Supported operations
Convex.jl supports the following functions. These functions may be composed according to the DCP composition rules to form new convex, concave, or affine expressions.
*
Base.:* — Method
Base.:*(x::Convex.AbstractExpr, y::Convex.AbstractExpr)The binary multiplication operator $x \times y$.
Examples
ulia> x = Variable();
julia> 2 * x
* (affine; real)
├─ [2;;]
└─ real variable (id: 709…007)julia> x = Variable(3);
julia> y = [1, 2, 3];
julia> x' * y
* (affine; real)
├─ reshape (affine; real)
│ └─ * (affine; real)
│ ├─ 3×3 SparseArrays.SparseMatrixCSC{Int64, Int64} with 3 stored entries
│ └─ reshape (affine; real)
│ └─ …
└─ [1; 2; 3;;]+
Base.:+ — Method
Base.:+(x::Convex.AbstractExpr, y::Convex.AbstractExpr)
Base.:+(x::Convex.Value, y::Convex.AbstractExpr)
Base.:+(x::Convex.AbstractExpr, y::Convex.Value)The addition operator $x + y$.
Examples
Applies to scalar expressions:
julia> x = Variable();
julia> x + 1
+ (affine; real)
├─ real variable (id: 110…477)
└─ [1;;]And element-wise to a matrix of expressions:
julia> x = Variable(3);
julia> y = [1, 2, 3];
julia> atom = x + y
+ (affine; real)
├─ 3-element real variable (id: 458…482)
└─ [1; 2; 3;;]
julia> size(atom)
(3, 1)-
Base.:- — Method
Base.:-(x::Convex.AbstractExpr)The univariate negation operator $-x$.
Examples
Applies to scalar expressions:
julia> x = Variable();
julia> -x
Convex.NegateAtom (affine; real)
├─ real variable (id: 161…677)And element-wise to a matrix of expressions:
julia> x = Variable(3);
julia> atom = -x
Convex.NegateAtom (affine; real)
└─ 3-element real variable (id: 137…541)
julia> size(atom)
(3, 1)Base.:- — Method
Base.:-(x::Convex.AbstractExpr, y::Convex.AbstractExpr)
Base.:-(x::Convex.Value, y::Convex.AbstractExpr)
Base.:-(x::Convex.AbstractExpr, y::Convex.Value)The subtraction operator $x - y$.
Examples
Applies to scalar expressions:
julia> x = Variable();
julia> x - 1
+ (affine; real)
├─ real variable (id: 161…677)
└─ [-1;;]And element-wise to a matrix of expressions:
julia> x = Variable(3);
julia> y = [1, 2, 3];
julia> atom = y - x
+ (affine; real)
├─ [1; 2; 3;;]
└─ Convex.NegateAtom (affine; real)
└─ 3-element real variable (id: 242…661)/
Base.:/ — Method
Base.:/(x::Convex.AbstractExpr, y::Convex.Value)The binary division operator $\frac{x}{y}$.
Examples
Applies to a scalar expression:
ulia> x = Variable();
julia> x / 2and element-wise to a matrix:
julia> x = Variable(3);
julia> atom = x / 2
* (affine; real)
├─ 3-element real variable (id: 129…611)
└─ [0.5;;]
julia> size(atom)
(3, 1).*
Base.Broadcast.broadcasted — Method
x::Convex.AbstractExpr .* y::Convex.AbstractExprElement-wise multiplication between matrices x and y.
Examples
julia> x = Variable(2);
julia> atom = x .* 2
* (affine; real)
├─ 2-element real variable (id: 197…044)
└─ [2;;]
julia> atom = x .* [2, 4]
.* (affine; real)
├─ 2-element real variable (id: 197…044)
└─ [2; 4;;]
julia> size(atom)
(2, 1)./
Base.Broadcast.broadcasted — Method
x::Convex.AbstractExpr ./ y::Convex.AbstractExprElement-wise division between matrices x and y.
Examples
julia> x = Variable(2);
julia> atom = x ./ 2
* (affine; real)
├─ 2-element real variable (id: 875…859)
└─ [0.5;;]
julia> atom = x ./ [2, 4]
.* (affine; real)
├─ 2-element real variable (id: 875…859)
└─ [0.5; 0.25;;]
julia> size(atom)
(2, 1).^
Base.Broadcast.broadcasted — Method
x::Convex.AbstractExpr .^ k::IntElement-wise exponentiation of x to the power of k.
Examples
julia> x = Variable(2);
julia> atom = x .^ 2
qol_elem (convex; positive)
├─ 2-element real variable (id: 131…737)
└─ [1.0; 1.0;;]
julia> size(atom)
(2, 1)abs
Base.abs — Method
Base.abs(x::Convex.AbstractExpr)The epigraph of $|x|$.
Examples
Applies to a single expression:
julia> x = Variable();
julia> abs(x)
abs (convex; positive)
└─ real variable (id: 103…720)And element-wise to a matrix of expressions:
julia> x = Variable(3);
julia> atom = abs(x)
abs (convex; positive)
└─ 3-element real variable (id: 389…882)
julia> size(atom)
(3, 1)abs2
Base.abs2 — Method
Base.abs2(x::Convex.AbstractExpr)The epigraph of $|x|^2$.
Examples
Applies to a single expression:
julia> x = Variable();
julia> abs2(x)
qol_elem (convex; positive)
├─ abs (convex; positive)
│ └─ real variable (id: 319…413)
└─ [1.0;;]And element-wise to a matrix of expressions:
julia> x = Variable(3);
julia> atom = abs2(x)
qol_elem (convex; positive)
├─ abs (convex; positive)
│ └─ 3-element real variable (id: 123…996)
└─ [1.0; 1.0; 1.0;;]
julia> size(atom)
(3, 1)adjoint
Base.adjoint — Method
LinearAlgebra.adjoint(x::AbstractExpr)The transpose of the conjugated matrix x.
