]$ is one, the POVM $\mathbf{M}$ is simulable.
We will use Convex.jl to solve the SDP problem.
using Convex, SCS, LinearAlgebra
if VERSION < v"1.2.0-DEV.0"
(I::UniformScaling)(n::Integer) = Diagonal(fill(I.λ, n))
LinearAlgebra.diagm(v::AbstractVector) = diagm(0 => v)
end
For the qubit case, a four outcome qubit POVM $\mathbf{M} \in\mathcal{P}(2,4)$ is simulable if and only if
where Hermitian operators $N_{ij}^{\pm}$ satisfy $N_{ij}^{\pm}\geq0$ and $N_{ij}^{+}+N_{ij}^{-}=p_{ij}\mathbb{1}$, where $i<j$ , $i,j=1,2,3,4$ and $p_{ij}\geq0$ as well as $\sum_{i<j}p_{ij}=1$, that is, the $p_{ij}$ values form a probability vector. This forms an SDP feasibility problem, which we can rephrase as an optimization problem by adding depolarizing noise to the left-hand side of the above equations and maximizing the visibility $t$:
such that
.
We organize these constraints in a function that takes a four-output qubit POVM as its argument:
function get_visibility(K)
noise = real([tr(K[i])*I(2)/2 for i=1:size(K, 1)])
P = [[ComplexVariable(2, 2) for i=1:2] for j=1:6]
q = Variable(6, Positive())
t = Variable(1, Positive())
constraints = [P[i][j] in :SDP for i=1:6 for j=1:2]
constraints += sum(q)==1
constraints += t<=1
constraints += [P[i][1]+P[i][2] == q[i]*I(2) for i=1:6]
constraints += t*K[1] + (1-t)*noise[1] == P[1][1] + P[2][1] + P[3][1]
constraints += t*K[2] + (1-t)*noise[2] == P[1][2] + P[4][1] + P[5][1]
constraints += t*K[3] + (1-t)*noise[3] == P[2][2] + P[4][2] + P[6][1]
constraints += t*K[4] + (1-t)*noise[4] == P[3][2] + P[5][2] + P[6][2]
p = maximize(t, constraints)
solve!(p, () -> SCS.Optimizer(verbose=0))
return p.optval
end
get_visibility (generic function with 1 method)
We check this function using the tetrahedron measurement (see Appendix B in arXiv:quant-ph/0702021). This measurement is non-simulable, so we expect a value below one.
function dp(v)
I(2) + v[1]*[0 1; 1 0] + v[2]*[0 -im; im 0] + v[3]*[1 0; 0 -1]
end
b = [ 1 1 1;
-1 -1 1;
-1 1 -1;
1 -1 -1]/sqrt(3)
M = [dp(b[i, :]) for i=1:size(b,1)]/4;
get_visibility(M)
0.8164968217666596
This value matches the one we obtained using PICOS.
This page was generated using Literate.jl.