Portfolio Optimization

In this problem, we will find the portfolio allocation that minimizes risk while achieving a given expected return $R_\text{target}$.

Suppose that we know the mean returns $\mu \in \mathbf{R}^n$ and the covariance $\Sigma \in \mathbf{R}^{n \times n}$ of the $n$ assets. We would like to find a portfolio allocation $w \in \mathbf{R}^n$, $\sum_i w_i = 1$, minimizing the risk of the portfolio, which we measure as the variance $w^T \Sigma w$ of the portfolio. The requirement that the portfolio allocation achieve the target expected return can be expressed as $w^T \mu >= R_\text{target}$. We suppose further that our portfolio allocation must comply with some lower and upper bounds on the allocation, $w_\text{lower} \leq w \leq w_\text{upper}$.

This problem can be written as

\[\begin{array}{ll} \text{minimize} & w^T \Sigma w \\ \text{subject to} & w^T \mu >= R_\text{target} \\ & \sum_i w_i = 1 \\ & w_\text{lower} \leq w \leq w_\text{upper} \end{array}\]

where $w \in \mathbf{R}^n$ is our optimization variable.

using Convex, SCS

# generate problem data
μ = [11.5; 9.5; 6] / 100          #expected returns
Σ = [
    166 34 58              #covariance matrix
    34 64 4
    58 4 100
] / 100^2

n = length(μ)                   #number of assets

R_target = 0.1
w_lower = 0
w_upper = 0.5;

If you want to try the optimization with more assets, uncomment and run the next cell. It creates a vector or average returns and a variance-covariance matrix that have scales similar to the numbers above.

using Random Random.seed!(123)

n = 15 #number of assets, CHANGE IT?

μ = (6 .+ (11.5-6)*rand(n))/100 #mean A = randn(n,n) Σ = (A * A' + diagm(0=>rand(n)))/500; #covariance matrix

w = Variable(n)
ret = dot(w, μ)
risk = quadform(w, Σ)

p = minimize(risk, ret >= R_target, sum(w) == 1, w_lower <= w, w <= w_upper)

solve!(p, SCS.Optimizer)
Problem statistics
  problem is DCP         : true
  number of variables    : 1 (3 scalar elements)
  number of constraints  : 4 (8 scalar elements)
  number of coefficients : 24
  number of atoms        : 15

Solution summary
  termination status : OPTIMAL
  primal status      : FEASIBLE_POINT
  dual status        : FEASIBLE_POINT
  objective value    : 0.0063

Expression graph
  minimize
   └─ * (convex; positive)
      ├─ [1;;]
      └─ qol_elem (convex; positive)
         ├─ norm2 (convex; positive)
         │  └─ …
         └─ [1.0;;]
  subject to
   ├─ ≥ constraint (affine)
   │  └─ + (affine; real)
   │     ├─ sum (affine; real)
   │     │  └─ …
   │     └─ [-0.1;;]
   ├─ == constraint (affine)
   │  └─ + (affine; real)
   │     ├─ sum (affine; real)
   │     │  └─ …
   │     └─ [-1;;]
   ├─ ≤ constraint (affine)
   │  └─ + (affine; real)
   │     ├─ * (constant; positive)
   │     │  ├─ …
   │     │  └─ …
   │     └─ Convex.NegateAtom (affine; real)
   │        └─ …
   ⋮

Optimal portfolio weights:

evaluate(w)
3-element Vector{Float64}:
 0.40909358454990113
 0.4999989437750131
 0.09090747195555483
sum(evaluate(w))
1.0000000002804692

This page was generated using Literate.jl.