Examples
julia> x = ComplexVariable(2, 2);
julia> atom = adjoint(x)
reshape (affine; complex)
└─ * (affine; complex)
├─ 4×4 SparseArrays.SparseMatrixCSC{Int64, Int64} with 4 stored entries
└─ reshape (affine; complex)
└─ conj (affine; complex)
└─ …
julia> size(atom)
(2, 2)conj
Base.conj — Method
Base.conj(x::Convex.AbstractExpr)The complex conjugate of x.
If x is real, this function returns x.
Examples
Applies to a single expression:
julia> x = ComplexVariable();
julia> conj(x)
conj (affine; complex)
└─ complex variable (id: 180…137)And element-wise to a matrix of expressions:
conj (affine; complex)
└─ complex variable (id: 180…137)
julia> x = ComplexVariable(3);
julia> atom = conj(x)
conj (affine; complex)
└─ 3-element complex variable (id: 104…031)
julia> size(atom)
(3, 1)conv
Convex.conv — Method
Convex.conv(x::Convex.AbstractExpr, y::Convex.AbstractExpr)The convolution between two vectors x and y.
Examples
julia> x = Variable(2);
julia> y = [2, 4];
julia> atom = conv(x, y)
* (affine; real)
├─ 3×2 SparseArrays.SparseMatrixCSC{Int64, Int64} with 4 stored entries
└─ 2-element real variable (id: 663…363)
julia> size(atom)
(3, 1)diag
LinearAlgebra.diag — Function
LinearAlgebra.diag(x::Convex.AbstractExpr, k::Int = 0)Return the k-th diagonnal of the matrix X as a column vector.
Examples
Applies to a single square matrix:
julia> x = Variable(2, 2);
julia> atom = diag(x, 0)
diag (affine; real)
└─ 2×2 real variable (id: 724…318)
julia> size(atom)
(2, 1)
julia> atom = diag(x, 1)
diag (affine; real)
└─ 2×2 real variable (id: 147…856)
julia> size(atom)
(1, 1)diagm
LinearAlgebra.diagm — Method
LinearAlgebra.diagm(x::Convex.AbstractExpr)Create a diagonal matrix out of the vector x.
Examples
julia> x = Variable(2);
julia> atom = diagm(x)
diagm (affine; real)
└─ 2-element real variable (id: 541…968)
julia> size(atom)
(2, 2)dot
LinearAlgebra.dot — Method
LinearAlgebra.dot(x::Convex.AbstractExpr, y::Convex.AbstractExpr)The dot product $x \cdot y$. If x is complex, it is conjugated.
Examples
julia> x = ComplexVariable(2);
julia> y = [1, 2];
julia> atom = dot(x, y)
sum (affine; complex)
└─ .* (affine; complex)
├─ conj (affine; complex)
│ └─ 2-element complex variable (id: 133…443)
└─ [1; 2;;]
julia> size(atom)
(1, 1)dotsort
Convex.dotsort — Method
dotsort(x::Convex.AbstractExpr, y::Convex.Value)
dotsort(x::Convex.Value, y::Convex.AbstractExpr)Computes dot(sort(x), sort(y)), where x or y is constant.
For example, if x = Variable(6) and y = [1 1 1 0 0 0], this atom computes the sum of the three largest elements of x.
Examples
julia> x = Variable(4);
julia> atom = dotsort(x, [1, 0, 0, 1])
dotsort (convex; real)
└─ 4-element real variable (id: 128…367)
julia> size(atom)
(1, 1)eigmax
LinearAlgebra.eigmax — Method
LinearAlgebra.eigmax(X::Convex.AbstractExpr)The epigraph of the maximum eigen value of $X$.
Examples
Applies to a single square matrix:
julia> x = Variable(2, 2);
julia> atom = eigmax(x)
eigmin (convex; real)
└─ 2×2 real variable (id: 428…695)
julia> size(atom)
(1, 1)eigmin
LinearAlgebra.eigmin — Method
LinearAlgebra.eigmin(X::Convex.AbstractExpr)The hypograph of the minimum eigen value of $X$.
Examples
Applies to a single square matrix:
julia> x = Variable(2, 2);
julia> atom = eigmin(x)
eigmin (concave; real)
└─ 2×2 real variable (id: 428…695)
julia> size(atom)
(1, 1)entropy
Convex.entropy — Method
entropy(x::Convex.AbstractExpr)The hypograph of $\sum_i -x_i \log x_i$.
Examples
Applies to a matrix of expressions:
julia> x = Variable(3);
julia> atom = entropy(x)
sum (concave; real)
└─ entropy (concave; real)
└─ 3-element real variable (id: 901…778)
julia> size(atom)
(1, 1)entropy_elementwise
Convex.entropy_elementwise — Method
entropy_elementwise(x::Convex.AbstractExpr)The hypograph of $-x \log x$.
Examples
Applies to a single expression:
julia> x = Variable();
julia> entropy_elementwise(x)
entropy (concave; real)
└─ real variable (id: 172…395)And element-wise to a matrix of expressions:
julia> x = Variable(3);
julia> atom = entropy_elementwise(x)
entropy (concave; real)
└─ 3-element real variable (id: 140…126)
julia> size(atom)
(3, 1)exp
Base.exp — Method
Base.exp(x::Convex.AbstractExpr)The epigraph of $e^x$.
Examples
Applies to a single expression:
julia> x = Variable();
julia> exp(x)
exp (convex; positive)
└─ real variable (id: 103…720)And element-wise to a matrix of expressions:
julia> x = Variable(3);
julia> atom = exp(x)
exp (convex; positive)
└─ 3-element real variable (id: 389…882)
julia> size(atom)
(3, 1)geomean
Convex.geomean — Method
geomean(x::Convex.AbstractExpr...)The hypograph of the geometric mean $\sqrt[n]{x_1 \cdot x_2 \cdot \ldots x_n}$.
