All of the examples can be found in Jupyter notebook form here.
Worst case risk analysis
Generate data for worst-case risk analysis.
using Random
Random.seed!(2);
n = 5;
r = abs.(randn(n, 1))/15;
Sigma = 0.9 * rand(n, n) .- 0.15;
Sigma_nom = Sigma' * Sigma;
Sigma_nom .-= (maximum(Sigma_nom) - 0.9)
5×5 Array{Float64,2}:
0.54178 0.45192 0.328892 0.0123621 0.400576
0.45192 0.694173 0.416407 -0.237798 0.295939
0.328892 0.416407 0.496781 0.0266768 0.31054
0.0123621 -0.237798 0.0266768 0.414028 -0.181312
0.400576 0.295939 0.31054 -0.181312 0.9
Form and solve portfolio optimization problem. Here we minimize risk while requiring a 0.1 return.
using Convex, SCS
w = Variable(n);
ret = dot(r, w);
risk = sum(quadform(w, Sigma_nom));
problem = minimize(risk, [sum(w) == 1, ret >= 0.1, norm(w, 1) <= 2])
solve!(problem, () -> SCS.Optimizer(verbose=0));
wval = vec(evaluate(w))
5-element Array{Float64,1}:
-0.2584111225097882
0.5388445424592738
-0.24158885787869822
0.751630898449201
0.20952450574832615
Form and solve worst-case risk analysis problem.
Sigma = Semidefinite(n);
Delta = Variable(n, n);
risk = sum(quadform(wval, Sigma));
problem = maximize(risk, [Sigma == Sigma_nom + Delta,
diag(Delta) == 0,
abs(Delta) <= 0.2,
Delta == Delta']);
solve!(problem, () -> SCS.Optimizer(verbose=0));
println("standard deviation = ", round(sqrt(wval' * Sigma_nom * wval), sigdigits=2));
println("worst-case standard deviation = ", round(sqrt(evaluate(risk)), sigdigits=2));
println("worst-case Delta = ");
println(round.(evaluate(Delta), sigdigits=2));
standard deviation = 0.27
worst-case standard deviation = 0.82
worst-case Delta =
[7.0e-7 -0.2 0.19 -0.2 -0.2; -0.2 1.9e-7 -0.2 0.2 0.2; 0.19 -0.2 6.6e-7 -0.2 -0.2; -0.2 0.2 -0.2 -4.3e-7 0.2; -0.2 0.2 -0.2 0.2 6.4e-7]
This page was generated using Literate.jl.