Examples
Applies to a single expression:
julia> x = Variable();
julia> y = Variable();
julia> geomean(x, y)
geomean (concave; positive)
├─ real variable (id: 163…519)
└─ real variable (id: 107…393)And element-wise to a matrix of expressions:
julia> x = Variable(3);
julia> y = Variable(3);
julia> atom = geomean(x, y)
geomean (concave; positive)
├─ 3-element real variable (id: 177…782)
└─ 3-element real variable (id: 307…913)
julia> size(atom)
(3, 1)hcat
Base.hcat — Method
Base.hcat(args::AbstractExpr...)Horizontally concatenate args.
Examples
Applies to a matrix:
julia> x = Variable(2, 2);
julia> atom = hcat(x, x)
hcat (affine; real)
├─ 2×2 real variable (id: 111…376)
└─ 2×2 real variable (id: 111…376)
julia> size(atom)
(2, 4)You can also use the Julia [x x] syntax:
julia> x = Variable(2, 2);
julia> atom = [x x]
hcat (affine; real)
├─ 2×2 real variable (id: 111…376)
└─ 2×2 real variable (id: 111…376)
julia> size(atom)
(2, 4)hinge_loss
Convex.hinge_loss — Method
hinge_loss(x::Convex.AbstractExpr)The epigraph of $\max(1 - x, 0)$.
Examples
Applies to a single expression:
julia> x = Variable();
julia> hinge_loss(x)
max (convex; positive)
├─ + (affine; real)
│ ├─ [1;;]
│ └─ Convex.NegateAtom (affine; real)
│ └─ real variable (id: 129…000)
└─ [0;;]And element-wise to a matrix of expressions:
julia> x = Variable(3);
julia> atom = hinge_loss(x)
max (convex; positive)
├─ + (affine; real)
│ ├─ * (constant; positive)
│ │ ├─ [1;;]
│ │ └─ [1.0; 1.0; 1.0;;]
│ └─ Convex.NegateAtom (affine; real)
│ └─ 3-element real variable (id: 125…591)
└─ [0;;]
julia> size(atom)
(3, 1)huber
Convex.huber — Function
huber(x::Convex.AbstractExpr, M::Real = 1.0)The epigraph of the Huber loss function:
\[\begin{cases} x^2 & |x| \le M \\ 2M|x| - M^2 & |x| > M \end{cases}\]
where $M > 0$.
Examples
Applies to a single expression:
julia> x = Variable();
julia> huber(x, 2.5)
huber (convex; positive)
└─ real variable (id: 973…369)And element-wise to a matrix of expressions:
julia> x = Variable(3);
julia> atom = huber(x)
huber (convex; positive)
└─ 3-element real variable (id: 896…728)
julia> size(atom)
(3, 1)hvcat
Base.hvcat — Method
Base.hvcat(
rows::Tuple{Vararg{Int}},
args::Union{AbstractExpr,Value}...,
)Horizontally and vertically concatenate args in single call.
rows is the number of arguments to vertically concatenate into each column.
Examples
Applies to a matrix:
To make the matrix:
a b[1] b[2]
c[1] c[2] c[3]do:
julia> a = Variable();
julia> b = Variable(1, 2);
julia> c = Variable(1, 3);
julia> atom = [a b; c] # Syntactic sugar for: hvcat((2, 1), a, b, c)
vcat (affine; real)
├─ hcat (affine; real)
│ ├─ real variable (id: 429…021)
│ └─ 1×2 real variable (id: 120…326)
└─ hcat (affine; real)
└─ 1×3 real variable (id: 124…615)
julia> size(atom)
(2, 3)imag
Base.imag — Method
Base.imag(x::Convex.AbstractExpr)Return the imaginary component of x.
Examples
Applies to a single expression:
julia> x = ComplexVariable();
julia> imag(x)
imag (affine; real)
└─ complex variable (id: 407…692)And element-wise to a matrix of expressions:
julia> x = ComplexVariable(3);
julia> atom = imag(x)
imag (affine; real)
└─ 3-element complex variable (id: 435…057)
julia> size(atom)
(3, 1)inner_product
Convex.inner_product — Method
inner_product(x::AbstractExpr, y::AbstractExpr)The inner product $tr(x^\top y)$ where x and y are square matrices.
Examples
julia> x = Variable(2, 2);
julia> y = [1 3; 2 4];
julia> atom = inner_product(x, y)
real (affine; real)
└─ sum (affine; real)
└─ diag (affine; real)
└─ * (affine; real)
├─ …
└─ …
julia> size(atom)
(1, 1)invpos
Convex.invpos — Method
invpos(x::Convex.AbstractExpr)The epigraph of $\frac{1}{x}$.
Examples
Applies to a single expression:
julia> x = Variable();
julia> invpos(x)
qol_elem (convex; positive)
├─ [1.0;;]
└─ real variable (id: 139…839)And element-wise to a matrix of expressions:
julia> x = Variable(3);
julia> atom = invpos(x)
qol_elem (convex; positive)
├─ [1.0; 1.0; 1.0;;]
└─ 3-element real variable (id: 133…285)
julia> size(atom)
(3, 1)kron
Base.kron — Method
Base.kron(x::Convex.AbstractExpr, y::Convex.AbstractExpr)The Kronecker (outer) product.
Examples
julia> x = Variable(2);
julia> y = [1 2];
julia> atom = kron(x, y)
vcat (affine; real)
├─ * (affine; real)
│ ├─ index (affine; real)
│ │ └─ 2-element real variable (id: 369…232)
│ └─ [1 2]
└─ * (affine; real)
├─ index (affine; real)
│ └─ 2-element real variable (id: 369…232)
└─ [1 2]
julia> size(atom)
(2, 2)lieb_ando
Convex.lieb_ando — Method
lieb_ando(
A::Union{AbstractMatrix,Constant},
B::Union{AbstractMatrix,Constant},
K::Union{AbstractMatrix,Constant},
t::Rational,
)Returns LinearAlgebra.tr(K' * A^{1-t} * K * B^t) where A and B are positive semidefinite matrices and K is an arbitrary matrix (possibly rectangular).
lieb_ando(A, B, K, t) is concave in (A, B) for t in [0, 1], and convex in (A, B) for t in [-1, 0) or (1, 2]. K is a fixed matrix.
Seems numerically unstable when t is on the endpoints of these ranges.
Reference
Ported from CVXQUAD which is based on the paper: "Lieb's concavity theorem, matrix geometric means and semidefinite optimization" by Hamza Fawzi and James Saunderson (arXiv:1512.03401)
Examples
Note that lieb_ando is implemented as a subproblem, so the returned atom is a Convex.Problem object. The Problem atom can still be used as a regular 1x1 atom in other expressions.
julia> A = Semidefinite(2, 2);
julia> B = Semidefinite(3, 3);
julia> K = [1 2 3; 4 5 6];
julia> atom = lieb_ando(A, B, K, 1 // 2)
Problem statistics
problem is DCP : true
number of variables : 3 (49 scalar elements)
number of constraints : 4 (157 scalar elements)
number of coefficients : 76
number of atoms : 26
Solution summary
termination status : OPTIMIZE_NOT_CALLED
primal status : NO_SOLUTION
dual status : NO_SOLUTION
Expression graph
maximize
└─ real (affine; real)
└─ sum (affine; real)
└─ diag (affine; real)
└─ …
subject to
├─ GeometricMeanHypoConeSquare constraint (convex)
│ └─ vcat (affine; real)
│ ├─ reshape (affine; real)
│ │ └─ …
│ ├─ reshape (affine; real)
│ │ └─ …
│ └─ reshape (affine; real)
│ └─ …
├─ PSD constraint (convex)
│ └─ 6×6 real variable (id: 173…902)
├─ PSD constraint (convex)
│ └─ 6×6 real variable (id: 173…902)
⋮
julia> size(atom)
(1, 1)log
Base.log — Method
Base.log(x::Convex.AbstractExpr)The hypograph of $\log(x)$.
Examples
Applies to a single expression:
julia> x = Variable();
julia> log(x)
log (concave; real)
└─ real variable (id: 103…720)And element-wise to a matrix of expressions:
julia> x = Variable(3);
julia> atom = log(x)
log (concave; real)
└─ 3-element real variable (id: 161…499)
julia> size(atom)
(3, 1)log_perspective
Convex.log_perspective — Method
log_perspective(x::Convex.AbstractExpr, y::Convex.AbstractExpr)The hypograph the perspective of of the log function: $\sum y_i*\log \frac{x_i}{y_i}$.
Examples
Applies to a single expression:
julia> x = Variable();
julia> y = Variable();
julia> log_perspective(x, y)
Convex.NegateAtom (concave; real)
└─ relative_entropy (convex; real)
├─ real variable (id: 136…971)
└─ real variable (id: 131…344)And to a matrix of expressions:
julia> x = Variable(3);
julia> y = Variable(3);
julia> atom = log_perspective(x, y)
Convex.NegateAtom (concave; real)
└─ relative_entropy (convex; real)
├─ 3-element real variable (id: 854…248)
└─ 3-element real variable (id: 111…174)
julia> size(atom)
(1, 1)logdet
LinearAlgebra.logdet — Method
LinearAlgebra.logdet(X::Convex.AbstractExpr)The hypograph of $\log(\det(X))$.
Examples
Applies to a single matrix expression:
julia> X = Variable(2, 2);
julia> atom = logdet(X)
logdet (concave; real)
└─ 2×2 real variable (id: 159…883)
julia> size(atom)
(1, 1)logisticloss
Convex.logisticloss — Method
logisticloss(x::Convex.AbstractExpr)Reformulation for epigraph of the logistic loss: $\sum_i \log(e^x_i + 1)$.
This reformulation uses logsumexp.
Examples
Applies to a single expression:
julia> x = Variable();
julia> logisticloss(x)
logsumexp (convex; real)
└─ vcat (affine; real)
├─ real variable (id: 444…892)
└─ [0;;]And to a matrix of expressions:
julia> x = Variable(3);
julia> atom = logisticloss(x)
+ (convex; real)
├─ logsumexp (convex; real)
│ └─ vcat (affine; real)
│ ├─ index (affine; real)
│ │ └─ …
│ └─ [0;;]
├─ logsumexp (convex; real)
│ └─ vcat (affine; real)
│ ├─ index (affine; real)
│ │ └─ …
│ └─ [0;;]
└─ logsumexp (convex; real)
└─ vcat (affine; real)
├─ index (affine; real)
│ └─ …
└─ [0;;]
julia> size(atom)
(1, 1)logsumexp
Convex.logsumexp — Method
logsumexp(x::Convex.AbstractExpr)The epigraph of $\log\left(\sum_i e^{x_i}\right)$.
Examples
Applies to a single expression:
julia> x = Variable(2, 3);
julia> atom = logsumexp(x)
logsumexp (convex; real)
└─ 2×3 real variable (id: 121…604)
julia> size(atom)
(1, 1)
julia> atom = logsumexp(x; dims = 1)
logsumexp (convex; real)
└─ 2×3 real variable (id: 121…604)
julia> size(atom)
(1, 3)
julia> atom = logsumexp(x; dims = 2)
logsumexp (convex; real)
└─ 2×3 real variable (id: 121…604)
julia> size(atom)
(2, 1)matrixfrac
Convex.matrixfrac — Method
matrixfrac(x::AbstractExpr, P::AbstractExpr)The epigraph of $x^\top P^{-1} x$.
Examples
julia> x = Variable(2);
julia> P = Variable(2, 2);
julia> atom = matrixfrac(x, P)
matrixfrac (convex; positive)
├─ 2-element real variable (id: 139…388)
└─ 2×2 real variable (id: 126…414)
julia> size(atom)
(1, 1)max
Base.max — Method
Base.max(x::Convex.AbstractExpr, y::Convex.AbstractExpr)
Base.max(x::Convex.AbstractExpr, y::Convex.Value)
Base.max(x::Convex.Value, y::Convex.AbstractExpr)The hypograph of $max(x, y)$.
Examples
Applies to a single expression:
julia> x = Variable();
julia> max(x, 1)
max (convex; real)
├─ real variable (id: 183…974)
└─ [1;;]And element-wise to a matrix of expressions:
julia> x = Variable(3);
julia> y = [1, 2, 3];
julia> atom = max(x, y)
max (convex; real)
├─ 3-element real variable (id: 153…965)
└─ [1; 2; 3;;]
julia> size(atom)
(3, 1)maximum
Base.maximum — Method
Base.maximum(x::Convex.AbstractExpr)The hypograph of $max(x...)$.
Examples
Applies to a matrix expression:
julia> x = Variable(3);
julia> atom = maximum(x)
maximum (convex; real)
└─ 3-element real variable (id: 159…219)
julia> size(atom)
(1, 1)min
Base.min — Method
Base.min(x::Convex.AbstractExpr, y::Convex.AbstractExpr)
Base.min(x::Convex.Value, y::Convex.AbstractExpr)
Base.min(x::Convex.AbstractExpr, y::Convex.Value)The epigraph of $min(x, y)$.
Examples
Applies to a single expression:
julia> x = Variable();
julia> min(x, 1)
min (concave; real)
├─ real variable (id: 183…974)
└─ [1;;]And element-wise to a matrix of expressions:
julia> x = Variable(3);
julia> y = [1, 2, 3];
julia> atom = min(x, y)
min (concave; real)
├─ 3-element real variable (id: 153…965)
└─ [1; 2; 3;;]
julia> size(atom)
(3, 1)minimum
Base.minimum — Method
Base.minimum(x::Convex.AbstractExpr)The epigraph of $min(x...)$.
Examples
Applies to a matrix expression:
julia> x = Variable(3);
julia> atom = minimum(x)
minimum (convex; real)
└─ 3-element real variable (id: 159…219)
julia> size(atom)
(1, 1)neg
Convex.neg — Method
neg(x::Convex.AbstractExpr)The epigraph of $\max(-x, 0)$.
Examples
Applies to a single expression:
julia> x = Variable();
julia> neg(x)
max (convex; positive)
├─ Convex.NegateAtom (affine; real)
│ └─ real variable (id: 467…111)
└─ [0;;]And element-wise to a matrix of expressions:
julia> x = Variable(3);
julia> atom = neg(x)
max (convex; positive)
├─ Convex.NegateAtom (affine; real)
│ └─ 3-element real variable (id: 224…439)
└─ [0;;]
julia> size(atom)
(3, 1)norm
LinearAlgebra.norm — Function
norm(x::AbstractExpr, p::Real = 2)Computes the p-norm ‖x‖ₚ = (∑ᵢ |xᵢ|^p)^(1/p) of a vector expression x.
Matrices are vectorized (i.e., norm(x) is the same as norm(vec(x)).)
The return value depends on the value of p. Specialized cases are used for p = 1, p = 2, and p = Inf.
Examples
julia> x = Variable(2);
julia> atom = norm(x, 1)
sum (convex; positive)
└─ abs (convex; positive)
└─ 2-element real variable (id: 779…899)
julia> size(atom)
(1, 1)
julia> norm(x, 2)
norm2 (convex; positive)
└─ 2-element real variable (id: 779…899)
julia> norm(x, Inf)
maximum (convex; positive)
└─ abs (convex; positive)
└─ 2-element real variable (id: 779…899)
julia> norm(x, 3 // 2)
rationalnorm (convex; positive)
└─ 2-element real variable (id: 779…899)norm2
LinearAlgebra.norm2 — Method
LinearAlgebra.norm2(x::Convex.AbstractExpr)The epigraph of the 2-norm $||x||_2$.
Examples
Applies to a matrix of expressions:
julia> x = Variable(3);
julia> atom = norm2(x)
norm2 (convex; positive)
└─ 3-element real variable (id: 162…975)
julia> size(atom)
(3, 1)And to a complex:
julia> y = ComplexVariable(3);
julia> atom = norm2(y)
norm2 (convex; positive)
└─ vcat (affine; real)
├─ real (affine; real)
│ └─ 3-element complex variable (id: 120…942)
└─ imag (affine; real)
└─ 3-element complex variable (id: 120…942)
julia> size(atom)
(1, 1)nuclearnorm
Convex.nuclearnorm — Method
nuclearnorm(x::Convex.AbstractExpr)The epigraph of the nuclear norm $||X||_*$, which is the sum of the singular values of $X$.
Examples
Applies to a real-valued matrix:
julia> x = Variable(2, 2);
julia> atom = nuclearnorm(x)
nuclearnorm (convex; positive)
└─ 2×2 real variable (id: 106…758)
julia> size(atom)
(1, 1)
julia> y = ComplexVariable(2, 2);
julia> atom = nuclearnorm(y)
nuclearnorm (convex; positive)
└─ 2×2 complex variable (id: 577…313)
julia> size(atom)
(1, 1)opnorm
LinearAlgebra.opnorm — Function
LinearAlgebra.opnorm(x::Convex.AbstractExpr, p::Real = 2)The epigraph of the matrix norm $||X||_p$.
Examples
Applies to a real- or complex-valued matrix:
julia> x = Variable(2, 2);
julia> atom = LinearAlgebra.opnorm(x, 1)
maximum (convex; positive)
└─ * (convex; positive)
├─ [1.0 1.0]
└─ abs (convex; positive)
└─ 2×2 real variable (id: 106…758)
julia> atom = LinearAlgebra.opnorm(x, 2)
opnorm (convex; positive)
└─ 2×2 real variable (id: 106…758)
julia> atom = LinearAlgebra.opnorm(x, Inf)
maximum (convex; positive)
└─ * (convex; positive)
├─ abs (convex; positive)
│ └─ 2×2 real variable (id: 106…758)
└─ [1.0; 1.0;;]
julia> y = ComplexVariable(2, 2);
julia> atom = maximum (convex; positive)
└─ * (convex; positive)
├─ abs (convex; positive)
│ └─ 2×2 complex variable (id: 116…943)
└─ [1.0; 1.0;;]
julia> size(atom)
(1, 1)partialtrace
Convex.partialtrace — Method
partialtrace(x, sys::Int, dims::Vector)Returns the partial trace of x over the systh system, where dims is a vector of integers encoding the dimensions of each subsystem.
partialtranspose
Convex.partialtranspose — Method
partialtranspose(x, sys::Int, dims::Vector)Returns the partial transpose of x over the systh system, where dims is a vector of integers encoding the dimensions of each subsystem.
pos
Convex.pos — Method
pos(x::Convex.AbstractExpr)The epigraph of $\max(x, 0)$.
Examples
Applies to a single expression:
julia> x = Variable();
julia> pos(x)
max (convex; positive)
├─ real variable (id: 467…111)
└─ [0;;]And element-wise to a matrix of expressions:
julia> x = Variable(3);
julia> atom = pos(x)
max (convex; positive)
├─ 3-element real variable (id: 154…809)
└─ [0;;]
julia> size(atom)
(3, 1)qol_elementwise
Convex.qol_elementwise — Method
qol_elementwise(x::AbstractExpr, y::AbstractExpr)The elementwise epigraph of $\frac{x^2}{y}$.
Examples
julia> x = Variable(3);
julia> y = Variable(3, Positive());
julia> atom = qol_elementwise(x, y)
qol_elem (convex; positive)
├─ 3-element real variable (id: 155…648)
└─ 3-element positive variable (id: 227…080)
julia> size(atom)
(3, 1)quadform
Convex.quadform — Method
quadform(x::AbstractExpr, A::AbstractExpr; assume_psd=false)Represents $x^\top A x$ where either:
xis a vector-valued variable andAis a positive semidefinite or negative semidefinite matrix (and in particular Hermitian or real symmetric). Ifassume_psd=true, thenAwill be assumed to be positive semidefinite. Otherwise,Convex._is_psdwill be used to check ifAis positive semidefinite or negative semidefinite.- or
Ais a matrix-valued variable andxis a vector.
Examples
julia> x = Variable(2);
julia> A = [1 0; 0 1]
2×2 Matrix{Int64}:
1 0
0 1
julia> atom = quadform(x, A)
* (convex; positive)
├─ [1;;]
└─ qol_elem (convex; positive)
├─ norm2 (convex; positive)
│ └─ * (affine; real)
│ ├─ …
│ └─ …
└─ [1.0;;]
julia> size(atom)
(1, 1)julia> x = [1, 2]
julia> A = Variable(2, 2);
julia> atom = quadform(x, A)
* (affine; real)
├─ * (affine; real)
│ ├─ [1 2]
│ └─ 2×2 real variable (id: 111…794)
└─ [1; 2;;]
julia> size(atom)
(1, 1)quadoverlin
Convex.quadoverlin — Method
quadoverlin(x::AbstractExpr, y::AbstractExpr)The epigraph of $\frac{||x||_2^2}{y}$.
Examples
julia> x = Variable(3);
julia> y = Variable(Positive());
julia> atom = quadoverlin(x, y)
qol (convex; positive)
├─ 3-element real variable (id: 868…883)
└─ positive variable (id: 991…712)
julia> size(atom)
(1, 1)quantum_entropy
Convex.quantum_entropy — Function
quantum_entropy(X::AbstractExpr, m::Integer, k::Integer)quantum_entropy returns -LinearAlgebra.tr(X*log(X)) where X is a positive semidefinite.
Note this function uses logarithm base e, not base 2, so return value is in units of nats, not bits.
Quantum entropy is concave. This function implements the semidefinite programming approximation given in the reference below. Parameters m and k control the accuracy of this approximation: m is the number of quadrature nodes to use and k the number of square-roots to take. See reference for more details.
The implementation uses the expression
\[H(X) = -tr(D_{op}(X||I))\]
where $D_{op}$ is the operator relative entropy:
\[D_{op}(X||Y) = X^{1/2}*logm(X^{1/2} Y^{-1} X^{1/2})*X^{1/2}\]
Reference
Ported from CVXQUAD which is based on the paper: "Lieb's concavity theorem, matrix geometric means and semidefinite optimization" by Hamza Fawzi and James Saunderson (arXiv:1512.03401)
Examples
Applies to a matrix:
julia> X = Variable(2, 2);
julia> atom = quantum_entropy(X)
quantum_entropy (concave; positive)
└─ 2×2 real variable (id: 700…694)
julia> size(atom)
(1, 1)quantum_relative_entropy
Convex.quantum_relative_entropy — Function
quantum_relative_entropy(
A::AbstractExpr,
B::AbstractExpr,
m::Integer,
k::Integer,
)quantum_relative_entropy returns LinearAlgebra.tr(A*(log(A)-log(B))) where A and B are positive semidefinite matrices.
Note this function uses logarithm base e, not base 2, so return value is in units of nats, not bits.
Quantum relative entropy is convex (jointly) in (A, B). This function implements the semidefinite programming approximation given in the reference below. Parameters m and k control the accuracy of this approximation: m is the number of quadrature nodes to use and k the number of square-roots to take. See reference for more details.
Implementation uses the expression
\[D(A||B) = e'*D_{op} (A \otimes I || I \otimes B) )*e\]
where $D_{op}$ is the operator relative entropy and e = vec(Matrix(I, n, n)).
Reference
Ported from CVXQUAD which is based on the paper: "Lieb's concavity theorem, matrix geometric means and semidefinite optimization" by Hamza Fawzi and James Saunderson (arXiv:1512.03401)
Examples
julia> A = Variable(2, 2);
julia> B = Variable(2, 2);
julia> atom = quantum_relative_entropy(A, B)
quantum_relative_entropy (convex; positive)
├─ 2×2 real variable (id: 144…849)
└─ 2×2 real variable (id: 969…693)
julia> size(atom)
(1, 1)rationalnorm
Convex.rationalnorm — Method
rationalnorm(x::AbstractExpr, k::Rational{Int})The epigraph of ||x||_k.
Examples
Applies to a single matrix:
julia> x = Variable(2);
julia> atom = rationalnorm(x, 3 // 2)
rationalnorm (convex; positive)
└─ 2-element real variable (id: 182…293)
julia> size(atom)
(1, 1)real
Base.real — Method
Base.real(x::Convex.AbstractExpr)Return the real component of x.
Examples
Applies to a single expression:
julia> x = ComplexVariable();
julia> real(x)
real (affine; real)
└─ complex variable (id: 407…692)And element-wise to a matrix of expressions:
julia> x = ComplexVariable(3);
julia> atom = real(x)
real (affine; real)
└─ 3-element complex variable (id: 435…057)
julia> size(atom)
(3, 1)relative_entropy
Convex.relative_entropy — Method
relative_entropy(x::Convex.AbstractExpr, y::Convex.AbstractExpr)The epigraph of $\sum x_i*\log \frac{x_i}{y_i}$.
Examples
Applies to a single expression:
julia> x = Variable();
julia> y = Variable();
julia> relative_entropy(x, y)
relative_entropy (convex; real)
├─ real variable (id: 124…372)
└─ real variable (id: 409…346)And element-wise to a matrix of expressions:
julia> x = Variable(3);
julia> y = Variable(3);
julia> atom = relative_entropy(x, y)
relative_entropy (convex; real)
├─ 3-element real variable (id: 906…671)
└─ 3-element real variable (id: 118…912)
julia> size(atom)
(1, 1)reshape
Base.reshape — Method
Base.reshape(x::AbstractExpr, m::Int, n::Int)Reshapes the expression x into a matrix with m rows and n columns.
Examples
Applies to a matrix:
julia> x = Variable(6, 1);
julia> size(x)
(6, 1)
julia> atom = reshape(x, 2, 3)
reshape (affine; real)
└─ 6-element real variable (id: 103…813)
julia> size(atom)
(2, 3)rootdet
Convex.rootdet — Method
Convex.rootdet(X::Convex.AbstractExpr)The hypograph of $\det(X)^{\frac{1}{n}}$, where $n$ is the side-dimension of the square matrix $X$.
Examples
Applies to a single matrix expression:
julia> X = Variable(2, 2);
julia> atom = rootdet(X)
rootdet (concave; real)
└─ 2×2 real variable (id: 159…883)
julia> size(atom)
(1, 1)sigmamax
Convex.sigmamax — Method
sigmamax(x::Convex.AbstractExpr)The epigraph of the spectral norm $||X||_2$, which is the maximum of the singular values of $X$.
Examples
Applies to a real- or complex-valued matrix:
julia> x = Variable(2, 2);
julia> atom = sigmamax(x)
opnorm (convex; positive)
└─ 2×2 real variable (id: 106…758)
julia> size(atom)
(1, 1)
julia> y = ComplexVariable(2, 2);
julia> atom = sigmamax(y)
opnorm (convex; positive)
└─ 2×2 complex variable (id: 577…313)
julia> size(atom)
(1, 1)sqrt
Base.sqrt — Method
Base.sqrt(x::Convex.AbstractExpr)The hypograph of $\sqrt x$.
Examples
Applies to a single expression:
julia> x = Variable();
julia> sqrt(x)
geomean (concave; positive)
├─ real variable (id: 576…546)
└─ [1.0;;]And element-wise to a matrix of expressions:
julia> x = Variable(3);
julia> atom = sqrt(x)
geomean (concave; positive)
├─ 3-element real variable (id: 181…583)
└─ [1.0; 1.0; 1.0;;]
julia> size(atom)
(3, 1)square
Convex.square — Method
square(x::AbstractExpr)The epigraph of $x^2$.
Examples
Applies elementwise to a matrix
julia> x = Variable(3);
julia> atom = square(x)
qol_elem (convex; positive)
├─ 3-element real variable (id: 438…681)
└─ [1.0; 1.0; 1.0;;]
julia> size(atom)
(3, 1)sum
Base.sum — Method
Base.sum(x::Convex.AbstractExpr; dims = :)Sum x, optionally along a dimension dims.
Examples
Sum all elements in an expression:
julia> x = Variable(2, 2);
julia> atom = sum(x)
sum (affine; real)
└─ 2×2 real variable (id: 263…449)
julia> size(atom)
(1, 1)Sum along the first dimension, creating a row vector:
julia> x = Variable(2, 2);
julia> atom = sum(x; dims = 1)
* (affine; real)
├─ [1.0 1.0]
└─ 2×2 real variable (id: 143…826)
julia> size(atom)
(1, 2)Sum along the second dimension, creating a columnn vector:
julia> atom = sum(x; dims = 2)
* (affine; real)
├─ 2×2 real variable (id: 143…826)
└─ [1.0; 1.0;;]
julia> size(atom)
(2, 1)sumlargest
Convex.sumlargest — Method
sumlargest(x::Convex.AbstractExpr, k::Int)Sum the k largest values of x.
Examples
Applies to a matrix:
julia> x = Variable(3, 3);
julia> atom = sumlargest(x, 2)
sumlargest (convex; real)
├─ 3×3 real variable (id: 833…482)
└─ [2;;]
julia> size(atom)
(1, 1)sumlargesteigs
Convex.sumlargesteigs — Method
sumlargesteigs(x::Convex.AbstractExpr, k::Int)Sum the k largest eigen values of x.
Examples
Applies to a matrix:
julia> x = Variable(3, 3);
julia> atom = sumlargesteigs(x, 2)
sumlargesteigs (convex; real)
├─ 3×3 real variable (id: 833…482)
└─ [2;;]
julia> size(atom)
(1, 1)sumsmallest
Convex.sumsmallest — Method
sumsmallest(x::Convex.AbstractExpr, k::Int)Sum the k smallest values of x.
Examples
Applies to a matrix:
julia> x = Variable(3, 3);
julia> atom = sumsmallest(x, 2)
Convex.NegateAtom (concave; real)
└─ sumlargest (convex; real)
└─ Convex.NegateAtom (affine; real)
└─ 3×3 real variable (id: 723…082)
julia> size(atom)
(1, 1)sumsquares
Convex.sumsquares — Method
sumsquares(x::AbstractExpr)The epigraph of $||x||_2^2$.
Examples
Applies to a single matrix
julia> x = Variable(3);
julia> atom = sumsquares(x)
qol (convex; positive)
├─ 3-element real variable (id: 125…181)
└─ [1;;]
julia> size(atom)
(1, 1)tr
LinearAlgebra.tr — Method
LinearAlgebra.tr(x::AbstractExpr)The trace of the matrix x.
Examples
julia> x = Variable(2, 2);
julia> atom = tr(x)
sum (affine; real)
└─ diag (affine; real)
└─ 2×2 real variable (id: 844…180)
julia> size(atom)
(1, 1)trace_logm
Convex.trace_logm — Function
trace_logm(
X::Convex.AbstractExpr,
C::AbstractMatrix,
m::Integer = 3,
k::Integer = 3,
)trace_logm(X, C) returns LinearAlgebra.tr(C*logm(X)) where X and C are positive definite matrices and C is constant.
trace_logm is concave in X.
This function implements the semidefinite programming approximation given in the reference below. Parameters m and k control the accuracy of the approximation: m is the number of quadrature nodes to use and k is the number of square-roots to take. See reference for more details.
Implementation uses the expression
\[tr(C \times logm(X)) = -tr(C \times D_{op}(I||X))\]
where D_{op} is the operator relative entropy:
\[D_{op}(X||Y) = X^{1/2}*logm(X^{1/2} Y^{-1} X^{1/2})*X^{1/2}\]
Reference
Ported from CVXQUAD which is based on the paper: "Lieb's concavity theorem, matrix geometric means and semidefinite optimization" by Hamza Fawzi and James Saunderson (arXiv:1512.03401)
Examples
Applies to a matrix:
julia> X = Variable(2, 2);
julia> C = [1 0; 0 1];
julia> atom = trace_logm(X, C)
trace_logm (concave; real)
└─ 2×2 real variable (id: 608…362)
julia> size(atom)
(1, 1)trace_mpower
Convex.trace_mpower — Method
trace_mpower(A::Convex.AbstractExpr, t::Rational, C::AbstractMatrix)trace_mpower(A, t, C) returns LinearAlgebra.tr(C*A^t) where A and C are positive definite matrices, C is constant and t is a rational in [-1, 2].
When t is in [0, 1], trace_mpower(A, t, C) is concave in A (for fixed positive semidefinite matrix C) and convex for t in [-1, 0) or (1, 2].
Reference
Ported from CVXQUAD which is based on the paper: "Lieb's concavity theorem, matrix geometric means and semidefinite optimization" by Hamza Fawzi and James Saunderson (arXiv:1512.03401)
Examples
Applies to a matrix:
julia> A = Variable(2, 2);
julia> C = [1 0; 0 1];
julia> atom = trace_mpower(A, 1 // 2, C)
trace_mpower (concave; real)
└─ 2×2 real variable (id: 150…626)
julia> size(atom)
(1, 1)transpose
Base.transpose — Method
LinearAlgebra.transpose(x::AbstractExpr)The transpose of the matrix x.
Examples
julia> x = Variable(2, 2);
julia> atom = transpose(x)
reshape (affine; real)
└─ * (affine; real)
├─ 4×4 SparseArrays.SparseMatrixCSC{Int64, Int64} with 4 stored entries
└─ reshape (affine; real)
└─ 2×2 real variable (id: 151…193)
julia> size(atom)
(2, 2)vcat
Base.vcat — Method
Base.vcat(args::AbstractExpr...)Vertically concatenate args.
Examples
Applies to a matrix:
julia> x = Variable(2, 2);
julia> atom = vcat(x, x)
vcat (affine; real)
├─ 2×2 real variable (id: 111…376)
└─ 2×2 real variable (id: 111…376)
julia> size(atom)
(4, 2)You can also use the Julia [x; x] syntax:
julia> x = Variable(2, 2);
julia> atom = [x; x]
vcat (affine; real)
├─ 2×2 real variable (id: 111…376)
└─ 2×2 real variable (id: 111…376)
julia> size(atom)
(4, 2)